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Abstract

The study of 3d mirror symmetry has greatly enhanced our understanding of various
aspects of 3d N = 4 theories. In this paper, starting with known mirror pairs of 3d
N = 4 quiver gauge theories and gauging discrete subgroups of the flavour or topological
symmetry, we construct new mirror pairs with non-trivial 1-form symmetry. By providing
explicit quiver descriptions of these theories, we thoroughly specify their symmetries (0-
form, 1-form, and 2-group) and the mirror maps between them.
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1 Introduction

Supersymmetric theories with 8 supercharges in space-time dimension 3 exhibit a rich set of
intriguing features; One of the most prominent is 3d mirror symmetry [1]. Given a 3d theory
that has a mirror dual theory, 3d mirror symmetry exchanges Coulomb branch and Higgs
branch. In particular, this also implies the exchange of flavour symmetries G f (Higgs branch
isometries) and the topological symmetries Gt (Coulomb branch isometries).

The notion of symmetries has been generalised to include novel types beyond the stan-
dard symmetries of local operators [2]. Among others, these include higher-form symmetries.
Specifically for 3d theories, discrete 1-form symmetries can be generated by gauging discrete
0-form symmetries. The structure of generalised symmetries in 3d supersymmetric theories
has been the focus of recent research, including [3–14] and references therein.1 Given the
vast catalogue of 3d mirror pairs with trivial 1-form symmetry, one might wonder what mirror
symmetry implies for 3d theories with 1-form symmetry.

In this paper, we start with a known mirror pair (T ,T ∨) of 3d N = 4 theories that admit UV
quiver descriptions, and gauge a discrete Γ [0] subgroup of the 0-form symmetry to generate
new theories with Γ [1] 1-form symmetry. Depending on whether Γ ≡ Γ [0] is a subgroup of
the flavour or topological symmetry, the resulting mirror pair (T /Γ , (T /Γ )∨) changes. For
Γ ≡ Γ f ⊂ G f , the field theory description of T /Γ f is straightforward, but for Γ ≡ Γ t ⊂ G∨t , the
description of T ∨/Γ t is less transparent. In this paper, we consider Γ = Zq suitably embedded
into a Cartan U(1) which enables us to derive explicit quiver descriptions for these cases and
allows to specify the global form of the 0-form symmetries of (T /Γ , (T /Γ )∨). It is known that
the resulting 0-form and the newly introduced discrete 1-form symmetry may not just be a
direct product, but can form an extension, called 2-group symmetry [9,17–21]. We comment
on such extensions throughout this work.

The remainder of this paper is organised as follows: in Section 2, we consider known
mirror pairs and gauge discrete 0-form symmetries to generate mirror pairs with non-trivial
1-form symmetry. We first study abelian theories, followed by non-abelian T[SU(N)] and
Tσρ [SU(N)] theories with non-abelian product gauge groups

∏

i U(Ni). This class of examples
has the benefit that all 0-form symmetries are manifest in the UV description. Thereafter,
SO(k) and Sp(k) gauge groups are considered by studying T[SO(2N)] theories, Sp(k) SQCD,
and linear orthosymplectic quivers. While the flavour 0-form symmetry is manifest in this set
of examples, the topological symmetry is at most accessible by discrete Z2 subgroups, which
turns out to be sufficient for the intents and purposes here. Lastly, we consider mixed types:
i.e. D and C-type Dynkin quivers composed of unitary gauge groups and their mirror Sp(k)
and O(2k) SQCD theories, respectively. The advantage of this class of mirror pairs is that the
flavour symmetry of the SQCD theories and the topological symmetry of the unitary Dynkin
quivers are fully manifest. Before closing, some magnetic quiver examples are considered.

1See also [15,16] for recent review articles.
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Conclusions are provided in Section 3. Several appendices complement the main text and
provide computational details.

Note added. During the course of this project, we were informed of a related work done by
Bhardwaj, Bullimore, Ferrari, and Schäfer-Nameki [22]. We are grateful to them for coordinating
the submission of our papers.

2 Gauging discrete 0-form symmetries

In this section, mirror theories with non-trivial 1-form symmetry are constructed. Gauging
discrete subgroups of the 0-form symmetry, which results in 1-from symmetries and a potential
2-group structure, has, for example, been considered in [9,18–21].

The principle is simple: start from a known mirror pair (T ,T ∨) and gauge discrete 0-form
symmetries Γ (finite, cyclic) such that Γ ≡ Γ t ⊂ Gt(T ) and Γ ≡ Γ f ⊂ G f (T ∨). This ensures that
the resulting theories (T /Γ t ,T ∨/Γ f ) are mirror pairs with 1-form symmetry Γ . The aims here
are (i) to provide explicit quiver descriptions for (T /Γ t ,T ∨/Γ f ) and (ii) to detail the resulting
symmetries (0-form, 1-form, and 2-group).

2.1 Abelian theories

As a first example, consider 3d N = 4 SQED with N hypermultiplets of charge 1 and its
abelian mirror quiver theory [1], see Figure 1. The global 0-form symmetries are well-known:
for SQED one finds U(1)t×PSU(N) f , while the abelian mirror quiver enjoys a U(1) f ×PSU(N)t
symmetry.

2.1.1 SQED with higher charge

Suppose that one gauges a discrete Zq subgroup of the abelian U(1) factor of the global 0-
form symmetry. The resulting theories are straightforwardly derived. Gauging a Zq ⊂ U(1)t
for SQED with N charge 1 hypermultiplets leads to SQED with N charge q hypermultiplets,
see also [12]. Similarly, gauging a Zq ⊂ U(1) f of the abelian mirror quiver leads to an abelian
quiver with a Zq 1-form symmetry. The two theories obtained are then mirror to each other,
see Figure 1. The quiver notation is summarised in Table 3 of Appendix A.

Consistency checks. The proposed mirror symmetry can be verified by Hilbert series tech-
niques [23–26]. The Higgs branch Hilbert series is insensitive to the gauging of the Zq inside
the topological symmetry of the SQED theory; similarly, the Coulomb branch of the mirror
does not perceive changes upon gauging a discrete subgroup of the flavour symmetry. See
Appendix A.1 for conventions.

Performing the discrete gauging for the SQED theory reduces to a Zq Molien-Weyl sum
over the Coulomb branch Hilbert series

HSC
SQEDq=1

N

(w|t) =
1

1− t

∑

m∈Z
wm t

1
2 N |m| = PE[t + (w+w−1)t

N
2 − tN ] , (2.1)

HSC
SQEDq

N
(z|t) =

1
q

q−1
∑

p=0

HSC
SQEDq′=1

N

(w|t)
�

�

w=z
1
q (ζq)p

ζq = e
2πi
q ∈ Zq ,

=
1

1− t

∑

m∈Z
zm t

1
2 N |q·m|

= PE[t + (z + z−1)t
1
2 qN − tqN ] . (2.2)

4

https://scipost.org
https://scipost.org/SciPostPhys.15.1.033


SciPost Phys. 15, 033 (2023)

1

N

0-form: U(1)t ×PSU(N)f
1 1

. . .

1 1

1 1

0-form: PSU(N)t ×U(1)f

1

N

q

0-form: U(1)t ×PSU(N)f
1-form: Zq

1 1

. . .

1 1

Zq

0-form: PSU(N)t ×U(1)f
1-form: Zq

gauge Zq ⊂ U(1)t gauge Zq ⊂ U(1)f

mirror

mirror

Figure 1: Gauging of discrete 0-form symmetries in SQED and its mirror. For SQED
with charge 1 hypermultiplets, a Zt

q gauging results in SQED with charge q hyper-
multiplets. These are indicated by an arrow with the label q. For the abelian mirror
quiver, the Z f

q gauging is realised by acting on the flavours. The fundamental flavours
that are charged under the discrete Zq are connected to a grey node. See Appendix
A for conventions.

Likewise, one performs the Zq Molien-Weyl sum on the Higgs branch Hilbert series of the
mirror theory

HSHmirror(y|t) =
N−1
∏

a=1

∮

dxa

2πi xa
PE

�N−2
∑

b=1

�

xb

xb+1
+

xb+1

xb

�

t
1
2 − (N−1)t

�

· PE

��

y
1
2

x1
+

x1

y
1
2

+
y−

1
2

xN−1
+

xN−1

y−
1
2

�

t
1
2

�

= PE[t + (y + y−1)t
N
2 − tN ] , (2.3)

HSHmirror/Zq
(z|t) =

1
q

q−1
∑

p=0

HSHmirror(y|t)
�

�

�

�

y=z
1
q (ζq)p

= PE[t + (z + z−1)t
1
2 qN − tqN ] . (2.4)

In summary, both results confirm the expectation and provide the explicit parameter map.
As a remark, the superconformal index is equally well suited to probe such dualities; see for
instance [12] for SQED with charge q = 2 hypermultiplets. Since either Higgs or Coulomb
branch operators are unaffected by gauging a Zt/ f

q , the Hilbert series is a more convenient
tool.

Symmetries. Using the techniques of [6], one can inspect the interplay between the discrete
1-form symmetry Zq ⊂ U(1)t and the global 0-form symmetry PSU(N) f for the SQED theory.
The centre symmetry ZF = ZN of su(N) f is generated by αF = ζN , while the U(1) gauge group
supports a ZG = ZN ·q centre generated by αG = ζN ·q. The diagonal αD = (αG ,αF ) generates a
E = ZN ·q ⊂ ZG× ZF . The 1-form symmetry Γ [1] = Zq is generated by αN

D = (α
N
G ,αN

F ) = (α
N
G , 1),
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which acts trivially on the matter content. The short exact sequence

0→ Γ [1] = Zq→ E = Zq·N → ZF = ZN → 0 (2.5)

splits whenever gcd(q, N) = 1, i.e. q and N are co-prime. In other words, gcd(q, N) > 1 is
a necessary condition for the existence of an extension to a 2-group structure. A sufficient
condition is to have the non-trivial Postnikov class in H3(BPSU(N);Zq) [21], which is the
image of the obstruction class for lifting a PSU(N)-bundle to an SU(N)-bundle, under the
Bockstein map H2(BPSU(N);ZN ) → H3(BPSU(N);Zq). In fact, the Postnikov class is non-
trivial if and only if gcd(q, N) > 1.2 Therefore, the short exact sequence (2.5) represents
a non-trivial 2-group extension if and only if gcd(q, N) > 1. See also [9, 12] for a recent
discussion of SQED with 2 flavours of charge 2.

Comments on lines. As explained in [9,27,28], 1-form symmetries and 2-group structures
can be understood via equivalence classes of line defects.3 Here, we illustrate how the higher-
form symmetry is also realised on the line defects.

Consider SQED with N hypermultiplets of charge q. A Wilson line of charge h with
h ∈ {1,2, . . . , q − 1} cannot end on a local operator because local operators are either con-
structed as polynomials in the fundamental hypermultiplets of charge q or are monopole op-
erators, which are gauge singlets for 3d N = 4 theories. Thus, the 1-form symmetry Γ [1] (or
its Pontryagin dual) is generated by the (q − 1) Wilson lines that cannot end. Refining with
respect to the flavour symmetry shows that a Wilson line of charge q is equivalent to a flavour
Wilson line transforming as [1, 0, . . . , 0]AN−1

. This however is not an allowed representation of
G f = PSU(N), and signals the existence of a 2-group structure. In fact, the N -th power of such
a Wilson line is well-defined under G f , because the N -th tensor product of [1,0, . . . , 0]AN−1

contains a singlet. Such lines generate the group bE = Zq·N .
Turning to the abelian mirror quiver, one can straightforwardly see that the fundamental

Wilson lines, i.e. those of unit charge under a single U(1) gauge group factor, can end on a
local operator constructed out of the hypermultiplets. Therefore, one needs to turn to the
vortex lines to understand the 1-form symmetry. It is known [29] that the junctions between
vortex lines are significantly more challenging than those between Wilson lines. It would be
interesting to systematically address this in explicit examples.

2.1.2 SQED with discrete gauge factor

Next, revert the logic: gauge a Zq subgroup of the PSU(N) f symmetry of SQED. Conversely,
on the mirror side, one gauges a Zq subgroup of the PSU(N)t topological symmetry of the
abelian quiver theory.

For the abelian quiver theory, discrete gauging along a Cartan U(1)t of the topological
symmetry alters the linear quiver theory by modifying the charges of the bifundamental hy-
permultiplets attached to a single gauge node. This follows from analogous arguments as for
SQED with charge q hypermultiplets or the arguments used in Appendices B.1 – B.2. For the

2We would like to thank A. Milivojević for providing the proof at mathoverflow.
3In brief, lines L1,2 are equivalent if there exists a local operator O at the junction between them. The set

of equivalence classes {L}/ ∼ forms the Pontryagin dual bΓ [1] of the 1-form symmetry Γ [1]. Refining the equiva-
lence relation by keeping track of 0-form symmetry representations R leads to the following equivalence relation:
(L1, R1)∼ (L2, R2) iff there exists a local operator transforming as R1 ⊗R∗2 (or R∗1 ⊗R2) at the junction of the lines.
The equivalence classes give rise to bE (Pontryagin dual of E), which encodes the interplay between the centres of
gauge symmetry and 0-form symmetry. These groups fit into the short exact sequence 0 → bZ → bE → bΓ [1] → 0,
which is the Pontryagin dual of the sequences discussed in the text, e.g. (2.5), (2.13), (2.15). Whenever these
short exact sequences split, the 2-group is necessarily trivial. For non-split sequences, the Postnikov class controls
whether the 2-group is trivial or not.
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1

N

0-form: U(1)t ×PSU(N)f
1

. . .

1 1 1

. . .

1

1 1

(1,−1)(1,−1)

0-form: PSU(N)t ×U(1)f

1Zq

N − k
k

0-form: U(1)t × (SU(k)×U(1)×SU(N−k)Zk×ZN−k )
f

1-form: Zq

1

. . .

1 1 1

. . .

1

1 1

(q,−1)(1,−q)

0-form: (SU(k)×U(1)×SU(N−k)Zk×ZN−k )
t
×U(1)f

1-form: Zq

gauge Zq ⊂ PSU(N)f gauge Zq ⊂ PSU(N)t

mirror

mirror

Figure 2: Gauging of discrete 0-form symmetries in SQED and its mirror. The centre
symmetries act with charges (−q mod k, q mod (N−k)) on the U(1) factor. For SQED,
the Zq acts on k of the N hypermultiplets, which is indicated by k edges connected to
a grey node. The remaining hypermultiplets are uncharged under the discrete group.
One can use a global U(1) rotation to move the Zq-action onto the other set of hy-
permultiplets as well, which renders the entire setup symmetric, cf. Appendix C.1.2.
For the abelian linear quiver, gauging along the Cartan U(1)t at the k-th gauge nodes
leads to hypermultiplets with charge q under the k-th U(1), while still of unit charge
under the adjacent gauge factors. This is indicated by an arrow with label, cf. Ap-
pendix A.

SQED theory, gauging of a discrete flavour 0-form symmetry affects some of the fundamental
flavours. To see this, one uses the original mirror map (C.7) between the parameters to iden-
tify which flavour fugacities are affected by gauging along a Cartan U(1)t factor in the abelian
mirror. As a result, the flavours of the SQED split into two sets: one charged under Zq and the
other is trivial. This is shown in Figure 2.

Global symmetry: abelian mirror point of view. The global symmetry is affected as fol-
lows: suppose that one gauges a Zq ⊂ U(1)k ⊂ PSU(N)t subgroup of the topological Cartan
U(1) at the k-th node of the abelian quiver

1

w1

. . .

1

wk−1
1

wk

1

wk+1
. . .

1

wN−1
1 1

(q,−1)(1,−q) (2.6)

The 0-form symmetry algebra after gauging is su(k) ⊕ u(1) ⊕ su(N−k). As exemplified in
Appendix D.1, the 0-form symmetry group is

Gt(2.6)=
SU(k)×U(1)Q × SU(N−k)

Zk ×ZN−k
, (2.7)

where the centre symmetry Zℓ ⊂ SU(ℓ) acts on the fundamental representation [1, 0, . . . , 0]Aℓ−1

with charge +1 under Zℓ, for ℓ ∈ {k, N−k}, see also Table 4. Moreover, the Zk×ZN−k act with
charge (−q mod k, q mod (N−k)) on the U(1)Q variable. Roughly Q ∼ wk, see (C.8) for
details.
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The global structure (2.7) can also be inferred directly from the set of balanced nodes
in (2.6). The unbalanced gauge node U(1)k is connected to two balanced sets of gauge
nodes, forming the Ak−1 and AN−k−1 Dynkin diagram. Generalising the arguments of [30],
there are monopole operators transforming as [0, 0, . . . , q]Ak−1

× (1)Q (and its conjugate) and
[q, 0, . . . , 0] × (1)Q (and conjugate). This follows because the U(1)k node is attached to the
k−1-th node of the Ak−1 Dynkin diagram and the 1-st node of AN−k−1 Dynkin diagram. Com-
pared to the standard case of unit charge bifundamental hypermultiplets, the increased charge
q modifies the appearing Aℓ representations accordingly. The existence of these monopole op-
erators in the Coulomb branch chiral ring leads to the isometry (2.7).

Global symmetry: SQED point of view. To illuminate this result, it is instructive to also
consider the SQED side:

1Zq

N − k

Xa

X̃dk
(2.8)

where the two distinct sets of fundamentals are denoted as X and X̃ (by convention, both have
charge −1 under the U(1) gauge group). Here, as a different notation from elsewhere, we use
the arrowed lines to symbolize 3d N = 2 chiral multiplets (inflow into the gauge node) and
anti-chiral multiplets (outflow from the gauge node). Computationally, gauging a discrete Z f

q
is realised via the following flavour fugacities, see Appendix C.1

Xa : a = 1, . . . , k : ya = ζq ·Q1 ·











x1 , a = 1 ,
xa

xa−1
, 1< a < k ,

1
xk−1

, a = k ,

(2.9a)

X̃d : d = k+ 1, . . . , N : yd =Q2 ·











u1 , d = k+ 1 ,
ud−k

ud−k−1
, k+ 1< d < N−k ,

1
uN−k−1

, d = N−k ,

(2.9b)

with ζq ∈ Z
f
q . The xa and ud are weight space fugacities for su(k) and su(N−k), respectively.

The first observation is that if k|q then theZk centre symmetry of SU(k) is gauged, such that
a global PSU(k) f factor arises. Similarly, if (N−k)|q the ZN−k centre of SU(N−k) is gauged,
leading to a PSU(N−k) f factor. For the general case, one fixes the two so far arbitrary U(1)Q1,2

symmetries:4

(

Qk
1 ·Q

N−k
2

!
= 1 ,

�

Q1
Q2

�q !
=Q ,

⇒

(

Q1 =Q
N−k
q·N ,

Q2 =Q
−k
q·n ,

(2.9c)

which agrees with (C.11) of Appendix C.1. Next, consider a gauge invariant operator O built
from the fields {Xa}ka=1 transforming as (ζq · Q1 · [1, 0, . . . , 0]Ak−1

,−1) under flavour-gauge

transformations and fields {X̃ †
d}

N
d=k+1 transforming as (Q−1

2 ·[0, . . . , 0, 1]AN−k−1
,+1). Thus, Xa X̃ †

d
is U(1) gauge invariant. For Zq invariance, one also requires q-copies of Xa in the form of
Symq(Xa), which leads to the q-th symmetric representation Symq[1, 0, . . . , 0] of SU(k) f . As a
consequence, one also requires q copies of {X̃ †

d} in the form Symq(X̃d), which leads to the q-th

4The definition of Q is a choice. Here, it is chosen such that the operator O in (2.10), as Higgs branch operator
with lowest R-charge that is charged under the U(1), has the unit charge.
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conjugate symmetric representation Symq[0, . . . , 0, 1] of SU(N−k) f . Such a gauge invariant
operator has charges

O = Symq
a1,...,aq

(Xa1
) · Symq

d1,...,dq
(X̃di
)↔ Symq[1, 0, . . . , 0]SU(k) ⊗ Symq[0, . . . , 0, 1]SU(N−k) ⊗

�

Q1

Q2

�q

︸ ︷︷ ︸

=Q

.

(2.10)
The operator O has Zk×ZN−k centre charges (q mod k,−q mod (N−k)). Hence, the Zk×ZN−k
transformations can be compensated by a global U(1)Q rotation if Q has charges (−q mod
k, q mod (N−k)) under the centre symmetries. This confirms (2.7) as flavour symmetry G f .
The operator O can be detected in the Hilbert series at R-charge q · 2 · 1

2 = q.

Comments on lines. Returning to the quiver (2.6), consider a Wilson lines Wa of charge
1 under the a-th U(1) gauge group factor. For each a ̸= k, Wa can end on a local operator
composed of concatenated bifundamental hypermultiplets. For a = k, Wk cannot end since
the bifundamentals connected to the k-th gauge node are of charge q. Further, monopole
operators cannot screen gauge Wilson lines, because monopole operators are gauge singlets
for 3d N = 4 theories. Thus, the lines (Wk)h with h ∈ {0,1, . . . , q−1} cannot end and generate
the abelian group bΓ [1] = Zq.

2.2 An illustrative example

One of the main messages of this paper is that gauging discrete Zq subgroups of the topological
symmetry for quiver gauge theories T with unitary gauge nodes can result in theories T /Zt

q
which admit a simple quiver description. To illustrate this fact, consider U(k) SQCD with
N ≥ 2k fundamental flavours

k

N

(2.11)

with the well-known 0-form symmetries: G f = PSU(N), Gt = U(1)t for N > 2k and Gt = SO(3)
for N = 2k.

Next, express the gauge group as U(k) ∼= U(1)×SU(k)
Zk

where Zk acts as centre on SU(k)
and via Zk charge (k−1) on the U(1) factor. Rewriting U(k) magnetic fluxes m ∈ Zk into
U(1)×SU(k) fluxes (h, l) requires the co-character lattice to be Γ =

⋃k−1
i=0 (Z+

i
k )

k. Effectively,
the SQCD theory can be understood as SU(k)×U(1) gauge theory with N copies of bifunda-
mentals and an “unusual” magnetic lattice Γ . One can introduce a (topological) fugacity z that
keeps track of the components of Γ . If w denotes the topological fugacity of T , one employs
w → zw

1
k . Next, gauge a discrete Zq subgroup of the topological symmetry by performing

a discrete Molien-Weyl sum over z. It is convenient to choose either q|k or k|q. One can
show rigorously (e.g. using the superconformal index or the Coulomb branch Hilbert series,
see Appendix B) the following:
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2.2.1 Gauge a subgroup with q|k

If q|k then only the subgroup Zq ⊂ Zk is gauged. The theory becomes













SU(k)

1

N













/Z k
q

, with magnetic lattice

k
q−1
⋃

i=0

�

Z+ i ·
q
k

�k
, (2.12)

where the quotient Z k
q

signals that this discrete group is not gauged, in the sense of [31].

The resulting theory has a U(1)t × PSU(N) f 0-form symmetry and a Zq 1-form symmetry.
The potential interplay can be analysed via the action of the centre symmetries: defining

αG = ((ζk)
k
q ,ζq·N ) ∈ Zk × Zq·N (because only a Zq ⊂ Zk is gauged) and αF = ζN ∈ ZN ,

the diagonal combination αD = (αG ,αF ) generates a E = Zq·N group. The element

N ·αD = ((ζk)
k
q ·N ,ζN

q·N , 1) generates a Γ (1) = Zq subgroup that acts trivial on the matter fields.
By definition, this establishes the 1-form symmetry. The short exact sequence

0→ Γ (1) = Zq→ E = ZN ·q→ ZN → 0 (2.13)

splits if gcd(q, N) = 1. Whenever gcd(q, N)> 1, this short exact sequence exhibits a non-trivial
2-group extension of Γ (1) and PSU(N) f as discussed below (2.5).

Symmetries via lines. One can again illustrate this higher-form symmetry by using line
defects and their equivalence classes. A gauge Wilson line W in the representation
[0, . . . , 0]Ak−1

× (−1) cannot end on any local operator; Neither polynomials of the hypermul-
tiplets nor monopole operators, because of a mismatch in gauge charges. However, W q can
end on the determinant operator O ∼ det(X ), obtained by contracting hypermultiplets X with
the invariant ε tensor of SU(k). This operator has charges [0, . . . , 0]Ak−1

× k. Since q|k, O
has the same centre charges as W q, such that W q can end on it. Therefore, the lines W a with
a ∈ {1,2, . . . , q−1} cannot end on any local operator and generate the abelian group bΓ [1] = Zq.
Taking flavour charges into account, W q is equivalent to a flavour Wilson line transforming as
∧k[0, . . . , 0, 1]AN−1

, which follows from the flavour charges of O. This is not a representation
of PSU(N) f , but taking N -th tensor (W q)⊗N is equivalent to a singlet of the flavour symmetry.
Thus, these lines generate the group bE = ZN ·q and the 1-form symmetry potentially forms a
2-group with the flavour symmetry (depending on the gcd(N , q)).

2.2.2 Gauge a discrete group Zq with k|q

If k|q then the SU(k) centre Zk is a subgroup of Zq and fully gauged. The theory becomes

SU(k)

1

Nq
k

with magnetic lattice Zk , (2.14)

The difference is now that the N hypermultiplets transform as SU(k) fundamental with charge
q
k ∈ N under the U(1). This is indicated by the arrow, cf. Table 3.

In terms of symmetries, the theory T /Zt
q has a U(1)t topological symmetry, PSU(N) f

flavour symmetry, a Zq 1-form symmetry. Moreover, inspecting the gauge-flavour centre sym-
metries shows: αG = (ζk,ζN ·q) ∈ Zk × ZN ·q and αF = ζN ∈ ZN . The diagonal generator
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αd = (αG ,αF ) spans a E = ZN ·q, and the element N ·αd = (ζN
k ,ζN

N ·q, 1) generates a Γ (1) = Zk·q
subgroup, using that k|q. This subgroup acts trivial on the matter fields; thus, defining the
1-form symmetry Γ (1). The short exact sequence

0→ Γ (1) = Zq→ E = ZN ·q→ ZN → 0 (2.15)

splits if gcd(q, N) = 1. In all other cases, there exists a non-trivial extension giving rise to a
2-group structure between Γ (1) and G f = PSU(N).

Symmetries via lines. Again, let us illustrate these structures with line defects. The gauge
Wilson line W transforming as [0, . . . , 0]Ak−1

× (−1) under SU(k)× U(1) cannot end on a lo-
cal operator, which either has to be a polynomial in the hypermultiplet X transforming as
[1,0, . . . , 0]Ak−1

× (− q
k ) or has to be a monopole operator, which is gauge singlets. In contrast,

the Wilson line W q can end on the local operator constructed as the determinant: i.e. the SU(k)
gauge group is equipped with the invariant εi1,...,ik tensor. Contracting k hypermultiplets yields
an operator O ∼ det(X ) which transforms as [0, . . . , 0]Ak−1

× (−q). Hence, the set of Wilson
lines W a with a ∈ {1,2, . . . , q − 1} cannot end and generate the abelian group bΓ [1] = Zq. If
one also keeps track of the flavour symmetry representations, one finds that O transforms as
∧k[0, . . . , 0, 1]AN−1

which is not a representation of PSU(N) f . Hence, this gauge Wilson line is
equivalent to a flavour Wilson line and the centres of gauge and flavour symmetry intertwine
to give rise to a 2-group structure.

The following sections apply the analogous argument to other quiver gauge theories. The
relevant questions are: (i) What is the resulting theory? (ii) What are its symmetries? (iii)
What is the mirror dual theory?

2.3 T[SU(N)] theories

Moving on to quiver theories with non-abelian gauge factors, consider the self-mirror
T[SU(N)] theories [30], see Figure 3. The global 0-form symmetry group is given by
PSU(N)t×PSU(N) f . In the same spirit as above, one can gauge a discrete Zq 0-form symmetry
inside, say, the topological symmetry. The mirror of the resulting theory is then obtained by
gauging a Zq 0-form symmetry inside the flavour symmetry. The question is how the Zq is
embedded inside the flavour symmetry, given that the Zq is embedded into a Cartan U(1) of
the topological symmetry of the mirror. To answer this, one utilises the mirror map (C.15).

In more detail, let us consider gauging a Zq ⊂ PSU(N)t of a T[SU(N)] theory; one inquires
about the nature of the resulting theory T[SU(N)]/Zt

q. Analogous to Section 2.2, see also Ap-
pendix B.1, for a specific Zq embedded in the k-th topological Cartan U(1) factor, the resulting
theories T[SU(N)]/Zt

q are in fact related to versions of T[SU(N)] encountered in [31]. These
quiver theories differ from T[SU(N)] as follows: the k-th node is replaced by U(k)→ SU(k),
and the flavour node becomes a U(1) gauge nodes with an N copies of bifundamental hyper-
multiplets between U(N−1) and the “new” U(1) gauge node. Restricting to the case that either
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1 2

⋯
k

⋯
N−1

N

0-form: PSU(N)f ×PSU(N)t
12

⋯
k

⋯
N−1

N

0-form: PSU(N)t ×PSU(N)f

???

0-form: PSU(N)f × (SU(k)×U(1)×SU(N−k)Zk×ZN−k )
t

1-form: Zq

12

⋯
k

⋯
N−1

Zq

N − k
k

0-form: (SU(k)×U(1)×SU(N−k)Zk×ZN−k )
f
×PSU(N)t

1-form: Zq

gauge Zq ⊂ PSU(N)t
gauge Zq ⊂ PSU(N)f

mirror

mirror

Figure 3: Gauging of discrete 0-form symmetries in T[SU(N)] theories. The centre
symmetries act with charges (−q mod k, q mod (N−k)) on the U(1) factor. The quiver
description for T[SU(N)]/Zt

q, here denoted by ???, is provided in (2.16). The quiver

for T[SU(N)]∨/Z f
q shows again a split of the N fundamental flavours into two sets:

k of them are charged under Z f
q , which is indicated by an edge of multiplicity k to

the grey node; the remaining N−k flavours are uncharged.

q|k or k|q, the resulting theory is given by

q|k with d =
k
q

:





1

w1

2

w2

. . .

k−1
wk−1

SU(k) k+1
wk+1

. . .

N−1
wN−1

1

vN



/Zd

magnetic lattice:
d−1
⋃

i=0

�

Γ +
i
d

�

, (2.16a)

k|q with q = a · k :
1

w1

2

w2

. . .

k−1
wk−1

SU(k) k+1
wk+1

. . .

N−1
wN−1

1

vN

a

(2.16b)

magnetic lattice: Γ ,

wherein Γ denotes the standard integer lattice one assigns to the quiver based on [26]. The
shifts by i

d are to be understood as in [31]. As a comment, restricting to k|q or q|k ensures that
the theory after discrete gauging has a simple quiver description. If this constraint is relaxed,
there may not be a simple quiver, but the gauging is perfectly well-defined on the level of
Hilbert series and index.

The mirror theory T[SU(N)]∨/Z f
q is obtained from T[SU(N)]∨ = T[SU(N)] by gauging

a Zq ⊂ PSU(N) f . The mirror map (C.15) dictates that this is realised by splitting the N fun-
damental flavours into two sets of k and N−k flavours, and gauging the Zq symmetry in the
overall U(1) flavour symmetry of one of the two sets. For concreteness, consider gauging the
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Zq on the set of k fundamental flavours:

12

. . .

k

. . .

N−1

Zq{yi}ki=1

N−k{yj}Nj=k+1

k

(2.17)

and Appendix D.2 provides exemplary Hilbert series computations that confirm the mirror
symmetry between the theories with non-trivial 1-form symmetry.

The mirror map between the parameters of T[SU(N)]/Zt
q in (2.16) and T[SU(N)]∨/Z f

q
in (2.17) can be derived exactly. For concreteness, consider the case q = k, then the map
between the parameters in (2.16) and (2.17) is established via

¨

wi =
yi

yi+1
, i ̸= k ,

v = yN
N .

(2.18)

Further details on this map are provided in Appendix C.2.

Global symmetry. Building on the understanding of the 0-form symmetry group (2.7) for
(balanced) abelian quivers, one can utilise a similar logic for the balanced T[SU(N)] theories.
Consider the quiver (2.16) the topological symmetry algebra is su(k)⊕ u(1)⊕ su(N−k). The
global form is then given by

Gt =
SU(k)×U(1)Q × SU(N−k)

Zk ×ZN−k
, (2.19)

with Q has Zk ×ZN−k charges (−q mod k, q mod (N−k)) ,

where the centre symmetries Zℓ act in the standard way on SU(ℓ). Note that for k|q there is
a PSU(k) factor in the global symmetry. The examples in the next paragraph, as well as the
explicit character decomposition in Appendix D.2, confirm this structure.

This structure (2.19) is also apparent from the Higgs branch isometry of the mirror (2.17),
i.e. denote the two distinct sets of fundamentals by

1

. . .

N−1

Zq

N−k
Xa

X̃d
(2.20)

Here, as a distinctive notation from elsewhere, we use arrowed lines to represent the arrowed
lines to symbolize 3d N = 2 chiral multiplets (inflow into the gauge node) and anti-chiral
multiplets (outflow from the gauge node). Analogously to (2.9), one can perform the Z f

q
gauging by assigning (c.f. Appendix C.2)

Xa : a = 1, . . . , k : ya = ζq ·Q1 ·











x1 , a = 1 ,
xa

xa+1
, 1< a < k ,

1
xk−1

, a = k ,

(2.21a)

X̃d : d = k+ 1, . . . , N : yd =Q2 ·











u1 , d = k+ 1 ,
ud−k

ud−k−1
, k+ 1< d < N−k ,

1
uN−k−1

, d = N−k ,

(2.21b)
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with ζq ∈ Z
f
q . The x i and u j are weight space fugacities of su(k) and su(N−k), respectively.

The two appearing U(1) fugacities Q1,2 effectively reduce to a single U(1)Q; for instance by
imposing

∏

i yi = 1, i.e.

(

Qk
1 ·Q

N−k
2

!
= 1 ,

�

Q1
Q2

�q !
=Q ,

⇒

(

Q1 =Q
N−k
N ·q ,

Q2 =Q−
k

N ·q ,
(2.21c)

which agrees5 with (C.20) of Appendix C.2. Note also that for q|k the (ζq)
k
q ∈ Z f

q acts as the
Zk ⊂ SU(k)x i

centre symmetry; thus the global factor is PSU(k)x i
in this case. The U(1)Q may

transform non-trivially under theZℓ ⊂ SU(ℓ) centre symmetries, depending on the charge of Q.
To determine the charge, one again considers a specific gauge-invariant operator O build out of
the two sets of fundamentals: X transforms as (ζq ·Q1·[1, 0, . . . , 0]Ak−1

, N−1) and X̃ † transforms
as (Q−1

2 · [0, . . . , 0, 1]AN−k−1
, N−1). U(N−1) gauge invariance imposes Tr(X X̃ †), wherein the

trace is taken over the gauge indices. Zq gauge invariance requires O = SymqTr(X X̃ †), where
the symmetrisation acts on the flavour indices. The resulting operator transforms as

O : Symq[1,0, . . . , 0]k ⊗ Symq[0, . . . , 0, 1]N−k ⊗
�

Q1

Q2

�q

︸ ︷︷ ︸

=Q

, (2.22)

such that the Zk × ZN−k centre charges are (q mod k,−q mod (N−k)). These can be com-
pensated by a global U(1)Q rotation provided the centre charges of Q are (−q mod k, q mod
(N−k)). This confirms (2.19) as flavour symmetry for the quiver (2.17).

As a remark, the operator O can be detected in the Hilbert series as the first non-trivial
term in Q. The R-charge of O is simply q×2 · 1

2 = q. The appendix D.2 provides examples that
illustrate this point.

By analogous arguments as in Section 2.2, one can verify that theories (2.16) indeed have
the expected Γ (1) = Zq 1-form symmetry. One finds that the centre generators of the combined
gauge-flavour symmetry span a E = Zq·N group, such that there exists a non-trivial 2-group
extension between Γ (1) and G f = PSU(N) whenever gcd(q, N) > 1. Similarly, the same con-
clusion is reached by inspecting the screening of Wilson lines.

Example 1. For an illustrative purpose, let us consider N = 4. Gauging a specific Z2 0-form
symmetry leads to a mirror pair:

1 SU(2) 3 1

4 mirror
←−−−−−→

1232

Z2

(2.23)

The Hilbert series in (D.20) confirms that the Coulomb branch symmetry algebra for the left
quiver (and the Higgs branch isometry algebra of the right quiver) is g= su(2)⊕ su(2)⊕u(1).
Moreover, the appearing SU(2) representations are all of integer spin; thus, suggesting the
global form G = SO(3)× SO(3)×U(1).

Choosing to gauge a specific discrete Z3 subgroup of the 0-form symmetry results in the

5Again, the definition of Q is a choice. It is motivated by assigning the unit charge to the Higgs branch operator
O in (2.22), which is the operator with the lowest R-charge that is charged under the U(1)Q.
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pair:

1 2 SU(3) 1

4 mirror
←−−−−−→

1231

Z3

(2.24)

The explicit Hilbert series in (D.17) shows that the Coulomb branch symmetry algebra of the
left quiver (and the Higgs branch isometry algebra of the right theory) is g = su(3) ⊕ u(1).
Moreover, all appearing characters are neutral under the Z3 centre symmetry of SU(3); hence,
the global form is G = PSU(3)×U(1).

Example 2. Considering discrete symmetries of the typeZq with q = a·k allows us to uncover
equivalent descriptions. Consider T[SU(5)] and gauge a Z6 0-form symmetry. Among the
choices considered here, gauging a Z6 ⊂ PSU(5)t is realised by turning the U(3) gauge node
into SU(3) together with charge 2 for the “new” U(1) node

1

w1

2

w2

SU(3) 4

w4

1

v5

2

mirror
←−−−−−→

1234
Z6

2

3

(2.25)

or by turing the U(2) node into SU(2) together with charge 3 for the “new” U(1) gauge factor

1

w1

SU(2) 3

w3

4

w4

1

v5

3

mirror
←−−−−−→

1234

Z6

3

2

(2.26)

Without the additional charges the theories are clearly distinct, for instance by the 0-form and
1-form symmetries, see (2.19) and Figure 3. However, with the modification, both become
equivalent as, for example, the monopole formula in (D.44) confirms.

Equivalently, on the mirror, one gauges a Z6 subgroup of the flavour 0-form symmetry, but
one time acting on three fundamental hypermultiplets and one time on two. For (2.25) and
(2.26), this is realised by

{yi}5i=1→











{y1, y2, ζ6 y3, ζ6 y4, ζ6 y5} , for (2.25),

or

{ζ6 y1, ζ6 y2, y3, y4, y5} , for (2.26),

(2.27)

with ζ6 ∈ Z
f
6 . But in both cases, the Z2×Z3 centre symmetries are gauged by the discrete gaug-

ing of the Z f
6 0-form symmetry. Hence, the global symmetry is simply PSU(2)×U(1)Q×PSU(3)

for both.
The observed equivalence can now be understood as follows: on the level of the Coulomb

branch quivers, the global symmetry algebra arises from the split su(5)→ su(3)⊕su(2)⊕u(1).
Without the higher charge, the U(1) factor transform non-trivially under the centre symmetry,
see (2.19). In fact, it transforms differently in both cases. However, the higher charge is just
tuned such that the U(1) becomes independent of the discrete centre symmetries. This then
also implies that the operators charged under the U(1) factor coincide in both theories. On
the Higgs branch side, the equivalence is a simple consequence of a global U(1) rotation that
takes the Z6 action from 2 fundamental flavours to the other 3 fundamental flavours. See also
(C.19)–(C.20).
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Comment. The considerations so far implicitly assume that the gauge node U(k) at which
the discrete subgroup of the Cartan U(1)t of the topological symmetry is gauged has k > 1,
see for instance Appendix B.1 and B.2. Gauging the Cartan U(1)t of the U(1) gauge node of
T[SU(N)] is in spirit similar to Section 2.1.1. Concretely, after gauging Zt

q at the U(1) node,
the bifundamental between U(1) and U(2) is modified to have charge q under the U(1). Thus,
the mirror pair becomes

1

w1

2

w2

. . .

N−1
wN−1

N
q

mirror
←−−→

12

. . .

N−1

Zq

y1

N−1{yj}Nj=2
(2.28)

and the global symmetry becomes

Gt(left quiver (2.28)) = G f (right quiver (2.28)) =
U(1)Q × SU(N−1)

ZN−1
, (2.29)

where Q has ZN−1 charge q mod (N−1).

2.4 Tσρ [SU(N)] theories

The class of linear quiver gauge theories with unitary gauge groups and fundamental or
bifundamental hypermultiplets is given by the Tσρ [SU(N)] theories [30], where ρ,σ are
two partitions of N . For σ = ρ = (1, . . . , 1) ≡ (1N ), the corresponding theory is simply

T (1
N )

(1N ) [SU(N)] = T[SU(N)] and the partition data can be dropped. Mirror symmetry exchanges

the partitions σ and ρ, i.e. Tσρ [SU(N)]∨ = Tρσ [SU(N)].
Analogous to the cases considered so far, the gauging of a discrete 0-form symmetry (either

inside the topological symmetry group Gt or the flavour symmetry group G f ) leads to a theory
with non-trivial 1-form symmetry. Again, consider the two options in turn. While the process
of gauging a discrete subgroup of Gt is by now understood (see Section 2.3 and Appendix
B), determining the action of the discrete group on the flavour symmetry of the mirror theory
becomes more challenging when G f is a generic product group. Thus, special attention is paid
to determining the mirror theory of Tσρ [SU(N)]/Zt

q.

Gauging a ZNk
⊂ Gt . A Tσρ [SU(N)] is a linear quiver theory with gauge/flavour groups

specified by a sequence of integers {Ni} and {Mi}, respectively. The partitions determine the
integers as detailed in [30] and the quiver becomes

Tσρ [SU(N)] :

N1 N2

. . .

Nk

. . .

Nn−1 Nn

M1 M2 Mk Mn−1 Mn

(2.30)

For concreteness, take the node Nk, with Nk > 1, and gauge a ZNk
⊂ U(1)k ⊂ Gt inside the

Cartan factor of the topological symmetry associated to the k-th node. By the same arguments
as in Appendices B.1 and B.2, one straightforwardly derives the resulting theory

Tσρ [SU(N)]/Zt
Nk

:

N1 N2

. . .

SU(Nk)
. . .

Nn−1 Nn

1

M1 Mn
(2.31)
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which has a non-trivial ZNk
1-form symmetry. Now, one constructs the mirror theory.

Gauging a ZNk
⊂ G∨f . The mirror quiver gauge theory of (2.30) is given by

Tσρ [SU(N)]∨ = Tρσ [SU(N)] :

N∨1 N∨2
. . .

N∨
n′−2 N∨

n′−1 N∨
n′

M∨
1 M∨

2
M∨

n′−2 M∨
n′−1 M∨

n′

(2.32)

and the integers {N∨i } and {M∨i } are determined by the partition data ρ, σ.
To determine which ZNk

⊂ G∨f subgroup needs to be gauged, one has two options: one

could derive the mirror map of parameters for the specific pair (Tσρ [SU(N)], Tρσ [SU(N)]) and

compute which flavours are charged under Z f
Nk

. In principle, this is straightforward but likely
to be tedious. Alternatively, one can employ the following train of thought: The mirror theory
Tρσ [SU(N)] can be rewritten in an unframed form

N∨1 N∨2
. . .

N∨
n′−2 N∨

n′−1 N∨
n′

M∨
1 M∨

2
M∨

n′−2 M∨
n′−1 M∨

n′

∼=

N∨1 N∨2
. . .

N∨
n′−2 N∨

n′−1 N∨
n′

1

M∨
1

M∨
n′

///U(1)diag

(2.33)

where no explicit flavour group appears. For such a theory, it is implied that an overall U(1)diag
subgroup decouples so the two quiver diagrams express the same theory.

The next step is to turn the unitary gauge group U(Nk) in (2.30) into a special unitary
gauge group SU(Nk). This theory still has a trivial 1-form symmetry due to the flavour groups.
However, the 3d mirror theory can be found by using the algorithm in [32]. Schematically,
one finds

N1

. . .

SU(Nk)
. . .

Nn

M1 Mk Mn

mirror
←−−→

N∨1 N∨2
. . .

N∨
n′−2 N∨

n′−1 N∨
n′

1 1

M∨
1

M∨
n′

///U(1)diag

(2.34)

Turning U(Nk) into SU(Nk) means the 3d mirror has an additional U(1) gauge group. The
additional U(1) gauge group in the unframed quiver is the result of gauging the flavour sym-
metry. Now, there are two U(1) gauge groups connected to the rest of the linear quiver. The
number of bonds M∨i attached to each U(1) depends precisely on the choice of SU(Nk), i.e.
which k. The splitting can also occur where the same gauge node, for example, U(N∨2 ) is con-
nected to one U(1) gauge group with an edge of multiplicity M∨2 − x and to the other U(1)
with an edge of multiplicity x; see for instance Example 2 below.

The final step is to gauge the diagonal U(1) flavour symmetry in the left quiver of
(2.34) to obtain Tσρ [SU(N)]/Zt

Nk
. However, simply introducing a new U(1) gauge node

leads to the ambiguity of the global form of the product gauge group, which can either be
G = U(1)× SU(Nk)×

∏

i ̸=k U(Ni) or G removed by a subgroup of its centre. For G/ZNk
, with

ZNk
embedded into SU(Nk) as centre and into the diagonal U(1) ⊂ U(Ni) of each of the other

gauge group factors, one obtains back the original theory Tσρ [SU(N)], see [31] or Appendix B.
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But this theory exhibits a Zt
Nk

topological symmetry, see also Section 2.9. In order to generate
the desired Tσρ [SU(N)]/Zt

Nk
theory with gauge group G, one needs to gauge the discrete Zt

Nk
symmetry, which effectively reduces the magnetic lattice to the standard integer lattice. For
the 3d mirror, this means that one first gauges a U(1)t topological symmetry, which effectively
removes a U(1) gauge degree of freedom. But one also needs to gauge a Z f

Nk
in a subsequent

step. This Z f
Nk

can be thought of as embedded in the U(1) that one has to be removed. Hence,
the intermediate step is given by

Tσρ [SU(N)]/Zt
Nk

mirror
←−−→

N∨1 N∨2
. . .

N∨
n′−2 N∨

n′−1 N∨
n′

1 1

M∨
1

M∨
n′

///

 

U(1)diag×U(1)

Z f
Nk

!

(2.35)

From the unframed quiver on the right, one has to ungauge a U(1)diag×U(1) and also keep a

Z f
Nk

gauged. The natural choice is to ungauge the two U(1) gauge groups on top; thus, turning

them into flavour groups up to a choice of Z f
Nk

. The last step is to choose in which of the two

U(1)s one embeds the Z f
Nk

. This is because, as with the T[SU(N)] theories, one knows the

only difference between Tσρ [SU(N)]∨ and
�

Tσρ [SU(N)]/Zt
Nk

�∨
should be the splitting of the

flavour groups along with a discrete quotient. Schematically, one finds

N∨1 N∨2
. . .

N∨
n′−2 N∨

n′−1 N∨
n′

1 1

M∨
1

M∨
n′

///

 

U(1)diag×U(1)

Z f
Nk

!

(2.36)

∼=

N∨1 N∨2
. . .

N∨
n′−2 N∨

n′−1 N∨
n′

M∨
1 M∨

2 ZNk

M∨
n′−2 M∨

n′
∼=

N∨1 N∨2
. . .

N∨
n′−2 N∨

n′−1 N∨
n′

ZNk
M∨

n′−2 M∨
n′−1 M∨

n′

M∨
1 M∨

2

and the two framed mirrors show that the discrete quotient can be applied diagonally on either
one of the two sets of flavour hypermultiplets. This is also clear from Sections 2.1.2 and 2.3,
and Appendices C.1 and C.2, as an overall U(1) rotation can be used to shuffle the discrete
ZNk

charges from one set of fundamental flavours to another.

Example 1. One can apply the above procedure to Tσρ [SU(15)] where σ = (33, 22, 12) and

ρ = (6, 4,3, 12) for the example as in Figure 4. The global form of the 0-form symmetry is
expected to be

Gt(bottom left quiver of Figure 4) = G f (bottom right quiver(s) of Figure 4)

=
SU(2)×U(1)1
Z2

×U(1)2 ×U(1)3 ∼= U(2)×U(1)2 ×U(1)3 , (2.37)

and one can explicitly verify this structure as demonstrated in (D.47). Alternatively, the
Coulomb branch quiver indicates this isometry group as follows: only the leftmost U(1) is
balanced, leading to a topological su(2)t because there are monopole operators of U(1) mag-
netic flux ±1 at R-charge 1 (see also [30]). The remaining U(2) and U(1) gauge nodes provide
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1 2 2 1

3 2 2

2 2 2 2 1 1

2 1 1 1

≅

2 2 2 2 1 1

1

///U(1)diag

1 2 SU(2) 1

3 2 2

1 2 SU(2) 1

1

2 2 2 2 1 1

1 1

///U(1)diag

2 2 2 2 1 1

1 1

///U(1)diag×U(1)Z2

≅

2 2 2 2 1 1

2 1 Z2

≅

2 2 2 2 1 1

Z2 1 1

U→ SU

gauge U(1) ungauge U(1)

mirror

mirror

mirror

Figure 4: Starting from the mirror pair Tσρ [SU(15)] and Tρσ [SU(15)] with

σ = (33, 22, 12) and ρ = (6,4, 3,12), one can gauge a discrete Z2 0-form symme-
try to create a new mirror pair with Z2 1-form symmetry. See also Appendix C.3 for
the choice of Z f

2 gauging.

one U(1)ti=1,2,3 topological symmetry factor each. Let the one associated with U(2) be denoted
by U(1)t1. Since this node is connected to the balanced node, arguments similar to [30] show
the existence of a chiral ring operator that transforms as a spinor under su(2)t and has charge
±1 under U(1)t1. Therefore, the Z2 centre action can be absorbed into U(1)t1, resulting in a
U(2)t topological symmetry factor.

One can also choose the other SU(2) in Tσρ [SU(15)] which gives the mirror pairs displayed
in Figure 5. Comparing Figure 4 and 5, one observes that the global form of the 0-form
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1 SU(2) 2 1

1

2 2 2 2 1 1

1 1

///U(1)diag×U(1)Z2

≅

2 2 2 2 1 1

2 Z2

≅

2 2 2 2 1 1

Z2 1 1 1

mirror

Figure 5: Again starting from the mirror pair Tσρ [SU(15)] and Tρσ [SU(15)] with

σ = (33, 22, 12) and ρ = (6, 4,3,12), one can gauge a different discrete Z2 0-form
symmetry to generate a another mirror pair with Z2 1-form symmetry. See Appendix
C.3 for the choice of Z f

2 in the mirror.

symmetry in Figure 5 is simply

PSU(2)×
3
∏

i=1

U(1)i , (2.38)

which is supported by the explicit calculations in (D.50). This conclusion can also be drawn
by examining the Coulomb branch quiver. Since the balanced U(1) gauge node is not directly
connected to any of the U(2) or U(1) gauge groups, there is no expectation on a chiral ring
operator that transforms non-trivially under the Z2 centre of the SU(2)t topological symmetry.

Example 2. Consider the mirror pair Tσρ [SU(9)] with ρ = (3, 23) and σ = (32, 13)

2 2 2

3 2

←→

1 2 2 1

1 3

(2.39)

whose symmetry algebra is su(3) ⊕ u(1), as apparent from the balanced set of nodes. The
global form is evaluated to be

Gt(LHS (2.39)) = G f (RHS (2.39)) =
SU(3)×U(1)
Z3

∼= U(3) , (2.40)

because the U(1) has charge −1 under the Z3 centre symmetry. See (D.51) for details. Al-
ternatively, the left-hand-side quiver in (2.39) allows us to derive this by using the balanced
set of nodes. Since the unbalanced gauge nodes connect to the A2 Dynkin diagram (formed
by the balanced nodes) on its first node, there exists a chiral ring operator transforming as
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[1,0]× (+1) (plus conjugate) under the topological SU(3)t ×U(1)t . Thus, the Z3 centre can
be compensated by suitable embedding into the U(1)t factor.

To create a new mirror pair, we can gauge a Z2 symmetry on both sides of the dual theories.
For example, we can gauge the topological Zt

2 symmetry on w3. The mirror map, as shown in

(C.24), indicates that gauging the Z f
2 symmetry leads to the following mirror pair

2 2 SU(2)

1

←→

1 2 2 1

1Z2

(2.41)

whose symmetry algebra is su(2) ⊕ u(1) ⊕ u(1). The Hilbert series (D.54) then suggests a
symmetry group of

Gt(LHS (2.41)) = G f (RHS (2.41)) =
SU(2)×U(1)×U(1)

Z2

∼= U(2)×U(1) , (2.42)

because the centre Z2 acts trivial on one U(1) factor and with charge −1 on the other. This
can also be read off from the Coulomb branch quiver. As there is a U(2) node connected to the
balanced U(2) node, there exists a chiral ring operator transforming as [1]A1

× (±1) under the
associated SU(2)t × U(1)t topological symmetry factors. Therefore, the Z2 centre symmetry
then gives rise to a U(2)t isometry factor. The other topological Cartan U(1)t is uncharged
under the Z2 centre, as the gauge nodes are not connected to each other.

Gauging Zt
q on a U(1) node. Analogous to Section 2.3, one can also gauge discrete sub-

groups of the topological symmetry associated to a U(1) gauge node. From the examples
considered, it is clear what the theory after gauge the Zt

q is: the same quiver as before, but all
hypermultiplets connected to the specific U(1) gauge node have now charge q. The question is
then, what the corresponding mirror theory is. This can be determined by utilising the mirror
map between the fugacities, as demonstrated in Appendix C.

2.5 T[SO(2N)] theories

In a similar vein to T[SU(N)], one can consider the self-mirror theory T[SO(2N)] [30], see
Figure 6. For quiver theories composed of alternating SO(n) and Sp(m) gauge nodes, only
the Z2 factors of the SO(n) gauge nodes are the discrete parts of the topological symmetry
visible in the UV description. If we gauge any of these, we get a T[SO(2N)]-type quiver with
a single replacement SO(2k)→ Spin(2k).6 The corresponding mirror theory is obtained from
T[SO(2N)] by gauging a suitable Z2 inside the flavour symmetry. This leads to a splitting of
the flavour node as indicated in Figure 6. Appendix D.5 provides examples and consistency
checks for T[SO(6)] and T[SO(8)].

Considering the theory T[SO(2N)]/Zt
2 obtained from gauging Zt

2, the quiver description
allows us to use the techniques of [6] to verify the 1-form symmetry and its interplay with
the flavour 0-form symmetry. One finds the discrete groups summarised in Table 1 which
constitute the short exact sequence

0→ Γ [1]→ E → Z → 0 . (2.43)

As expected, the flavour 0-form symmetry is always PSO(2N) since the flavour centre Z is
maximal. Moreover, only for T[SO(4N)]/Zt

2 with a Spin(4l + 2) gauge node does the 1-form

6This follows as gauging the Z2 topological symmetry of an SO(2n) gauge group leads to an Spin(2k) gauge
group. Conversely [21,33], gauging the Z2 1-form symmetry in Spin(2k) recovers the SO(2k) theory.
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2 2

. . .

2k

. . .

2N−2

2N

0-form: PSO(2N)f ×PSO(2N)t
22

. . .

2k

. . .

2N−2

2N

0-form: PSO(2N)t ×PSO(2N)f

2 2

. . .

Spin(2k)
. . .

2N−2

2N

0-form: PSO(2N)f ×P(O(2k) ×O(2N − 2k))t
1-form: Z2

22

. . .

2k

. . .

2N−2

Z2

2N − 2k
k

0-form: P(O(2k) ×O(2N − 2k))f ×PSO(2N)t
1-form: Z2

gauge Z2 ⊂ PSO(2N)t gauge Z2 ⊂ PSO(2N)f

mirror

mirror

Figure 6: Gauging of discrete 0-form symmetries in T[SO(2N)] theories. Gauging
the Zt

2 for an SO(2k) gauge leads to a Spin(2k) gauge group. Gauging the mirror

dual Z f
2 is realised by splitting the fundamental flavours into two sets: one set is un-

charged and the other set is charged under Z f
2 , indicated by an edge with multiplicity

k connected to a grey node.

symmetry and the flavour 0-form symmetry form a non-trivial extension hinting to a 2-group
symmetry.

Following [21, 28], it is straightforward to illustrate the 1-form symmetry and 2-group
structure via line operators. For the Spin(2l) gauge group, a Wilson line Ws in the spinor
representation cannot end on a local operator, because all half-hypermultiplets transform in
the vector representation. For l even, the tensor product of the spinor with itself contains a
singlet; therefore, W 2

s is equivalent to the identity line without the need for any local operator.
The lines that cannot end generate the (Pontryagin dual of the) 1-form symmetry and there
is no 2-group structure. For l odd, the tensor product of the spinor with itself contains the
vector. Now W 2

s is equivalent to a flavour Wilson line because it can end on a local operator
build from the half-hypermultiplets. However, the vector representation is not an allowed
representation of PSO(2N), which means that the Z2 1-form symmetry forms a 2-group with
the flavour symmetry. This is consistent with Table 1.

On the other hand, in the theory T[SO(2N)]/Z f
2 obtained by gauging the Z f

2 symmetry,
there are two distinct sets of flavour hypermultiplets, each forming half-hypermultiplets H
and h in the vector-vector representation of SO(2N−2k)× Sp(N−1) and SO(2k)× Sp(N−1),

Table 1: Interplay of 1-form symmetry and the flavour centre for T[SO(2N)]/Zt
2

theories.

theory Γ [1] E Z

T[SO(4N)]/Zt
2 with Spin(4l) Z2 Z2 ×Z2 ×Z2 Z2 ×Z2

T[SO(4N)]/Zt
2 with Spin(4l + 2) Z2 Z2 ×Z4 Z2 ×Z2

T[SO(4N + 2)]/Zt
2 with Spin(4l) Z2 Z2 ×Z4 Z4

T[SO(4N + 2)]/Zt
2 with Spin(4l + 2) Z2 Z2 ×Z4 Z4

22

https://scipost.org
https://scipost.org/SciPostPhys.15.1.033


SciPost Phys. 15, 033 (2023)

respectively, i.e.

22

. . .

2N−2

Z2

2N−2k H
k h . (2.44)

The only difference is that h is also charged under Z2. As in Sections 2.1.2 and 2.3, to study the
global form of the flavour symmetry of this theory, one can consider gauge-invariant operators.
Using the invariant Sp(N−1) anti-symmetric tensor J , the standard mesons-type invariants
are HJH and hJh, both of which then transform in the adjoint representation [0, 1, . . . , 0]D
of so(2N−2k) and so(2k), respectively. Likewise, one can consider hJH, which is Sp(N−1)
gauge invariant, but not Z2 invariant due to the Z2 charge of h. Hence, O = Sym2(hJH)
is indeed a gauge invariant operator transforming as [2,0, . . . , 0]Dk

⊗ [2, 0, . . . , 0]DN−k
. All

of these gauge-invariant Higgs branch operators have trivial charges under the so(2k) or
so(2N−2k) centre symmetries. This suggests that the global form of the flavour symmetry
is PSO(2k)× PSO(2N−2k).

2.6 Sp(k) SQCD and its orthosymplectic mirror

The lessons learnt can be readily applied to other orthosymplectic quivers, such as Sp(k) SQCD
with N fundamental hypermultiplets and its orthosymplectic mirror quiver [34]. Focusing on
N ≥ 2k+1, the SQCD theory admits a manifest flavour symmetry, while there is no topological
symmetry for N > 2k + 1 and a U(1)t symmetry for N = 2k + 1. Thus, it is quite natural to
consider gauging discrete subgroups of the flavour 0-form symmetry. Conversely, the mirror
orthosymplectic quiver does not have a continuous flavour symmetry for N > 2k1 (i.e. no
mass parameter) and an SO(2) f symmetry for N = 2k + 1 (i.e. one mass parameter). While
the topological symmetry is not manifest in the UV description, certain remnants are: each
SO(l) gauge group admits a manifest Zt

2 symmetry.

2k

2N

0-form: PSO(2N)f ×Ht

2 2

. . .

2k 2k+1
. . .

2k+1 2k

. . .

2 2

1 1

(N−2k−1) × SO(2k + 1) nodes(N−2k) × Sp(k) nodes

0-form: PSO(2N)t ×Hf

2kZ2

2N − 2ℓ
ℓ

0-form: (SO(2ℓ) × SO(2N − 2ℓ))f ×Ht

1-form: Z2

2

. . .

2ℓ−2 Spin(2ℓ) 2ℓ

. . .

2k

. . .

2k

. . .

2

1 1

0-form: (SO(2ℓ) × SO(2N − 2ℓ))t ×Hf

1-form: Z2

gauge Z2 ⊂ PSO(2N)f gauge Z2 ⊂ PSO(2N)t

mirror

mirror

Figure 7: Gauging of discrete 0-form symmetries in Sp(k) SQCD with N fundamentals
and its linear orthosymplectic mirror quiver. Here, the isometry group Ht/ f is trivial
for N > 2k+1 and U(1) for N = 2k+1. Again, the split into two sets of flavours can
made symmetric, as a global rotation can shift the Z f

2 action onto either set.
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Therefore, one can gauge a Z2 topological symmetry of a specific SO(ℓ) gauge node and
inquire about the implications. It is straightforward to observe that this gauging modifies the
particular gauge group SO(ℓ) → Spin(ℓ), see for instance [26, 35]. On the mirror side, one
gauges a Z2 ⊂ SO(2N) flavour symmetry, which then leads to a split of the flavour symmetry.
This is summarised in Figure 7. Exemplary cases with explicit calculations are provided in
Appendix D.6.

The interplay of the discrete Z2 1-form symmetry with the continuous 0-form symmetry
is simple here. Consider the linear orthosymplectic mirror quiver. For N > 2k + 1, there is
no continuous 0-form flavour symmetry that could mix with the 1-form symmetry Z2. For
N = 2k + 1, there exists an enhance U(1) 0-form symmetry, but the 1-form and 0-form sym-
metry are simply a product of each other.

2.7 Sp(k) SQCD and its unitary D-type mirror quiver

It is well-known that Sp(k) SQCD with N fundamental flavours admits a second mirror de-
scription [36], based on a DN -type Dynkin quiver:

2k

2N

←→
1 2

. . .

2k−1 2k 2k

. . .

2k

k

k

1

N − 2k − 1 nodes

(2.45)

This mirror pair has the advantage that the PSO(2N) global symmetry is manifest as Higgs
branch isometry in the SQCD theory and as Coulomb branch isometry in the D-type Dynkin
quiver. It is, hence, natural to study gaugings of discrete Zq symmetries in this manifest 0-form
symmetry.

Starting with the Dynkin quiver, there are two distinct choices: Firstly, gauging a Zl on a
U(l) node which satisfies 2< l < 2k, one obtains7

1

. . .

l−1 SU(l) l+1
. . .

2k−1 2k 2k

. . .

2k

k

k

1

N − 2k − 1 nodes

(2.46)

which has a Zl 1-form symmetry and the Coulomb branch isometry algebra is
su(l) ⊕ u(1)Q ⊕ so(N − l). For the global form, one can study the action of the centre sym-
metries of the non-abelian factors. One finds

Gt(2.46)= PSU(l)×
U(1)Q × Spin(2N − 2l)

ZDN−l

, (2.47)

where the ZDN−l
charges of Q are given by the charges of the congruence class of the j-th

fundamental representation [0, . . . , 0, 1, 0, . . . , 0]D with j = 2k−l, see Appendix A.3 for details.
For explicit examples including Hilbert series computations see Appendix D.7.

7The cases l = 1, 2 are addressed separately below.
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Alternatively, gauging a Zl on a U(l) node which satisfies l ≥ 2k, one obtains

1

. . .

2k−1 2k

. . .

2k SU(2k) 2k

. . .

2k

k

k

1

l − 2k nodes

(2.48)

and the Coulomb branch isometry algebra is the same as in (2.46). However, the “extra” U(1)
node is now attached to the balanced A-type Dynkin diagram such that the global form is given
by

Gt(2.48)=
PSU(l)×U(1)Q

Zl
× PSO(2N − 2l) , (2.49)

where Q carries Zl charge 2k mod l, i.e. the charges of the congruence class of the 2k-th
fundamental representation, see Appendix A.3. Explicit examples for this discrete gauging are
given in Appendix D.7.

Global form via the mirror. Analogous to the discussion in Sections 2.1.2, 2.3, and 2.5,
one can confirm this global symmetry via the Higgs branch of the mirror theory. The starting
point is the mirror map (C.27) between the flavour fugacities of Sp(k) SQCD and its unitary
D-type Dynkin quiver, see Appendix C.1. This allows us to identify which flavour fugacities
are involved in the discrete Z f

l gauging on the SQCD side.

• l < 2k: The familiar argument then proceeds by splitting the fundamental flavours into
two distinct groups: the first l fundamental flavours are grouped as X , transforming
as ζlQ

− 1
l [1,0, . . . , 0]Al

, and the remaining N − l fundamental flavours, transforming as
[1,0, . . . , 0]DN−l

. Building a gauge invariant Higgs branch operator proceeds in two steps:
firstly, using the Sp(k) invariant tensors J on constructs operators of the form X J X̃ ,
which transform as ζl under the discrete symmetry. Secondly, Zl invariance is achieved
via O = Syml(X J X̃ ), which transforms as Q−1[l, 0, . . . , 0]Al−1

⊗ [l, 0, . . . , 0]DN−l
. The Zl

centre surely acts trivial on [l, 0, . . . , 0]Al−1
, while the centre charges of [l, 0, . . . , 0]DN−l

are (0, l mod 2) if N − l is even or (2l mod 4) if N − l is odd. Thus, the non-trivial
transformations under the centres can be compensated if Q transforms as follows:

N − l = even Zl ×Z2 ×Z2 charges of Q: (0,0, l mod 2) , (2.50a)

N − l = odd Zl ×Z4 charges of Q: (0,2l mod 4) , (2.50b)

which confirms (2.47). To see this, recall from Appendix A.3 that the congruence class
of the j-th fundamental representation of DN−l with j = 2k − l is (0, l mod 2) for N − l
even and 2l mod 4 for N − l odd.

• l > 2k: The argument is slightly modified: the first set X of flavours transforms as

ζ2kQ−
1

2k [1,0, . . . , 0]Al−1
, while the second set X̃ transforms as [1,0, . . . , 0]DN−l

. The Higgs
branch operator O = Sym2k(X J X̃ ) transforms as Q−1[2k, 0, . . . , 0]Al−1

⊗[2k, 0, . . . , 0]DN−l
,

which has trivial D-type centre charges. To see this, for N − l even, the Z2 ×Z2 charges
are (0, 2k mod 2) = (0, 0); while for N − l odd, the Z4 charge is 2 · 2k mod 4= 0. Thus,
to compensate potential irreps that are non-trivial under Z2k, one requires that Q has
the following charges:

N − l = even Zl ×Z2 ×Z2 charges of Q: (2k mod l, 0, 0) , (2.51a)

N − l = odd Zl ×Z4 charges of Q: (2k mod l, 0) , (2.51b)

which then confirms (2.49).
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Two special cases. In the l = 2 case of (2.47), a symmetry enhancement is observed in
the explicit computations (D.71) and (D.86). These show that there is not only the ex-
pected su(2)t , but the topological Cartan symmetry of the “new” U(1) gauge node is also
enhanced to a non-abelian su(2)t . These two su(2)t symmetries can both be interpreted as
PSO(4)t ∼= PSO(3)t × PSO(3)t .

As in previous sections, one can also gauge a discrete Zt
q along the topological fugacity w1

associated to the first U(1) gauge node. The D-type Dynkin quiver is modified in the by now
familiar way: the bifundamental of U(1)×U(2) turns into a hypermultiplet that transforms as
fundamental under U(2) but is of U(1) charge q. In the mirror theory, the Z f

q acts on a single
fundamental flavour, as dictated by the mirror map (C.27). In summary, the mirror pair with
Zq 1-form symmetry is

2k

2N−2

Zq

←→
1 2

. . .

2k−1 2k 2k

. . .

2k

k

k

1

N − 2k − 1 nodes

q
(2.52)

and the global Higgs / Coulomb branch isometry is

G =
U(1)Q × Spin(2N − 2)

ZDN−1

, ZDN−1
charges of Q

¨

(0, q mod 2) , N = even,

2q mod 4 , N = odd,
(2.53)

where Q is the topological fugacity of the left-most U(1) gauge node.

2.8 Examples of non-simply laced unitary quivers and their mirrors

The last class of quiver theories considered here are non-simply laced unitary quivers,8 whose
monopole formula has been proposed in [39]. Consider the following example

N1 N2 N3 N4

M1 M2 M3 M4

κ

(2.54)

with nodes U(N1,2) on the “short” side and U(N3,4) on the “long” side; wherein the naming is
borrowed from Dynkin diagrams. The multiplicity of the non-simply laced edge is denoted by
κ. Even though these quiver theories are non-Lagrangian (hence superconformal index and
Higgs branch Hilbert series are not computable by the standard methods), we can still study
their Coulomb branch using Hilbert series techniques. This allows us to investigate the effects
of gauging a discrete Zt

q symmetry.

Gauging at the long side. To begin with, attempt to gauge a discrete Zt
N3

topological sym-
metry associated to the U(N3) node at the long side, with N3 > 1. As a first step, one rewrites
(2.54) by expressing U(N3) ∼= (SU(N3)×U(1))/ZN3

. By analogous arguments as in Appendix

8See, for example, [37,38] for the appearance of such quiver theories via branes and ON planes.
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B, one arrives at














 N1 N2 SU(N3) N4

1

m1 ℓm2 m4

h

κ

M1

κ

M2

M4

M3

















/ZN3
, with (m1, m2, l, m4, h) ∈ eΓ , (2.55)

eΓ :=
N3−1
⋃

a=0

�

Z+ κ·aN3

�N1 ×
�

Z+ κ·aN3

�N2 ×
�

Z+ a
N3

�N3−1
×
�

Z+ a
N3

�N4 ×
�

Z+ a
N3

�

,

and the Coulomb branch moduli space is the same as that of (2.54). The green edges transform
in the fundamental representation of U(N1,2) and with charge κ under the U(1). Next, the ZN3

symmetry is gauged. One obtains the following quiver description:

N1 N2 SU(N3) N4

1

m1 ℓm2 m4

h

κ

M1

κ

M2

M4

M3 with (m1, m2, l, m4, h) ∈ Γ , (2.56)

Γ :=
N3−1
⋃

a=0

ZN1 ×ZN2 ×ZN3−1 ×ZN4 ×Z ,

where Γ is again short-hand for the integer magnetic lattice. This theory exhibits a ZN3
1-form

symmetry, by construction.

Gauging at the short side. Now, consider gauging a Zt
N2

on the topological fugacity as-
sociated to the U(N2) gauge node, with N2 > 1. Again, the first step is to simply rewrite
U(N2)∼= (SU(N2)×U(1))/ZN2

. By adopting the arguments of Appendix B, one finds














 N1 SU(N2) N3 N4

1

m1 ℓ m3 m4

h

κ

M1

κ

M2

M4

M3

















/ZN2
with (m1, l, m3, m4, h) ∈ bΓ , (2.57)

bΓ =
N2·κ−1
⋃

a=0

�

Z+ a
N2

�N1 ×
�

Z+ a
N2

�N2−1
×
�

Z+ a
N2·κ

�N3 ×
�

Z+ a
N2·κ

�N4 ×
�

Z+ a
N2·κ

�

,

whose Coulomb branch coincides with that of (2.54). Moreover, the edges highlighted in
green transform in the fundamental representation of U(N1,2) and with charge κ under the
U(1) node. As a next step, gauging the ZN2

results in the following theory:

N1 SU(N2) N3 N4

1

m1 ℓ m3 m4

h

κ

M1

κ

M2

M4

M3 with (m1, l, m3, m4, h) ∈ Γ , (2.58)

Γ =
κ−1
⋃

a=0

(Z+ a)N1 × (Z+ a)N2−1 ×
�

Z+ a
κ

�N3 ×
�

Z+ a
κ

�N4 ×
�

Z+ a
κ

�

,
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where Γ is a short-hand notation for several shifted copies of the standard integer lattice of
the magnetic charges.

Comment. One could also gauge a discrete Zt
q along the topological Cartan U(1) of a U(1)

gauge node. In this case, the connected hypermultiplets are modified to have charge q under
the U(1), but no other changes to the quiver occur.

2.8.1 C-type quivers

A representative example is the mirror pair of O(2k) SQCD with N hypermultiplets in the
vector representation and its C-type Dynkin mirror quiver

O(2k)

2N

←→
1 2

. . .

2k 2k

. . .

2k 2k

1

N gauge nodes

(2.59)

which can be realised by a systems of D3-D5-NS5 branes with O5 and ON planes, respectively.
The logic is the same as before: Choose a Zt

q in the C-type Dynkin quiver, by selecting a
gauge node and its associated topological fugacity. Using the mirror map (C.33) for (2.59)
one identifies how the Z f

q acts on the vectors. For concreteness, consider examples for k = 1
and N = 4:

Example: gauging on the long side. Gauging a Zt
2 on the fourth node yields the mirror pair

(i.e. using (C.33) with discrete variable on w4)

O(2)

Z2

8
←→

1 2 2 SU(2)

1

2 (2.60)

where the ‘new’ U(1) node is connected with a hypermultiplet of charge 2. The global symme-
try algebra is su(4)⊕ u(1), as read off from the balanced set of nodes. Explicit Hilbert series
(D.105) show that the global form is

G f (LHS (2.60)) = Gt(RHS (2.60)) = PSU(4)×U(1)Q , (2.61)

because the Z4 centre acts trivial on all appearing representations.

Example: gauging on the short side. Gauging a Zt
2 on the third gauge node results in the

new mirror pair (i.e. using (C.33) with discrete variable on w3)

O(2)

2 Z2

6
←→

1 2 SU(2) 2

1

2 (2.62)
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the global symmetry algebra is su(3) ⊕ u(1) ⊕ sp(1), as suggested by the balanced nodes in
the unitary quiver. Recalling the maximal subalgebra su(3)⊕ u(1) ⊂ sp(3), an analysis of the
Hilbert series then suggests that the global form is

G f (LHS (2.62)) = Gt(RHS (2.62)) = PSp(3)× PSp(1) . (2.63)

See (D.109) for explicit computations.

Example: gauging on the short side. Gauging a Zt
2 on the second gauge node results in

the new mirror pair (i.e. using (C.33) with discrete variable on w2)

O(2)

4 Z2

4
←→

1 SU(2) 2 2

1

2 (2.64)

and the balanced set of nodes suggests the symmetry algebra su(2)⊕ u(1)⊕ sp(2). A Hilbert
series computation (D.113) then indicates the following symmetry group

G f (LHS (2.64)) = Gt(RHS (2.64)) = PSp(2)× PSp(2) . (2.65)

This suggests that the su(2)⊕ u(1) realise a maximal subalgebra in one sp(2) factor.

2.8.2 B-type quivers

Alternatively, we could consider an Sp(k) gauge theory with SO(2n + 1) flavour symmetry.
However, to prevent a parity anomaly, we would need to include a suitable Chern-Simons
term. The Higgs branch, which is not affected by Chern-Simons levels, is known to be the
closure of a B-type nilpotent orbit. Therefore, a natural mirror theory would be a B-type
Dynkin quiver, for which analogous arguments apply as above.

2.8.3 A comment on F4 Coulomb branch quivers

The reasoning can be also applied to other non-simply laced Coulomb branch quivers, even
if there may not exist a known mirror. Such an example is the F4 Coulomb branch quiver
of [40]. Table 2 summarises the resulting theories after a suitable Zt

n is gauged, following the
prescriptions (2.58) and (2.56).

Here, a few remarks in comparison to the “ungauging scheme” of [41] are in order. The
ungauging scheme involves removing a U(1) factor from a selected U(n) gauge group, which
in the context of the monopole formula means setting one of the magnetic charges to zero. For
simply-laced quivers, this procedure leads to the same consequence as replacing a U(n) gauge
group with an SU(n) and quotienting out a diagonal Zn.

However, the ungauging scheme becomes problematic when applied to a node on the short
side of non-simply laced quivers. If the short node is a U(1) gauge group, then the ungauging
simply converts it into a flavour group. In [41], the ungauging of the short U(1) node in the
F4 quiver leads to a Coulomb branch that is the next-to-next-to minimal nilpotent orbit closure
of so(9). In contrast, if the short node is non-abelian, such as the U(2) node in the F4 quiver,
the resulting moduli space cannot be identified with any known space and the procedure has
been argued to be “invalid” in [41].

On the other hand, by replacing the short U(2) node with an SU(2) and following the
prescriptions in (2.58) and (2.56), one is able to obtain consistent results, as shown in the
fourth row of Table 2. The resulting Coulomb branch is the next-to-next-to minimal nilpotent
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Table 2: The F4 Coulomb branch quiver and its Zq gaugings. The first row is the
standard F4 quiver proposed in [40]. Rows 2 - 4 display different choices of gauging
a Zt

N of a U(N) node in the Coulomb branch quiver for the minimal nilpotent orbit
closure of F4. The gaugings on the “long” side produce global symmetries given
by the balanced set of nodes. For the gauging on the “short” side, the global so(9)
symmetry is only visible via the subalgebra su(4) ⊕ su(2). Rows 5 - 7 display the
effects of gauging a Zt

q inside the topological Cartan factor of the U(1) gauge node.
For q = 2, the symmetry algebra is enhance from sp(3) × u(1) to sp(4); while for
q > 2, the algebra is simply sp(3)× u(1). In the Hilbert series expressions, χ and φ
are characters for the non-abelian symmetry factors and Q is a U(1) fugacity.

quiver symmetry Coulomb branch Hilbert series

2 3 2 1

1

F4
1+χ1,0,0,0 t +χ2,0,0,0 t2 +χ3,0,0,0 t3 + . . .
= 1+ 52t + 1053t2 + 12376t3 + . . .

SU(2) 3 2 1

1

A1 × C3

1+ t(χ2,0,0+φ2)+ t2(1+χ4,0,0+χ0,2,0+χ2,0,0φ2
+χ0,0,2φ2 +φ4) + . . .
= 1+ 24t + 537t2 + . . .

2 SU(3) 2 1

1

A2 × A2

1 + t(χ1,1 + φ1,1) + t2(1 + χ1,1 + χ2,2 + χ1,1φ1,1
+χ2,2φ1,1 +φ2,2 +φ1,1) + . . .
= 1+ 16t + 351t2 + . . .

2 3 SU(2) 1

1

A3 × A1 ⊂ B4

1+ t(χ2+χ2φ0,1,0+φ1,0,1)+ t2(1+χ4+χ2φ2,0,0
+ φ0,1,0 + χ2φ0,1,0 + χ4φ0,1,0 + φ0,2,0 + χ4φ0,2,0
+φ1,0,1+2χ2φ1,0,1+χ2φ1,1,1+χ2φ0,0,2+φ2,2)+. . .
= 1+ 36t + 621t2 + . . .

2 3 2 1

1

2

C3 × U1 ⊂ C4

1+ t(Qχ1,0,0+
χ1,0,0

Q +χ0,1,0+1)+ t2(Q2χ2,0,0+
χ2,0,0

Q2

+Qχ0,0,2 +Qχ1,0,0 +Qχ1,1,0 +
χ0,0,2

Q +
χ1,0,0

Q +
χ1,1,0

Q
+χ0,0,2 + 2χ0,1,0 +χ0,2,0 +χ2,0,0 + 1) + . . .
= 1+ 36t + 621t2 + . . .

2 3 2 1

1

3

C3 × U1

1+ t(χ0,1,0+1)+ t2(Qχ1,0,1+
χ1,0,1

Q +χ0,0,2+2χ0,1,0
+χ0,2,0 +χ2,0,0 + 1) + . . .
= 1+ 22t + 369t2 + . . .

2 3 2 1

1

4

C3 × U1

1+ t(χ0,1,0+1)+ t2(Qχ2,0,0+
χ2,0,0

Q +χ0,0,2+2χ0,1,0
+χ0,2,0 +χ2,0,0 + 1) + . . .
= 1+ 22t + 327t2 + . . .

orbit closure of so(9) as well.9 It is to be noted, that if one uses the prescriptions (2.57) and
(2.55), then one recovers the original minimal nilpotent orbit closure of F4.

9In general, for non-simply laced quivers, the prescriptions (2.58) do not always provide the same Coulomb
branch for all the short nodes.
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2.9 Magnetic quivers and gauging discrete topological symmetries

Suppose that one is given an unframed unitary magnetic quiver T with only simply-laced edges
(i.e. bifundamental hypermultiplets between the unitary gauge nodes). To evaluate the Hilbert
series or the index, it is necessary to remove an overall U(1) gauge group factor. In [31], it was
emphasised that choosing this U(1) from a U(k) gauge node leads to an SU(k) gauge node,
but the magnetic lattice Γ is extended to include shifted versions of the form

⋃k−1
i=0

�

Γ + i
k

�

.
This situation can also be understood from a complementary perspective.

Given an unframed unitary magnetic quiver, pick a U(k) gauge node and rewrite it as

U(k) ∼= SU(k)×U(1)
Zk

, with fluxes (l, h) ∈
⋃k−1

i=0

�

�

Z+ i
k

�k−1
,
�

Z+ i
k

�

�

. The aim is to remove this
U(1) factor. As demonstrated in Appendix B, this rewriting shifts all other magnetic fluxes m
by the flux h associated to the U(1); as a result, all magnetic fluxes receive the shifts Γ + i

k
simultaneously. Now, removing this U(1) means treating it as a background vector multiplet.
Nevertheless, all remaining magnetic fluxes are still subject to the shifts Γ + i

k . Hence, the
Coulomb branch Hilbert series, as well as the index for T , have the form

FT =
∑

(l,m)∈
⋃k−1

i=0 (Γ+
i
k )

f (l, m) , (2.66)

which is message conveyed in [31].
It turns out that one can refine FT by introducing a Zk-valued fugacity z as follows: the

U(1)t topological symmetry of the U(k) node appears in both the monopole formula and the in-

dex through the factor w
∑k

a=1 ma

k . Upon rewriting into magnetic fluxes (l, h) for (SU(k)×U(1))/

Zk, this becomes wk·h
k . Since h ∈

⋃k−1
i=0 (Z +

i
k ), one has wk·n+i

k for h = n + i
k ∈ (Z +

i
k ) and

some n ∈ Z. This means that one can introduce a discrete fugacity z to keep track of the Zk
centre symmetry, setting wk → z such that wk·n+i

k = z i . This fugacity remains even if the U(1)
is taken to be non-dynamical. One ends up with

FT (z) =
k−1
∑

i=0

z i
∑

(l,m)∈(Γ+ i
k )

f (l, m) . (2.67)

It is now clear what happens if this discrete Zt
k topological symmetry is gauged: the entire

range of the summation collapses to the i = 0 sector, i.e., the integer lattice

FT /Zt
k
=

1
k

k−1
∑

i=0

FT
�

z = (ζk)
i
�

=
∑

(l,m)∈Γ

f (l, m) . (2.68)

Consequently, the quiver theory, in which U(k) is replaced by an SU(k) and the magnetic lat-
tice is simply the integer lattice, is obtained from the unframed unitary quiver T by gauging
a discrete Zt

k topological symmetry. This Zk distinguishes between SU(k)×U(1)
Zk

∼= U(k) and
SU(k)×U(1). Additionally, the gauging of the Zt

k symmetry has introduced a Zk 1-form sym-
metry into T /Zt

k.

2.10 Examples from 5d magnetic quivers

One can demonstrate gauging discrete subgroups of the topological symmetry on known mag-
netic quivers.10 It is most suitable to choose quivers whose Coulomb branches have a known
Higgs branch realisation.

10See also [42–47] for magnetic quivers of theories with 1-form symmetries.
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E5 quiver. The infinite coupling magnetic quiver for 5d Sp(1) SQCD with 4 flavours realises

OE5

min
∼=OD5

min, which is also the Higgs branch of Sp(1)with 5 flavours. Thus, one arrives at [48]










2 2 4 2 2

1











/Z2 ←→

2

10

(2.69)

It is worth recalling that the magnetic lattice for the left-hand side quiver has the form Γ∪(Γ+ 1
2)

with Γ being the standard GNO integer lattice, as can be found in [31] and also see [45, 48–
55] for examples with orthosymplectic quivers. The corresponding discrete Zt

2 topological
symmetry of the magnetic quiver can be gauged in the same vein as before. On the level
of the magnetic quiver, this just reduces the relevant magnetic lattice to the integer lattice Γ .
Equivalently, one can gauge aZ f

2 on the Sp(2) SQCD side, which then gives rise to the following
pair of theories

2 2 4 2 2

1

←→

2

8

Z2

2

(2.70)

and it is straightforward to verify that the Coulomb / Higgs branch Hilbert series reproduce
the results of [31, Tab. 9]. The global form of the 0-form symmetry is PSO(8)×U(1).

E4 quiver. Similarly, the infinite coupling magnetic quiver for 5d Sp(1) SQCD with 3 flavours

realises OE4

min
∼= OA4

min via its Coulomb branch. Of course, this moduli space admits a known
Higgs branch realisation and one arrives at

















2 2 2

1

1

2

















/Z2 ←→

1

5

(2.71)

The magnetic lattice for the magnetic quiver is of the form Γ ∪ (Γ + 1
2), so the associated Zt

2

symmetry can be gauged. The question then becomes what Z f
2 symmetry is realised on the

SQED side. Through explicit calculations, one verifies that

2 2 2

1

1

2

←→

1

4

Z2

(2.72)

reproduces the known Hilbert series [31, Tab. 10]. The isometry group in this case is
SO(6)×U(1).
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Folded E6 quiver. The infinite coupling magnetic quiver for 5d Sp(1) SQCD with 5 flavours
admits a Z2 outer automorphism. Folding the corresponding magnetic quiver leads to

OE6

min → OD5

min on the Coulomb branch [53]. Since there is a known Higgs branch realisation
for D-type minimal nilpotent orbit closures, one arrives at

�

1 4 4 2 2

�

/Z2 ←→

2

10

(2.73)

where again the left-hand side quiver has a magnetic lattice of the form Γ ∪ (Γ + 1
2). Gauging

this Zt
2 has a by now clear consequence on the magnetic quiver, as the GNO lattice is reduced

to the integer lattice. On the Sp(1) SQCD side, the corresponding Z f
2 is realised as follows:

1 4 4 2 2
←→

2

Z2

(2.74)

and one straightforwardly verifies the agreement of the Coulomb branch /Higgs branch Hilbert
series, which is given by

HS= 1+ 25t + 400t2 + 3864t3 + 26600t4 + 141672t5 + 621480t6 + 2337280t7 (2.75)

+ 7763283t8 + 23265515t9 + 63954800t10 +O
�

t11
�

,

and the global symmetry group is PSU(5)×U(1).

3 Discussion and conclusions

In this paper, mirror pairs with non-trivial 1-form symmetry have been studied. Starting from
known mirror pairs with trivial 1-form symmetry, gauging of discrete Zq subgroups of the
0-form symmetry allowed us to construct new mirror pairs with non-trivial 1-form symmetry.

The main results are as follows:

1. It has been shown that theories T /Zt
q, obtained by gauging a discrete subgroup Zt

q of the
topological symmetry, may admit quiver descriptions if the discrete subgroup is suitably
chosen.

2. The mirror theories
�

T /Zt
q

�∨
can be constructed using T ∨/Z f

q , but the precise choice of

Z f
q in the flavour symmetry of T ∨ can be subtle. This paper provides a simple algorithm

for specifying Z f
q .

3. The global form of the 0-form symmetries of (T /Zt
q,T ∨/Z f

q ) have been derived using
both field theory methods and monopole operators (via the balanced set of nodes), and
the resulting symmetry groups have been verified through explicit Hilbert series compu-
tations.

4. The interplay between continuous 0-form and discrete 1-form symmetries has been stud-
ied using established field theory techniques and the equivalence classes of lines.
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5. On the technical side, the gauging of discrete subgroups of the topological symmetry
on non-simply laced quivers has been proposed and tested on both long and short-side
gauge nodes.

A comment on the moduli spaces. The maximal branches of the moduli space of vacua in
a theory T are the Coulomb branch C(T ) and the Higgs branch H(T ). These are symplectic
singularities that can be resolved when the theory T is given either an FI parameter (for the
Higgs branch) or a mass parameter (for the Coulomb branch). For instance, consider SQED
with N hypermultiplets of charge 1. This theory admits N−1 mass parameters that resolve the
C2/ZN Coulomb branch, and a single FI parameter that resolves the Higgs branch, specifically

the minimal nilpotent orbit closure Osu(N)
min . If we gauge a Zt

q 0-form symmetry in this theory,
the resulting SQED with charge q hypers has the same Higgs branch, but the Coulomb branch
is modified to be C2/ZN ·q. However, there are no additional mass parameters in the theory,
which means that the singularity cannot be fully resolved even though a symplectic resolution
exists.

More generally, one can perform a simple test11 via Hilbert series that shows

T −→



















T /Zt
q : limt→1

HSC(T /Zt
q)
(t)

HSC(T )(t)
= 1

q ,

or

T /Z f
q : limt→1

HS
H(T /Z f

q )
(t)

HSH(T )(t)
= 1

q ,

(3.1)

and the presence of a 1
q fraction in the expression suggests (at least locally) that the Coulomb

branch C(T /Zt
q) is a Zq orbifold of C(T ), and a similar relationship holds for the Higgs

branches H(T /Z f
q ) and H(T ). Again, no additional deformation parameter appears.

In contrast, consider T to be U(2) SQCD with 4 fundamental flavours. The maximal

branches are H(T ) = Osu(4)
(22) and C(T ) = S(22) ∩Nsu(4), i.e. the Slodowy slice to the su(4)

nilpotent orbit defined by partition (22). There are 3 masses resolving the Coulomb branch
and 1 FI term resolving the Higgs branch. If we gauge the topological U(1)t symmetry in this
theory, the resulting theory is SU(2) SQCD with 4 fundamental flavours. Then, the Coulomb

branch of this theory is C(T /U(1)t) = C2/D4 while the Higgs branch is H(T /U(1)t) =Oso(8)
min .

In this case, the Coulomb branch can be resolved by the 3 + 1 mass parameters, while the
minimal orbit closure of so(8) does not admit a symplectic resolution, which is consistent with
the absence of an FI parameter in this theory. These symplectic resolutions can also be studied
via Hilbert series techniques, see for instance [57,58].

Generalisations and open questions. In this work, a single Zq factor of the 0-form sym-
metry has been gauged. One straightforward generalisation is to consider orthosymplectic
quivers and gauge several Zt

2 topological symmetry factors associated to SO(ni) nodes. The
resulting theory is simply obtained by replacing the relevant SO(ni) → Spin(ni) and the 1-
form symmetry is the product group

∏

i(Z
t
2)i . Similarly, one could also entertain the thought

of gauging several Zqi
inside distinct topological Cartan factors of, say, T[SU(N)]. It is a priori

not clear if a simple quiver description exists.
Another possibility is to gauge a discrete Zt

q group embedded into several topological Car-
tan U(1) factors of a Coulomb branch unitary quiver. Inspecting the mirror maps for a fully
balanced linear quiver (C.7) or (C.15), one observes that the effect on the mirror Higgs branch

11Following [56], the volume of the Sasakian base S of H or C is evaluated via Vol(S) = limt→1(1− t)dHS(t),
where d = dimC(H or C).
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quiver is as follows: the set of fundamental flavours splits into several sets, with each subset
being acted upon by Z f

q in a distinct fashion. One might hope to find a simple quiver descrip-
tion on the Coulomb branch side, but this is only possible for very specific q values, similar to
the choices in this paper. For instance, gauging a Zt

q in two adjacent node U(k) and U(k + 1)
in a T[SU(N)] theory, one can expect a quiver-type description with an SU(k), SU(k+1) node
and two “new” U(1)1,2 gauge factors for q = k · (k + 1). While one U(1)1 factor behaves
similarly to the discussion in this paper, the second U(1)2 factor is expected to lead to trifun-
damental hypermultiplets for U(k − 1) × SU(k) × U(1)2, U(k + 2) × SU(k + 1) × U(1)2, and
SU(k)× SU(k+ 1)×U(1)2. A systematic analysis of these cases is left for future work.

Another aspect of 3d mirror symmetry is the exchange of Wilson and vortex line de-
fects [29, 45, 59–61]. Given the central role of line defects in understanding 1-form and 2-
group symmetries, it would be interesting to systematically analyse the exchange of Wilson
and vortex lines under mirror symmetry for the theories with 1-form symmetry.
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A Notations and conventions

A quiver diagram, composed of nodes and edges, encodes a 3d N = 4 theory as follows:

• Gauge nodes⃝ denote dynamical vector multiplets, while flavour nodes□ denote back-
ground vector multiplets. The notations are summarised in Table 3a.

• An edge between two nodes corresponds to a hypermultiplet H = (X , Y †), with X , Y two
N = 2 chiral multiplets. The notation is summarised in Table 3b.

• An exception are so-called non-simply laced edges in a quiver theory. Between unitary
gauge node, such an edge has been proposed purely on the level of the conformal di-
mension of the monopole formula [39]

n k

κ
←→

1
2

n
∑

i=1

k
∑

j=1

|m1,i − κ ·m2, j| , (A.1)

and it is to stress that this does not correspond to a representation of the gauge groups.
For the special case of U(n= 1), such a non-simply laced edge is effectively the same as
a U(1) gauge group with a charge κ hypermultiplet.

Between orthosymplectic nodes, the conformal dimension has been proposed in [53]

n 2k

κ
←→

1
2 · 2

∑

ρ∈[1,0,...,0]B/D

∑

λ∈[1,0,...,0]C

|ρ(m)− κ ·λ(n)| , (A.2)
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Table 3: Notation for nodes and links in the quiver diagrams.

node vector

n
U(n)

SU(n) SU(n)

n
SO(n)

Spin(n) Spin(n)

2n
Sp(n)

Zq
Zq

(a)

edge hyper

n k
bifundamental n ⊗ k

n SU(k) bifundamental n ⊗ [0, . . . , 0, 1]A

n 2k
half-hyper [1,0, . . . , 0]D/B ⊗ [1,0, . . . , 0]C

Spin(n) 2k
half-hyper in vector × vector

n k

N
N copies of bifundamental

n Zq

N
N copies of fundamental

n 1
Q fundamental of U(n) but charge Q of U(1)

(b)

with m, n the magnetic fluxes which are evaluated on the weights ρ, λ, respectively.

A.1 Hilbert series

A.1.1 Monopole formula

The Hilbert series for the 3d N = 4 Coulomb branch is known as the monopole formula [26].
Schematically, the Hilbert series is computed as a sum over magnetic fluxes m valued in the
GNO lattice Γ of the gauge group G.

HSC =
∑

m∈Γ/W
P(t,m)wm t∆(m) , (A.3)

and W denotes the Weyl group of G. A bare monopole operator is characterised by the flux
m as well as its conformal dimension ∆(m), which coincides with the third component of the
SU(2)R spin. The factors P(t, m) dress a bare monopole operator by gauge invariants formed
by the adjoint chiral multiplet of the residual gauge group H(m). Lastly, w denotes the fugacity
of the topological symmetry, assuming that G contains U(1) factors.

A.1.2 Higgs branch Hilbert series

The Higgs branch Hilbert series [23–25] for the 3d N = 4 quiver gauge theory relevant here
is schematically obtained by a Molien-Weyl integral of the form

HSH =

∫

G
dµG

PE[χG
Adj t]

PE[χG
R ·χ

F
F t

1
2 ]

, (A.4)

where the numerator contains the character χG
Adj of the adjoint representation of the gauge

group, while the denominator contains all matter fields characterised by their representations
R under the gauge group G and the representations F under the flavour symmetry F .
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A.1.3 Gauging a discrete 0-form symmetry.

Suppose one is given a generating function H(z|t)which is a power series in t with coefficients

that are Laurent polynomials in a U(1) fugacity z. Next, embed a Zq ,→ U(1) via (ζq)p = e
2πip

q

with p = 0, 1, . . . ,q − 1. Gauging this discrete Zq 0-form symmetry is realised in terms of the
generating function via a discrete Molien-Weyl sum

1
q

q−1
∑

p=0

H
�

(ζq)
p · y

1
q |t
�

, (A.5)

where y is the fugacity for the residual U(1)/Zq
∼= U(1) symmetry.

A.2 Superconformal index

The 3d superconformal index can be computed as partition function on S2×S1 via localisation
techniques, see [62–68] for details. Schematically, one arrives at

Z =
∑

m

1
|Wm|

∮

Trk(G)

rk(G)
∏

i=1

dsi

2πisi
Icl · Ivec · Imatter , (A.6)

where s denotes the gauge fugacities, which are valued in a maximal torus of the gauge group
G. The magnetic fluxes m take values in the GNO-lattice of G. A flux m breaks G to the residual
gauge group Hm (the stabiliser subgroup of m inside G) with Weyl group WHm

≡Wm . The
integration contour is chosen to be the unit circle T for each si . The integrand is composed of
classical contributions and the 1-loop determinants of the supermulitpelts. For concreteness,
the G = U(N) case is reviewed:

The classical contribution is given by

IU(N)
cl (w, m; n) =

N
∏

a=1

(sa)
n w

∑N
a=1 ma , (A.7)

with w the fugacity of the topological U(1)t symmetry.
The N = 2 multiplets have the following 1-loop determinants:

• 3d N = 2 Chiral multiplet of R-charge r coupled with unit charge to a gauge field:

I r
chi(z, m| x) =

�

x1−rz−1
�
|m|
2

∞
∏

j=0

1− (−1)mz−1 x |m|+2−r+2 j

1− (−1)mzx |m|+r+2 j
(A.8)

=
�

x1−rz−1
�
|m|
2

�

(−1)mz−1 x |m|+2−r ; x2
�

∞
�

(−1)mzx |m|+r ; x2
�

∞

,

with a U(1) holonomy z around S1 and the Z-valued magnetic flux m on S2. Here, the
definition (z; q)∞ =

∏∞
j=0(1− zq j) has been used.

• 3d N = 4 Hypermultiplet transforming as bifundamental of U(N)×U(M)

IU(N)×U(M)
hyp (s1, m1; s2, m2| x) =

N
∏

a=1

M
∏

b=1

I
1
2
chi

�

s1,as−1
2,b, m1,a −m2,b| x

�

(A.9)

· I
1
2
chi

�

s−1
1,as2,b, m2,b −m1,a| x

�

,
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Table 4: Centre symmetries of classical Lie algebras.

algebra centre Z congruence

Ar Zr+1
∑r

k=1 k · nk mod r + 1
Br Z2 nr mod 2

Cr Z2
∑

r−1
2

j=0 n2 j+1 mod 2

Dr , r even Z2 ×Z2

�

nr−1 + nr mod 2
∑

r−4
2

j=0 n2 j+1 +
r−2

2 nr−1 +
r
2 nr mod 2

�

Dr , r odd Z4
∑

r−3
2

j=0 2n2 j+1 + (r − 2)nr−1 + rnr mod 4

• 3d N = 2 vector multiplet for a U(N) gauge group:

IU(N)
vec (s , m| x) =

∏

a<b

x−|ma−mb|
�

1− (−1)ma−mb sas−1
b x |ma−mb|

�

(A.10)

·
�

1− (−1)ma−mb s−1
a sb x |ma−mb|

�

.

• 3d N = 4 vector multiplet has the same 1-loop determinant as the N = 2 vector multi-
plet, because the contribution of the adjoint-valued chiral multiplet is trivial.

A.3 Centre symmetries of classical Lie algebras

Following [69, 70], a representation labelled by Dynkin labels [n1, . . . , nr] lies in a specific
congruence class of the centre, as detailed in Table 4.

B Discrete gauging of T[SU(N)]

In this appendix, the monopole formula and the superconformal index are used to determine
the theories obtained by gauging a discrete subgroup of the topological symmetry. Before
proceeding with the details, the logic of the argument is summarised.

Start from a given theory T and consider a function F(w , . . .), like a Hilbert series or index,
depending on topological symmetry fugacities w and possibly other variables.

(i) Pick a gauge node U(k) with topological fugacity w and introduce a Zq-valued variable
ζq via w = ζq · f (w, . . .), where f is some function of the fugacities. For a U(k), the

topological fugacity enters via w
∑k

i=1 mi , with mi the magnetic fluxes.

(ii) Gauging Zq on the level of F(w , . . .) is realised by

eF = 1
q

q−1
∑

p=0

F(w , w= (ζq)
p · f (w), . . .) , (B.1)

and to perform the Zq average, one rewrites w
∑k

i=1 mi = wk·h where h is U(1) magnetic
flux (for normalisation and sign, see below).

(iii) This suggests to rewrite U(k) = SU(k)×U(1)
Zk

where Zk acts via (diag(ζk, . . . ,ζk) , ζ−1
k ) on

SU(k)×U(1). Denote the SU(k) fluxes as l ∈ Zk−1. For SU(k)×U(1) the magnetic fluxes

38

https://scipost.org
https://scipost.org/SciPostPhys.15.1.033


SciPost Phys. 15, 033 (2023)

take value in (ℓ, h) ∈ Zk; however, the additional Zk quotient enlarges the magnetic
lattice [31]

U(k) =
SU(k)×U(1)
Zk

, with (ℓ, h) ∈
k−1
⋃

i=0

�

Z+
i
k

�k

. (B.2)

(iv) After a change of variables (see below), the Zq gauging reduces to

eF = 1
q

q−1
∑

p=0

∑

h∈
⋃k−1

i=0 (Z+ i
k )
(ζq)

p·k·h
ÒF(w , . . .) , (B.3)

using F =
∑

h
ÒF , schematically. Utilising

1
q

q−1
∑

p=0

(ζq)
p·(k·h) =

¨

1 , q|(k · h) ,
0 , else,

(B.4)

and restricting to q = a · k with a ∈ N, the summation range of h collapses from
⋃k−1

i=0

�

Z+ i
k

�

to a ·Z. But this leads to the collapse of the summation range of all other
magnetic fluxes onto the integers too.

(v) Lastly, one obtains an expression of eF written as a sum over integer-valued magnetic
fluxes. One can then read off a Lagrangian description for the theory T /Zq.

B.1 Gauging discrete subgroup of topological symmetry

Consider the T[SU(N)] quiver

1

m1
w1

2

{m2,j}
w2

. . .

k−1
{mk−1,j}

wk−1

k

{mk,j}
wk

k+1
{mk+1,j}

wk+1
. . .

N−1
{mN−1,j}

wN−1

N

(B.5)

and a variation thereof

1

n1
w1

2

{n2,j}
w2

. . .

k−1
{nk−1,j}
wk−1

SU(k)
{li}

k+1
{nk+1,j}
wk+1

. . .

N−1
{nN−1,j}
wN−1

1

h
yN (B.6)

The aim is to show that

HS(B.6) =
1
q

q−1
∑

p=0

HS(B.5)(w1, . . . , wN−1)
�

�

wk→#·(ζq)p
, for q = k , (B.7)

with (ζq)
p = e2πi p

q ∈ Zq ,→ PSU(N)topol .

To begin with, rewrite the U(k) fluxes in (U(1)× SU(k))/Zk. Use the following map

diag(mk,1, mk,2, . . . , mk,k) =− h · 1+
k−1
∑

i=1

li · Ei , (B.8)

with 1= diag(1, . . . , 1) , and Ei =diag(0, . . . , 0, 1,−1,0, . . . , 0)
︸ ︷︷ ︸

+1 at i-th slot, −1 at i + 1-th slot

.

39

https://scipost.org
https://scipost.org/SciPostPhys.15.1.033


SciPost Phys. 15, 033 (2023)

where 1 is the Cartan generator for the diagonal U(1) ⊂ U(k) and {Ei} are the Cartan genera-
tors for SU(k). One finds

mk,1 = −h+ l1 , mk, j = −h+ l j − l j−1 for 1< j < k , mk,k = −h− lk−1 , (B.9a)

h= −
1
k

k
∑

i=1

mk,i , l j =
1
k

 

(k− j)
j
∑

i=1

mi − j
k
∑

i= j+1

mi

!

, (B.9b)

And one finds for contributions of the fundamental U(k) weights

mk,i = −h+µi({l j})≡ −h+µi(l) , (B.10a)

µ1 = e1 , µ j = e j − e j−1 for 1< j < k , µk = −ek , (B.10b)

with µi(l) are the weights12 of the fundamental SU(k) representation evaluated on the fluxes
l. The summation range for {mk,i} is Zk ∩ {mk,1 ≥ mk,2 ≥ . . . ≥ mk,k}, due to the Weyl group
action, and translates into

(h, l1, . . . , lk−1) ∈
k−1
⋃

p=0

�

�

Z+
p
k

�

,
�

Z+
p
k

�k−1
/WAk−1

�

, (B.11)

with WAk−1
the Weyl group action of SU(k). Moreover, one straightforwardly verifies

∑

i< j

|mk,i −mk, j|=
∑

i< j

|li − li−1 − l j + l j−1|=
∑

α∈Φ+(su(k))

|α(l)| , (B.12)

PU(k)({mk,i}) =PU(1)(h) · PSU(k)({li}) , (B.13)

where Φ+(su(k)) denotes the set of positive roots, here expressed in the weight basis.13

Next, consider the hypermultiplet with the adjacent gauge nodes

2∆k−1,k =
k−1
∑

i=1

k
∑

j=1

|mk−1,i −mk, j|=
k−1
∑

i=1

k
∑

j=1

|mk−1,i + h
︸ ︷︷ ︸

≡nk−1,i

−µi(l)|

=
k−1
∑

i=1

k
∑

j=1

|nk−1,i −µi(l)| , (B.14)

2∆k,k+1 =
k
∑

i=1

k+1
∑

j=1

|mk,i −mk+1, j|=
k
∑

i=1

k+1
∑

j=1

|µi(l)−h−mk−1,i
︸ ︷︷ ︸

≡−nk+1,i

|

=
k
∑

i=1

k+1
∑

j=1

|µi(l)− nk+1,i| . (B.15)

A similar argument applies for all other gauge nodes a ̸= k, such that one redefines

na,i = ma,i + h , ∀a ∈ {1, 2, . . . , k−1, k+ 2, . . . , N−1} , (B.16)

which also implies a modification of the summation ranges of the magnetic fluxes

(na,1, . . . , na,a) ∈

�

k−1
⋃

p=0

�

Z+
p
k

�a
�

∩
�

na,1 ≥ na,2 ≥ . . .≥ na,a

	

, (B.17)

12Here, the Dynkin/weight basis [71,72], is chosen; i.e. the fundamental weights {ei} define the basis.
13Recall, in weight basis the simple roots are given by αi =

∑

k Cikek with ek the fundamental weights and Cik

the Cartan matrix. Thus, αi = 2ei−ei−1−ei+1 for 1< i < k, which agrees with α(l) = li− li−1− l j+ l j−1 for j = i+1,
i.e. the simple roots. The remaining expressions are positive but non-simple roots.
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wherein intersection ensures the restriction to the dominant Weyl chamber. It is important to
stress that all summation ranges are linked in their shift i

k , i.e. schematically

(h, l, {na}a ̸=k) ∈ eΓ :=
k−1
⋃

p=0

�

Γ +
p
k

�

, (B.18)

where Γ denotes the underlying integer lattice.
Next, focus on the fundamental flavour contributions

2∆=
N−1
∑

i=1

N · |mN−1,i|=
N−1
∑

i=1

N · |nN−1,i − h| , (B.19)

which is exactly the contribution of N copies of U(N−1)×U(1) bifundamentals. Collecting all
the results, one ends up with

HS=
1
q

q−1
∑

p=0

N−1
∏

a=1

∑

{ma,i}

PU(a)({ma,i})w
∑a

i=1 ma,i
a t2∆a,a+1

�

�

wk→#·(ζq)p

=
1
q

q−1
∑

p=0

∑

(h,{l},{na})∈eΓ

N−1
∏

a ̸=k

PU(a)(na)w
∑a

i=1 na,i
a · PSU(k)(l) · PU(1)(h) · t2∆(B.6)

·

 

∏

a ̸=k

wa
a ·w

k
k

!−h
�

�

wk→#·(ζq)p
, (B.20)

and defines the map # suitably

#=

�

y−1
∏

a ̸=k wa
a

�
1
k

, (B.21)

such that

HS=
1
q

q−1
∑

p=0

∑

(h,{l},{na})∈eΓ/W

N−1
∏

a ̸=k

PU(a)(na)w
∑a

i=1 na,i
a · PSU(k)(l) · PU(1)(h) · t2∆(B.6) ·

�

y (ζq)
−k·p�h

.

(B.22)
Recalling (B.4) and h ∈

⋃k−1
i=0 (Z+

i
k ), choosing q = k implies that only h ∈ Z has non-vanishing

contributions. This then also reduces all other summation ranges eΓ , cf. (B.11) and (B.17), to
the integer part Γ . Therefore

HS=
∑

(h,{l},{na})∈Γ/W

N−1
∏

a ̸=k

PU(a)(na)w
∑a

i=1 na,i
a · yh · PSU(k)(l) · PU(1)(h) · t2∆(B.6) , (B.23)

which is indeed the monopole formula for (B.6).

Corollary. Consider the T[SU(N)] quiver (B.5), pick a U(k) node with k > 1 and gauge
a discrete subgroup Zd ⊂ U(1)t of the k-th Cartan subgroup of the topological symme-
try, provided d|k. One can repeat all steps as above, i.e. rewriting all contributions as
U(k) ∼= (U(1)× SU(k))/Zk. The only step that requires modifications is (B.4). Recall
h ∈

⋃k−1
i=0

�

Z+ i
k

�

and non-trivial contributions arise for d|(k · h). Since d|k, relevant fluxes h

need to satisfy k
d · h ∈ Z, the summation range after Zd gauging becomes h ∈

⋃
k
d−1
i=0

�

Z+ i
k
d

�

.

Therefore, the resulting theory is given by (B.6), but the magnetic fluxes take values in

(h, l, {na}a ̸=k) ∈
⋃

k
d−1
p=0

�

Γ + d
k · p

�

. See also [31] for a related discussion.
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B.2 Gauging discrete subgroup of topological symmetry revisited

In this appendix, the aim is to consider a more general choice of discrete subgroup and to gain
further evidence on the resulting theory. Starting from

1

s1
m1
w1

2

{s2,j}{m2,j}
w2

. . .

k−1

{sk−1,j}{mk−1,j}
wk−1

k

{sk,j}{mk,j}
wk

k+1

{sk+1,j}{mk+1,j}
wk+1

. . .

N−1

{sN−1,j}{mN−1,j}
wN−1

N

{yj}{kj} (B.24)

define the superconformal index of T[SU(N)] as

ZT[SU(N)] =
N−1
∏

ℓ=1





∑

mℓ∈Zℓ

1
|Wmℓ |

∮

Tℓ

ℓ
∏

a=1

dsℓ,a
2πisℓ,a



 IT[SU(N)]
�

{sℓ}N−1
ℓ=1 ; {mℓ}N−1

ℓ=1

�

, (B.25)

IT[SU(N)] =
N−2
∏

ℓ=1

IU(ℓ)×U(ℓ+1)
hyp (sℓ, mℓ; sℓ+1, mℓ+1| x) · IU(N−1)×U(N)

hyp (sN−1, mN−1; y , k| x)

·
N−1
∏

ℓ=1

IU(ℓ)
cl (wℓ, mℓ; nℓ) IU(ℓ)

vec (sℓ, mℓ| x) ,

and repeat the analogous step as in the monopole formula. Pick a gauge node U(k) and relabel
the magnetic fluxes mk into a (U(1)× SU(k))/Zk fluxes (h, l), see (B.9) and (B.2). Likewise,
the U(k) gauge fugacities sk are transformed into U(1)× SU(k) fugacities (S,σ) via











sk,1 = S−1 ·σ1 ,

sk,i = S−1 ·σi ·σ−1
i−1 , 1< i < k ,

sk,k = S−1 ·σ−1
k−1 .

(B.26)

Consider the vector multiplet

IU(k)
cl (wk, sk , mk ; nk) =

�

S−k
�nk w−k·h

k

=IU(1)
cl (wk

k, S−k,−h; nk) , (B.27)

IU(k)
vec (sk , mk | x) =

∏

a<b

x−|la−lb|
�

1− (−1)la−lbµ(σ)aµ(σ)
−1
b x |la−lb|

�

·
�

1− (−1)la−lbµ(σ)−1
a µ(σ)b x |la−lb|

�

=ISU(k)
vec (σ, l| x) , (B.28)

which reduces to the SU(k) vector multiplet contribution. Using the µ(σ)aµ(σ)−1
b ≡ α(σ)a,b

yields the root contributions, see also (B.10) and recall the use of weight/Dynkin ba-
sis. Note also that the U(1) vector multiplet part receives a fitting classical contribution
IU(1)
cl (wk

k, S−k,−h; nk); while such a term is absent for the SU(k) part of the vector.
Next, inspect the hypermultiplet contributions

IU(k)×U(k+1)
hyp (sk , mk ; sk+1, mk+1| x) =

k
∏

a=1

k+1
∏

b=1

I
1
2
chi

�

S−1 µ(σ)as−1
k+1,b,−h+µ(l)a −mk+1,b| x

�

· I
1
2
chi

�

S µ(σ)−1
a sk+1,b, mk+1,bh−µ(l)a| x

�

=
k
∏

a=1

k+1
∏

b=1

I
1
2
chi

�

µ(σ)a s̃−1
k+1,b,µ(l)a − m̃k+1,b| x

�

· I
1
2
chi

�

µ(σ)−1
a s̃k+1,b, m̃k+1,b −µ(l)a| x

�

=ISU(k)×U(k+1)
hyp (σ, l; s̃k+1, m̃k+1| x) , (B.29)
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wherein the fluxes and fugacities at the k+ 1-st node have been redefined as follows:

m̃k+1,b := mk+1,b + h , s̃k+1,b := sk+1,b S . (B.30)

Similarly for the other connected hypermultiplet:

IU(k−1)×U(k)
hyp (sk−1, mk−1; sk, mk| x) =

N
∏

a=1

M
∏

b=1

I
1
2
chi

�

sk−1,aµ(σ)
−1
b S, mk−1,a + h−µ(l)b| x

�

· I
1
2
chi

�

s−1
k−1,aµ(σ)2,bS−1,−h+µ(l)b −mk−1,a| x

�

=
N
∏

a=1

M
∏

b=1

I
1
2
chi

�

s̃k−1,aµ(σ)
−1
b , m̃k−1,a −µ(l)b| x

�

· I
1
2
chi

�

s̃−1
k−1,aµ(σ)2,b,µ(l)b − m̃k−1,a| x

�

=IU(k−1)×SU(k)
hyp (s̃k−1, m̃k−1;σ, l| x) , (B.31)

using a similar redefinition

m̃k−1,a := mk−1,a + h , s̃k−1,a := sk−1,a S . (B.32)

Repeating the same arguments for the other bifundamental hypermultiplets yields (ℓ ̸= k, k±1)

IU(ℓ)×U(ℓ+1)
hyp (sℓ, mℓ; sℓ+1, mℓ+1| x) = IU(ℓ)×U(ℓ+1)

hyp (s̃ℓ, m̃ℓ; s̃ℓ+1, m̃ℓ+1| x) , (B.33)

with
m̃ℓ,a := mℓ,a + h , s̃ℓ,a := sℓ,a S . (B.34)

It follows straightforwardly that the vector multiplet contributions behave as (ℓ ̸= k)

IU(ℓ)
cl (wℓ, sℓ, mℓ; nℓ) =IU(ℓ)

cl (wℓ, s̃ℓ, m̃ℓ; nℓ) ·w
−ℓ·h
ℓ
· S−ℓ·nℓ , (B.35)

IU(ℓ)
vec (sℓ, mℓ| x) =IU(ℓ)

vec (s̃ℓ, m̃ℓ| x) , (B.36)

Lastly, consider the fundamental hypermultiplet

IU(N−1)×U(N)
hyp (sN−1, mN−1; y , k| x) =

N−1
∏

a=1

N
∏

b=1

I
1
2
chi

�

s̃N−1,a S−1 y−1
b , m̃N−1,a − h− kb| x

�

· I
1
2
chi

�

s̃−1
N−1,a S yb, kb − m̃N−1,a + h| x

�

(B.37)

=IU(N−1)×U(N)
hyp (s̃N−1S−1, m̃N−1 − h; y , k| x) ,

which becomes the contribution of a N copies of a bifundamental hypermultiplet between
U(N−1)s̃N−1,m̃N−1

and U(1)S,h.

Summation range. Originally, the U(k) fluxes mk are valued in Zk. The rewriting forces

the summation range to be (h, l1, . . . , lk−1) ∈
⋃k−1

i=0

�

Z+ i
k

�k
, see (B.2) and (B.11). Further, by

redefining all other fluxes, one finds

m̃ℓ ∈
k−1
⋃

i=0

�

Z+
i
k

�ℓ

, ∀ ℓ ̸= k , (B.38)

analogous to (B.17).
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Contour integral. Consider the Jacobian of the gauge fugacity transformation

J (sℓ→ s̃ℓ) =S−ℓ =⇒
∮ ℓ
∏

a=1

dsℓ,a
2πisℓ,a

=

∮ ℓ
∏

a=1

ds̃ℓ,a
2πis̃ℓ,a

, (B.39)

J (sk→ (S,σ)) =
k · S1−k

∏k−1
l=1 σl

=⇒
∮ k
∏

a=1

dsℓ,a
2πisℓ,a

=

∮

dS
2πiS

·
k−1
∏

j=1

dσ j

2πiσ j
, (B.40)

such that the contour integration transitions nicely into the new variables, again integrated
along the unit circle.

Discrete gauging. Next, gauge a Zq subgroup of the U(1)t Cartan subgroup of the topolog-
ical symmetry PSU(N). To do so, one performs a discrete Molien-Weyl sum

ZT[SU(N)](wk, . . .)→
1
q

q−1
∑

p=0

ZT[SU(N)](wk, . . .)
�

�

wk→ f ·(ζq)p
, ζq = e

2πi
q , (B.41)

with f to be determined. Following the rewriting induced on the k-th node
U(k)→ U(1)× SU(k), the affected terms are

1
q

q−1
∑

p=0

∏

ℓ̸=k

(wℓ)
−ℓ·h · (wk)

−k·hF(. . .)→
1
q

q−1
∑

p=0

∏

ℓ̸=k

(wℓ)
−ℓ·h · ( f (ζq)

p)−k·hF(. . .) . (B.42)

Using the same argument as in (B.4) and recalling that h ∈
⋃k−1

j=0(Z+
j
k ), one might want to

consider the case q = a · k with a ∈ N. Then (a · k)|(k · h) implies a|h, which in particular
requires that h is integer-valued. This implies the collapse of the entire summation range onto
the integers. Moreover, the h summation is further restricted to h ∈ aZ. To be explicit
(

(h, l1, . . . , lk−1) ∈
⋃k−1

i=0

�

Z+ i
k

�k
,

m̃ℓ ∈
⋃k−1

i=0

�

Z+ i
k

�ℓ
, ∀ ℓ ̸= k ,

Zk·a−−→

¨

(h, l1, . . . , lk−1) ∈ aZ⊕ (Z)k−1 ,

m̃ℓ ∈ (Z)
ℓ , ∀ ℓ ̸= k .

(B.43)

Defining h= a · h̃ with h̃ ∈ Z and focusing on the terms involving h̃

N−1
∏

ℓ=1
ℓ̸=k

w−ℓ·a·h̃
ℓ

· bS−ℓ·nℓ IU(1)
cl ( f k, bS−k,−a · h̃; nk) =

N−1
∏

ℓ=1

�

bS−ℓ
�nℓ






f k ·

N−1
∏

ℓ=1
ℓ̸=k

wℓℓ







−a·h̃

, (B.44)

suggests to redefine the U(1) gauge fugacity and topological fugacity as follows:

S =eSa , and f k =







Q−1

∏N−1
ℓ=1
ℓ̸=k

wℓ
ℓ






, (B.45)

which coincides with (B.21). As a consequence,
N−1
∏

ℓ=1

�

S−ℓ
�nℓ = S−

∑N−1
ℓ=1 ℓnℓ = eS−a·

∑N−1
ℓ=1 ℓnℓ , (B.46)

N−1
∏

ℓ=1
ℓ̸=k

w−ℓ·a·h̃
ℓ

· Sℓ·nℓ IU(1)
cl ( f k, bS−1,−a · h̃; k · nk) = eS

−a·
∑N−1
ℓ=1 ℓnℓQa·h̃

= IU(1)
cl (Q, S̃, a · h̃; a ·

N−1
∑

ℓ=1

ℓnℓ) . (B.47)
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Putting all pieces together, one obtains

Z̃ =
1

a · k

a·k−1
∑

p=0

ZT[SU(N)](wk, . . .)
�

�

wk→ f ·(ζq)p

=
∑

l∈Zk−1

1
|Wl |

∮ k−1
∏

j=1

dσ j

2πiσ j

∑

h̃∈Z

∮

dS̃

2πiS̃

N−1
∏

ℓ=1
ℓ̸=k





∑

m̃ℓ∈Zℓ

1
|Wm|

∮ ℓ
∏

j=1

ds̃ℓ, j
2πis̃ℓ, j



 (B.48)

·
N−2
∏

ℓ=1
ℓ̸=k−1,k

IU(ℓ)×U(ℓ+1)
hyp (s̃ℓ, m̃ℓ; s̃ℓ+1, m̃ℓ+1| x)

· IU(k−1)×SU(k)
hyp (s̃k−1, m̃k−1;σ, l| x) · ISU(k)×U(k+1)

hyp (σ, l; s̃k+1, m̃k+1| x)

· IU(N−1)×U(N)
hyp (s̃N−1S̃a, m̃N−1 + a · h̃; y , k| x)

·
N−1
∏

ℓ=1
ℓ̸=k

IU(ℓ)
vec (s̃ℓ, m̃ℓ| x) · IU(ℓ)

cl (wℓ, s̃ℓ, m̃ℓ; nℓ)

· ISU(k)
vec (σ, l| x) · IU(1)

cl (Q, S̃, a · h̃;
1
k

N−1
∑

ℓ=1

ℓnℓ) ,

which is the superconformal index for

1

s̃1
m̃1
w1

2

{s̃2,j}{m̃2,j}
w2

. . .

k−1

{s̃k−1,j}{m̃k−1,j}
wk−1

SU(k)

{σi}{li}

k+1

{s̃k+1,j}{m̃k+1,j}
wk+1

. . .

N−1

{s̃N−1,j}{m̃N−1,j}
wN−1

1

S̃
h̃
QN

a

(B.49)

wherein the N copies of hypermultiplets between U(N−1) and U(1) transform as (N−1)× (−a),
i.e. the U(1) charge is a.

C Mirror maps

Suppose that there is a G-type global symmetry with G being a classical or exceptional Lie
algebra. The root space fugacities wi are related to the weight space fugacities ηi by the
Cartan matrix

wi =
∏

j

η
Ci j

j , ηi =
∏

j

w
C−1

i j

j . (C.1)

Most relevant here is the closed formula for the inverse of the AN−1 Cartan matrix

C−1
i j =min(i, j)−

i · j
N

, for i, j = 1, . . . , N−1 , (C.2)

given in [73].

C.1 SQED and its abelian mirror quiver

C.1.1 Standard mirror map

Suppose that the abelian mirror has topological fugacities wi with i = 1, . . . , N−1, i.e. root
space fugacities for su(N). The mirror theory, SQED with N fundamental flavours, has U(N)
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fugacities y f with f = 1, . . . , N . Both sets of fugacities are related to the su(N) weight space
fugacities ηi via the following two maps

ηi =
N−1
∏

j=1

z
C−1

i j

j , with Ci j the AN−1 Cartan matrix, (C.3)

y f =
N−1
∏

i=1

η
M [N]f i

i , with M [N]f i = δ f ,i −δ f ,i+1 , for

¨

i = 1, . . . , N−1 ,

f = 1, . . . , N .
(C.4)

and the inverse Cartan matrix is given in (C.2). The combination

y f =
N−1
∏

j=1

w
∑N−1

i=1 M [N]f i C−1
i j

j , with
N−1
∑

i=1

M [N]f i C−1
i j =min( f , j)−min( f − 1, j)−

j
N

, (C.5)

can be simplified by observing

min( f , j)−min( f − 1, j) =

¨

1 , j > f − 1 ,

0 , j ≤ f − 1 ,
(C.6)

for f = 1, . . . , N and j = 1, . . . , N−1. Hence, the mirror map becomes

y f =
N−1
∏

j=1

w
∑N−1

i=1 M [N]f i C−1
i j

j =
f −1
∏

i=1

w
− i

N
i

N−1
∏

j= f

w
1− j

N
j , (C.7)

for f = 1, . . . , N .

C.1.2 Mirror map after gauging

Suppose that one gauges a Zq on the U(1)t generated by wk and employs the following pa-
rameter map















wi =
∏k−1

j=1 x
C

Ak−1
i j

j , i = 1,2, . . . , k− 1 ,

wk =
Q

(xk−1 u1)q
,

wi+k =
∏N−k−1

j=1 u
C

AN−k−1
i j

j , i = 1,2, . . . , N−k− 1 ,

(C.8)

using the Cartan matrices of Ak−1 and AN−k−1, respectively. Using (C.7) for Ak−1 and AN−k−1,
the map for wk can be expressed as

wk = ζq
Q

1
q

∏k−1
i=1 w

i
k
i

∏N−1
j=k+1 w

1− j−k
N−k

j

. (C.9)

A straightforward computation yields the new mirror map

y f =







ζ
1− k

N
q Q

N−k
q·N ·

∏ f −1
i=1 w

− i
k

i ·
∏k−1

j= f w
1− j

k
j , f ≤ k ,

ζ
− k

N
q Q

−k
N ·q ·

∏ f −k−1
i=1 w

− i
N−k

k+i ·
∏N−k−1

j= f −k w
1− j

N−k
k+ j , f ≥ k+ 1 ,

(C.10a)

=







ζ
1− k

N
q Q

N−k
q·N ·

∏k−1
i=1 x

M [k]f i

i , f ≤ k ,

ζ
− k

N
q Q

−k
N ·q ·

∏N−k−1
i=1 u

M [N−k]
f i

i , f ≥ k+ 1 ,
(C.10b)

using the parametrisation (C.8) for the Ak−1 fugacities x i and the AN−k−1 fugacities ui .
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Remark. The map (C.10) assigns ζq charges to each y f ; however, one can remove any overall
U(1) phase by a gauge transformation. This leads to two convenient choices: either the first
k fundamental flavours are charged under Zq

y f =







ζq ·Q
N−k
q·N ·

∏k−1
i=1 x

M [k]f i

i , f ≤ k ,

Q
−k
N ·q ·

∏N−k−1
i=1 u

M [N−k]
f i

i , f ≥ k+ 1 ,
(C.11)

by rotating via ζ
k
N
q . Alternatively, one rotates via ζ

−1+ k
N

q such that only the last N−k funda-
mental flavours are non-trivially charged under Zq. In principle, one could also extend the
overall rotation to include Q, but there is no need to do so.

C.2 T[SU(N)] theories

One can construct the mirror map explicitly.

C.2.1 Standard mirror map

Denote the Coulomb branch root space fugacities of T[SU(N)] by {wi}N−1
i=1 . These can be

mapped to the Coulomb branch weight space fugacities via the AN−1 Cartan matrix Ci j:

wi =
∏

j

ω
Ci j

j . (C.12)

The Higgs branch U(N) flavour fugacities are {ya}Na=1, which are reduced to SU(N) fugacities
{ηi}N−1

i=1 via

y f =
N−1
∏

i=1

η
M [N]f i

i , with M [N]f i = δ f ,i −δ f ,i+1 , for

¨

i = 1, . . . , N−1 ,

f = 1, . . . , N ,
(C.13)

The self-mirror property of T[SU(N)] is the reflection in the exchange ωi ↔ ηi .
The aim is to express the natural flavour fugacities {ya} of the theory in terms of the

Coulomb branch fugacities of the mirror. The first step is

(y1, y2, . . . , yN )→
�

η1,
η2

η1
, . . . ,

1
ηN−1

�

ωi↔ηi−−−−→
�

ω1,
ω2

ω1
, . . . ,

1
ωN−1

�

ωi→
∏

j w
C−1

i j
j

−−−−−−−−→ ( f1(wi), f2(wi), . . . , fN (wi)) . (C.14)

This map can be made explicit by using the inverse of the AN−1 Cartan matrix (C.2). Analogous
to the abelian case, the combined map reads

y f =
N−1
∏

j=1

w
∑N−1

i=1 M [N]f i C−1
i j

j with
N−1
∑

i=1

M [N]f i C−1
i j =min( f , j)−min( f − 1, j)−

j
N

=
f −1
∏

i=1

w
− i

N
i

N−1
∏

j= f

w
1− j

N
j , (C.15)

which is the explicit form of (C.14).
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C.2.2 Mirror map after gauging

The next step is utilising the parameter map (B.21) established in Appendix B.1

wk = ζq





v−1

∏N−1
i=1
i ̸=k

wi
i





1
k

. (C.16)

Lastly, to make contact with the global symmetries, one uses the Cartan matrix for Ak−1 and
AN−1−k in a standard fashion

wi =
k−1
∏

j=1

x
C

Ak−1
i j

j , i = 1, . . . , k− 1 ,

wi+k =
N−1−k
∏

j=1

u
C

AN−1−k
i j

j , i = 1, . . . , N−1− k ,

(C.17)

and one needs to redefine

v =
Q−1

(uN−1−k)
N =

Q−1

∏N−1
r=k w

r−k
N−k ·N
r

. (C.18)

Applying this to (C.15), one finds

y f =







ζ
1− k

N
q ·Q

N−k
k·N ·

∏ f −1
i=1 w

− i
k

i ·
∏k−1

j= f w
1− j

k
j , for f ≤ k ,

ζ
− k

N
q ·Q−

1
N ·
∏ f −k−1

i=1 w
− i

N−k
i+k ·

∏N−k−1
j= f −k w

1− j
N−k

j+k , for f ≥ k+ 1 ,
(C.19a)

=







ζ
1− k

N
q ·Q

N−k
k·N ·

∏k−1
j=1 x

M [k]f j

j , for f ≤ k ,

ζ
− k

N
q ·Q−

1
N ·
∏N−k−1

j=1 u
M [N−k]

f j

j , for f ≥ k+ 1 ,
(C.19b)

which displays the split into Ak−1 fugacities x j and AN−k−1 fugacities u j .

Remark. Analogously to the SQED case, one can simplify the ζq dependence in (C.19) by a
suitable overall U(1) rotation. A convenient choice is then given by

y f =







ζq ·Q
N−k
k·N ·

∏k−1
j=1 x

M [k]f j

j , for f ≤ k ,

Q−
1
N ·
∏N−k−1

j=1 u
M [N−k]

f j

j , for f ≥ k+ 1 ,
(C.20)

such that only the first k fundamental flavours are charged under Zq.

C.3 Examples for Tσ
ρ
[SU(N)]

C.3.1 Example 1

Consider the example Tσρ [SU(15)] with σ = [32, 22, 12] and ρ = [6, 4,3, 12] of Section 2.4.
Using the labelling

1
w1

2
w2

2
w3

1
w4

3 2 2

←→

2 2 2 2 1 1

2
y1,2

1

Q1

1

Q2

1

Q3

(C.21)
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the mirror map is given by

(

y1 = w4/5
1 w3/5

2 w2/5
3

5pw4 ,

y2 =
w3/5

2 w2/5
3

5pw4
5pw1

,



















Q1 =
w2/5

3
5pw4

5pw1w2/5
2

,

Q2 =
5pw4

5pw1w2/5
2 w3/5

3

,

Q3 = 1
5pw1w2/5

2 w3/5
3 w4/5

4

,

(C.22)

such that
∏2

i=1 yi ·
∏3

j=1 Q j = 1 holds.

Gauging on w2. The example of Figure 5 is realised by a Z2 gauging on w2. Inspecting the
mirror map (C.22) shows that one has two options for the Z f

2 gauging in the mirror

• The y1, y2 are charged as ζ2, while the Q1,2,3 are trivial under Z2.

• The y1,2 are trivial under Z2, and the Q1,2,3 transform with ζ2.

This reflects the two choices in Figure 5.

Gauging on w3. Turning to Figure 4, one performs a Z2 gauging on w3. The mirror map
(C.22) indicates two options for the Z f

2 gauging in the mirror

• The y1, y2,Q1 are charged as ζ2, while the Q2,3 are trivial under Z2.

• The y1,2,Q1 are trivial under Z2, and the Q2,3 transform with ζ2.

Again, this confirms the two choices in Figure 4.

C.3.2 Example 2

The labelling for the Tσρ [SU(9)] example with ρ = (3, 23) and σ = (32, 13) of Section 2.4 is
defined by

2
w1

2
w2

2
w3

3 2

←→

1 2 2 1

1

Q

3
y1,2,3

(C.23)

and the mirror map is given by

y1 =
w

1
2
2 w

1
4
3

w
1
4
1

, y2 =
w

1
4
3

w
1
4
1 w

1
2
2

, y3 =
1

w
1
4
1 w

1
2
2 w

3
4
3

, Q = w
3
4
1 w

1
2
2 w

1
4
3 . (C.24)

Analogous to the example above, gauging the Z f
2 associated to w3 has two convenient reali-

sations in the mirror theory: either (y1, y2,Q) transform non-trivial under Z2 and y3 is trivial
or vice versa.

C.4 Sp(k) SQCD and its D-type unitary mirror quiver

The closed formula for the inverse Cartan matrix of DN is provided in [73].
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C.4.1 Standard mirror map

For the balanced DN -type unitary quiver, the mirror map to the flavour symmetry of the Sp(k)
SQCD mirror with N fundamental flavours is given by

• Let yi denote the U(N) flavour fugacities.

• Denote by x i the SO(2N) weight space fugacities. The relation between both is estab-
lished via

yi =



















x1 , for i = 1 ,
x i

x i−1
, for 1< i < N − 2 ,

xN−1 xN
xN−2

, for i = N−1 ,
xN−1
xN

, for i = N .

(C.25)

• Denote by wi the root space fugacities of DN , which are related to the weight space
fugacities x i via the DN Cartan matrix

wi =
∏

j

x
C DN

i j

j . (C.26)

• Thus, one finds the map between fundamental flavour fugacities yi and root space fu-
gacities wi to be

y f =











�

∏N−2
i= f wi

�p
wN−1 ·

p
wN , for 1≤ f < N−1 ,

p
wN−1 ·

p
wN , for f = N−1 ,

p
wN−1p
wN

, for f = N .

(C.27)

C.4.2 Mirror map after gauging

Suppose that one gauges a discrete Zq symmetry at the gauge node with topological fugacity
wl . Then, analogous to the T[SU(N)] derivation, the fugacity map to the quiver after gauging
is simply given by

wl =





v−1

∏N
i=1
i ̸=l
(wi)Ni





1
l

, (C.28)

where Ni denotes the rank of the i-th node. The remaining topological fugacities wi ̸=l are
identified before and after gauging.

Lastly, one needs to redefine v such that Al−1 and DN−l representations become manifest.
For this, one uses

v =
Q

weight space fugacity at extra U(1)
, (C.29)

here, the weight space fugacity is either the Al−1 fugacity x i , if the extra U(1) intersects the
balanced Al−1 Dynkin diagram at node i, or it is the DN−l weight space fugacity u j , if the extra
U(1) is attached at the j-th node of the balanced D-type Dynkin diagram. See Appendix D.7
for examples.
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For l ≤ N − 2, the mirror map is given by14

y f =























Q−
1
l
∏ f −1

i=1 w
− i

l
i

∏l−1
j= f w

1− j
l

j , for 1≤ f ≤ l ,
�

∏N−2
i= f wi

�p
wN−1 ·

p
wN , for l + 1≤ f < N−1 ,

p
wN−1 ·

p
wN , for f = N−1 ,

p
wN−1p
wN

, for f = N ,

(C.30)

which clearly displays that the first l fundamental flavours transform under su(l)×U(1), and
the remaining N − l fundamental flavours transform under so(2N − 2l).

C.5 O(2k) SQCD and its C-type unitary mirror quiver

Consider the O(2k) SQCD with N fundamental hypermultiplets. The mirror theory is a bal-
anced C-type Dynkin quiver with N gauge nodes.

• Denote the U(N) flavour fugacities by yi .

• Denote the Sp(N) flavour fugacities by x i . These are related via the transformation

y1 = x1 , and y j =
x j

x j−1
, for j = 2, . . . , n . (C.31)

• Denote the topological fugacities of the C-type quiver by wi . Then the CN Cartan matrix
mediates the transformation between root and weight space fugacities

wi =
N
∏

j=1

x
CCN

i j

j for i = 1, . . . , N . (C.32)

Combining the above leads to the mirror map between the unitary flavour fugacities and the
root space topological fugacities

¨

yi =
p

wN
∏N−1

j=i w j , i = 1, . . . , N−1 ,

yN =
p

wN .
(C.33)

D Explicit Hilbert series results

In this appendix, some exemplary Hilbert series calculations are presented. Matching the
Hilbert series can be used as the stringent test to check the dualities and find the global topo-
logical or flavour symmetry groups.

D.1 Linear Abelian quiver

Consider the abelian quiver gauge theory

1

w1

. . .

1

wk−1
1

wk

1

wk+1
. . .

1

wN−1
1 1

(q,−1)(1,−q) (D.1)

14The choice (C.29) implies that the U(1)Q charges are negative here. This choice is convenient because the
charges of Q under the centre symmetries are directly read off from the Coulomb branch quiver, see (2.46) and
(2.48).
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Explicit character expansions indicate the following global forms

N=3
k=1 Gt =

¨

SO(3)y ×U(1)Q , w/ Q of Z2-charge 0 , q = 2,4, 6,8 ,
SU(2)y×U(1)Q

Z2
, w/ Q of Z2-charge +1 , q = 3,5, 7,9 ,

(D.2)

N=4
k=1 Gt =











PSU(3)y ×U(1)Q , w/ Q of Z3-charge 0 , q = 3,6 ,
SU(3)u×U(1)Q
Z3

, w/ Q of Z3-charge +1 , q = 4,7 ,
SU(3)u×U(1)Q
Z3

, w/ Q of Z3-charge +2 , q = 2,5 ,

(D.3)

N=4
k=2 Gt =

¨

SO(3)x ×U(1)Q × SO(3)u , w/ Q of Z2 ×Z2-charge (0, 0) , q = 2,4 ,
SU(2)x×U(1)Q×SU(2)u

Z2×Z2
, w/ Q of Z2 ×Z2-charge (+1,+1) , q = 3,5 ,

(D.4)

N=5
k=1 Gt =























SU(4)u×U(1)Q
Z4

, w/ Q of Z4-charge (+2) , q = 2 ,
SU(4)u×U(1)Q
Z4

, w/ Q of Z4-charge (+3) , q = 3 ,

PSU(4)u ×U(1)Q , w/ Q of Z4-charge (0) , q = 4 ,
SU(4)u×U(1)Q
Z4

, w/ Q of Z4-charge (+1) , q = 5 ,

(D.5)

N=5
k=2 Gt =







































SU(2)x×U(1)Q×SU(3)u
Z2×Z3

, w/ Q of Z2 ×Z3-charge (0,+2) , q = 2 ,
SU(2)x×U(1)Q

Z2
× PSU(3)u , w/ Q of Z2 ×Z3-charge (+1, 0) , q = 3 ,

PSU(2)x ×
U(1)Q×SU(3)u
Z3

, w/ Q of Z2 ×Z3-charge (0,+1) , q = 4 ,
SU(2)x×U(1)Q×SU(3)u

Z2×Z3
, w/ Q of Z2 ×Z3-charge (+1,+2) , q = 5 ,

PSU(2)x ×U(1)Q × PSU(3)u , w/ Q of Z2 ×Z3-charge (0,0) , q = 6 ,
SU(2)x×U(1)Q×SU(3)y

Z2×Z3
, w/ Q of Z2 ×Z3-charge (+1,+1) , q = 7 ,

(D.6)

which then confirms the general formula (2.7).
To exemplify, we provide the Hilbert series for N = 5, k = 2, q = 2 here. The perturbative

expansion reads

HS= 1+ t
�

φ1,1 +χ2 + 1
�

(D.7)

+ t2

�

Qχ2φ0,2 +
χ2φ2,0

Q
+χ2φ1,1 +φ1,1 +φ2,2 +χ2 +χ4 + 1

�

+ t3
�

Q
�

χ2φ0,2 +χ4φ0,2 +χ2φ1,3

�

+
χ2φ2,0 +χ4φ2,0 +χ2φ3,1

Q

+χ2φ1,1 +χ2φ2,2 +χ4φ1,1 +φ1,1 +φ2,2 +φ3,3 +χ2 +χ4 +χ6 + 1
�

+ . . . ,

withφm1,m2
= φm1,m2

(ui) and χn1
= χn1

(x1) the SU(3) and SU(2) characters of irreps [m1, m2]
and [n1], respectively. This follows via the Higgs branch fugacity map

y1→Q−
1
5 u1 , y2→Q−

1
5

u2

u1
, y3→Q−

1
5

1
u2

, y4→Q
3
10 x1 , y5→Q

3
10

1
x1

, (D.8)

and the Coulomb branch fugacity map

w1→ x2
1 , w2→

Q
x2

1u2
1

, w3→
u2

1

u2
, w4→

u2
2

u1
. (D.9)

Here, {ui} and x1 are the corresponding weight space fugacities. Q denotes the U(1) fugacity.
In fact, due to the abelian nature, one can even compute the full highest weight generating
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function (HWG)

HWGstandard =
1

1− k1k4 t
, (D.10)

HWGZ2 gauging =
1−m2

1m2
2n4

1 t4

(1− t) (1−m1m2 t)
�

1− n2
1 t
�

�

1− m2
1n2

1 t2

Q

�

�

1−m2
2n2

1Qt2
�

, (D.11)

with {ki}i=1,...,4, {m j} j=1,2,3, and n1 the SU(5), SU(4), and SU(2) highest weight fugacities,
respectively.

D.2 T[SU(N)] theories

We move on to the examples of T[SU(N)] theories. The employed fugacity maps follow from
(2.18) in combination with (2.21).

D.2.1 T[SU(3)] theories

1

w1

SU(2) 1

v3 mirror
←−−−−−→

12
Z2

1
y3

y1,2

(D.12)

Use the fugacity map

C : w1→ x2
1 , v→Q−1 ,

H : y1→Q
1
6 x1 , y2→Q

1
6 x−1

1 , y3→Q−
1
3 ,

(D.13)

to an x1 weight space fugacity for A1 and a U(1) variable Q. The Coulomb branch Hilbert
series of the left quiver (and Higgs branch Hilbert series of the right quiver) reads

HS= 1+ t (χ2 + 1) + t2
��

Q+Q−1
�

χ2 + 2χ2 +χ4 + 2
�

(D.14)

+ t3
�

�

Q+Q−1
� �

2χ2 +χ4 + 1
�

+ 4χ2 + 2χ4 +χ6 + 2
�

+ . . . ,

here χn1
are the SU(2)x1

characters for irreps with Dynkin labels [n1]. The term in red cor-
responds to the operator O in (2.22). The symmetry algebra is su(2)x1

⊕ u(1)Q. The SU(2)
centre symmetry Z2 acts trivial on irreps [2 · n1] for n1 ∈ N. Thus (D.14) suggests that the
symmetry group is SO(3)x1

×U(1)Q.

D.2.2 T[SU(4)] theories

Gauging a Z3.

1

w1

2

w2

SU(3) 1

v4 mirror
←−−−−−→

123
Z3

1
y4

y1,2,3

(D.15)

Use the fugacity map

C : w1→
x2

1

x2
, w2→

x2
2

x1
, v→Q−1 ,

H : y1→Q
1

12 x1 , y2→Q
1
12

x2

x1
, y3→Q

1
12

1
x2

, y4→Q−
1
4 ,

(D.16)
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to x i weight space fugactites for A2 and a U(1) variable Q. The Coulomb branch Hilbert series
of the left quiver (and Higgs branch Hilbert series of the right quiver) reads

HS=1+ t
�

χ1,1 + 1
�

+ t2
�

3χ1,1 +χ2,2 + 2
�

(D.17)

+ t3
�

Qχ3,0 +Q−1χ0,3 + 2χ0,3 + 6χ1,1 + 3χ2,2 + 2χ3,0 +χ3,3 + 3
�

+ t4
�

Q
�

χ1,1 +χ2,2 + 2χ3,0 +χ4,1

�

+Q−1
�

2χ0,3 +χ1,1 +χ1,4 +χ2,2

�

+ 4χ0,3 + 11χ1,1 + 2χ1,4 + 9χ2,2 + 4χ3,0 + 3χ3,3 + 2χ4,1 +χ4,4 + 4
�

+ . . . ,

here χk,n are the SU(3)x1 x2
characters for irreps with Dynkin labels [k, n]. The terms in

red corresponds to the operator O (and its conjugate) in (2.22). The symmetry algebra is
su(3)x1,x2

⊕u(1)Q. The SU(3) centre symmetry Z3 acts trivial on irreps [n1, n2]with n1−n2 = 0
mod 3. Thus (D.17) suggests that the symmetry group is PSU(3)x1,x2

×U(1)Q.

Gauging a Z2.

1

w1

SU(2) 3

w3

1

v4 mirror
←−−−−−→

123
Z2

2
y3,4

y1,2

(D.18)

Use the fugacity map

C : w1→ x2
1 , w3→ u2

1 , v→
Q−1

(u1)4
,

H : y1→Q
1
4 x1 , y2→Q

1
4 x−1

1 , y3→Q−
1
4 u1 , y4→Q−

1
4 u−1

1 ,

(D.19)

to an x1 weight space fugactity of A1, u1 the weight space fugacity of another A1, and a U(1)
variable Q. The Coulomb branch Hilbert series of the left quiver (and Higgs branch Hilbert
series of the right quiver) reads

HS= 1+ t (ϕ2 +χ2 + 1) (D.20)

+ t2
��

Q+Q−1
�

(1+ϕ2χ2) + 2ϕ2 +ϕ4 + 2ϕ2χ2 + 2χ2 +χ4 + 3
�

+ t3
�

�

Q+Q−1
� �

3χ2ϕ2 +χ4ϕ2 + 2ϕ2 +ϕ4χ2 + 2χ2 + 1
�

+ 6ϕ2 + 2ϕ4 +ϕ6 + 6ϕ2χ2 + 2ϕ4χ2 + 6χ2 + 2ϕ2χ4 + 2χ4 +χ6 + 4
�

+ . . . ,

here χn1
are the SU(2)x1

characters for irreps with Dynkin label [n1]. Whileϕk1
are the SU(2)u1

characters for irreps [k1]. The term in red corresponds to the operator O in (2.22). The
symmetry algebra is su(2)x1

⊕ su(2)u1
⊕ u(1)Q. The SU(2) centre symmetries Z2 act trivial

on irreps [n1] with n1 = 0 mod 2 and [k1] with k1 = 0 mod 2, respectively. Thus (D.20)
suggests that the symmetry group is SO(3)x1

× SO(3)u1
×U(1)Q.

D.2.3 T[SU(5)] theories

Gauging a Z4.

1

w1

2

w2

3

w3

SU(4) 1

v5 mirror
←−−−−−→

1234
Z4

1
y5

y1,...,4

(D.21)
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Use the fugacity map

C : w1→
x2

1

x2
, w2→

x2
2

x1 x3
, w3→

x2
3

x2
, v→Q−1 , (D.22)

H : y1→Q
1

20 x1 , y2→Q
1
20

x2

x1
, y3→Q

1
20

x3

x2
, y4→Q

1
20

1
x3

, y5→Q−
1
5 ,

to x i weight space fugacities of A3, and a U(1) variable Q. The Coulomb branch Hilbert series
of the left quiver (and Higgs branch Hilbert series of the right quiver) reads

HS= 1+ t
�

χ1,0,1 + 1
�

+ t2
�

χ0,2,0 + 3χ1,0,1 +χ2,0,2 + 2
�

(D.23)

+ t3
�

2χ0,1,2 + 2χ0,2,0 + 7χ1,0,1 +χ1,2,1 + 3χ2,0,2 + 2χ2,1,0 +χ3,0,3 + 3
�

+ t4
�

Q−1χ0,0,4 +Qχ4,0,0 + 6χ0,1,2 + 6χ0,2,0 +χ0,4,0 + 13χ1,0,1 + 2χ1,1,3 + 4χ1,2,1

+ 10χ2,0,2 + 6χ2,1,0 +χ2,2,2 + 3χ3,0,3 + 2χ3,1,1 +χ4,0,4 + 5
�

+ . . . ,

here χn1,n2,n3
are the SU(4)x1,x2,x3

characters for irreps with Dynkin labels [n1, n2, n3]. The
terms in red correspond to the operator O (and its conjugate) in (2.22). The symme-
try algebra is su(4)x1,x2,x3

⊕ u(1)Q. The SU(4) centre symmetry Z4 act trivial on irreps
[n1, n2, n3] with n1 + 2n2 − n3 = 0 mod 4. Thus (D.23) suggests that the symmetry group is
PSU(4)x1,x2,x3

×U(1)Q.

Gauging a Z3.

1

w1

2

w2

SU(3) 4

w4

1

v5 mirror
←−−−−−→

1234
Z3

2
y4,5

y1,2,3

(D.24)

Use the fugacity map

C : w1→
x2

1

x2
, w2→

x2
2

x1
, w4→ u2

1 , v→
Q−1

(u1)5
, (D.25)

H : y1→Q
2
15 x1 , y2→Q

2
15

x2

x1
, y3→Q

2
15

1
x2

, y4→Q−
1
5 u1 , y5→Q−

1
5

1
u1

,

to x i weight space fugacities of A2, u1 the weight space fugacity of A1, and a U(1) variable Q.
The Hilbert series are

HS= 1+ t
�

χ1,1 +φ2 + 1
�

+ t2
�

3χ1,1 +χ2,2 + 2φ2χ1,1 + 2φ2 +φ4 + 3
�

(D.26)

+ t3
�

Q−1
�

φ1χ1,1 +φ3χ3,0

�

+Q
�

φ3χ0,3 +φ1χ1,1

�

+ 2χ0,3 + 8χ1,1 + 3χ2,2 + 2χ3,0 +χ3,3 +φ2χ0,3 + 8φ2χ1,1 + 2φ4χ1,1

+ 2φ2χ2,2 +φ2χ3,0 + 6φ2 + 2φ4 +φ6 + 5
�

+ . . . ,

here χn1,n2
are the SU(3)x1,x2

characters for irreps with Dynkin labels [n1, n2]. The φk1
are

the SU(2)u1
characters for irreps with Dynkin label [k1]. The terms in red correspond to the

operator O (and its conjugate) in (2.22). The symmetry algebra is su(3)x1,x2
⊕su(2)u1

⊕u(1)Q.
The SU(3) centre symmetry Z3 act trivial on irreps [n1, n2] with n1−n2 = 0 mod 3; while the
SU(2) centre Z2 acts trivial on irreps [k1] with k1 = 0 mod 2. Thus (D.26) suggests that the
symmetry group is PSU(3)x1,x2

×
�

SU(2)u1
×U(1)Q

�

/Z2. Z2 ⊂ U(1)Q such that Q has charge 1.
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Gauging a Z2.

1

w1

SU(2) 3

w3

4

w4

1

v5 mirror
←−−−−−→

1234
Z2

3
y3,4,5

y1,2

(D.27)

Use the fugacity map

C : w1→ x2
1 , w3→

u2
1

u2
, w4→

u2
2

u1
, v→

Q−1

(u2)5
, (D.28)

H : y1→Q
3
10 x1 , y2→Q

3
10

1
x1

, y3→Q−
1
5 u1 , y4→Q−

1
5

u2

u1
, y5→Q−

1
5

1
u2

,

to an x1 weight space fugacity of A1, ui the weight space fugacities of A2, and a U(1) variable
Q. The Coulomb branch Hilbert series of the left quiver (and Higgs branch Hilbert series of
the right quiver) reads

HS= 1+
�

χ2 +φ1,1 + 1
�

t (D.29)

+ t2
�

Q
�

χ2φ0,2 +φ1,0

�

+Q−1
�

φ0,1 +χ2φ2,0

�

+ 2χ2 +χ4 + 2χ2φ1,1 + 3φ1,1 +φ2,2 + 3
�

+ t3
�

Q
�

3χ2φ0,2 +χ4φ0,2 + 2φ0,2 + 2χ2φ1,0 + 2φ1,0 +χ2φ1,3 +χ2φ2,1 +φ2,1

�

+Q−1
�

2χ2φ0,1 + 2φ0,1 +χ2φ1,2 +φ1,2 + 3χ2φ2,0 +χ4φ2,0 + 2φ2,0 +χ2φ3,1

�

+ 6χ2 + 2χ4 +χ6 +χ2φ0,3 + 2φ0,3 + 8χ2φ1,1 + 2χ4φ1,1 + 8φ1,1 + 2χ2φ2,2

+ 3φ2,2 +χ2φ3,0 + 2φ3,0 +φ3,3 + 5
�

+ . . . ,

here χn1
are the SU(2)x1

characters for irreps with Dynkin labels [n1]. The φk1,k2
are the

SU(3)u1,u2
characters for irreps with Dynkin label [k1, k2]. The terms in red correspond to the

operator O (and its conjugate) in (2.22). The symmetry algebra is su(2)x1
⊕su(3)u1,u2

⊕u(1)Q.
The SU(3) centre symmetry Z3 act trivial on irreps [k1, k2] with k1− k2 = 0 mod 3; while the
SU(2) centre Z2 acts trivial on irreps [n1] with n1 = 0 mod 2. Thus (D.29) suggests that the
symmetry group is PSU(2)x1

×
�

SU(3)u1,u2
×U(1)Q

�

/Z3. Z3 ⊂ U(1)Q such that Q has charge 2.

D.2.4 T[SU(6)] theories

Gauging a Z5.

1

w1

2

w2

3

w3

4

w4

SU(5) 1

v6 mirror
←−−→

12345
Z5

1
y6

y1,...,5

(D.30)

Use the fugacity map

C : w1→
x2

1

x2
, w2→

x2
2

x1 x3
, w3→

x2
3

x2 x4
, w4→

x2
4

x3
, v→Q−1 , (D.31)

H : y1→Q
1
30 x1 , y2→Q

1
30

x2

x1
, y3→Q

1
30

x3

x2
, y4→Q

1
30

x4

x3
, y5→Q

1
30

1
x4

,

y6→Q−
1
6 ,
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to {x i} the weight space fugacities of A4, and a U(1) variable Q. The perturbative
Coulomb/Higgs branch Hilbert series reads

HS= 1+ t
�

χ1,0,0,1 + 1
�

+ t2
�

χ0,1,1,0 + 3χ1,0,0,1 +χ2,0,0,2 + 2
�

(D.32)

+ t3
�

2χ0,1,0,2 + 3χ0,1,1,0 + 7χ1,0,0,1 +χ1,1,1,1 + 3χ2,0,0,2 + 2χ2,0,1,0 +χ3,0,0,3 + 3
�

+ t4
�

2χ0,0,2,1 + 6χ0,1,0,2 + 8χ0,1,1,0 +χ0,2,2,0 + 14χ1,0,0,1 + 2χ1,1,0,3 + 5χ1,1,1,1

+ 2χ1,2,0,0 + 10χ2,0,0,2 + 6χ2,0,1,0 +χ2,1,1,2 + 3χ3,0,0,3 + 2χ3,0,1,1 +χ4,0,0,4 + 5
�

+ t5
�

Q−1χ0,0,0,5 +Qχ5,0,0,0 +χ0,0,1,3 + 6χ0,0,2,1 + 17χ0,1,0,2 + 17χ0,1,1,0 + 2χ0,2,1,2

+ 3χ0,2,2,0 + 2χ0,3,0,1 + 25χ1,0,0,1 + 2χ1,0,2,2 + 2χ1,0,3,0 + 9χ1,1,0,3 + 18χ1,1,1,1

+ 6χ1,2,0,0 +χ1,2,2,1 + 23χ2,0,0,2 + 17χ2,0,1,0 + 2χ2,1,0,4 + 5χ2,1,1,2 + 2χ2,1,2,0

+ 2χ2,2,0,1 + 10χ3,0,0,3 + 9χ3,0,1,1 +χ3,1,0,0 +χ3,1,1,3 + 3χ4,0,0,4 + 2χ4,0,1,2

+χ5,0,0,5 + 7
�

+ . . . ,

here χn1,n2,n3,n4
are the SU(5)x i

characters for irreps with Dynkin labels [n1, n2, n3, n4]. The
terms in red correspond to the operator O (and its conjugate) in (2.22). The algebra is
su(5)x i

⊕ U(1)Q. The SU(4) centre symmetry Z5 acts with charge 1 in the fundamental
[1,0, 0,0]. The appearing characters in (D.32) are all neutral under the centre, which sug-
gests the global form PSU(5)x i

×U(1)Q.

Gauging a Z4.

1

w1

2

w2

3

w3

SU(4) 5

w5

1

v6 mirror
←−−→

12345
Z4

2
y5,6

y1,...,4

(D.33)

Use the fugacity map

C : w1→
x2

1

x2
, w2→

x2
2

x1 x3
, w3→

x2
3

x2
, w5→ u2

1 , v→
Q−1

(u1)6
, (D.34)

H : y1→Q
1
12 x1 , y2→Q

1
12

x2

x1
, y3→Q

1
12

x3

x2
, y4→Q

1
12

1
x3

,

y5→Q−
1
6 u1 , y6→Q−

1
6

1
u1

,
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to {x i} the weight space fugacities of A3, u1 the weight space fugacity of A1, and a U(1) variable
Q. The Hilbert series reads

HS= 1+ t
�

φ1,0,1 +χ2 + 1
�

(D.35)

+ t2
�

2χ2φ1,0,1 +φ0,2,0 + 3φ1,0,1 +φ2,0,2 + 2χ2 +χ4 + 3
�

+ t3
�

χ2φ0,1,2 + 2χ2φ0,2,0 + 8χ2φ1,0,1 + 2χ2φ2,0,2 +χ2φ2,1,0 + 2χ4φ1,0,1 + 2φ0,1,2

+ 2φ0,2,0 + 9φ1,0,1 +φ1,2,1 + 3φ2,0,2 + 2φ2,1,0 +φ3,0,3 + 6χ2 + 2χ4 +χ6 + 5
�

+ t4
�

Q−1
�

χ4φ0,0,4 +χ2φ0,1,2 +φ0,2,0

�

+Q
�

χ2φ2,1,0 +χ4φ4,0,0 +φ0,2,0

�

+ 8χ2φ0,1,2

+ 7χ2φ0,2,0 + 26χ2φ1,0,1 +χ2φ1,1,3 + 3χ2φ1,2,1 + 10χ2φ2,0,2 + 8χ2φ2,1,0

+ 2χ2φ3,0,3 +χ2φ3,1,1 +χ4φ0,1,2 + 2χ4φ0,2,0 + 9χ4φ1,0,1 + 2χ6φ1,0,1 + 3χ4φ2,0,2

+χ4φ2,1,0 + 7φ0,1,2 + 9φ0,2,0 +φ0,4,0 + 21φ1,0,1 + 2φ1,1,3 + 4φ1,2,1 + 12φ2,0,2

+ 7φ2,1,0 +φ2,2,2 + 3φ3,0,3 + 2φ3,1,1 +φ4,0,4 + 12χ2 + 7χ4 + 2χ6 +χ8 + 11
�

+ . . .

The symmetry algebra is su(4)x1,x2,x3
× su(2)u1

× U(1)Q. The terms in red correspond to the
operator O (and its conjugate) in (2.22). The appearing characters suggest that the global
form is PSU(4)x1,x2,x3,x4

× SO(3)u1
×U(1)Q, i.e. the centre symmetries act trivially.

Gauging a Z3.

1

w1

2

w2

SU(3) 4

w4

5

w5

1

v6 mirror
←−−→

12345
Z3

3
y4,5,6

y1,2,3

(D.36)

Use the fugacity map

C : w1→
x2

1

x2
, w2→

x2
2

x1
, w4→

u2
1

u2
, w5→

u2
2

u1
, v→

Q−1

(u2)5
, (D.37)

H : y1→Q
1
6 x1 , y2→Q

1
6

x2

x1
, y3→Q

1
6

1
x2

,

y4→Q−
1
6 u1 , y5→Q−

1
6

u2

u1
, y6→Q−

1
6

1
u2

,

to x i weight space fugacities of A2, ui the weight space fugacities of another A2, and a U(1)
variable Q. The perturbative Coulomb/Higgs branch Hilbert series is evaluated to

HS= 1+ t
�

χ1,1 +φ1,1 + 1
�

(D.38)

+ t2
�

3χ1,1 +χ2,2 + 2χ1,1φ1,1 + 3φ1,1 +φ2,2 + 3
�

+ t3
�

Q−1
�

χ0,3φ3,0 +χ1,1φ1,1 + 1
�

+Q
�

χ1,1φ1,1 +χ3,0φ0,3 + 1
�

+ 2χ0,3 + 8χ1,1 + 3χ2,2 + 2χ3,0 +χ3,3 +χ1,1φ0,3 +χ0,3φ1,1 + 10χ1,1φ1,1 + 2χ1,1φ2,2

+χ1,1φ3,0 + 2χ2,2φ1,1 +χ3,0φ1,1 + 2φ0,3 + 8φ1,1 + 3φ2,2 + 2φ3,0 +φ3,3 + 6
�

+ . . .

The symmetry algebra is su(3)x1,x2
⊕su(3)u1,u2

⊕u(1). The terms in red correspond to the oper-
ator O (and its conjugate) in (2.22). The appearing characters indicate that all irreps are trivial
under the centre symmetries, such that the global form is PSU(3)x1,x2

× PSU(3)u1,u2
×U(1)Q.
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Gauging a Z2.

1

w1

SU(2) 3

w3

4

w4

5

w5

1

v6 mirror
←−−→

12345
Z2

4
y3,...,6

y1,2

(D.39)

Use the fugacity map

C : w1→ x2
1 , w3→

u2
1

u2
, w4→

u2
2

u2u3
, , w5→

u2
3

u2
, v→

Q−1

(u3)5
, (D.40)

H : y1→Q
1
3 x1 , y2→Q

1
3

1
x1

,

y3→Q−
1
6 u1 , y4→Q−

1
6

u2

u1
, y5→Q−

1
6

u3

u2
, y6→Q−

1
6

1
u3

,

to an x1 weight space fugacity of A1, ui the weight space fugacities of A3, and a U(1) variable
Q. The Coulomb branch (or Higgs branch) Hilbert series reads

HS= 1+ t
�

φ1,0,1 +χ2 + 1
�

+ t2
�

Q
�

χ2φ0,0,2 +φ0,1,0

�

+Q−1
�

χ2φ2,0,0 +φ0,1,0

�

(D.41)

+ 2χ2φ1,0,1 +φ0,2,0 + 3φ1,0,1 +φ2,0,2 + 2χ2 +χ4 + 3
�

+ . . .

The terms in red correspond to the operator O (and its conjugate) in (2.22). The global
symmetry is PSU(2)x1

×
�

SU(4)u1,u2,u3
×U(1)Q

�

/Z4 and Q has Z4 charge 2 mod 4.

D.3 Some T[SU(N)] examples with higher charges

Consider the quiver theories in (2.25) and (2.26). Redefine fugacities as

(2.25) : w1→
y2

1

y2
, w2→

y2
2

y1
, w4→ x2

1 , v→
Q

x10
1

, (D.42)

(2.26) : w1→ x2
1 , w3→

y2
1

y2
, w4→

y2
2

y1
, v→

Q−1

y15
2

, (D.43)

such that x1 is an A1 fugacity and {y1,2} are A2 fugacities. The perturbative monopole formula
for the left-hand-side quivers reads

HS= 1+ t
�

χ2 +φ1,1 + 1
�

(D.44)

+ t2
�

2φ1,1χ2 + 2χ2 +χ4 + 3φ1,1 +φ2,2 + 3
�

+ t3
�

φ0,3χ2 + 8φ1,1χ2 + 2φ2,2χ2 +φ3,0χ2 + 6χ2 + 2χ4 +χ6 + 2φ0,3 + 2χ4φ1,1

+ 8φ1,1 + 3φ2,2 + 2φ3,0 +φ3,3 + 5
�

+ t4
�

7φ0,3χ2 + 24φ1,1χ2 +φ1,4χ2 + 10φ2,2χ2 + 7φ3,0χ2 + 2φ3,3χ2 +φ4,1χ2

+ 12χ2 + 7χ4 + 2χ6 +χ8 +χ4φ0,3 + 5φ0,3 + 9χ4φ1,1 + 2χ6φ1,1 + 19φ1,1

+ 2φ1,4 + 3χ4φ2,2 + 11φ2,2 +χ4φ3,0 + 5φ3,0 + 3φ3,3 + 2φ4,1 +φ4,4 + 10
�
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+ t5
�

22φ0,3χ2 + 60φ1,1χ2 + 9φ1,4χ2 + 38φ2,2χ2 +φ2,5χ2 + 22φ3,0χ2 + 10φ3,3χ2

+ 9φ4,1χ2 + 2φ4,4χ2 +φ5,2χ2 + 25χ2 + 15χ4 + 7χ6 + 2χ8 +χ10 + 9χ4φ0,3

+χ6φ0,3 + 16φ0,3 + 30χ4φ1,1 + 9χ6φ1,1 + 2χ8φ1,1 + 40φ1,1 + 2χ4φ1,4 + 8φ1,4

+ 15χ4φ2,2 + 3χ6φ2,2 + 28φ2,2 + 2φ2,5 + 9χ4φ3,0 +χ6φ3,0 + 16φ3,0 + 3χ4φ3,3

+ 11φ3,3 + 2χ4φ4,1 + 8φ4,1 + 3φ4,4 + 2φ5,2 +φ5,5 + 15
�

+ t6
�

Q
�

χ6φ0,6 +χ4φ1,4 +χ2φ2,2 +φ3,0

�

+
φ0,3 +χ2φ2,2 +χ4φ4,1 +χ6φ6,0

Q
+ 62φ0,3χ2 + 2φ0,6χ2 + 132φ1,1χ2 + 37φ1,4χ2 + 107φ2,2χ2 + 9φ2,5χ2 + 62φ3,0χ2

+ 41φ3,3χ2 +φ3,6χ2 + 37φ4,1χ2 + 10φ4,4χ2 + 9φ5,2χ2 + 2φ5,5χ2 + 2φ6,0χ2 +φ6,3χ2

+ 44χ2 + 33χ4 + 16χ6 + 7χ8 + 2χ10 +χ12 + 31χ4φ0,3 + 9χ6φ0,3 +χ8φ0,3 + 36φ0,3

+χ4φ0,6 + 3φ0,6 + 81χ4φ1,1 + 31χ6φ1,1 + 9χ8φ1,1 + 2χ10φ1,1 + 77φ1,1 + 16χ4φ1,4

+ 2χ6φ1,4 + 25φ1,4 + 59χ4φ2,2 + 16χ6φ2,2 + 3χ8φ2,2 + 70φ2,2 + 2χ4φ2,5 + 8φ2,5

+ 31χ4φ3,0 + 9χ6φ3,0 +χ8φ3,0 + 36φ3,0 + 17χ4φ3,3 + 4χ6φ3,3 + 32φ3,3 + 2φ3,6

+ 16χ4φ4,1 + 2χ6φ4,1 + 25φ4,1 + 3χ4φ4,4 + 11φ4,4 + 2χ4φ5,2 + 8φ5,2 + 3φ5,5

+χ4φ6,0 + 3φ6,0 + 2φ6,3 +φ6,6 + 28
�

+ . . . ,

wherein φm1,m2
are the characters of A2 irreps [m1, m2] and χn1

are the A1 characters for [n1]
irreps. The global form of the Coulomb branch isometry group is PSU(2)x1

×PSU(3)y1,2
×U(1)Q.

D.4 Some Tσ
ρ
[SU(N)] examples

1st example. Consider the example

1

w1

2

w2

SU(2) 1

w3

1
w4

(D.45)

and use the fugacity map

v1→ x2
1 , v2→

Q1

x1
, v3→Q2 , v3→Q3 . (D.46)

The Coulomb branch Hilbert series reads

HS= 1+ t (χ2 + 3) + t2
�

�

Q1 +Q−1
1

�

χ1 +
�

Q2 +Q−1
2

�

+ 3χ2 +χ4 + 8
�

(D.47)

+ t3
�

�

Q1 +Q−1
1

�

(4χ1 +χ3) +
�

Q2 +Q−1
2

�

(χ2 + 3)

+Q2Q3Q2
1 +

1
Q2

1Q2Q3
+ 8χ2 + 3χ4 +χ6 + 17

�

+ t4
�

Q2
1 (Q2Q3 (χ2 + 4) +Q3 +χ2) +

χ2+4
Q2Q3

+ 1
Q3
+χ2

Q2
1

+Q1

�

χ1

Q2
+Q2 (Q3χ1 +χ1) + 12χ1 + 4χ3 +χ5

�

+

χ1
Q3
+χ1

Q2
+Q2χ1 + 12χ1 + 4χ3 +χ5

Q1

+Q2

�

3χ2 +χ4 + 9
�

+
3χ2 +χ4 + 9

Q2
+Q2

2 +
1

Q2
2

+ 18χ2 + 8χ4 + 3χ6 +χ8 + 34
�

+ . . . ,

and the global symmetry is given by
�

SU(2)x ×U(1)Q1

�

/Z2 × U(1)Q2
× U(1)Q3

where the Z2
centre symmetry acts with charge +1 on Q1 and trivial on all other Q i .
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2nd example. Next, modify the example slightly and consider

1

w1

SU(2) 2

w2

1

w3

1
w4

(D.48)

together with the fugacity map

v1→ x2
1 , v2→Q1 , v3→Q2 , v3→Q3 . (D.49)

The Coulomb branch Hilbert series reads

HS= 1+ t (χ2 + 3) + t3/2
�

Q1 +
1

Q1

�

+ t2
�

Q2 +
1

Q2
+ 3χ2 +χ4 + 8

�

(D.50)

+ t5/2

� 1
Q2
+χ2 + 4

Q1
+Q1 (Q2 +χ2 + 4)

�

+ t3

�

Q2 (χ2 + 3) +
χ2 + 3

Q2
+Q2

1 +
1

Q2
1

+ 8χ2 + 3χ4 +χ6 + 17

�

+ t7/2

 

χ2+4
Q2
+Q2 + 4χ2 +χ4 + 11

Q1
+Q1

�

Q2 (χ2 + 4) +
1

Q2
+ 4χ2 +χ4 + 11

�

!

+ t4
�

Q2
1 (Q2 (Q3χ2 + 1) +χ2 + 4) +

χ2
Q3
+1

Q2
+χ2 + 4

Q2
1

+Q2
2 +

1
Q2

2

+Q2

�

3χ2 +χ4 + 9
�

+
3χ2 +χ4 + 9

Q2
+ 18χ2 + 8χ4 + 3χ6 +χ8 + 34

�

+ . . . ,

and the global symmetry is given by PSU(2)x ×
∏3

i=1 U(1)Q i
where the Z2 centre symmetry

acts trivial on all Q i .

3rd example. The Hilbert series for the example in (2.39) with notation (C.23)

HS= 1+ t
�

χ1,1 + 1
�

+ t
3
2

�

χ0,1

Q
+Qχ1,0

�

+ t2
�

3χ1,1 +χ2,2 + 3
�

(D.51)

+ t
5
2

�3χ0,1 +χ1,2 +χ2,0

Q
+Q

�

χ0,2 + 3χ1,0 +χ2,1

�

�

+ . . . ,

with χn1,n2
the A2 characters for irreps [n1, n2]. The Z3 centre charge of the U(1)Q is deter-

mined to be −1 mod 3, such that the symmetry group is (SU(3)×U(1))/Z3
∼= U(3).

After gauging a discrete Z2 0-form symmetry, the labelling becomes

2
w1

2
w2

SU(2)

1
v

←→

1 2 2 1

1
y3

Z2

Q
y1,2 (D.52)

with fugacity map

w1 =
Q1

u1
, w2 = x2

1 , v =Q0 , (D.53)
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with x1 an A1 weight space fugacity and Q0,1 two U(1) fugacities. The Hilbert series becomes

HS= 1+ t (χ2 + 2) + t3/2
�

Q1 +
1

Q1

�

χ1 (D.54)

+ t2

��

Q0Q2
1 +

1

Q0Q2
1

+ 4

�

χ2 +χ4 + 7

�

+ t5/2
��

Q0Q1 + 5Q1 +
1

Q0Q1
+

5
Q1

�

χ1 +
�

Q1 +
1

Q1

�

χ3

�

+ . . . ,

where χn1
denotes A1 characters for irreps [n1]. It is apparent that the Z2 centre charges of

(Q0,Q1) are (0,−1 mod 2).

D.5 T[SO(2N)] theories

In this appendix, computational details for the T[SO(2N)] theories are provided. For or-
thosymplectic quivers, the topological symmetries visible in the UV Lagrangian are severely
limited. For an SO(k) gauge group, there is only a Z2 valued topological 0-form symmetry.
For SO(2), there exists a whole U(1) topological 0-form symmetry. Thus, to confirm mirror
symmetry after such a Z2 is gauged, one needs to identify the Z2 in the original mirror pair.
Therefore, it is sufficient to provide the Z2-refined Hilbert series of the original mirror pair to
demonstrate agreement after gauging. The Hilbert series after gauging the discrete Z2 sym-
metry is simply obtained by averaging over Z2.

D.5.1 T[SO(6)] theories

For T[SO(6)], one can gauge a Zt
2 ⊂ PSO(6)t , which corresponds to gauging the Z f

2 factor
inside the flavour symmetry of the mirror theory, which is identified by a “2+1” splitting of the
fundamental flavours. Before gauging, the discrete fugacities are attributed as follows:

2

z1

2 4

z2

4

6 ←→
2 2 4 4

4

2, a

(D.55)

The Coulomb branch Hilbert series of the left-hand side (which equals the Higgs branch Hilbert
series of the right theory) reads

HS= 1+ (7+ 8z2)t + (63+ 56z2)t
2 + (328+ 336z2)t

3 + (1476+ 1448z2)t
4 (D.56)

+ (5390+ 5424z2)t
5 + (17500+ 17416z2)t

6 + . . . ,

with the Z2 fugacity z2 = a.

D.5.2 T[SO(8)] theories

For T[SO(8)], one can gauge Z2 ⊂ PSO(8)t , which corresponds to gauge a Z2 factor inside the
flavour symmetry for the mirror theory. Now one can choose to gauge this Zt

2 for the SO(4) or
SO(6) gauge node.
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Zt
2 of SO(4). Gauging the Zt

2 of the SO(4) gauge node leads to a “2+2” splitting of the
fundamental flavours. Before gauging, the discrete fugacities are attributed as follows:

2

z1

2

z2

4 4 6

z3

6

8 (D.57)

←→
2 2 4 4 6 6

4

4, a

The Coulomb branch Hilbert series of the left-hand side (which equals the Higgs branch Hilbert
series of the right theory) reads

HS= 1+ (12+ 16z2)t + (213+ 192z2)t
2 + (1984+ 2048z2)t

3 + . . . ,

with the Z2 fugacity z2 = a.

Zt
2 of SO(6). Gauging the Zt

2 of the SO(6) gauge node leads to “3+1” splitting of the funda-
mental flavours in the mirror theory. Before gauging, the discrete fugacities are attributed as
follows:

2

z1

2

z2

4 4 6

z3

6

8 (D.58)

←→
2 2 4 4 6 6

6

2, a

The Coulomb branch Hilbert series of the left-hand side (and the Higgs branch Hilbert series
of the right-hand theory) reads

HS= 1+ (12z3 + 16)t + (213+ 192z3)t
2 + (1984z3 + 2048)t3 + . . . ,

with the Z2 fugacity z3 = a.

D.6 Sp(k) SQCD and orthosymplectic mirrors

The logic is as in Appendix D.5, to evaluate the Hilbert series of the theories after Z2 gauging,
one evaluates the Z2-refined Hilbert series of Sp(k) SQCD and its mirror theory. Once agree-
ment is found, the theories after gauging have agreeing the Hilbert series by construction.

D.6.1 Sp(2) SQCD, 5 flavours

Consider Sp(2) with 5 fundamental flavours.

Zt
2 of SO(2). Gauging the Zt

2 of one of the SO(2) gauge nodes corresponds to a “1+4”-
splitting of the fundamental flavours in the mirror theory. Before gauging, the discrete fu-
gacities are assigned as follows:

4

a1
2 8

←→ a1

2 2 4 4 4 2 2

2

(D.59)
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The Coulomb branch Hilbert series of the right theory (which agrees with the Higgs branch
Hilbert series of the left theory) reads

HS1+4 = 1+ (16a1 + 29)t + (448a1 + 532)t2 + . . . , (D.60)

with the Z2-fugacity a1.

Zt
2 inside SO(4). Gauging the Zt

2 of one of the SO(4) gauge nodes corresponds to a “2+3”-
splitting of the fundamental flavours in the mirror theory. Before gauging, the discrete fugac-
ities are assigned as follows:

4

a2
4 6

←→

2 2

a2

4 4 4 2 2

2

(D.61)

The Coulomb branch Hilbert series of the right theory (which agrees with the Higgs branch
Hilbert series of the left theory) reads

HS2+3 = 1+ (24a2 + 21)t + (480a2 + 500)t2 + . . . , (D.62)

with Z2-fugacity a2.

D.6.2 Sp(2) SQCD, 6 flavours

Zt
2 of SO(2). Gauging the Zt

2 of one of the SO(2) gauge nodes corresponds to a “1+5”-
splitting of the fundamental flavours in the mirror theory. Before gauging, the discrete fu-
gacities are assigned as follows:

4

a1
2 10

←→ a1

2 2 4 4 5 4 4 2 2

1 1

(D.63)

The Coulomb branch Hilbert series of the right theory (which agrees with the Higgs branch
Hilbert series of the left theory) reads

HS1+5 = 1+ (20a1 + 46)t + (900a1 + 1233)t2 + . . . , (D.64)

with the Z2-fugacity a1.

Zt
2 of SO(4). Gauging the Zt

2 of one of the SO(4) gauge nodes corresponds to a “2+4”-
splitting of the fundamental flavours in the mirror theory. Before gauging, the discrete fu-
gacities are assigned as follows:

4

a2
4 8

←→

2 2

a2

4 4 5 4 4 2 2

1 1

(D.65)

The Coulomb branch Hilbert series of the right theory (which agrees with the Higgs branch
Hilbert series of the left theory) reads

HS2+4 = 1+ (32a2 + 34)t + (1056a2 + 1077)t2 + . . . , (D.66)

with the Z2-fugacity a2.
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Zt
2 of SO(5). Gauging the Zt

2 of the SO(5) gauge node corresponds to a “3+3”-splitting of the
fundamental flavours in the mirror theory. Before gauging, the discrete fugacities are assigned
as follows:

4

a3
6 6

←→

2 2 4 4

a3

5 4 4 2 2

1 1

(D.67)

and the Coulomb branch Hilbert series of the right theory (which agrees with the Higgs branch
Hilbert series of the left theory) reads

HS3+3 = 1+ (36a3 + 30)t + (1044a3 + 1089)t2 + . . . , (D.68)

with the Z2-fugacity a3.

D.7 Sp(k) SQCD and D-type mirrors

In this appendix, computational evidence for the general results of Section 2.7 is provided.
The relevant mirror map is discussed in Appendix D.6.

D.7.1 D7 Dynkin quiver

Consider Sp(2) SQCD with N = 7 flavours and its D7 Dynkin mirror quiver, see (2.45).

2nd node. The mirror pairs is defined by

4

10
y3,...,7

Z2

y1,2
←→

1
w1

SU(2) 3
w3

4
w4

4
w5

2
w6

2
w7

1
v

(D.69)

and the fugacity map is

w1 = u2
1 , (w3, w4, w5, w6, w7)i =

5
∏

j=1

x
C D5

i j

j , v =
u2

2

x2
, (D.70)

with the weight space fugacities x i , ua of so(10) and so(4), respectively. (See the end of Section
2.7 for the global symmetry enhancement.) The flavour fugacities follow from (C.30). The
Higgs/Coulomb branch Hilbert series then evaluates to

HS= 1+ t
�

χ0,1,0,0,0 +φ0,2 +φ2,0

�

(D.71)

+ t2
�

χ0,0,0,1,1 +χ0,2,0,0,0 +χ2,0,0,0,0 + 2χ0,1,0,0,0φ0,2 + 2χ0,1,0,0,0φ2,0

+χ2,0,0,0,0φ2,2 +φ0,4 +φ2,2 +φ4,0 + 2
�

+ . . . ,

with χ, φ denoting so(10), so(4) characters, respectively. The global form of the isometry
group is PSO(4)× PSO(10).
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3rd node. The mirror pair is

4

8
y4,...,7

Z2

y1,2,3
←→

1
w1

2
w2

SU(3) 4
w4

4
w5

2
w6

2
w7

1
v

(D.72)

and the fugacity map is

(w1, w2)a =
2
∏

b=1

u
C

A2
ab

b , (w4, w5, w6, w7)i =
4
∏

j=1

x
C

D4
i j

j , v =
Q
x1

, (D.73)

with the weight space fugacities x i , ua of so(8) and su(3), respectively. The flavour fugacities
follow from (C.30). The Higgs/Coulomb branch Hilbert series then evaluates to

HS= 1+ t
�

χ0,1,0,0 +φ1,1 + 1
�

(D.74)

+ t2
�

Qχ1,0,0,0 +
χ1,0,0,0

Q
+Qχ1,0,0,0φ1,1 +

χ1,0,0,0φ1,1

Q
+χ0,0,0,2 +χ0,0,2,0 + 2χ0,1,0,0 +χ0,2,0,0 +χ2,0,0,0

+ 2χ0,1,0,0φ1,1 +χ2,0,0,0φ1,1 + 3φ1,1 +φ2,2 + 3
�

+ . . . ,

with χ, φ denoting so(8), su(3) characters, respectively. The global form is given by

PSU(3) × U(1)Q×Spin(8)
Z2×Z2

with Q having Z2 × Z2 centre charges (0, 1 mod 2). Thus, the isome-

try group is PSU(3)× U(1)Q×SO(8)
Z2

.

4th node. The mirror pair is

4

6
y5,...,7

Z2

y1,...,4
←→

1
w1

2
w2

3
w3

SU(4) 4
w5

2
w6

2
w7

1
v

(D.75)

and the fugacity map is

(w1, w2, w3)a =
3
∏

b=1

u
C

A3
ab

b , (w5, w6, w7)i =
3
∏

j=1

x
C

D3
i j

j , v =Q , (D.76)

with the weight space fugacities x i , ua of so(6) and su(4), respectively. The flavour fugacities
follow from (C.30). The Higgs/Coulomb branch Hilbert series then evaluates to

HS= 1+ t
�

χ0,1,1 +φ1,0,1 + 1
�

(D.77)

+ t2
�

Qφ0,2,0 +
φ0,2,0

Q
+ 3χ0,1,1 +χ0,2,2 +χ2,0,0 + 2χ0,1,1φ1,0,1

+χ2,0,0φ1,0,1 + 2φ0,2,0 + 3φ1,0,1 +φ2,0,2 +Q+
1
Q
+ 3

�

+ . . . ,

with χ, φ denoting so(6), su(4) characters, respectively. The global form is
PSU(4)×U(1)Q × PSO(6).
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5th node. The mirror pair is

4

4
y6,7

Z2

y1,...,5
←→

1
w1

2
w2

3
w3

4
w4

SU(4)
2
w6

2
w7

1
v

(D.78)

and the fugacity map is

(w1, w2, w3, w4)a =
4
∏

b=1

u
C

A4
ab

b , (w6, w7)i =
2
∏

j=1

x
C

D2
i j

j , v =
Q
u4

, (D.79)

with the weight space fugacities x i , ua of so(4) and su(5), respectively. The flavour fugacities
follow from (C.30). The Higgs/Coulomb branch Hilbert series then evaluates to

HS= 1+ t
�

χ0,2 +χ2,0 +φ1,0,0,1 + 1
�

(D.80)

+ t2
�

φ0,0,0,1

Q
+Qφ1,0,0,0 +Qφ0,0,2,0 +

φ0,2,0,0

Q
+ 2χ0,2 +χ0,4

+ 2χ2,0 +χ2,2 +χ4,0 + 2χ0,2φ1,0,0,1 + 2χ2,0φ1,0,0,1

+χ2,2φ1,0,0,1 + 2φ0,1,1,0 + 3φ1,0,0,1 +φ2,0,0,2 + 4
�

+ . . . ,

withχ,φ denoting so(4), su(5) characters, respectively. The global form is
SU(5)×U(1)Q
Z5

×PSO(4)
with Q having Z5 centre charge 4 mod 5; i.e. the isometry group is U(5)× PSO(4).

6th node. The mirror pair reads

4 Z2

y1,...,7
←→

1
w1

2
w2

3
w3

4
w4

4
w5

SU(2)

2
w7

1
v

(D.81)

and the fugacity map is

(w1, w2, w3, w4, w5, w7)a =
6
∏

b=1

u
C

A6
ab

b , v =
Q
u4

, (D.82)

with the weight space fugacities ua of su(7), respectively. The flavour fugacities follow from
(C.30). The Higgs/Coulomb branch Hilbert series then evaluates to

HS= 1+ t
�

φ1,0,0,0,0,1 + 1
�

(D.83)

+ t2
�

Qφ0,0,0,0,2,0 +
φ0,0,0,1,0,0

Q
+Qφ0,0,1,0,0,0 +

φ0,2,0,0,0,0

Q

+ 2φ0,1,0,0,1,0 + 2φ1,0,0,0,0,1 +φ2,0,0,0,0,2 + 2
�

+ . . . ,

with φ denoting su(7) characters. The global symmetry is
SU(7)×U(1)Q
Z7

with Q having Z7 centre
charges 4 mod 7.
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D.7.2 D8 Dynkin quiver

Consider Sp(2) SQCD with N = 8 flavours and its D8 Dynkin mirror quiver, see (2.45).

2nd node. The mirror pair is defined by

4

12
y3,...,8

Z2

y1,2
←→

1
w1

SU(2) 3
w3

4
w4

4
w5

4
w6

2
w7

2
w8

1
v

(D.84)

and the fugacity map is

w1 = u2
1 , (w3, w4, w5, w6, w7, w8)i =

6
∏

j=1

x
C

D6
i j

j , v =
u2

2

x2
, (D.85)

with the weight space fugacities ua and x j of so(4) and so(12), respectively. The flavour
fugacities follow from (C.30). The Higgs/Coulomb branch Hilbert series then evaluates to

HS= 1+ t
�

χ0,1,0,0,0,0 +φ0,2 +φ2,0

�

(D.86)

+ t2
�

χ0,0,0,1,0,0 +χ0,2,0,0,0,0 +χ2,0,0,0,0,0 + 2χ0,1,0,0,0,0φ0,2

+ 2χ0,1,0,0,0,0φ2,0 +χ2,0,0,0,0,0φ2,2 +φ0,4 +φ2,2 +φ4,0 + 2
�

+ . . . ,

and φ are so(4) characters and χ are so(12) characters. The global form is read off to be
PSO(4)× PSO(12).

3rd node. The mirror pair is

4

10
y4,...,8

Z2

y1,2,3
←→

1
w1

2
w2

SU(3) 4
w4

4
w5

4
w6

2
w7

2
w8

1
v

(D.87)

and the fugacity map is

(w1, w2)a =
2
∏

b=1

u
C

A2
ab

b , (w4, w5, w6, w7, w8)i =
5
∏

j=1

x
C D5

i j

j , v =
Q
x1

, (D.88)

with the weight space fugacities ua and x j of su(3) and so(10), respectively. The flavour
fugacities follow from (C.30). The Higgs/Coulomb branch Hilbert series then evaluates to

HS= 1+ t
�

χ0,1,0,0,0 +φ1,1 + 1
�

(D.89)

+ t2
�

Qχ1,0,0,0,0 +
χ1,0,0,0,0

Q
+Qχ1,0,0,0,0φ1,1 +

χ1,0,0,0,0φ1,1

Q
+χ0,0,0,1,1 + 2χ0,1,0,0,0 +χ0,2,0,0,0 +χ2,0,0,0,0 + 2χ0,1,0,0,0φ1,1

+χ2,0,0,0,0φ1,1 + 3φ1,1 +φ2,2 + 3
�

+ . . . ,

and φ denotes su(3) characters, while χ are so(10) characters. The global symmetry is

PSU(3)× U(1)Q×Spin(10)
Z4

where the Q can be assigned Z4 charge 2 mod 4.
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4th node. The mirror pair reads

4

8
y5,...,8

Z2

y1,...,4
←→

1
w1

2
w2

3
w3

SU(4) 4
w5

4
w6

2
w7

2
w8

1
v

(D.90)

and the fugacity map is

(w1, w2, w3)a =
3
∏

b=1

u
C

A3
ab

b , (w5, w6, w7, w8)i =
4
∏

j=1

x
C

D4
i j

j , v =Q , (D.91)

with the weight space fugacities ua and x j of su(4) and so(8), respectively. The flavour fugac-
ities follow from (C.30). The Higgs/Coulomb branch Hilbert series then evaluates to

HS= 1+ t
�

χ0,1,0,0 +φ1,0,1 + 1
�

(D.92)

+ t2
�

Qφ0,2,0 +
φ0,2,0

Q
+χ0,0,0,2 +χ0,0,2,0 + 2χ0,1,0,0 +χ0,2,0,0 +χ2,0,0,0

+ 2χ0,1,0,0φ1,0,1 +χ2,0,0,0φ1,0,1 + 2φ0,2,0 + 3φ1,0,1 +φ2,0,2 +Q+
1
Q
+ 3

�

+ . . . ,

with φ denoting su(4) characters and χ are so(8) characters. The global symmetry is
PSU(4)×U(1)Q × PSO(8).

5th node. The mirror pair is

4

6
y6,...,8

Z2

y1,...,5
←→

1
w1

2
w2

3
w3

4
w4

SU(4) 4
w6

2
w7

2
w8

1
v

(D.93)

and the fugacity map is

(w1, w2, w3, w4)a =
4
∏

b=1

u
C

A4
ab

b , (w6, w7, w8)i =
3
∏

j=1

x
C

D3
i j

j , v =
Q
u4

, (D.94)

with the weight space fugacities ua and x j of su(5) and so(6), respectively. The flavour fugac-
ities follow from (C.30). The Higgs/Coulomb branch Hilbert series then evaluates to

HS= 1+ t
�

χ0,1,1 +φ1,0,0,1 + 1
�

(D.95)

+ t2
�

φ0,0,0,1

Q
+Qφ1,0,0,0 +Qφ0,0,2,0 +

φ0,2,0,0

Q
+ 3χ0,1,1 +χ0,2,2 +χ2,0,0

+ 2χ0,1,1φ1,0,0,1 +χ2,0,0φ1,0,0,1 + 2φ0,1,1,0 + 3φ1,0,0,1 +φ2,0,0,2 + 3
�

+ . . . ,

and φ, χ denote su(5), so(6) characters, respectively. The isometry group is
SU(5)×U(1)Q
Z5

× PSO(6) where the Z5 charge of Q is 4 mod 5. The global form is then
U(5)× PSO(6).
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6th node. The mirror pair is

4

4
y7,8

Z2

y1,...,6
←→

1
w1

2
w2

3
w3

4
w4

4
w5

SU(4)
2
w7

2
w8

1
v

(D.96)

and the fugacity map is

(w1, w2, w3, w4, w5)a =
5
∏

b=1

u
CA5

ab
b , (w7, w8)i =

2
∏

j=1

x
C

D2
i j

j , v =
Q
u4

, (D.97)

with the weight space fugacities ua and x j of su(6) and so(2), respectively. The flavour fugac-
ities follow from (C.30). The Higgs/Coulomb branch Hilbert series then evaluates to

HS= 1+ t
�

χ0,2 +χ2,0 +φ1,0,0,0,1 + 1
�

(D.98)

+ t2
�

φ0,0,0,1,0

Q
+Qφ0,1,0,0,0 +Qφ0,0,0,2,0 +

φ0,2,0,0,0

Q
+ 2χ0,2 +χ0,4 + 2χ2,0

+χ2,2 +χ4,0 + 2χ0,2φ1,0,0,0,1 + 2χ2,0φ1,0,0,0,1 +χ2,2φ1,0,0,0,1 + 2φ0,1,0,1,0

+ 3φ1,0,0,0,1 +φ2,0,0,0,2 + 4
�

+ . . . ,

here φ denote su(6) characters and χ denote so(4) characters. The global form is
SU(6)×U(1)Q
Z6

× PSO(4) where the Z6 charge of Q is 4 mod 6.

7th node. The mirror pair is given by

4 Z2

y1,...,8
←→

1
w1

2
w2

3
w3

4
w4

4
w5

4
w6

SU(2)

2
w8

1
v

(D.99)

and the fugacity map is

(w1, w2, w3, w4, w5, w6, w8)a =
7
∏

b=1

u
C

A7
ab

b , v =
Q
u4

, (D.100)

with the weight space fugacities ua of su(8). The flavour fugacities follow from (C.30). The
Higgs/Coulomb branch Hilbert series then evaluates to

HS= 1+ t
�

φ1,0,0,0,0,0,1 + 1
�

(D.101)

+ t2
�

Qφ0,0,0,0,0,2,0 +Qφ0,0,0,1,0,0,0 +
φ0,0,0,1,0,0,0

Q
+
φ0,2,0,0,0,0,0

Q

+ 2φ0,1,0,0,0,1,0 + 2φ1,0,0,0,0,0,1 +φ2,0,0,0,0,0,2 + 2
�

+ . . . ,

whereφ denotes su(8) characters. The global form is
SU(8)×U(1)Q
Z8

and Q has Z8 charge 4 mod 8.
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D.8 O(2k) SQCD and C-type mirrors

This appendix contains explicit Hilbert series for non-simply laced Dynkin quivers and their
O(2k) mirror SQCD theories. For concreteness, O(2) SQCD with 4 fundamental flavours is
considered. The mirror is a C4 balanced Dynkin quiver.

Example 1. Gauging the topological symmetry of the gauge node at the long edge leads to
the mirror pair

O(2)

Z2

y1,2,3,4 ←→

1
w1
m1

2
w2
m2

2
w3
m3

SU(2)−
l

1
v
h

2

(D.102)

and the magnetic fluxes for the right-hand side quiver in (D.102) take values in

(m1, m2, m3, l, h) ∈ Z×Z2 ×Z2 ×Z×Z . (D.103)

The fugacity map is given by

w1 =
x2

1

x2
, w2 =

x2
2

x1 x3
, w3 =

x2
3

x2
, v =

Q−1

x2
2

, (D.104a)

y1 =Q
1
4 x1 , y2 =Q

1
4

x2

x1
, y3 =Q

1
4

x3

x2
, y4 =Q

1
4

1
x3

, (D.104b)

with the A3 weight space fugacities x i . One evaluates the Hilbert series to read

HS= 1+ t
�

φ1,0,1 + 1
�

(D.105)

+ t2

�

φ0,0,4 +φ0,2,0

Q
+Q

�

φ0,2,0 +φ4,0,0

�

+φ0,2,0 + 2φ1,0,1 + 2φ2,0,2 + 2

�

+ t3
�2φ0,0,4 +φ0,1,2 +φ0,2,0 +φ1,0,5 +φ1,1,3 +φ1,2,1

Q
+Q

�

φ0,2,0 +φ1,2,1 +φ2,1,0 +φ3,1,1 + 2φ4,0,0 +φ5,0,1

�

+φ0,1,2 +φ0,2,0 + 3φ1,0,1 +φ1,1,3 +φ1,2,1 + 4φ2,0,2 +φ2,1,0 + 2φ3,0,3 +φ3,1,1 + 2
�

+ . . . ,

where φn1,n2,n3
denotes A3 characters for irreps [n1, n2, n3]. The U(1)Q is trivial under the Z4

centre of SU(4), such that the global symmetry group becomes PSU(4)×U(1)Q.

Example 2. Gauging the topological symmetry for the node closest to the non-simply laced
edge on the short side leads to

O(2)

2
y1

Z2

y2,3,4
←→

1
w1
m1

2
w2
m2

SU(2)−
l

2
w4
m4

1
v
h

2

(D.106)

and the magnetic fluxes for the right-hand side quiver in (D.106) are defined via

(m1, m2, l, m4, h) ∈
1
⋃

i=0

�

Z×Z2 ×Z×
�

Z+
i
2

�2

×
�

Z+
i
2

�

�

. (D.107)

71

https://scipost.org
https://scipost.org/SciPostPhys.15.1.033


SciPost Phys. 15, 033 (2023)

The fugacity map is given by

w1 =
x2

1

x2
, w2 =

x2
2

x1 x3
, v =

1

x2
2

, w4 = u2
1 , (D.108a)

y1 = u1 , y2 = x1 , y3 =
x2

x1
, y4 =

x3

x2
, (D.108b)

where x i are C3 weight space fugacities and u1 is a C1 weight space fugacity. the Hilbert series
can be evaluated to read

HS= 1+ t
�

χ2,0,0 +φ2

�

+ t2
�

χ0,1,0 +χ0,2,0 +χ4,0,0 + 2φ2χ2,0,0 +φ4 + 1
�

(D.109)

+ t3
�

χ2,0,0 +χ2,1,0 +χ2,2,0 +χ6,0,0 +φ2χ0,1,0 +φ2χ0,2,0 +φ2χ2,0,0 +φ2χ2,1,0

+ 2φ2χ4,0,0 + 2φ4χ2,0,0 +φ2 +φ6

�

+ . . . ,

with χn1,n2,n3
the C3 characters for irreps [n1, n2, n3]C and φk1

the C1 characters for irreps
[k1]C . As all appearing irreps are invariant under the Z2 centre symmetries for C3 and C1, the
global symmetry group is PSp(3)× PSp(1).

Example 3. Gauging the topological symmetry of the other U(2) gauge node on the short
side leads to

O(2)

4
y1,2

Z2

y3,4
←→

1
w1
m1

SU(2)−
l

2
w3
m3

2
w4
m4

1
v
h

2

(D.110)

and the magnetic fluxes for the right-hand side quiver in (D.110) take values in

(m1, l, m3, m4, h) ∈
1
⋃

i=0

�

Z×Z×Z2 ×
�

Z+
i
2

�2

×
�

Z+
i
2

�

�

. (D.111)

The relevant fugacity map is given by

w1 =
x2

1

x2
, v =

1

x2
2

, w3 =
u2

1

u2
, w4 =

u2
2

u2
1

, (D.112a)

y1 = u1 , y2 =
u2

u1
, y3 = x1 , y4 =

x2

x1
, (D.112b)

with x i and ui two sets of C2 weight space fugacities. The Hilbert series reads

HS= 1+ t
�

χ2,0 +φ2,0

�

(D.113)

+ t2
�

χ0,1 +χ0,2 +χ4,0 +χ0,1φ0,1 + 2χ2,0φ2,0 +φ0,1 +φ0,2 +φ4,0 + 1
�

+ t3
�

χ2,0 +χ2,1 +χ2,2 +χ6,0 +χ0,1φ2,0 +χ0,2φ2,0 +χ2,0φ2,0 +χ2,1φ2,0

+ 2χ4,0φ2,0 +χ0,1φ2,1 +χ2,0φ0,1 +χ2,0φ0,2 +χ2,0φ2,1 + 2χ2,0φ4,0

+χ2,1φ0,1 +φ2,0 +φ2,1 +φ2,2 +φ6,0

�

+ . . . ,

where χn1,n2
and φk1,k2

denote the C2 characters of the irreps labelled by [n1, n2] and [k1, k2],
respectively. All appearing irreps are invariant under the Z2 centre symmetries; thus, the
global symmetry group is PSp(2)× PSp(2).
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