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Abstract

Central spin models provide an idealized description of interactions between a central
degree of freedom and a mesoscopic environment of surrounding spins. We show that
the family of models with a spin-1 at the center and XX interactions of arbitrary strength
with surrounding spins is integrable. Specifically, we derive an extensive set of conserved
quantities and obtain the exact eigenstates using the Bethe ansatz. As in the homoge-
nous limit, the states divide into two exponentially large classes: bright states, in which
the spin-1 is entangled with its surroundings, and dark states, in which it is not. On res-
onance, the bright states further break up into two classes depending on their weight on
states with central spin polarization zero. These classes are probed in quench dynamics
wherein they prevent the central spin from reaching thermal equilibrium. In the single
spin-flip sector we explicitly construct the bright states and show that the central spin ex-
hibits oscillatory dynamics as a consequence of the semilocalization of these eigenstates.
We relate the integrability to the closely related class of integrable Richardson-Gaudin
models, and conjecture that the spin-s central spin XX model is integrable for any s .
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1 Introduction

Central spin models provide a minimal description for a central degree of freedom interacting
with an environment of surrounding spins. They are ubiquitous in physics, and have recently
gained increased attention with advances in quantum metrology and sensing [1–12]. In such
setups the central degree of freedom is typically well controlled and can be used to sense or
influence the environment. In solid-state quantum computing platforms, the central degree
of freedom could be the spin associated with an electron (hole) in a quantum dot or that
associated with a defect center in diamond, while the environment is composed of nuclear
spins [13–18]. In cavity-QED systems on the other hand, the cavity acts as the central degree
of freedom and the many atoms it interacts with form the environment [19–25].

On the theory side, central spin models have been widely investigated because of their
underlying integrability. Integrability guarantees an extensive set of conserved quantities and
allows all eigenstates to be exactly obtained using Bethe ansatz techniques, which has led to
various studies of the equilibrium and dynamical properties in these models [10,26–32]. For
XXX interactions (S x

0 S x
j +S y

0 S y
j +Sz

0Sz
j ) between the central spin (at site 0) and the environment

spins (at sites j), the central spin model belongs to the class of Richardson-Gaudin models [33–
36]. Such models are integrable for any value of the central spin and their exact solution has
long been established.

In this work, we focus on a system where the central spin interacts with its environment
through XX interactions. Such spin-flip terms (S x

0 S x
j + S y

0 S y
j ) ∝ (S+0 S−j + S−0 S+j ) naturally

arise from dipolar couplings in nuclear magnetic resonance experiments [37–39], in nitrogen
vacancy (NV) centers [40], and in certain quantum dots [41]. Some of the authors recently
showed that the XX model with a central spin-1/2 particle is integrable with two classes of
eigenstates: dark states, in which the central spin is maximally polarized along the z-axis and
is unentangled with the environment, and bright states, in which the central spin is entangled
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with the environment [31]. Subsequent work [42] showed that the spin-1/2 XX model remains
integrable in the presence of an arbitrarily oriented magnetic field with emergent dark states
(building on results in Refs. [31, 43, 44]). However, in all cases the exact solution strongly
depends on the central spin being a spin-1/2 particle.

We here consider the case where a central spin-1 particle interacts with its environment
through XX interactions. By explicitly constructing an extensive set of conserved charges and
exact Bethe eigenstates, we establish the integrability of the spin-1 model. While the eigenstate
structure is different from that of the spin-1/2 model, we can again identify different classes of
bright and dark states. The bright and dark states have striking consequences on the dynamics
of the central spin and prevent the central spin from equilibrating with its environment.

This work is structured as follows. In Sec. 2 we present an overview of the integrability of
the spin-1 central spin model, detailing its conserved charges and eigenstates. Its integrability
can be closely connected to the integrability of XXZ Richardson-Gaudin models, and in Sec. 3
we review some relevant results. These are then used in Sec. 4 to construct the conserved
charges and discuss several simple limits. The exact eigenstates are constructed in Sec. 5.
These eigenstates are similar to the eigenstates of the homogeneous model (where all cou-
plings are set to be equal), which can be solved in terms of collective spin operators [45].
We therefore present the eigenspectrum for the homogeneous model before moving on to the
inhomogeneous model. Following this theoretical analysis, we probe the (semi)localization
properties of the eigenstates and the effect on quench dynamics in Sec. 6 in the limiting case
of a single spin-flip excitation above the polarized ground state. Dynamics for quenches to
resonance from a maximally mixed and unpolarized environment is presented in Sec. 7. We
combine the known structure of the eigenstates and the exact solution at the homogeneous
point to make predictions for the long-time values of central spin polarization and show that
they retain memory of the initial state. Sec. 8 is reserved for conclusions.

While our construction now explicitly depends on the central spin being a spin-1 particle
rather than spin-1/2, the integrability of both models suggests that the central spin model with
XX interactions is integrable for arbitrary spin values s0. We present three pieces of evidence
in support of this conclusion in Appendix C. The first is a numerical calculation of the level
spacing ratio distribution in the spin-3/2 model, exhibiting the Poissonian statistics expected
in integrable models. The second is the integrability of the effective Hamiltonian in the limit
of a large z-field on the central spin. Specifically, up to second order in the strength of the XX
interactions, the effective Hamiltonian obtained by a Schrieffer-Wolff transformation is inte-
grable for any value of the central spin. Third, numerical investigations of the corresponding
classical (large s0) model—which can be simulated efficiently—show features of integrability.
Integrability of the classical model would imply integrability at smaller s0 within a truncated
Wigner approximation [46,47].

Despite this evidence, proving integrability beyond the spin-1/2 and spin-1 cases remains
an outstanding challenge. Establishing integrability in these models would be particularly
interesting since, apart from the classical central spin model, another particular limit of this
family is given by the inhomogeneous Tavis-Cummings model [19, 48], which is prevalent in
cavity- and circuit-QED.

2 Overview of main results

The focus of this work is the central spin Hamiltonian

H =ω′0Sz
0 +Ω

L
∑

j=1

Sz
j +

L
∑

j=1

g j

�

S−0 S+j + S+0 S−j
�

, (1)
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|+1〉0
|0〉0

|−1〉0
ω0

gj

Figure 1: Schematic illustration of the central spin-1 XX Hamiltonian. The cen-
tral spin-1 particle interacts with an environment of surrounding spins (of any spin
quantum number) through an inhomogeneous and anisotropic XX interaction with
strength g j . The field strength on the central spin is ω0.

describing a central spin-1 particle interacting with an environment of L surrounding spins
through an inhomogeneous XX interaction. Both the interaction strengths g j and the spin
quantum numbers s j of the surrounding environment particles can be chosen freely. The cen-
tral spin and the environment spins are subject to external fields along the z-direction with
strength ω′0 and Ω respectively. However, since the total z magnetization

Sz
tot =

L
∑

j=0

Sz
j , with eigenvalues M ∈

(

−1−
L
∑

j=1

s j , . . . , 1+
L
∑

j=1

s j

)

, (2)

is conserved, only the detuningω0 =ω′0−Ω governs the structure of the eigenstates. Indeed, a
rotating frame transformation by e−iΩSz

tot t takes ω′0 7→ω0 and Ω 7→ 0, while leaving the eigen-
states (which may be chosen to be eigenstates of Sz

tot) unaltered. Without loss of generality,
we work within this rotating frame, where the Hamiltonian takes the form

H =ω0Sz
0 +

�

S−0 G+ + S+0 G−
�

. (3)

For convenience, we introduce the environment spin effective raising/lowering operators

G± =
L
∑

j=1

g jS
±
j . (4)

This model is illustrated in Fig. 1.
We establish the integrability of the Hamiltonian (1) by constructing both an extensive

set of conserved charges and the exact eigenstates. For each environment spin S j there is an
associated conserved charge given by

Q̃ j =ω0Sz
0Q j +ω0 (2P0 − 1)Sz

j + {S
+
0 G− + S−0 G+, P0Q j} , (5)

in which P0 = 1− (Sz
0)

2 is a projector on central spin |0〉0, {·, ·} the anticommutator, and

Q j =
S+j S−j + S−j S+j

2
+

L
∑

k ̸= j

g j gk

g2
j − g2

k

�

S+j S−k + S−j S+k
�

+ 2
L
∑

k ̸= j

g2
k

g2
j − g2

k

Sz
j S

z
k . (6)

These conserved charges mutually commute and commute with the central spin Hamiltonian.
Note that these charges consist of up to 4-body operators, whereas the conserved charges of
the spin-1/2 central spin Hamiltonian consist of up to 2-body operators [31].
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Two different classes of exact eigenstates with a fixed number of spin excitations can be
constructed by adding excitations to the vacuum state, which is defined as the fully polarized
state |;〉= ⊗L

j=1 |−s j〉 if the environment spin at site j has total spin s j . Environment states are
then given by unnormalized Bethe states

|v1, . . . , vN 〉=
N
∏

a=1

 

L
∑

j=1

g j

g2
j − va

S+j

!

|;〉 , (7)

parametrized by N (possibly complex) variables v1, v2, . . . , vN . These variables are also known
as rapidities.1 The number of excitations is bounded by N ≤ 2

∑L
j=1 s j , where equality corre-

sponds to the fully polarized state ⊗L
j=1 |s j〉.

First, the Hamiltonian has a class of degenerate dark eigenstates, where the central spin
is maximally polarized along either the positive or negative z-direction. For M < 0, all dark
states have central spin down, reading

|D(v1, . . . , vN )〉= |−1〉0 ⊗ |v1, . . . , vN 〉 , (8)

with rapidities satisfying a set of Bethe equations

L
∑

j=1

s j g
2
j

g2
j − va

−
N
∑

b ̸=a

vb

vb − va
= 0 , a ∈ {1, . . . , N} , (9)

such that G− |v1, . . . , vN 〉 = 0. Note that the rapidities, and thus the dark states |D〉, are inde-
pendent of the magnetic field strength ω0.

The dark states span a degenerate manifold of energy E = −ω0:

H |D(v1, . . . , vN )〉= −ω0 |D(v1, . . . , vN )〉 . (10)

Above half-filling, the dark states have central spin polarization |+1〉0. The environment
states are annihilated by G+ and can be similarly obtained by spin inversion.

The second class of eigenstates are bright states, in which the central spin is entangled with
the environment states. Bright states can be parametrized as

|B(κ, v1, . . . , vN )〉=

√

√1
2
|0〉0 ⊗ |v1, . . . , vN 〉+

1
κ−ω0

|1〉0 ⊗ G− |v1, . . . , vN 〉

+
1

κ+ω0
|−1〉0 ⊗ G+ |v1, . . . , vN 〉 , (11)

satisfying the eigenvalue equation

H |B(κ, v1, . . . , vN )〉= κ |B(κ, v1, . . . , vN )〉 , (12)

provided the rapidities satisfy the set of Bethe equations

ω0 − κ
2κ

+
L
∑

j=1

s j g
2
j

g2
j − va

−
N
∑

b ̸=a

vb

vb − va
= 0 , for all a ∈ {1, . . . , N} , (13)

κ(κ+ω0) = −4

 

N
∑

a=1

va −
L
∑

j=1

s j g
2
j

!

. (14)

1Both va and 1/va are used throughout the literature as variables, leading to slightly different Bethe states and
equations as compared to e.g. Ref. [31].
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These bright states contain N + 1 spin excitations on top of the vacuum state |−1〉0 ⊗ |;〉 and
have total spin magnetization M = N −

∑L
j=1 s j .

While completeness of the Bethe ansatz is typically not easy to establish, in Sec. 5 we argue
that these bright and dark states exhaust all possible eigenstates, such that the Bethe ansatz is
complete for this model.

Beyond these results on integrability, we also characterize the dynamical properties of the
central spin-1 model in several relevant limits. In the single-excitation sector a more detailed
analysis of the eigenstates is possible, even in the L → ∞ limit. The model continues to
support both dark and bright states, but the spin-flip excitation is neither localized nor delo-
calized, but rather semilocalized [49] – the central spin has an O(1) probability of carrying
the excitation, to be contrasted with the O(1/L) probability for the environment spins. This
feature can be directly observed in quench dynamics, where it implies that initial states where
the central spin carries the excitation exhibit a nonvanishing oscillation in 〈Sz

0(t)〉, even in the
L→∞ limit.

Consequences of integrability remain visible with an unpolarized environment. We show
numerically that the remanent central spin magnetization in a quench to resonance (ω0 = 0)
differs from the Gibbs ensemble prediction. While the remanent magnetization is determined
by the diagonal ensemble corresponding to the full Hamiltonian, we show that its value is well-
approximated by a homogeneous dephasing approximation (HDA). Within this approximation
we assume that the matrix elements of Sz

0 in the inhomogeneous model can be accurately
approximated by the matrix elements in the homogeneous model, while keeping the energies
different. The latter leads to dephasing at long times, which is absent in the homogeneous
model, and an approach to the diagonal ensemble prediction in the inhomogeneous model.

3 Factorizable Richardson-Gaudin Hamiltonians

In this section, we review various properties of the class of factorizable Richardson-Gaudin
Hamiltonians [33–36] that will be useful in establishing the conserved charges and eigenstates
of the spin-1 central spin Hamiltonian. The integrability and eigenstates of the spin-1/2 model
were similarly obtained using the properties of these models in Ref. [31], but the construction
for the spin-1 model is more involved and cannot be seen as a direct generalization of the
spin-1/2 model.

The family of factorizable Hamiltonians can be written as

H(α) =
1+α

2
G+G− +

1−α
2

G−G+ = α
L
∑

j=1

g2
j Sz

j +
1
2

L
∑

j,k=1

g j gk

�

S+j S−k + S−j S+k
�

. (15)

The Hamiltonian H(α) is integrable for every choice of α, and results for its eigenstates and
conserved charges can be found in, for example, Refs. [36, 50]. For reference, the conserved
quantities are:

Q j(α) = αSz
j +

S+j S−j + S−j S+j
2

+
L
∑

k ̸= j

�

g j gk

g2
j − g2

k

(S+j S−k + S−j S+k ) +
2g2

k

g2
j − g2

k

Sz
j S

z
k

�

. (16)

These satisfy [H(α),Q j(α)] = [Q j(α),Qk(α)] = 0, for all j, k = 1, . . . , L. In the conserved
charges of the central spin model we have Q j ≡ Q j(α = 0). Note that different equivalent
expressions for these conserved charges appear in the literature: the asymmetric expressions
used here [50–56] as well as more symmetric ones [34,35,57–59].
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All eigenstates can be written as Bethe states, where a Bethe state with N spin excitations
on top of the vacuum state |;〉= ⊗L

j=1 |−s j〉 is defined as

|v1, v2, . . . vN 〉=
N
∏

a=1

G+(va) |0〉 , with G+(v) =
L
∑

j=1

g j

g2
j − v

S+j , (17)

expressed in terms of generalized spin raising operators that depend on the parameters
v1, v2, . . . vN . These Bethe states are eigenstates provided these rapidities satisfy a set of Bethe
equations

α− 1
2
+

L
∑

j=1

s j g
2
j

g2
j − va

−
N
∑

b ̸=a

vb

vb − va
= 0 , a ∈ {1, . . . , N} , (18)

resulting in eigenvalue equations for the conserved charges,

Q j(α) |v1, v2, . . . vN 〉= −2s j





α− 1
2
+

N
∑

a=1

va

g2
j − va

−
L
∑

k ̸= j

sk g2
k

g2
j − g2

k



 |v1, v2, . . . vN 〉 , (19)

as well as the Hamiltonian,

H(α) |v1, v2, . . . vN 〉= (α− 1)





N
∑

a=1

va −
L
∑

j=1

s j g
2
j



 |v1, v2, . . . vN 〉 . (20)

Note that the eigenstates and eigenvalues have an implicit dependence on α through the Bethe
equations (18). As apparent from Eq. (20), the rapidities can be given an interpretation as spin
excitation energies on top of a vacuum energy, with the Bethe equations acting as a set of self-
consistency equations.

The model exhibits a quantum phase transition at |α| = 1. Consider, for example, α = 1,
at which point the Hamiltonian reduces to a positive semi-definite Hamiltonian G+G−. The
ground states have energy zero, are necessarily annihilated by G−, and are highly degener-
ate (see, for example, Ref. [56]). The Bethe ground states are parametrized by N rapidities
satisfying

L
∑

j=1

s j g
2
j

g2
j − va

−
N
∑

b ̸=a

vb

vb − va
= 0 , a ∈ {1, . . . , N} . (21)

All excited states have strictly positive energy and correspond to Bethe states with a single
diverging rapidity v→∞, and the remaining N − 1 (finite) rapidities satisfy the set of Bethe
equations

−1+
L
∑

j=1

s j g
2
j

g2
j − va

−
N−1
∑

b ̸=a

vb

vb − va
= 0 , a ∈ {1, . . . , N − 1} , (22)

leading to a strictly positive (energy) eigenvalue
∑L

j=1 2s j g
2
j − 2

∑N−1
a=1 va for the Hamiltonian

G+G−. The ground and excited states result in dark and bright states respectively in Sec. 5.
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4 Conserved charges

The general conserved charges of the central spin Hamiltonian are most easily derived in a
3× 3 block-matrix representation, in which the Hamiltonian (1) is given by

H =





ω0
p

2G− 0p
2G+ 0

p
2G−

0
p

2G+ −ω0



 . (23)

The different blocks correspond to different eigenvalues of the central spin polarization Sz
0,

here ordered as {+1,0,−1}, and every matrix element acts on the L environment spins. The
diagonal terms correspond toω0Sz

0 and are proportional to the identity within each block. The
off-diagonal factors of

p
2 arise from the action of S±0 connecting different blocks.

The L corresponding conserved charges (5) establishing integrability can be expressed in
block-matrix form as

Q̃ j =





ω0(Q j − Sz
j )
p

2G−Q j 0p
2Q jG

+ ω0Sz
j

p
2Q jG

−

0
p

2G+Q j −ω0(Q j + Sz
j )



 . (24)

These satisfy [Q̃ j , H] = [Q̃ j , Q̃k] = 0, for all j, k = 1, . . . , L. These properties are checked by
direct calculation below using properties of the Q j as defined in Eq. (6). The different terms
in Eq. (24) can first be motivated by considering two simplifying limits.

Far away from resonance. Close to the limit ω0→∞ we can perform a Schrieffer-Wolff
transformation [60,61] to obtain an effective Hamiltonian

Heff =ω0Sz
0 +

1
ω0

�

S+0 G−, S−0 G+
�

=ω0Sz
0 +

1
ω0

�

S+0 S−0 G−G+ − S−0 S+0 G+G−
�

, (25)

which has block-matrix representation

Heff =





ω0 +
2
ω0

G−G+ 0 0
0 2

ω0
[G−, G+] 0

0 0 −ω0 −
2
ω0

G+G−





=





ω0 +
2
ω0

H(α= −1) 0 0
0 − 4

ω0
H(α→∞) 0

0 0 −ω0 −
2
ω0

H(α= 1)



 .

(26)

All diagonal elements correspond to Richardson-Gaudin integrable Hamiltonians for the envi-
ronment from Sec. 3, such that the effective Hamiltonian itself is also integrable. The diagonal
elements of Eq. (24) are the dominant terms for ω0→∞ and correspond exactly to the con-
served charges of the Hamiltonian in Eq. (26).

At resonance. In the opposite limit where ω0 = 0, i.e. at resonance, the diagonal ele-
ments of both the Hamiltonian (23) and the conserved charges (24) vanish. In this limit the
commutator of the Hamiltonian with the conserved charges can be directly evaluated as

[H, Q̃ j] =





0 0 0
0 2[G+G− + G−G+,Q j] 0
0 0 0



 . (27)

This expression for the commutator is independent of the choice of Q j . The single nontrivial
element now vanishes since G+G− + G−G+ is again a Richardson-Gaudin integrable Hamilto-
nian, with conserved charges Q j .
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An alternative way of obtaining the conserved charge in this limit is by noting that H2 com-
mutes with (Sz

0)
2. If we consider the component of H2 in the space with zero spin polarization,

we have that

P0H2 = 2P0

�

G+G− + G−G+
�

, (28)

returning the factorizable Hamiltonian with conserved charges Q j for the environment space.
The Hamiltonian squared then has conserved charges P0Q j , such that at resonance the Hamil-
tonian itself has conserved charges {H, P0Q j}. Expressing these charges as a block matrix then
returns the conserved charges (24) with ω0 = 0.

General. The general conserved charges (24) are linear in ω0, such that they interpolate
between the two limiting cases. The commutation relation at arbitrary values of ω0 can be
checked by evaluating the commutator [H, Q̃ j], which reads






0
p

2ω0(G−Q
(+)
j −Q(−)j G−) 0

p
2ω0(G+Q(−)j −Q(+)j G+) 2[G+G− + G−G+,Q j] −

p
2ω0(G−Q

(+)
j −Q(−)j G−)

0 −
p

2ω0(G+Q(−)j −Q(+)j G+) 0






, (29)

where we have introduced the shorthand Q(±)j = Q j ± Sz
j . No properties of the Q j have

been used yet. The diagonal element again vanishes since Q j are the conserved charges of
G+G− + G−G+ [see Eq. (16)]. The off-diagonal elements can be shown to vanish by noting
that G+Q(−)j =Q(+)j G+ or G−Q(+)j =Q(−)j G− (see, for example, Ref. [31]).

It is an open question how the integrability of this model and the construction of the con-
served charges can be incorporated in the general framework of (Richardson-Gaudin) inte-
grability such as generalized Gaudin algebras [58], constructions based on solutions to the
Yang-Baxter equation such as the algebraic Bethe ansatz [62, 63], or based on solutions to
the “generalized” classical Yang-Baxter equation [44, 64] and corresponding modified Bethe
ansatz [65].

5 Eigenstates

Central spin XX models generally support two different classes of eigenstates: bright and dark
states. All such states can be obtained explicitly and systematically. We note that the con-
struction of dark states does not depend on the value of the central spin (see, for example,
Refs. [45, 66–69]), such that the construction for dark states in the spin-1/2 model immedi-
ately extends to the current model. The construction of the bright states, however, is particular
to this model, and these exhibit a richer behavior as compared to the spin-1/2 case.

5.1 Homogeneous limit

It is instructive to first examine the special case of homogeneous couplings, g j = g for all j.
In this case G± is proportional to the total spin raising/lowering operator on the environment
and we can write

H =ω0Sz
0 + g

�

S+0 J− + S−0 J+
�

, where Jµ =
L
∑

j=1

Sµj . (30)

The eigenstates of the model (30) can be found without resorting to Bethe ansatz machin-
ery. The homogeneous limit has symmetries

[H, Sz
0 + J z] = [H, S2

0] = [H, J2] = 0 , (31)
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Figure 2: Illustration of the spectrum of the central spin Hamiltonian (with all envi-
ronment spins being spin-1/2) in the homogeneous case (dashed black line and full
colored lines) and the inhomogeneous case (full gray lines) in the sector with L = 10,
N = 4 such that M = −2. In the homogeneous case, dark states correspond to states
with environment spin J = |M | − 1 = 1. Sectors with J = |M | = 2 contribute two
states, sectors with |M |< J ≤ L/2= 5 contribute three states.

where J2 = 1
2(J

+J−+J−J+)+(J z)2 is the total spin operator for the environment. The central
spin Hamiltonian can be represented as a block-diagonal matrix in a fixed (M , J) sector of
linear dimension 1, 2 or 3, depending on the relation between J and M . All such matrices can
be explicitly diagonalized to return the spectrum of the homogeneous central spin model.

Bright states. We first consider the case J > |M |. The Hamiltonian has contributions from
3× 3 blocks spanned by

|+1〉0 ⊗ |J , M − 1〉 , |0〉0 ⊗ |J , M〉 , |−1〉0 ⊗ |J , M + 1〉 , (32)

where |m0〉0 denotes the eigenstates of Sz
0 and |J , MJ 〉 is a simultaneous eigenstate of J2 and

J z with eigenvalues J(J + 1) and MJ , respectively. In this block H takes the form

HJ M =





ω0
p

2gc−J M 0p
2gc−J M 0

p
2gc+J M

0
p

2gc+J M −ω0



 , with c±J M =
Æ

(J ∓M)(J ±M + 1) . (33)

The resulting states generally depend strongly on ω0 and are known as bright states—to be
contrasted with the dark states that will be introduced later in this section.

In the special case of resonance (ω0 = 0) the eigenstates can be analytically constructed
and used to further divide the bright states in two subclasses. The Hamiltonian matrix reduces
to

HJ M =
p

2g





0 c−J M 0
c−J M 0 c+J M
0 c+J M 0



 . (34)

A single eigenstate can be constructed as

|B0〉=
1
B

�

c+J M |+1〉0 ⊗ |J , M − 1〉 − c−jM |−1〉0 ⊗ |J , M + 1〉
�

, (35)
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with |B|2 = (c+J M )
2 + (c−J M )

2 and energy E0 = 0. A notable feature of this class is that these
states have no weight on |0〉0. This feature will persist to the inhomogeneous case, and we
will refer to these states as double states.

The remaining two eigenstates follow as

|B±〉=
1
p

2
|0〉0 ⊗ |J , M〉 ±

1
p

2B

�

c−J M |+1〉0 ⊗ |J , M − 1〉+ c+J M |−1〉0 ⊗ |J , M + 1〉
�

, (36)

with degenerate energy eigenvalues E± =
p

2gB. The persistent feature of this class is that
exactly half the weight of the state is on |0〉0. These states form pairs and since they always
have support on all three central spin states we will refer to these as triple states.

Next, we can consider the case J = |M | with M ̸= 0. The Hamiltonian now only couples
two different states, depending on the sign of M ,

|0〉0 ⊗ |M , M〉 and |+1〉0 ⊗ |M , M − 1〉 , for M > 0 , (37)

|0〉0 ⊗ |−M , M〉 and |−1〉0 ⊗ |−M , M + 1〉 , for M < 0 . (38)

Constructing the central spin Hamiltonian in this basis leads to a 2× 2 matrix. For example,
for M > 0,

HM M =

�

0 2g
p

M
2g
p

M ω0

�

, (39)

which can be explicitly diagonalized to return a pair of eigenvalues

E =
ω0

2
±

√

√

√ω2
0

4
+ 4M g2 . (40)

These states have common properties of both double and triple states. At resonance the cor-
responding eigenstates are supported on two states, as with double states, but half the weight
of the state is on |0〉0, as with the triple states. Since we will be interested in quench dynamics
of the central spin magnetization, we also refer to these as triple states.

Dark states. If we consider a total environment spin where J = |M |−1, the blocks reduce
to 1×1 blocks. This condition enforces that the environment is in a state |J , J〉 or |J ,−J〉, and
the corresponding states can now only take the form

|+1〉0 ⊗ |J , J〉= |+1〉0 ⊗ |M − 1, M − 1〉 , for M > 0 , (41)

|−1〉0 ⊗ |J ,−J〉= |−1〉0 ⊗ |−M − 1, M + 1〉 , for M < 0 . (42)

Crucially, these states have the property that they are annihilated by both S+0 J− and S−0 J+, the
interaction terms in the Hamiltonian, such that |D〉= |±1〉0⊗|J ,±J〉 is an eigenstate of H with
eigenvalue ±ω0. These product eigenstates |D〉 are called dark states and are independent
of ω0. Note that dark states with central spin state |+1〉0 only appear for M > 0, whereas
dark states with central spin state |−1〉0 only appear for M < 0. In the specific case where
J = M = 0, the homogeneous model supports additional dark states of the form |0〉0 ⊗ |0,0〉,
which are eigenstates of the Hamiltonian with zero eigenvalue.

In Appendix A, we provide the counting of each class of states, assuming each environ-
mental spin is spin-1/2. In the limit of large L, there are twice as many triple states as double
states, while the ratio of the number of dark states to that of triple states scales as |M |/L. We
use these results to predict the late-time expectation value of central spin projectors in Sec. 7.

5.2 The inhomogeneous model

The eigenstates of the inhomogeneous model can be constructed as Bethe states that are a
direct generalization of the eigenstates of the homogeneous model.
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Dark states

At every value of the magnetic field ω0, the central spin Hamiltonian in Eq. (1) supports a
set of dark eigenstates in which the central spin is not entangled with the environment spins.
These dark states |D〉 are product states of the form |−1〉0 ⊗ |D−〉 or |+1〉0 ⊗ |D+〉, where the
environment state is adiabatically connected to the states |J ,±J〉 and satisfies [31,45,66–68]

G± |D±〉= 0 . (43)

This condition guarantees that such dark states are annihilated by the (inhomogeneous) in-
teraction part of the Hamiltonian (1), as well as being eigenstates of the central spin term Sz

0
with eigenvalues ±1. As such, dark states are independent of the central spin field ω0 and
form degenerate manifolds with energy ±ω0.

As outlined in Ref. [31], the environment states correspond to the ground states of the
factorizable Hamiltonians G+G− and G−G+, which can be expressed as Bethe states satisfying
the Bethe equations (21). As reviewed in Sec. 3, for M < 0 these dark states can be written as

|D(v1, . . . , vN )〉= |−1〉0 ⊗ |v1, . . . , vN 〉 , (44)

with rapidities satisfying the Bethe equations

L
∑

j=1

s j g
2
j

g2
j − va

−
N
∑

b ̸=a

vb

vb − va
= 0 , a ∈ {1, . . . , N} . (45)

Bright states

The bright eigenstates can similarly be related to the eigenstates of the factorizable Richardson-
Gaudin models, albeit in a more involved way. Specifically, we consider an ansatz expressed
in terms of a single environment state |ψ〉 and a free parameter κ, writing

|B〉=
√

√1
2
|0〉0 ⊗ |ψ〉+

1
κ−ω0

|1〉0 ⊗ G− |ψ〉+
1

κ+ω0
|−1〉0 ⊗ G+ |ψ〉 . (46)

The above state is an eigenstate of the Hamiltonian (1) with eigenvalue κ provided the envi-
ronment state |ψ〉 satisfies the (self-consistent) eigenvalue equation

Hκ |ψ〉=
�

G+G−

κ−ω0
+

G−G+

κ+ω0

�

|ψ〉=
κ

2
|ψ〉 . (47)

This equation is self-consistent because the Hamiltonian Hκ depends on the eigenvalue, but,
crucially, is Richardson-Gaudin integrable for every choice of κ. As such, its eigenstates can be
exactly constructed as Bethe states for every choice of κ. The Hamiltonian is (up to a prefactor)
the Hamiltonian from Eq. (15) from Sec. 3, where the parameter α can be determined asω0/κ.
In order to find a set of Bethe equations we can express the eigenvalue κ in terms of rapidities,
and now the Bethe equations for these rapidities need to be modified to take into account the
self-consistency. This approach directly returns the equations (13).

Spectrum at resonance

The eigenstates of the inhomogeneous model at resonance can again be compared with the
eigenstates at resonance in the homogeneous limit, recovering the double, triple and dark
states.
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At resonance, ω0 = 0, the self-consistency equation for the bright states (47) reduces to a
regular eigenvalue equation. In this limit the self-consistent equation can be rewritten as

�

G+G− + G−G+
�

|ψ〉=
κ2

2
|ψ〉 , (48)

such that the environment states will correspond to the eigenstates of the above (integrable)
Hamiltonian. Since the Hamiltonian G+G− + G−G+ is positive definite, κ2 is always positive.
For a given eigenstate of this Hamiltonian with eigenvalue κ2/2, the central spin Hamiltonian
has two corresponding eigenstates with eigenvalue ±κ, given by

|B±〉=
√

√1
2
|0〉0 ⊗ |ψ〉 ±

1
κ

�

|+〉0 ⊗ G− |ψ〉+ |−〉0 ⊗ G+ |ψ〉
�

. (49)

These are the (normalized) triple states identified previously in the homogeneous limit, and
continue to have exactly half their weight on |0〉0.

The double states, with zero energy and vanishing weight on |0〉0, can be constructed in an
alternative way (since in this limit the corresponding Bethe equations become singular):

|B0〉= |−〉0 ⊗ G+(G−G+)−1 |ψ〉 − |+〉0 ⊗ G−(G+G−)−1 |ψ〉 , (50)

where the inverse should be interpreted as a pseudo-inverse, with the condition that the
pseudo-inverse should act as the actual inverse on the environment states |ψ〉, i.e.

G−G+(G−G+)−1 |ψ〉= G+G−(G+G−)−1 |ψ〉= |ψ〉 . (51)

This condition can be satisfied if we consider an initial state that has vanishing overlap with
the dark states, since the dark states lie in the kernel of either G+G− or G−G+. For example, if
we consider M < 0, all dark states are annihilated by G+G− whereas G−G+ has no dark states,
such that the inverse of G−G+ is well defined. Taking the state |ψ〉 to be an excited state of
G+G−, every excited state gives rise to a well defined double state.

Completeness

It is possible to count the total number of dark and bright states and show that they exhaust
all eigenstates of the central spin Hamiltonian (1). The number of these states depends on
the choice of environment spins, and for concreteness we here focus on the case where each
environmental spin is spin-1/2 and M < 0. The argument for completeness does not depend
on the specific choice of spins or total magnetization.

The total number of dark states is set by the number of solutions to

G− |D−〉= 0 . (52)

For a total magnetization M and a dark state |−1〉0⊗|D−〉, the state |D−〉 has a magnetization
M +1 and the state G− |D−〉 has magnetization M . The total number of solutions to the above
equation is given by the dimension of the former Hilbert space (fixing the number of variables)
minus the dimension of the latter (fixing the number of constraints), and we find2

Ndark =
�

L
M + L/2+ 1

�

−
�

L
M + L/2

�

. (53)

2Eq. (53) requires that G− is surjective on the M magnetization sector. This can be seen by noting
that G− = P−1J−P is related to the total spin lowering operator by a similarity transformation, where
P = exp

�

∑L
j=1− ln g jS

z
j

�

[56].

13

https://scipost.org
https://scipost.org/SciPostPhys.15.1.030


SciPost Phys. 15, 030 (2023)

−4 −2 0 2 4

κ/ω0

−3

−2

−1

0

1

2

3

E
(κ

)

Figure 3: Graphical illustration of the self-consistency equation for L = 4. Full black
lines denote the spectrum E(κ) of the Hamiltonian (54) and the dashed red line
E(κ) = κ/2 (47). Vertical dotted lines mark the asymptotics at κ= ±ω0.

The same result can be recovered in the homogeneous case (see Eq. (A.2)).
For the bright states, the total number of solutions to the self-consistent equation can be

found by plotting the spectrum of the Hamiltonian

Hκ =
G+G−

κ−ω0
+

G−G+

κ+ω0
(54)

as a function of κ, as illustrated in Fig. 3 for generic choices of the interaction strengths and
ω0. Our conclusions do not depend on any specific choice of the parameters.

Any intersection between this spectrum and the dashed red line denoting κ determines
a solution to the self-consistent equation (47). The number of solutions can now be directly
related to the number of bright states: the different lines in Fig. 3 correspond to the different
eigenstates of the Hamiltonian (54). As κ → ±∞ all eigenvalues go to zero. At intermedi-
ate values of κ all eigenvalues are monotonously decreasing, as follows from the Hellmann-
Feynman theorem:

∂ E
∂ κ
=


∂ Hκ
∂ κ

·

= −
〈G+G−〉
(κ−ω0)2

−
〈G−G+〉
(κ+ω0)2

≤ 0 . (55)

Here we have made use of the positive semi-definiteness of G±G∓. Since the Hamiltonian
diverges at κ = ±ω0, there are now two options for every eigenvalue E(κ): either these
diverge at κ = ±ω0 and the eigenvalue has two vertical asymptotes, or the corresponding
eigenstate is annihilated by the residue of Hκ at κ=ω0 or κ= −ω0 and the eigenvalue has a
single vertical asymptote (the state cannot be annihilated by both, as will be made apparent
shortly). In the former case the eigenvalue has 3 intercepts with the diagonal line, leading to 3
bright state solutions per environment state. In the latter case the eigenvalue has 2 intercepts
with the diagonal line, leading to 2 bright states per environment state. Crucially, the number
of states that are annihilated by the residue is exactly equal to the number of dark states, since
these are the states that are annihilated by G+G− (or G−G+ for M > 0).

As such, the total number of bright state solutions equals three times the environment
space dimension minus the number of dark states, which combined with the total number
of dark states returns the full dimension of the spin-1 central spin Hamiltonian, where the
central spin can take 3 different values. The completeness of the Bethe ansatz for the spin-1
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central spin Hamiltonian then directly follows from the completeness of the Bethe ansatz for
the Richardson-Gaudin Hamiltonian (15) [70,71].

6 Single excitation

In the case of a single spin excitation the eigenstates are amenable to a more detailed analytical
treatment, even away from resonance and in the limit of an infinite environment L→∞. In
the following, we first analyze the localization properties of the (bright) eigenstates and then
present exact results for quench dynamics starting from a product state.

6.1 Multifractality and semilocalization

In the case of a single excitation, the Hamiltonian (1) can be written as a so-called arrowhead
matrix. Such models generally support both dark and bright eigenstates, and these states have
recently gained attention [49] in the context of semilocalization, being neither fully localized
nor fully delocalized. Calculations of the inverse participation ratio (IPR) instead indicated a
multifractal behavior.

The IPR is defined as

P(q) =
L
∑

j=0

|ψ j|2q , (56)

with |ψ j|2 the component of the (normalized) wave function where the excitation is located
on spin j. For a delocalized eigenstate, all components are on the order 1/L, resulting in an
IPR scaling with L as P(q) = O

�

L1−q
�

, whereas a localized eigenstate has a few components
O(1), resulting in a scaling of P(q) = O(1). A change of scaling as q is varied is a signature
of multifractality in the eigenstate [49,72–74].

For a single excitation in the central spin model, there are L − 1 dark states and 2 bright
states. In the construction of the bright states (46), the environment state |ψ〉 is necessarily
the vacuum state |;〉. The wave function reads

|κ〉=

√

√1
2
|0〉0 ⊗ |;〉+

1
κ+ω0

|−1〉0 ⊗ G+ |;〉 , (57)

with κ satisfying

�

G+G−

κ−ω0
+

G−G+

κ+ω0

�

|;〉=
G−G+

κ+ω0
|;〉=

κ

2
|;〉 . (58)

As G− |;〉 = 0 and G−G+ |;〉 = [G−, G+] |;〉 = 2
∑L

j=1 s j g
2
j |;〉, the self-consistent eigenvalue

equation simplifies to a quadratic equation for κ. This quadratic equation can be explicitly
solved to return the two bright states.

In order to have a finite κ value when the number of environment sites L goes to infinity,
we will consider a distribution of interaction strengths g j = g̃ j/

p
L with g̃ j distributed in some

fixed interval. The quadratic equation returns two solutions corresponding to two bright states
with

κ= −
ω0

2
±

√

√

√ω2
0

4
+ 2g2 , with g2 =

1
L

L
∑

j=1

2s j g̃
2
j . (59)
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Crucially, κ stays finite in the limit L→∞, resulting in both a finite eigenvalue and nonzero
components in the wave function (57). The normalized components of the wave function
immediately follow as

|ψ0|2 =
(κ+ω0)2

(κ+ω0)2 + 2g2 , |ψ j|2 = 2
2s j g

2
j

(κ+ω0)2 + 2g2 , j = 1, . . . , L . (60)

The IPR can be calculated from these components as

P(q) = |ψ0|2q +
L
∑

j=1

|ψ j|2q =
(κ+ω0)2q

((κ+ω0)2 + 2g2)q
+

2q

Lq

L
∑

j=1

�

2s j g̃
2
j

(κ+ω0)2 + 2g2

�q

. (61)

Assuming a uniform distribution for 2s j g̃
2
j in a finite interval [0,2g2], the sum can be explicitly

evaluated to return

P(q) = (κ+ω0)2q

((κ+ω0)2 + 2g2)q
+

1
Lq−1

4q g2q

(q+ 1)((κ+ω0)2 + 2g2)q
. (62)

The scaling of the IPR with L for a fixed q results in

P(q) =
¨

O
�

L1−q
�

, if 0< q < 1 ,

O(1) , if 1< q .
(63)

This quantifies what is already apparent from the parametrizations (57) and (60): in the
thermodynamic limit the component of the bright states on the central spin remains O(1),
whereas all other components are delocalized over the environment states and O(1/L). This
scenario has been dubbed semilocalization [49,74].

6.2 Quench dynamics

The effect of semilocalization can be directly observed in quench dynamics. We consider
quenches where the system is initially prepared in a product state, with the single excitation
localized either on the central spin or on one of the environment spins, and is subsequently
evolved using the central spin Hamiltonian.

For simplicity, we focus on the dynamics of the central spin magnetization 〈Sz
0(t)〉 starting

from a general initial state |ψ0〉. Since the dark states are eigenstates of Sz
0 all nontrivial

dynamics is due to the two bright states, and we can write

〈Sz
0(t)〉=−

∑

D
|〈ψ0|D〉|2 +

∑

κ=κ±

〈κ|Sz
0|κ〉|〈κ|ψ0〉|2

+
�

e−i(κ+−κ−)t 〈ψ0|κ−〉〈κ−|Sz
0|κ+〉〈κ+|ψ0〉+ h.c.

�

, (64)

where we have labeled the two bright states by their eigenvalues κ± = −ω0/2±
q

ω2
0/4+ 2g2

and the (L − 1) dark states as D. The central spin magnetization oscillates with a single

frequency κ+ − κ− = 2
q

ω2
0/4+ 2g2, and both the amplitude of the oscillations and their

average value are determined by the overlaps with the bright states.
Consider first the case where the initial state consists of an excitation on the central spin, i.e.

|ψ0〉= |0〉0⊗|;〉. This state has a vanishing overlap with the dark states, and the contribution
from the bright states can be calculated using the explicit parametrization (57) as

〈κ|Sz
0|κ〉|〈κ|ψ0〉|2 = −

g2

2
�

ω2
0/4+ 2g2� , (65)
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Figure 4: Quench dynamics in single-excitation sector away from resonance. (a) Dy-
namics of the central spin magnetization Sz

0 for an initial product state that is either
localized on the central spin (line starting at 〈Sz

0〉 = 0) or on an environment spin,
with the different lines starting at 〈Sz

0〉= −1 illustrating the L different initial states.
(b) Dynamics of the environment spin magnetization Sz

j for an excitation initially
localized on site j. Parameters: L = 12, ω0 = 2, and g̃ j is uniformly distributed in
the interval [1, 2] for environment spins with s j = 1/2.

which holds for both bright states |κ±〉. The resulting central spin dynamics immediately
follows as

〈Sz
0(t)〉= −

g2

ω2
0/4+ 2g2

h

1− cos
�

2t
Ç

ω2
0/4+ 2g2

�i

. (66)

This result is illustrated in Fig. 4 and is identical to the dynamics in the homogeneous model
(30) with interaction strength g = g/

p
2J and environment spin J =

∑L
j=1 s j . Crucially,

the amplitude of the central spin oscillation remains finite in the limit L →∞ provided g2

remains finite. The nonvanishing amplitude of the oscillation is a direct consequence of the
semilocalized nature of the bright states: the overlap between the initial state and the two
bright states remains O(1) in this limit.

This finite amplitude oscillation can be contrasted with the central spin dynamics for an
initial product state localized on an environment spin. The amplitude of the central spin
oscillations is set by 〈ψ0|κ−〉〈κ+|ψ0〉 and hence by the component ψ j from Eq. (60) for an
initial excitation localized on spin j. The individual overlaps scale as O

�

1/
p

L
�

, such that the
total amplitude of the spin oscillations will scale as O(1/L). As illustrated in Fig. 4(a) and
Fig. 5(a), central spin oscillations are indeed suppressed for states initially localized in the
environment.

A similar behavior is observed in the dynamics of the environment spin polarizations
〈Sz

j (t)〉 for an excitation initially localized on spin i. Since the dark states are no longer eigen-
states of the observable these will also contribute to the dynamics, and the spins will oscillate
with three frequencies

κ+ −κ− = 2
Ç

ω2
0/4+ 2g2 , κ± +ω0 =ω0/2±

Ç

ω2
0/4+ 2g2 . (67)

The dynamics is illustrated in Fig. 4(b). Note that the frequencies are generally not com-
mensurate, but the spin dynamics may exhibit approximate revivals whenever the two fre-
quencies κ± + ω are close to being commensurate (in which case the third frequency
κ+−κ− = (κ++ω)− (κ−+ω) is also close to being commensurate), as apparent in Fig. 4(b).
The revivals become exact in the special case of quenches to resonance (ω0 = 0), in which case

the three frequencies reduce to two commensurate frequencies,
q

2g2 and 2
q

2g2. In this sce-
nario the environment spins oscillate periodically with a frequency that is half the oscillation
frequency of the central spin, as illustrated in Fig. 5(b).
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Figure 5: Quench dynamics in single-excitation sector for a quench to resonance
(ω0 = 0). (a) Dynamics of the central spin magnetization Sz

0 for an initial product
state that is either localized on the central spin (line starting at 〈Sz

0〉 = 0) or on an
environment spin, with the different lines starting at 〈Sz

0〉 = −1 illustrating the L
different initial states. (b) Dynamics of the environment spin magnetization Sz

j for
an excitation initially localized on site j. Parameters: L = 12, and g̃ j is uniformly
distributed in the interval [1,2] for environment spins with s j = 1/2.

In all cases, the amplitude of these oscillations scales as O(1/L). This scaling can be under-
stood by noting that

∑L
j=1 〈ψ0|Sz

j (t)|ψ0〉= 1− 〈ψ0|Sz
0(t)|ψ0〉, with the right-hand side being

O(1). Because of the delocalization in the environment all contributions to the summation are
on the same order, leading to the observed O(1/L) scaling.

To summarize, we note that (semi)localization of the eigenstates can be observed through
measurements of the central spin polarization. In an initial state that is supported on the
localized component of the bright state (i.e. on the central spin) 〈Sz

0〉 will oscillate with an
amplitude that does not vanish as the system size goes to infinity. This highly non-thermal
behavior can be contrasted with the behavior of initial states that are supported on the delo-
calized environment spins, which exhibit oscillations that vanish as L→∞.

7 Quenches to resonance with an unpolarized environment

In this section we consider generic quenches to resonance and use the known structure of
the eigenstates to show that central spin observables do not relax to thermal equilibrium.
Specifically, we consider

Sz
0 , P0 = 1− (Sz

0)
2 , P±1 =

(Sz
0)

2 ± Sz
0

2
, (68)

with the latter two corresponding to projectors on central spin states |0〉0 and |±1〉0 respec-
tively.

While exact predictions in the inhomogeneous model are currently out of reach, we show
that, for not too strong inhomogeneities, the late-time expectation values in the inhomoge-
neous model are well approximated by the diagonal ensemble expectation values in the homo-
geneous model. We refer to this approximation as the homogeneous dephasing approximation
(HDA). Inhomogeneity in the couplings breaks the degeneracy of states in the homogeneous
model, causing dephasing between formerly degenerate eigenstates. Meanwhile, the matrix
elements of central spin observables between eigenstates are not significantly affected. A sim-
ilar approximation was used in Ref. [75] for a nonintegrable Ising model in a many-particle
dephasing regime. The HDA ignores any change to said matrix elements, and only accounts
for dephasing.
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Figure 6: Eigenstate expectation values of: (a) P1 and (b) P0 (the projectors on
central1 spin states as defined in Eq. (68)), (c) the central spin polarization Sz

0, and
(d) the total environment spin J2 (defined in Eq. (31)). The expectation values from
the inhomogeneous model are plotted as dots, while those in the homogeneous limit
are plotted as open squares. The energy eigenvalues {em} are rescaled to lie between
±1. The plots show that upon introducing inhomogeneities in the XX couplings, the
expectation values of central spin and environmental observables in eigenstates of the
inhomogeneous model retain the overall structure and can be approximated by the
corresponding values in the homogeneous model. Parameters: L = 12, ω0 = 10−10,
g j uniformly distributed in the interval π/3+ [−0.5,0.5], and M = 1.

Depending on the initial state and measured observable we can systematically probe the
effect of bright states, both triple and double, as well as dark states. Specifically, we consider an
initial state where the central spin is polarized in the state |m0〉0, the environment (which we
again take to consist of spin-1/2 particles) is at infinite temperature in a fixed magnetization
sector ME = M −m0, and the total magnetization3 M = 1. The initial density matrix can be
written as

ρ(t = 0) = Pm0
⊗
1ME

ZE
, with ZE = Tr(1ME

) =
�

L
L/2−ME

�

. (69)

Here 1ME
acts as the identity on states with magnetization ME and as zero everywhere else.

For convenience we take L, the number of environment spins, to be even.

7.1 Prediction of late-time values under the HDA

The HDA simplifies the prediction for late-time values of central spin observables by circum-
venting the use of the Bethe Ansatz solution, which is mathematically cumbersome. Within
the diagonal ensemble, the late-time values of all projectors are determined by their over-
laps with the eigenstates in the inhomogeneous model. Under the HDA, these overlaps are

3We are interested in probing the dark states, which are only supported in sectors with M ̸= 0.
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approximated by those with the corresponding states in the homogeneous model. This ap-
proximation can be justified by numerically comparing the expectation values of projectors
in the homogeneous model with those of the inhomogeneous model. Fig. 6 shows that the
eigenstate expectation values of P0, P1, Sz

0 and J2 in the inhomogeneous model have small
spread around the homogeneous limit.

Initial state m0 = 0. We first consider the case where m0 = 0 and hence ME = M .
The initial density matrix is only nonvanishing in the triple bright state manifold (36). The
diagonal values are equal 〈B|ρ(t = 0)|B〉 = 1/2, as the triple states have half their weight on
states with central spin value 0. The diagonal ensemble (obtained by setting the off-diagonal
elements in the triple bright basis to zero) is thus

ρDE =
1
ZE

∑

B
〈B|ρ(t = 0)|B〉 |B〉 〈B|= 1

2ZE

∑

B
|B〉 〈B| . (70)

The property 〈B|P0|B〉= 1/2 also implies that the long-time expectation value of P0 is

Tr [ρ(t →∞)P0] =
1

2ZE

∑

B
〈B|P0|B〉=

1
2

, (71)

where we further used that the total number of triple bright states is 2ZE .
Under the HDA, we find for the projectors on central spin ±1 that (see Appendix B)

Tr [ρ(t →∞)P±1] =
1
ZE

L/2
∑

J=|M |

C
�

L
2
+ J ,

L
2
− J

�

�

(c∓J ,M )
2

4(J2 + J −M2)

�

(72)

≈
1
4

�

1±
8M

L + 2M

�

, (73)

where

C
�

L
2
+ J ,

L
2
− J

�

=
�

L
L/2− J

�

−
�

L
L/2− J − 1

�

(74)

is the degeneracy of environment states with spin J , and Eq. (73) follows from Stirling’s ap-
proximation in the limit L≫ |M | (far away from the single-excitation limit).

Initial state m0 = −1. For M > 0 (such that all dark state have central spin |+1〉0), the
initial state has overlap with both the double and triple bright states, but not with the dark
states. In this case, the HDA gives:

Tr [ρ(t →∞)P0] =
1
ZE

L/2
∑

J=|M |

C
�

L
2
+ J ,

L
2
− J

�

�

(c+J ,M )
2

4(J2 + J −M2)

�

(75)

≈
e

4M+2
L

4

�

1−
8M

L + 2M

�

, (76)

where the approximation on the second line again holds in the limit L≫ |M |. The additional
exponential factor arises from the environment sector ME = M + 1.

For the projectors on the central spin states |±1〉0 we similarly find

Tr [ρ(t →∞)P1] =
2
ZE

L/2
∑

J=|M |

C
�

L
2
+ J ,

L
2
− J

�

�

(c+J ,M )
2(c−J ,M )

2

42(J2 + J −M2)2

�

+
1
ZE

L/2
∑

J=|M |+1

C
�

L
2
+ J ,

L
2
− J

�

�

(c+J ,M )
2(c−J ,M )

2

22(J2 + J −M2)2

�

(77)

≈
3e

4M+2
L

8

�

1−
8M

L + 2M

�

, (78)
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Figure 7: Quench dynamics for (a) Tr[ρ(t)P0] and (b) Tr[ρ(t)P−1]. The dashed
lines indicate the long-time values predicted by the HDA for different values of the
initial central spin magnetization m0. The projectors relax to their corresponding
HDA values (dashed lines), whereas in the Gibbs ensemble all solid lines would
converge to a single value in the limit L ≫ |M |. Parameters: L = 10, ω0 = 10−10,
g j ∈ π/3+ [−0.5, 0.5], M = 1, τ= (

∑L
j=1 g2

j )
−1/2.

and

Tr [ρ(t →∞)P−1]≈
e

4M+2
L

8

�

1−
8M

L + 2M

�

+
1
4

�

1+
8(M + 1)

L + 2(M + 1)

�

2M
3M + 2

+
M2

(3M + 2)2

��

. (79)

Initial state m0 = +1. For M > 0, the dark states contribute to the quench dynamics.
Following the same steps as above, the late-time values are, for L≫ |M |,

Tr [ρ(t →∞)P0]≈
e

4M−2
L

4

�

1+
8M

L + 2M

�

, (80)

Tr [ρ(t →∞)P−1]≈
3e

4M−2
L

8

�

1−
8M

L + 2M

�

, (81)

Tr [ρ(t →∞)P1]≈
e

4M−2
L

8

�

1+ 3
8M

L + 2M

�

+
e−

8M
L

4

�

1+
8(M + 1)

L + 2(M + 1)

�

−
2M

3M + 2
+

M2

(3M + 2)2

��

+
4M − 2
L + 2M

. (82)

The expressions above demonstrate that under the HDA, the late-time values of central
spin observables retain memory of the initial state m0. In contrast, the maximally mixed Gibbs
ensemble in a fixed M sector predicts the same late-time values for each central spin projec-
tor P0,±1, regardless of initial state4 (up to O(|M |/L) corrections). For instance, in the limit
L ≫ |M |, we find that Tr [ρ(t →∞)P0] approaches 1/4 for m0 = ±1 and 1/2 for m0 = 0,
clearly differing from the Gibbs prediction of 1/3.

7.2 Comparison with the inhomogeneous model

We can now compare the theoretical predictions in Sec. 7.1 with numerical results for the
inhomogeneous model. In the case where m0 = 0, the HDA prediction (71) applies exactly.

4The energy of the initial state is given by ω0m0. However, ω0 = 0 in a quench to resonance, hence the energy
is always 0 and the use of the maximally mixed Gibbs ensemble is justified.
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Figure 8: (a) Quench dynamics for 〈Sz
0(t)〉 for different initial values of m0.

The dotted line shows the value predicted by the Gibbs ensemble (83). (b) Ex-
pected late-time polarization under the HDA as a function of L as compared to
the Gibbs prediction (dotted line). Only the m0 = 1 line has the same slope as
the dotted line (≈ 2.5/L) at large L. Parameters: L = 10 (for (a)), ω0 = 10−10,
g j ∈ π/3+ [−0.5, 0.5], M = 1, τ= (

∑L
j=1 g2

j )
−1/2 (for both (a) and (b)).

This is because the initial density matrix is only non-vanishing in the triple state manifold (49),
which has exactly the same weight on |0〉0 and counting as the triple states in the homogeneous
model.

Otherwise, the late-time values in the diagonal ensemble are different between the inho-
mogeneous and homogeneous models. Nonetheless, late-time values of central spin observ-
ables are well approximated by the HDA. These approximations are compared with numerical
results for the inhomogeneous model in Fig. 7. In all cases the diagonal ensemble from the ho-
mogeneous model accurately reproduces the steady-state value of the inhomogeneous model.
Furthermore, the late-time values for different initial states m0 are clearly different.

Fig. 8(a) shows the corresponding dynamics of 〈Sz
0(t)〉. Crucially, in a given total magne-

tization sector M , the late-time expectation values heavily depend on the initial value of the
central spin m0 and differ from the Gibbs ensemble prediction, which can be calculated as

∑M+1
ME=M−1(M −ME)ZE
∑M+1

ME=M−1 ZE

=O(1/L) . (83)

This scaling with L can be contrasted with the numerically observed scaling of 〈Sz
0〉HDA, as

illustrated in Fig. 8 (b). While the m0 = +1 curve shows the 1/L scaling from the Gibbs pre-
dictions, the m0 = 0 and m0 = −1 curves show different scaling exponents, approximately
given by L−0.8 and L−0.7 respectively.

In the case where the initial environment does not have a fixed magnetization and is at
infinite temperature, i.e. ρE ∝ 1, one can also perform similar calculations for all M sectors
and perform a weighted average. The resulting long-time values for the polarization follow as
〈Sz

0〉HDA =O
�

1/
p

L
�

for L→∞ as illustrated in Fig. 9(d). We note that this result is consistent
with numerical results in the classical model (Fig. 11 in Appendix C.2), and inconsistent with
the Gibbs prediction (83).

These results show that even in highly excited states, the integrability of the inhomoge-
neous model can be detected by the remnant memory of the initial state m0 in late-time central
spin observables.
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8 Conclusion and discussion

We have established the integrability of the spin-1 central spin XX model by providing the
exact construction of Bethe eigenstates and the extensive set of conserved charges, extending
the results in Ref. [31] for the spin-1/2 central spin XX model. Like the spin-1/2 model, the
eigenstates in the spin-1 model can be broadly classified into dark states and bright states,
with the bright states showing semilocalization [49,74] in the single-excitation sector. Unlike
the spin-1/2 model, bright states in the spin-1 model on resonance can further be classified
into double or triple bright states.

The eigenstate structure of the spin-1 model prevents the central spin from reaching ther-
mal equilibrium in quenches to resonance. In particular, for weakly inhomogeneous couplings,
the late-time values of central spin observables approach diagonal ensemble expectation val-
ues in the homogeneous models. We expect this can be observed experimentally. Based on
our numerical results, the time required to reach these late-time values is on the order of 10τ,
where τ= (

∑L
j=1 g2

j )
−1/2. This is within the range of the spin relaxation time T1 in NV sys-

tems, which limits the measurement of central spin observables in the z basis. Indeed, the
relaxation time we estimate as 10τ is essentially the dephasing time T2, which can be much
shorter than T1. For instance, at room temperature, T1 has been observed to exceed 1 ms [76],
while Ref. [77] recently measured T2 ≈ 1 µs.

In Appendix C, we have provided three pieces of evidence that support the integrability of
the XX central spin model for any value of central spin s0. First, numerical calculations of level
spacing ratios in the spin-3/2 model show Poisson level statistics, as expected of integrable
models. Second, the effective Hamiltonian at large ω0 for arbitrary s0 is integrable. Third,
numerical simulations of the fully classical model (s0, s j → ∞) show residual memory in
the late-time central spin magnetization, supporting integrability of the classical equations of
motion. Within the truncated Wigner approximation, said classical equations govern dynamics
for any value of s0 [46,47]. An obvious future direction is to rigorously establish integrability
at any s0.

Other technical questions remain open. While the conserved charges in the spin-1 central
spin XX model are closely related those of the XXZ Richardson-Gaudin integrable models, it is
unclear how to incorporate them into the general framework of Richardson-Gaudin integra-
bility. Another challenge remains to directly understand in which way the conserved charges
constrain, for example, late-time observables in dynamical experiments.

Acknowledgements

The authors thank H. Katsura, T. Skrypnyk, and A. O. Sushkov for helpful discussions and
comments.

Funding information This work was supported by: NSF Grant No. DMR-1752759, AFOSR
Grant No. FA9550-20-1-0235 (L.H.T., D.M.L. and A.C.); NSF Grant No. DMR-2103658, and
AFOSR Grant No. FA9550-21-1-0342 (A.P.). A.C. and D.M.L. acknowledge the hospitality of
MPI-PKS during July and August 2022 as part of the institute’s visitors program. Numerical
work was performed on the BU Shared Computing Cluster, using QUSPIN [78,79].

23

https://scipost.org
https://scipost.org/SciPostPhys.15.1.030


SciPost Phys. 15, 030 (2023)

A Counting of states in the resonant homogeneous model

In this section, we provide the counting of the three classes of states (dark, double and triple
bright states) in the homogeneous model on resonance.

The degeneracy of every eigenvalue is set by the total number of ways in which the L
environment spins can be combined to form a total spin J . We now focus on the case where
each environmental spin is spin-1/2. For a given M , J can then take integer values ranging
from J = Jmin =max(0, |M | − 1) to a maximal value of L/2. Each of the spin-J irreducible
representations has multiplicities given by entries in Catalan’s triangle

C
�

L
2
+ J ,

L
2
− J

�

=
�

L
L/2− J

�

−
�

L
L/2− J − 1

�

. (A.1)

Dark states reside in the Jmin sector. Thus, for a fixed total magnetization M ̸= 0, the degen-
eracy of the dark states immediately follows as

Ndark = C (L/2+ |M | − 1, L/2− |M |+ 1) . (A.2)

For bright states, the total number of double states is given by

Ndouble =
L/2
∑

J=|M |+1

C
�

L
2
+ J ,

L
2
− J

�

=
�

L
L/2− |M | − 1

�

, (A.3)

in M ̸= 0 sectors. The triple states are allowed in J ≥ |M | for |M | ̸= 0, leading to

Ntriple = 2
L/2
∑

J=|M |

C
�

L
2
+ J ,

L
2
− J

�

= 2
�

L
L/2− |M |

�

= 2
�

L
L/2+ |M |

�

. (A.4)

It is easily checked that the total number of dark and (double and triple) bright states leads to
the expected number of eigenstates in each magnetization sector.

For a given M ̸= 0 sector, the ratio of the number of double states to that of the triple states
is given by

Ndouble

Ntriple
=

1
2

L/2− |M |
L/2+ |M |+ 1

≈
1
2

�

1− 4
|M |
L

�

, (A.5)

remaining finite in the limit of large L. The ratio of the number of dark states to that of the
triple states is given by

Ndark

Ntriple
=

2|M | − 1
L − 2|M |+ 2

. (A.6)

In all cases, each class of states spans a nonvanishing fraction of the Hilbert space in the
thermodynamic limit L→∞ provided |M | scales with L. Keeping |M | fixed and increasing L,
the fraction of dark states vanishes as O(1/L).

For M = 0, the number of J = 0 dark states is given by C(L/2, L/2). The number of double
states is given by

Ndouble =
L/2
∑

J=1

C
�

L
2
+ J ,

L
2
− J

�

=
�

L
L/2− 1

�

, (A.7)

in the M = 0 sector. There are triple states in the J ≥ 1 sectors, resulting in

Ntriple = 2
L/2
∑

J=1

C
�

L
2
+ J ,

L
2
− J

�

= 2
�

L
L/2− 1

�

= 2
�

L
L/2+ 1

�

. (A.8)

The ratio Ndouble/Ntriple in this sector is exactly 1/2, while

Ndark

Ntriple
=

1
L

. (A.9)
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Figure 9: Quenches to resonance for a fully mixed environment. The HDA expecta-
tion values of the central spin projectors Pσ0

, where σ0 = 0,±1 for initial states (a)
m0 = 1, (b) m0 = −1, and (c) m0 = 0 in the M = 1 sector as a function of L. The
colored dash-dotted lines show the corresponding values under the Stirling approx-
imation. (d) The expected remanent polarization averaged over all M sectors when
|m0|= 1. Values computed with the exact expressions are plotted as stars, while
those computed in the Stirling approximation are plotted as a dashed line. The solid
line corresponds to |〈Sz

0〉HDA| ∝ L−1/2. Parameters: ω0 = 10−10.

B Expectation values at large system size under the HDA

In this section we detail the approximations used in evaluating the summations for the diagonal
ensemble expectation values in the homogeneous model. In the limit where J ≪ L, Stirling’s
approximation gives

C
�

L
2
+ J ,

L
2
− J

�

≈
2J + 1

L/2+ J + 1
1
p

2πL

1
p

1/4− (J/L)2
eL f (1/2−J/L) , (B.1)

where
f (p) = −p log p− (1− p) log(1− p) . (B.2)

Similarly, when ME ≪ L, the same approximation can be used for the ratio

1
ZE

C
�

L
2
+ J ,

L
2
− J

�

≈
2J + 1

L/2+ J + 1

√

√

√ L2 − 4M2
E

L2 − 4J2
exp

�

2(M2
E − J2)

L

�

≈
2J

L/2+ J
exp

�

2(M2
E − J2)

L

�

,

(B.3)

to leading order in J . Evaluating diagonal ensemble expectation values involves summations
of the form
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L/2
∑

J=M0

�

M
J2 + J −M2

�p 1
ZE

C
�

L
2
+ J ,

L
2
− J

�

, (B.4)

where p is a non-negative integer. In all these cases, the summands are dominated by the
smallest J , i.e. M0. The summation may be approximated by substituting J = M0 into the
expression for the summand and multiply it by an O(1) factor to capture the entire sum. This
factor can be extracted by comparing the sum to the summand for specific values of M , M0,
ME and (large) L. We find that multiplying the summand by a factor of 4 gives the overall best
fit to the exact sum. This results in

�

M
M2

0 +M0 −M2

�p
8M0

L/2+M0
exp

�

2(M2
E −M2

0 )

L

�

. (B.5)

For instance, substituting M0 = ME = M , p = 1, we recover one of the terms in (73). Figs. 9(a),
(b) and (c) compare the HDA expectation values evaluated exactly and their respective approx-
imations outlined in Sec. 7.1. They agree at large L.

C Integrability in higher spin models

Motivated by the results from the main text, we conjecture that the central spin Hamiltonian

H =ω0Sz
0 +

�

S−0 G+ + S+0 G−
�

(C.1)

is integrable for any central spin quantum number s0. The integrability of this model has
already been explicitly shown for s0 = 1/2 in Ref. [31], and for s0 = 1 in this work.

As a first numerical check, we consider the central spin-3/2 model and calculate the spec-
tral statistics, a widespread numerical check for integrability. For an ordered eigenvalue spec-
trum {En} with eigenvalue spacing sn = En+1 − En we consider the distribution of the level
spacing ratio, r̃n = min(sn, sn+1)/max(sn, sn+1). This level spacing ratio is expected to obey
different universal distributions in integrable and chaotic systems [80]. Due to the presence
of dark states there will be a large number of states for which sn = 0, which are here ex-
cluded from the statistics. Numerical results are presented in Fig. 10. The level spacing ratio
agrees with the Poissonian prediction for integrable systems and clearly differs from the GOE
prediction expected for chaotic systems.

We support our conjecture through two additional pieces of evidence: perturbative con-
served charges for H in the limit of large ω0 (Appendix C.1), and numerical signatures of in-
tegrability in the classical limit of s0, s j →∞ (Appendix C.2). We also present a semi-classical
argument for integrability, assuming exactness of the truncated Wigner approximation.

If the central spin Hamiltonian is integrable for all s0, then it is likely that the related
inhomogeneous Tavis-Cummings model (with off-diagonal disorder),

HTC =ω0a†a+
�

a†G− + aG+
�

(C.2)

is also integrable. In Appendix C.3, we expand on this additional conjecture.

C.1 Conserved charges far from resonance

A Schrieffer-Wolff transformation to H in the ω0 →∞ limit provides an effective Hamilto-
nian (25)

H(1)eff =ω0Sz
0 +

1
ω0

�

S+0 S−0 G−G+ − S−0 S+0 G+G−
�

, (C.3)
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Figure 10: Distribution of the level spacing ratio r̃n for the central spin-3/2 model.
Parameters: L = 14, M = 1/2, ω0 = 2, and g j is uniformly distributed in the interval
[1,2]/L for environment spins with s j = 1/2.

for any value of the central spin s0. This Hamiltonian may be written as

ω0Sz
0 +H(α) =ω0Sz

0 +
1+α

2
G+G− +

1−α
2

G−G+ , (C.4)

where H(α) is a factorizable Hamiltonian from Eq. (15) and

α= −
1
ω0
(S−0 S+0 + S+0 S−0 ) (C.5)

commutes with Sz
0, and so may be treated as a scalar in each Sz

0 sector. Thus, in each sector,

H(1)eff is Richardson-Gaudin integrable and has an extensive set of conserved charges given by
Q j(α) (16). Combined with the fact that both the s0 = 1/2 and s0 = 1 cases are known to be
integrable, the existence of this integrable limit is suggestive of integrability for any s0.

Higher-order corrections to the effective Hamiltonian may also be computed, though it is
unclear if they preserve integrability. We discuss them here for completeness and only note
some connections with known integrable models.

The next correction to the effective Hamiltonian (at O
�

g4
�

) is given by

H(2)eff = −
7

12ω3
0

�

���

S+0 G−, S−0 G+], S+0 G−], S−0 G+] +
���

S+0 G−, S−0 G+], S−0 G+], S+0 G−]
�

= −
7

12ω3
0

�

4(S+0 S−0 S+0 S−0 G−G+G−G+ − S−0 S+0 S−0 S+0 G+G−G+G−)

+ 2(S−0 S−0 S+0 S+0 G+G+G−G− − S+0 S+0 S−0 S−0 G−G−G+G+)
�

. (C.6)

Evaluating these corrections in a sector with fixed s0 and m0 results in linear combinations of
four different operators,

G−G+G−G+ , G+G−G+G− , G+G+G−G− , G−G−G+G+ , (C.7)

where all terms of the form G−G+G+G− and G+G−G−G+ cancel out. Each of these operators
can again be shown to be Richardson-Gaudin integrable—although this does not guarantee
that linear combinations will be integrable. G−G+G−G+ = (G−G+)2 is the square of a fac-
torizable Hamiltonian, as is G+G−G+G−. The terms G±G±G∓G∓ are also each integrable. To
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see this, we use the following generalization of a relation between Richardson-Gaudin charges
introduced below Eq. (29),

(G+)k
�

(k+ 1)Q(−)j − (k− 1)Q(+)j

�

=
�

(k+ 1)Q(+)j − (k− 1)Q(−)j

�

(G+)k , (C.8)

where Q(±)j =Q j±Sz
j and k ≥ 1 is an integer. From this expression and its Hermitian conjugate,

we see that a complete set of conserved charges for, say, G+G+G−G− is given by

3Q(+)j −Q(−)j = 2Q j + 4Sz
j , (C.9)

where j ∈ {1, . . . , L}. Similar charges may be constructed for G−G−G+G+.
The two quartic terms that drop out in the effective Hamiltonian are the only terms that are

not known to be integrable, such that the fact that they cancel out suggests that H(1)eff +H(2)eff is

itself integrable. However, this also remains an open question. Nonintegrability of H(1)eff +H(2)eff
does not imply that the higher-s0 central spin XX models are nonintegrable—for instance, the
same perturbative expansion holds for s0 = 1, which is integrable. Of course, conversely, the
existence of an integrable limit in a model does not imply that the model is integrable for all
parameters. For example, while the Bose-Hubbard model is believed to be nonintegrable, it
does possess integrable limits [81,82]. However, for both the central spin-1/2 and the central
spin-1 model the exact conserved charges reduce to the conserved charges of the effective
Hamiltonian in the limit ω0 →∞, motivating our investigation of the effective Hamiltonian
for arbitrary central spin values. As such, the integrability of H(1)eff + H(2)eff appears consistent
with the conjecture of integrability and the structure observed in central spin models.

C.2 Classical limit

Taking s0, s j →∞ while keeping g js0s j ∼ gcl
j /2 andω0s0 ∼ωcl

0 finite results in a model which
is formally identical to H,

Hcl =ω
cl
0 S̃z

0 +
L
∑

j=1

gcl
j

2
(S̃+0 S̃−j + S̃−0 S̃+j ) (C.10)

=ωcl
0 S̃z

0 +
L
∑

j=1

gcl
j (S̃

x
0 S̃ x

j + S̃ y
0 S̃ y

j ) , (C.11)

with the spins S̃µ0 and S̃µj being classical degrees of freedom.
If H is integrable for all values of ω0, g j , s0 and s j , it is natural to suspect that this limit

model is also integrable. Conversely, integrability of the classical model suggests special struc-
ture with s j <∞. In this section, we numerically search for nonergodicity (a consequence
of integrability) in the classical model (C.11), which can be simulated efficiently. We note
that it is sometimes necessary to include additional corrections to preserve integrability when
passing from quantum to classical or vice versa [83,84]. However, the numerics in this section
suggests that the classical central spin model does not require such additional corrections in
order to result in the nonergodic dynamics expected in integrable models.

Equations of motion for the classical model are defined through Poisson brackets in the
usual way:

dt S̃
µ
j = {S̃

µ
j , Hc} , where {S̃µj , S̃νk }= δ jkεµνρS̃ρj , (C.12)

where εµνρ is the Levi-Civita tensor and summation over the index ρ is implied.
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Figure 11: (a) The expectation value 〈S̃z
0(t)〉 (C.14) in a quench to resonance of the

classical central spin model (C.11) quickly reaches a steady state limit. (b) Rescaling
〈S̃z

0(t)〉 by
p

L collapses the late-time data, whereas the ergodic prediction scales as
1/L (dashed lines). Parameters: 〈S̃z

0(t)〉 is computed from 200 samples of initial
conditions in the integral Eq. (C.14) with ωcl

0 = 0 and τ= (
∑L

j=1(g
cl
j )

2)−1/2. 〈S̃z
0(t)〉

is further averaged over 200 realizations of gcl
j drawn independently from a box

distribution, gcl
j ∈ π/3+[−0.3,0.3]. In (b), 〈S̃z

0〉 is additionally averaged within bins
of 100τ to reduce its oscillatory part. Error bars give one standard error of the mean.

If the central spin is initially aligned along the z-axis while the environment is in an infinite
temperature state, and a quench to resonance ωcl

0 = 0 is performed, then ergodicity implies a
late time average value of the central spin polarization given by

lim
T→∞

1
T

∫ T

0

dt 〈S̃z
0(t)〉=

1
L + 1

. (C.13)

Here,

〈S̃z
0(t)〉=

∫

 

L
∏

j=0

d2S̃ j(0)

4π2

!

4π2δ(S̃z
0(0)− 1) S̃z

0(t) (C.14)

is the average of S̃z
0(t) over an ensemble of initial states with a fixed central spin state, and an

infinite temperature environment.
Fig. 11 demonstrates that the late time average value of 〈S̃z

0(t)〉 is not 1/(L + 1). Instead,
the late time value decreases more slowly with L, as

lim
T→∞

1
T

∫ T

0

dt 〈S̃z
0(t)〉=O

�

1/
p

L
�

, (C.15)

numerically demonstrating nonergodicity.
The 1/

p
L scaling of the remanent magnetization is also a feature of the spin-1 model (see

Fig. 8). That the same phenomenology persists in the classical limit favors the hypothesis of
integrability of the classical model.

Integrability of the quantum model at any values of the central spin, including the classical
large s0, s j limit, also follows from semiclassical considerations. Namely, for this system one
can anticipate that the truncated Wigner approximation (TWA) [46, 47] accurately describes
dynamics in the large L limit for any values of the central and environment spins s0, s j . This
feature is general for all large L-models with long range interactions, where classical dynamics
governed by Eq. (C.12) emerges as a saddle point within the path integral formulation of the
Heisenberg evolution on a Schwinger-Keldysh contour (see for example Refs. [85–87]). Within
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the TWA the values of the spins are encoded in the Wigner function representing the initial
state. Because the spin-1/2 or spin-1 systems are integrable, Eqs. (C.12)—which are expected
to describe dynamics of the central spin in the large L limit—must be non-ergodic as well to
avoid thermalization. Because these equations are independent of the spin quantum numbers,
we can anticipate that integrability holds for all values of s0, s j .

These qualitative considerations cannot be viewed as a proof of integrability, as in general
the limits L → ∞ and t → ∞ do not commute, and the TWA is expected to be accurate
in the limit L → ∞ first. The opposite limit is much harder to analyze analytically within
the TWA and needs further study. Nevertheless, putting these subtleties aside, a combination
of analytical and numerical evidence we presented in this paper suggests that the model is
integrable in the limit s0→∞ for any L and is integrable in the limit L→∞ for small values
of s0 = 1/2,1. Because both of these limits are described by the same semiclassical equations
of motion it is natural to assume that the model is integrable for any s0.

C.3 Inhomogeneous Tavis-Cummings model

Several interesting models may be obtained as limits of H. Assuming the integrability of H for
any values of s0, s j ,ω0, and g j , it is natural to suspect that the limit models are also integrable.
One such model was the classical central spin model of Appendix C.2. Here, we remark upon
another notable large s0 limit, which results in an inhomogeneous Tavis-Cummings model.

Taking an alternative large-s0 limit of s0→∞ with g j
p

s0 ∼ gTC
j increases the central spin

Hilbert space while maintaining its level spacing. The limit model above the ground state may
be expressed as an oscillator model,

HTC =ω0a†a+
L
∑

j=1

gTC
j (a

†S−j + aS+j ) . (C.16)

The Hamiltonian HTC is a generalization of the Tavis-Cummings model (which is known
to be integrable [19, 48]) with inhomogeneous couplings. Due to its connection with the
central spin XX model, we conjecture that the inhomogeneous Tavis-Cummings model is also
integrable. The Hamiltonian HTC is known to be integrable when additional non-linear terms
are introduced [88], but no r-matrix is known for the model without such additional couplings.

The consequence of integrability in the central spin-1 XX model is that the structure of the
homogenous limit persists to large inhomogeneity of the couplings. We speculate that this is
also the case in the Tavis-Cummings model—the inhomogeneous model continues to exhibit
the phenomenology of the homogeneous model, such as a superradiant transition (as expected
from mean-field calculations).
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