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Abstract

Applying time-dependent driving is a basic way of quantum control. Driven systems
show various dynamics as its time scale is changed due to the different amount of nona-
diabatic transitions. The fast-forward scaling theory enables us to observe slow (or fast)
time-scale dynamics during moderate time by applying additional driving. Here we dis-
cuss its application to nonadiabatic transitions. We derive mathematical expression of
additional driving and also find a formula for calculating it. Moreover, we point out rela-
tion between the fast-forward scaling theory for nonadiabatic transitions and shortcuts
to adiabaticity by counterdiabatic driving.
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1 Introduction

Realization of high-speed quantum control is one of the most critical elements of quantum
technologies. As a matter of course, even classical technologies have been developed in pur-
suit of high-speed processing for practical use. However, there is more essential reason in the
quantum case. In quantum systems, decoherence is inevitable and it smears quantumness.
Speedup of quantum control is required for minimizing a bad influence of decoherence. Pre-
ciseness of quantum control is also an important factor. Indeed, most quantum advantages
stem from delicate interference among the exponentially large number of quantum states or
high sensitivity of quantum states against small system parameters. To realize such precise
quantum control, its speed might have to be slower than experimental limitations to some
extent.

Time rescaling of control schemes may be necessary to satisfy the above requirements.
However, changing time scale affects dynamics and its measurement outcomes since the
amount of nonadiabatic transitions differs. This is also a problem from the viewpoint of quan-
tum simulation of nonadiabatic phenomena. The fast-forward scaling theory was proposed as
a candidate for resolving this problem [1, 2]. It enables us to change time scale of dynamics
without changing measurement outcomes by applying additional driving. It was first formu-
lated for a single-particle problem in potential [1], but it is not limited to such a specific system.
Indeed, it has been extended to charged particles [3], many-body systems [4], discrete sys-
tems [5,6], Dirac dynamics [7], classical systems [8], stochastic systems [9], etc (see Ref. [2]
and references therein).
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The fast-forward scaling theory can also be applied to acceleration of adiabatic time evolu-
tion by introducing a “regularization term” [10]. In this sense, the fast-forward scaling theory
is regarded as one of the methods of shortcuts to adiabaticity [11–14]. There are two rep-
resentative approaches in shortcuts to adiabaticity. One is counterdiabatic driving, in which
speedup of adiabatic time evolution is realized by applying additional driving (the counterdia-
batic term) [11, 12]. The other is invariant-based inverse engineering, in which it is realized
by scheduling system parameters [13]. Relation between the fast-forward scaling theory and
invariant-based inverse engineering was discussed in a specific system [15]. Moreover, it was
pointed out in Ref. [16] that the regularization term is identical to the counterdiabatic term
(or the single-eigenstate counterdiabatic term proposed in Ref. [17]). Combination of the
fast-forward scaling theory and shortcuts to adiabaticity was also discussed [6].

Here we summarize points to be discussed in the present paper. First, we consider ap-
plication of the fast-forward scaling theory to nonadiabatic transitions. For this purpose, we
reformulate it so that nonadiabatic transitions characterized by populations on instantaneous
energy eigenstates are rescaled in time. In the fast-forward scaling theory, there exist phase
degrees of freedom. We fix them so that the diagonal part of a total Hamiltonian in the
energy-eigenstate basis of a reference Hamiltonian is only given by the reference Hamiltonian
in rescaled time and additional driving just contributes to the off-diagonal part. As the re-
sult, we find that the additional terms consist of the counterdiabatic term and its similar term.
We point out that the latter term reproduces nonadiabatic transitions caused by the reference
Hamiltonian in the original time scale. Next, we propose another approach for calculating ad-
ditional terms. Variety of derivation would enhance its utility. Finally, we discuss the adiabatic
limit of reference dynamics. We show that the fast-forward scaling theory for nonadiabatic
transitions is asymptotically equivalent to shortcuts to adiabaticity by counterdiabatic driving
without introducing any new concept such as the regularization term.

2 Fast-forward scaling theory

Here we overview and explain our viewpoint of the fast-forward scaling theory for better un-
derstanding of the present results. Note that we adopt a similar notation to Ref. [6] instead of
the conventional notation [1,2].

We introduce reference dynamics |Ψref(t)〉 governed by a time-dependent Hamiltonian
Ĥref(t). The reference dynamics can be specified by measurement. For example, projection
measurement on a certain orthonormal basis |σ〉 gives population of the reference dynamics
on this basis

|cσ(t)|2 = |〈σ|Ψref(t)〉|2 , (1)

where |Ψref(t)〉 =
∑

σ cσ(t)|σ〉. The aim of the fast-forward scaling theory is to obtain the
same population in different time scale. For this purpose, we introduce rescaled time s = s(t).
Then, the aim of the fast-forward scaling theory can be formulated as a problem to find rescaled
dynamics (the fast-forward state) |ΨFF(t)〉 and its Hamiltonian ĤFF(t) satisfying

|〈σ|ΨFF(t)〉|2 = |〈σ|Ψref(s)〉|2 , (2)

where time scale becomes fast forward for ds/d t > 1, slow down for 0 < ds/d t < 1, a pause
for ds/d t = 0, and a rewind for ds/d t < 0.

Since the rescaled dynamics |ΨFF(t)〉 is identical with the reference dynamics at the rescaled
time |Ψref(s)〉 except for phase on the basis |σ〉, it is given by

|ΨFF(t)〉= Û(t)|Ψref(s)〉 , (3)
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where Û(t) is a unitary operator

Û(t) = e−i
∑

σ fσ(t)|σ〉〈σ| , (4)

with a real number fσ(t). By considering time derivative of rescaled dynamics (3), we can
also find its Hamiltonian

ĤFF(t) =
ds
d t

Û(t)Ĥref(s)Û
†(t)− iħhÛ(t)
�

∂

∂ t
Û†(t)
�

. (5)

A theoretically trivial example is Û(t) = 1 [ fσ(t) = 0], which gives
ĤFF(t) = (ds/d t)Ĥref(s), but it may be experimentally nontrivial. For example, it may re-
quire time-dependent mass for quantum particles since the overall amplitude of the reference
Hamiltonian must be changed as ds/d t [1]. This example explains why we introduce the
unitary operator Û(t), i.e., it is used to make protocols feasible in experiments.

3 Nonadiabatic transitions

Next we also overview nonadiabatic transitions (for details, see, e.g., Ref. [18]) and shortly
mention shortcuts to adiabaticity by counterdiabatic driving [11,12].

In the energy-eigenstate basis, the reference dynamics and its Hamiltonian can be ex-
pressed as

|Ψref(t)〉=
∑

n

cn(t)e
− i
ħh

∫ t
0 d t ′En(t ′)|n(t)〉 , (6)

and Ĥref(t) =
∑

n En(t)|n(t)〉〈n(t)|. Nonadiabatic transitions are characterized by the abso-
lute square of each coefficient of the energy-eigenstate basis [Eq. (1) with |σ〉 = |n(t)〉], i.e.,
|cn(t)|2 = |〈n(t)|Ψref(t)〉|2. The Schrödinger equation gives its time evolution

iħh
∂

∂ t
cn(t) + iħh
∑

m

〈n(t)|
�

∂

∂ t
|m(t)〉
�

cm(t) = 0 . (7)

Here, the off-diagonal part of the second term causes transitions between different levels, i.e.,
it describes nonadiabatic transitions. The operator form of the second term is given by

Ĥcd(t) = iħh
∑

n,m
(n̸=m)

|n(t)〉〈n(t)|
�

∂

∂ t
|m(t)〉
�

〈m(t)| , (8)

which is known as the adiabatic gauge potential [18] or the counterdiabatic term [11,12]. In
counterdiabatic driving, we apply this term to the reference Hamiltonian, and then nonadia-
batic transitions are canceled out and the solution of the Schrödinger equation becomes the
adiabatic state [11,12].

4 Time rescaling of nonadiabatic transitions

Now we discuss time rescaling of nonadiabatic transitions. The condition for the rescaled
dynamics (2) is rewritten as

|〈n(s)|ΨFF(t)〉|2 = |〈n(s)|Ψref(s)〉|2 . (9)

Note that the energy-eigenstate basis in the left-hand side of this equation is that in the rescaled
time s, whereas the rescaled dynamics is in the usual time scale t. Such dynamics is given by
Eq. (3) and Eq. (4) with |σ〉= |n(s)〉.
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Then we discuss the rescaled Hamiltonian (5). The first term in the rescaled Hamiltonian
(5) is simply given by (ds/d t)Û(t)Ĥref(s)Û†(t) = (ds/d t)Ĥref(s), i.e., it only gives the diag-
onal term in the energy-eigenstate basis. In addition, the diagonal term in the second term
of the rescaled Hamiltonian (5) is given by ħh

∑

n(d fn/d t)|n(s)〉〈n(s)|. Therefore, by setting
ħh(d fn/d t) = (1 − ds/d t)En(s), the diagonal part of the total rescaled Hamiltonian (5) be-
comes Ĥref(s). For this phase fn(t), we can also calculate off-diagonal terms, and finally we
find that the total rescaled Hamiltonian (5) is given by

ĤFF(t) = Ĥref(s) +
ds
d t

�

Ĥcd(s) + Ĥnad(t)
�

, (10)

where the second term (ds/d t)Ĥcd(s) is the counterdiabatic term (8) for the reference Hamil-
tonian in the rescaled time Ĥref(s), and the third term is our finding given by

Ĥnad(t) = −iħh
∑

n,m
(n ̸=m)

e−i[ fn(t)− fm(t)]|n(s)〉〈n(s)|
�

∂

∂ s
|m(s)〉
�

〈m(s)| . (11)

Remarkably, the matrix element of the third term (11) is given by

〈n(s)|Ĥnad(t)|m(s)〉= −e−i[ fn(t)− fm(t)]〈n(s)|Ĥcd(s)|m(s)〉 , (12)

that is, the third term (11) is the opposite sign of the counterdiabatic term (8) with the phase
factor associated with the rescaling rate ds/d t. Note that the third term (11) completely
cancels out the second term (8) when the rescaled time s is equal to the time t, and thus the
rescaled Hamiltonian (10) recovers the reference Hamiltonian Ĥref(t). According to the theory
of counterdiabatic driving [11,12], the second term (ds/d t)Ĥcd(s) cancels out diabatic changes
caused by the first term Ĥref(s), and thus we can conclude that the third term (ds/d t)Ĥnad(t)
reproduces nonadiatic transitions caused by the reference Hamiltonian in the original time
scale Ĥref(t).

Finally, we propose another way for constructing the third term (11). As in the case of
counterdiabatic driving, it is not always easy to construct additional driving from its mathe-
matical expression. Indeed, we have to find explicit expression of operators from off-diagonal
elements |n(s)〉〈m(s)|. The key idea of our proposal is use of the following formula [19]

e−Ô(t) ∂

∂ t
eÔ(t) =

∞
∑

k=0

(−1)k

(k+ 1)!

�

adÔ(t)

�k ∂

∂ t
Ô(t) , (13)

for the second term of Eq. (5), where Ô(t) = i
∑

n fn(t)|n(s)〉〈n(s)| in the present paper and
adÔ• = [Ô,•] is the adjoint action, i.e., (adÔ)

k• = [Ô, [Ô, . . . [Ô,•] . . . ]] is the kth nested
commutator. That is, once we find the explicit expression of Ô(t), which can be calculated by
using diagonal elements |n(s)〉〈n(s)|, we can construct the second term of Eq. (5) by calculating
the nested commutators. Notably, the counterdiabatic term (8) can also be calculated by
using the nested commutators of the reference Hamiltonian [20–22], and thus we can extract
the third term (11) from the results. Because difficulty in finding operator forms from off-
diagonal elements |n(s)〉〈m(s)| and diagonal elements |n(s)〉〈n(s)| could differ depending on
given systems, this formula has potential usefulness for constructing the additional term (11).
Moreover, for a D-dimensional quantum system, the number of elements is D(D − 1)/2 for
off-diagonal elements (and their Hermitian conjugates), but it is D for diagonal elements.

5 Adiabatic limit

Now we discuss asymptotic behavior of our results in the adiabatic limit of reference dynam-
ics. In the conventional formalism of the fast-forward scaling theory for adiabatic time evo-
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lution [2, 10], we have to introduce the “regularization term” for its justification since the
adiabatic state is not the solution of the Schrödinger equation under a given reference Hamil-
tonian. Later it was pointed out that this regularization term is the counterdiabatic term or the
single-eigenstate counterdiabatic term [16]. Here we propose another interpretation without
introducing such an addition concept. Note that for simplicity we set ħh= 1 and assume that all
time scale and energy scale are dimensionless (we can easily recover dimension by multiplying
ħh in an appropriate way).

Adiabatic time evolution is realized under slow change of parameters. Roughly speak-
ing, the operation time should be larger than the inverse square of the minimum energy gap,
Tad ≫ (∆Emin)−2, where Tad is the adiabatic time scale and ∆Emin is the minimum energy
gap. We assume that the operation time of the reference dynamics Tref is long enough com-
pared with this adiabatic time scale, Tref ≳ Tad. By using the fast-forward scaling theory,
we can realize this adiabatic time evolution within shorter time, say the fast-forwarded time
scale TFF, where TFF≪ Tad ≲ Tref. Then, for example, the rescaled time s can be expressed as
s(t) = (Tref/TFF)t. Since ds/d t = Tref/TFF≫ 1, the leading term in the phase factor of the third
term e−i[ fn(t)− fm(t)] is given by |

∫ t
0 d t ′(Tref/TFF)[Em(s(t ′)) − En(s(t ′))]| ≥ |Tref(t/TFF)∆Emin|.

Since t/TFF is a linear sweep from 0 to 1, the leading value of the phase is determined by the
relation between the reference time scale Tref and the minimum energy gap ∆Emin. In the
adiabatic limit, Tref ≳ Tad ≫ (∆Emin)−2, this term gives high-frequency oscillation, and thus
the third term in the rescaled Hamiltonian (11) effectively vanishes. As the result, the rescaled
Hamiltonian (10) becomes the summation of the reference Hamiltonian in the rescaled time
scale and its counterdiabatic Hamiltonian, i.e., ĤFF(t) ≈ Ĥref(s) + (ds/d t)Ĥcd(s). In conclu-
sion, we find that the fast-forward scaling theory for adiabatic time evolution is asymptotically
equivalent to shortcuts to adiabaticity by counterdiabatic driving.

6 Example

Finally, we consider an example. As the reference Hamiltonian, we consider a two-level system

Ĥref(t) = −hx(t)X̂ − hz(t)Ẑ , (14)

where hx(t) and hz(t) are a time-dependent transverse field and a time-dependent longitudinal
field. Here we express the Pauli matrices as {X̂ , Ŷ , Ẑ}. The eigenenergies and their eigenstates
are given by











E±(t) = ±
Æ

hx2(t) + hz2(t) ,

|+ (t)〉=
�

− sinθ (t)
cosθ (t)

�

, | − (t)〉=
�

cosθ (t)
sinθ (t)

�

,
(15)

where θ (t) satisfies














sin2θ (t) =
hx(t)
p

hx2(t) + hz2(t)
,

cos2θ (t) =
hz(t)
p

hx2(t) + hz2(t)
.

(16)

First, we construct the additional term by using the formula (11). The operator form of the
off-diagonal element is given by |+(s)〉〈−(s)|= (1/2) cos2θ (s) X̂ − (i/2)Ŷ − (1/2) sin 2θ (s)Ẑ ,
and its coefficient is given by 〈+(s)|(∂ /∂ s)| − (s)〉 = ∂ θ (s)/∂ s. The phase factor is given by
e−i[ f+(t)− f−(t)] = e−2i f+(t), where f+(t) =

∫ t
0 d t ′(1− ds/d t ′)E+(s). Therefore, we find that the

additional term (11) is given by

Ĥnad(t) = −
∂ θ (s)
∂ s

sin2 f+(t)
�

cos2θ (s)X̂ − sin 2θ (s)Ẑ
�

−
∂ θ (s)
∂ s

cos2 f+(t)Ŷ . (17)
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Note that we can also construct the counterdiabatic term from Eq. (8) by using the above
equations and it is given by

Ĥcd(s) =
∂ θ (s)
∂ s

Ŷ . (18)

Next, we construct the additional term by using the formula (13). The operator forms of
the diagonal elements are given by |±(s)〉〈±(s)|= (1/2)1̂∓(1/2) sin 2θ (s)X̂∓(1/2) cos 2θ (s)Ẑ ,
where the double sign corresponds and 1̂ is the identity operator, and thus we obtain Ô(t) =
−i f+(t)[sin 2θ (s)X̂ + cos2θ (s)Ẑ]. Note that (∂ /∂ t)Ô(t) = i(1 − ds/d t)Ĥref(s) − 2i(ds/d t)
(∂ θ (s)/ds) f+(t)[cos 2θ (s)X̂ − sin2θ (s)Ẑ] and [Ô(t), Ĥref(s)] = 0. Owing to the algebraic
structure of the nested commutators, we obtain

�

adÔ(t)

�k ∂

∂ t
Ô(t) =

ds
d t
∂ θ (s)
∂ s

(−i)k+1[2 f+(t)]
k+1Ŵk , for k > 0 , (19)

where Ŵk = iŶ for odd k and Ŵk = cos2θ (s)X̂ − sin 2θ (s)Ẑ for even k. By substituting
this result for Eq. (5), we obtain Eq. (10) with Eqs. (14), (17), and (18). As mentioned in
the general discussion, the counterdiabatic term (18) can be specified by using the nested
commutators of the reference Hamiltonian (14), and thus we can extract Eq. (17).

Finally, we consider the adiabatic limit of the reference dynamics. Here we again assume
the linear rescaling s(t) = (Tref/TFF)t and fast-forwarding Tref/TFF≫ 1. In the present exam-
ple, the third term (17) oscillates with phase 2 f+(t). The leading term of this phase is given
by |2 f+(t)| ≈ |
∫ t

0 d t ′(Tref/TFF)∆E(s)| ≥ |Tref(t/TFF)∆Emin|, where∆E(s) = E+(s)−E−(s) is an
energy gap. As mentioned in the general discussion, we find that it causes fast oscillation in
the adiabatic limit, Tref ≳ Tad ≫ (∆Emin)−2, and thus the total rescaled Hamiltonian is given
by ĤFF(t)≈ Ĥref(s) + (ds/d t)Ĥcd(s).

7 Conclusion

In this paper, we discussed time rescaling of nonadiabatic transitions by using the fast-forward
scaling theory. We found that the additional terms consist of the counterdiabatic term (8) and
its similar term (11). We pointed out that the latter term (11) reproduces nonadiabatic tran-
sitions caused by the reference Hamiltonian in the original time scale. Moreover, we showed
that the third term (11) effectively vanishes in the adiabatic limit due to fast oscillation. As the
result, the fast-forward scaling theory for nonadiabatic transitions asymptotically reproduces
counterdiabatic driving of shortcuts to adiabaticity.

We proposed two ways for calculating the additional term, i.e., Eq. (11) and Eq. (13).
Although these formulae use different elements in the energy-eigenstate basis, the knowledge
of the energy eigenstates of the reference Hamiltonian is required. It is the important future
work to find methods for constructing the additional term without the knowledge of the energy
eigenstates as in the case of counterdiabatic driving of shortcuts to adiabaticity [20–22].
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