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Abstract

The quantum antiferromagnetic Heisenberg model on the fullerene C60 in a magnetic
field has 4s ground-state magnetization discontinuities with∆Sz = 2 as a function of the
spin quantum number s that disappear at the classical limit. The molecule can be seen
as the fullerene C20 with interpentagon interactions that generate the discontinuities
when sufficiently strong. The discontinuities originate from the antiferromagnetic Ising
limit for both molecules. The results show how spatial symmetry dictates the magnetic
response of the Ih fullerene molecules.
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1 Introduction

Fullerenes are allotropes of carbon whose most representative member is C60 [1–9]. C60 super-
conducts when doped with alkali metals [10]. Electron correlations are important for doped
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C60, and they are accurately described within the framework of the Hubbard model (see [11]
and references therein). According to estimates for the on-site repulsion U , C60 belongs to the
intermediate-U regime of the Hubbard model [12–15], but its large U-limit, the Heisenberg
model, is expected to qualitatively capture the spin correlations [16].

In the quantum antiferromagnetic Heisenberg model the total ground-state magnetization
along an external field axis Sz changes discontinuously at specific field values typically by
∆Sz = 1. In cases of spin-space anisotropy the energy is more efficiently minimized along
certain directions, and this can lead to discontinuities with∆Sz > 1. It is of particular interest
when such magnetization discontinuities occur in the absence of magnetic anisotropy. These
are solely due to the frustrated connectivity of the magnetic interactions, directly reflecting
the topology of the structure hosting the magnetic units.

The antiferromagnetic Heisenberg model has been extensively used to model the mag-
netic properties of low-dimensional frustrated topologies [17–22]. In fullerene molecules
frustration is introduced by the twelve pentagons that each molecule has, with the number
of hexagons increasing linearly with size [1]. The most symmetric fullerene molecules have
icosahedral Ih symmetry like C60. These are minimally frustrated among the fullerenes if one
excludes the Platonic solid dodecahedron [23–26] that only has pentagons [27,28], and have
also been found to share the ground-state magnetic response. At the classical level there are
two magnetization discontinuities in an external field when all exchange interactions are equal,
with the exception of the dodecahedron that has three [16, 29, 30]. In the extreme quantum
limit where the individual spin magnitude s = 1

2 and 1, the dodecahedron has respectively
one and two discontinuities with∆Sz = 2 [29]. A high-field ground-state magnetization jump
with ∆Sz = 2 was established to be a common feature of the Ih fullerenes for s = 1

2 when all
exchange interactions are equal [30]. For Ih-fullerenes bigger than the dodecahedron it is not
possible to calculate the magnetic response for not-so-high Sz due to computational limitations
imposed by the size of the Hilbert space. Relatively small fullerene molecules with different
symmetry have only pronounced magnetization plateaus when s = 1

2 [31,32]. Magnetization
discontinuities with∆Sz > 1 have also been observed in the case of extended systems [33–40].

The dual of the dodecahedron, the icosahedron, has also been shown to possess a magne-
tization discontinuity at the classical lowest-energy configuration in an external field, which
disappears at the extreme quantum limit [41]. This discontinuity can be understood from a
structural point of view, as the icosahedron can be viewed as a closed strip of a triangular lattice
with two additional spins attached [42]. Such a structural explanation of the magnetization
discontinuities is not obvious for the dodecahedron. It can neither apply to the discontinuities
of fullerene molecules where all pentagons are located at their ends and their body has the
form of a nanotube, comprising only of hexagons [11].

To investigate the origin of the ∆Sz = 2 magnetization discontinuities of the dodecahe-
dron for s = 1

2 and 1 the quantum anisotropic Heisenberg model (AHM) is considered. Its
antiferromagnetic isotropic limit is approached from the corresponding Ising limit by gradu-
ally increasing the strength of the interactions in the x y plane. Karl’ová et al. calculated the
ground-state magnetization response of the s = 1

2 AHM on the dodecahedron for different
values of the anisotropy [43], extending the calculation done at the isotropic limit [29]. In the
present paper it is shown that there is a strong ground-state magnetization discontinuity at
the antiferromagnetic Ising limit at the saturation field. This discontinuity is very closely mon-
itored as the fluctuations in the x y plane are switched on. Degenerate perturbation theory
on the x y-plane interactions shows that the saturation-field jump develops into the ∆Sz = 2
high-field magnetization discontinuity five spin-flips away from saturation for any finite s, with
the discontinuity disappearing at the classical limit s→∞, demonstrating its pure quantum
nature. Then evolving continuously away from the antiferromagnetic Ising limit by increasing
the strength of the x y coupling shows that the jump survives beyond the isotropic Heisenberg
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limit for s = 1
2 and 1. For increasingly higher s the x y-plane fluctuations are strong enough to

confine the discontinuity closer and closer to the Ising limit.
The calculation is then extended to the next-bigger Ih fullerene, the truncated icosahedron

C60, which has also been found to support the ∆Sz = 2 ground-state magnetization discon-
tinuity five spin flips away from saturation for s = 1

2 and uniform interactions [30]. Here
the relative strength of the two symmetrically independent interactions is allowed to vary and
relates to how strongly neighboring pentagons are coupled, since they are isolated from one
another and do not share any vertices or edges, as in the dodecahedron. Degenerate perturba-
tion theory shows that the∆Sz = 2 discontinuity is again generated infinitesimally away from
the antiferromagnetic Ising limit for arbitrary s if the interpentagon coupling is at least equal
to tan−1(0.01143π) times the intrapentagon one. However, its existence at the antiferromag-
netic isotropic limit requires the two couplings to be roughly equal in order for the ∆Sz = 2
discontinuity to survive for s = 1

2 . Increasing s again works against the discontinuity, but mak-
ing the interpentagon coupling strong enough allows the jump to appear for arbitrary s, with
the required minimum interpentagon coupling increasing with s and the AHM approaching
closer and closer its strong interpentagon-coupling or dimer limit. This demonstrates that C60
can behave like its smaller symmetric relative, C20, if the interpentagon interactions are strong
enough, and shows the close connection between symmetry and magnetic properties. Further-
more since the next-bigger Ih fullerene, the chamfered dodecahedron [1], also has a ∆Sz = 2
five-spin-flips away from saturation ground-state jump in a magnetic field for s = 1

2 when
its two symmetrically unique interactions are equal [30], it is expected that bigger molecules
with Ih symmetry will follow the discontinuity pattern of C60. In their case the interpentagon
coupling is mediated by exchange interactions of one or more kinds. The similarities in the
ground-state magnetic response of the Ih fullerene molecules demonstrate a strong correlation
between symmetry and magnetic behavior for this family, which can allow the prediction of
the properties of larger molecules, which are impossible to treat numerically, from the ones of
their smaller relatives.

In order to investigate in more detail the behavior close to the dimer limit where the
∆Sz = 2 ground-state discontinuity is favored and the interpentagon is much stronger than
the intrapentagon interaction, degenerate perturbation theory on the latter is considered for
arbitrary s. The Hilbert space of the AHM on C60 is enormous, however degenerate perturba-
tion theory allows the calculation of the lowest energies for the whole range of Sz in this limit,
as long as s is not too big. C60 then reduces to an icosidodecahedron of dimers interacting
weakly with one another. For s = 1

2 it is found that apart from the five-spin-flips away from
saturation ∆Sz = 2 discontinuity at the isotropic AHM limit, another one exists at low fields
with the Sz = 5 sector never including the ground state in a field. This is a manifestation of the
singlet-triplet or hole-particle symmetry between low and high magnetic fields after the pro-
jection to the lowest-energy singlet and triplet states of the dimers has been made [44–46].
Degenerate perturbation theory for arbitrary s shows that the number of ∆Sz = 2 ground-
state discontinuities grows as 4s, with the pattern of lower and higher-field jumps repeating
in the magnetization curve 2s times and disappearing at the classical limit. These disconti-
nuities are expected to survive away from the dimer limit, as has been shown for the one
close to saturation, and show how insight on the magnetic response for lower-Sz sectors not
directly accessible with diagonalization can be deduced by degenerate perturbation theory
on the dimer limit. Again, since symmetry and strong interpentagon coupling are important
for the appearance of the jumps, it is expected that the latter will be general features of the
Ih-fullerene molecules.
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Figure 1: Planar projection of the dodecahedron C20.

2 Model

The Hamiltonian of the quantum AHM in a magnetic field h⃗ with a single spin s⃗i , i = 1, . . . , N
located on each of the N vertices of a molecule is

H =
∑

〈i j〉

Ji j

�

sinω
�

sx
i sx

j + s y
i s y

j

�

+ cosωsz
i sz

j

�

− h
N
∑

i=1

sz
i . (1)

The symbol 〈 〉 indicates that interactions are limited to nearest-neighbors and have strength
equal to Ji j for spins i and j connected by an edge of the molecule. The Ising coupling along
the z axis is scaled with cosω and the coupling in the x y plane with sinω, and 0 ≤ ω < 3

4π

is taken. The antiferromagnetic limits are the Ising for ω = 0, the isotropic Heisenberg for
ω = π

4 , and the XX for ω = π
2 . The interactions are taken to obey the molecular symmetry,

with two edges connected by a symmetry operation of the Ih point group corresponding to the
same interaction strength. The magnetic field is directed along the z axis. Hamiltonian (1)
is block-diagonalized by taking into account Sz and its spatial and spin symmetries, and the
lowest-lying level in each sector is then found with Lanczos diagonalization [29]. At the Ising
limit the lowest-energy states of Hamiltonian (1) in the different Sz sectors are degenerate.
It is also possible to perturb away from this limit with the interactions in the x y plane by
simultaneously taking the Hamiltonian symmetries into account, and calculate the first-order
energy correction with degenerate perturbation theory [47,48].

3 Dodecahedron C20

The dodecahedron, whose planar projection is shown in Fig. 1, is a Platonic solid [23], and
all its N = 20 vertices are geometrically equivalent. It consists of twelve pentagons, and is the
smallest fullerene in the form of C20 [1,24–26]. All of its edges are symmetrically equivalent,
making all bonds Ji j in Hamiltonian (1) equal, and it is taken Ji j ≡ 1 from now on. At the
antiferromagnetic Ising limit ω = 0 the lowest energy of Hamiltonian (1) belongs to both
the Sz = 0 and 4s subsectors, making the lowest-lying levels from Sz = 1 to 4s − 1 excited
(Tables 1, 2, and 3). The ground-state energy as a function of Sz is linear, resulting in a strong
magnetization jump ∆Sz = 16s to saturation (Figs 2 and 3).
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Figure 2: Magnetic fields h over the saturation field hsat for which ground-state mag-
netization discontinuities occur as a function ofω in the ground state of Hamiltonian
(1) for C20 for s = 1

2 . The (black) circles correspond to discontinuities with ∆Sz = 1,
the (red) squares with ∆Sz = 2, the (green) diamonds with ∆Sz = 3, the (blue)
triangles up with ∆Sz = 6, the (brown) triangles left with ∆Sz = 7, the (violet)
triangles down with ∆Sz = 8, the (cyan) triangles right with ∆Sz = 9, and the (ma-
genta) ×’s with ∆Sz = 10. The (black) dashed lines show the isotropic Heisenberg
(ω= π

4 ) and the XX (ω= π
2 ) limit.

Table 1: Hamiltonian (1) with h= 0 for C20 for s = 1
2 . The columns list the sector Sz ,

the lowest energy E0 at the Ising limit ω = 0, its degeneracy (deg.), the first-order
degenerate perturbation theory energy correction ∆E1 on ω, its degeneracy (deg.),
and the irreducible representation (irrep.) of the Ih symmetry group it belongs. ∆E1
has been calculated with double-precision accuracy but less digits are shown.

Sz E0 deg. ∆E1 deg. irrep.
0 −9

2 240 −(
p

3+ 1
2) 1 Au

1 -4 900 -2.64146 3 T2u

2 −9
2 5 0 5 Ag , Fg

3 -3 320 -2.56533 4 Fu

4 −3
2 1240 -3.68687 1 Ag

5 0 1912 -3.54419 4 Fg

6 3
2 1510 -3.59294 1 Au

7 3 660 -3.02938 3 T1u

8 9
2 160 -2.13276 5 Hg

9 6 20 −
p

5
2 3 T2u

10 15
2 1 0 1 Ag

Perturbing away from the Ising limit with the interactions in the x y plane in first order
(ω→ 0) decreases the Sz = 0-energy but not the Sz = 4s for s = 1

2 (Table 1), resulting in a low-
field ∆Sz = 4s magnetization jump (Fig. 2). For s = 1 and 3

2 first-order perturbation theory
does not resolve this degeneracy (Tables 2 and 3), but Lanczos diagonalization shows that
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Figure 3: Magnetic fields h over the saturation field hsat for which ground-state mag-
netization discontinuities occur as a function ofω in the ground state of Hamiltonian
(1) for C20 for s = 1. The (black) circles correspond to discontinuities with ∆Sz = 1,
the (red) squares with ∆Sz = 2, the (green) diamonds with ∆Sz = 3, the (blue)
triangles up with ∆Sz = 4, the (brown) triangles left with ∆Sz = 6, the (violet) tri-
angles down with ∆Sz = 7, the (cyan) triangles right with ∆Sz = 9, the (magenta)
×’s with ∆Sz = 10, and the (indigo) stars with ∆Sz = 16. The (black) dashed lines
show the isotropic Heisenberg (ω= π

4 ) and the XX (ω= π
2 ) limit.

Table 2: Same as Tab. 1 for s = 1.

Sz E0 deg. ∆E1 deg. irrep. Sz E0 deg. ∆E1 deg. irrep.
0 -18 240 0 240 all 11 3 41120 -4.20815 30 all but

Ag ,Au

1 -17 1440 -2 60 all but Ag 12 6 41475 -5.22625 10 Ag ,Fg ,Hg

2 -16 4080 -3.81284 30 all but 13 9 32920 -6.25465 20 Ag ,Fg ,Hg ,
T1g ,T2g ,Au T1u,T2u,Fu

3 -17 60 -1 30 all but 14 12 20520 -7.37374 1 Ag
Ag ,Au

4 -18 5 0 5 Ag ,Fg 15 15 9932 -7.08838 4 Fg

5 -15 40 0 40 all 16 18 3650 -7.18588 1 Au

6 -12 460 0 460 all 17 21 980 -6.05876 3 T1u

7 -9 2520 −
p

2 60 all but Au 18 24 180 -4.26553 5 Hg

8 -6 8310 −
p

5 120 all 19 27 20 −
p

5 3 T2u

9 -3 18920 -3.12602 40 all 20 30 1 0 1 Ag

10 0 31852 -3.62611 120 all

the low-field ∆Sz = 4s discontinuity also occurs when s = 1 (Fig. 3). Magnetization jumps
occur when the energy differences between the lowest-energy states of successive Sz sectors
do not increase with increasing Sz . Since the ground-state energy varies linearly with Sz at
the unperturbed limit, the energy differences between the lowest-energy levels in successive
Sz sectors are determined by the perturbative corrections. That first-order perturbation theory
can not resolve the degeneracies away from the high-Sz region is also demonstrated by the high
degeneracy of the energy corrections in Tables 2 and 3, which belong to multiple irreducible
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Figure 4: Differences of the first-order degenerate perturbation theory corrections of
the energy over the spin magnitude δ(∆E1)

s = ∆E1(Sz+1)
s − ∆E1(Sz)

s between successive
Sz sectors close to saturation for arbitrary s for (a) C20 (Table 4) and (b), (c) , and
(d) for C60 for φ = π

50 , π4 , and 49
100π respectively (Table 6) away from the Ising limit

ω= 0 of Hamiltonian (1) for h= 0. The (red) solid arrows show the locations of the
∆Sz = 2 magnetization discontinuities.

Table 3: Same as Tab. 1 for s = 3
2 .

Sz E0 deg. ∆E1 deg. irrep. Sz E0 deg. ∆E1 deg. irrep.
0 -40.5 240 0 240 all 16 4.5 250840 -4.78375 30 all but

T1g ,T2g ,Au

1 -39 1440 −3
2 720 all 17 9 301680 -5.43916 120 all

2 -37.5 4320 -3 720 all 18 13.5 320160 -6.24360 120 all
3 -36 9980 −9

2 340 all 19 18 300400 -6.31222 30 all but
Ag ,Au

4 -37.5 360 -3 75 all 20 22.5 249032 -7.83938 10 Ag ,Fg ,Hg

5 -39 60 −3
2 30 all but 21 27 181860 -7.83938 20 Ag ,Fg ,Hg

Ag ,Au T1u,T2u,Fu

6 -40.5 5 0 5 Ag ,Fg 22 31.5 116315 -9.38197 20 Ag ,Fg ,Hg
T1u,T2u,Fu

7 -36 40 0 40 all 23 36 64560 -9.38197 20 Ag ,Fg ,Hg
T1u,T2u,Fu

8 -31.5 180 0 180 all 24 40.5 30680 -11.06061 1 Ag

9 -27 880 0 880 all 25 45 12232 -10.63257 4 Fg

10 -22.5 3570 0 3570 all 26 49.5 3970 -10.77881 1 Au

11 -18 11480 −3
2

p
2 60 all but Au 27 54 1000 -9.08814 3 T1u

12 -13.5 29800 −3
2

p
2 360 all 28 58.5 180 -6.39829 5 Hg

13 -9 64040 −3
2

p
5 120 all 29 63 20 −3

2

p
5 3 T2u

14 -4.5 116695 −3
2

p
5 600 all 30 67.5 1 0 1 Ag

15 0 183232 -4.68903 40 all
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Figure 5: Sz as a function of the magnetic field h over the saturation field hsat in the
ground state of Hamiltonian (1) for C20 for s = 1

2 . The (black) solid line corresponds
to ω= π

20 , the (red) long-dashed line to ω= π
4 , and the (green) long-dashed-dotted

line to ω= π
2 . The (blue) solid arrows point to the discontinuities with ∆Sz = 2.

representations [49]. First-order perturbation theory shows the existence of a magnetization
jump between 4s and Ns − 6 for s = 1 and 3

2 . Fig. 3 shows that the jump survives for higher
values of ω for s = 1.

In contrast to the perturbative results for lower Sz , from Sz = Ns − 6 to saturation the
lowest-energy states belong to a single irreducible representation, which does not change with
increasing s. The first-order perturbative corrections in these Sz sectors are multiples of s (Ta-
ble 4), making the magnetization response close to saturation the same for any s. Calculating
the energy differences between the high-field successive sectors shows that the Sz = Ns − 5
sector, the one with five spin-flips away from saturation, never becomes the ground state in
the field, irrespective of s, resulting in a ∆Sz = 2 discontinuity (Fig. 4(a)). The energy dif-
ferences between the sectors scale with s, while the energies at the classical limit scale as
s2, showing that the discontinuity is a pure quantum effect which occurs for arbitrary finite
s, but disappears at the classical limit s → ∞. It is noted that for every s = 1-level with
4s < Sz < Ns − 6 there is a corresponding s = 3

2 -level in the analogous Sz range so that the
ratio of their first-order perturbative energy corrections equals the ratio of their s values.

The dodecahedron is small enough to calculate the lowest-energy state in each Sz-sector
with Lanczos diagonalization for s = 1

2 and 1, allowing to monitor the evolution of all mag-
netization discontinuities away from first-order perturbation theory on the antiferromagnetic
Ising limit. The magnetization response for s = 1

2 and 1 is shown in Figs 2 and 3, with the
magnetization curves for ω = π

20 , π4 , and π
2 plotted in Figs 5 and 6. Karl’ová et al. have pro-

vided the plot for s = 1
2 up to ω = π

4 [43]. As the coupling in the x y plane gets stronger
the high-field discontinuity survives at the isotropic Heisenberg limit ω= π

4 for both values of
s. The other discontinuities disappear, with the exception of a ∆Sz = 2 discontinuity around
Sz = 9 for s = 1, that reenters a little before the isotropic limit and traces back to the∆Sz = 10
discontinuity of weak ω.

Monitoring the ∆Sz = 2 discontinuities away from the isotropic limit for higher ω shows
that the two s = 1 jumps quickly disappear, while the s = 1

2 discontinuity survives up to the XX
limit whereω= π

2 and the Ising interaction is zero. Further increasingωmakes the interaction
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Figure 6: Sz as a function of the magnetic field h over the saturation field hsat in
the ground state of Hamiltonian (1) for C20 for s = 1. The (black) solid line cor-
responds to ω = π

20 , the (red) long-dashed line to ω = π
4 , and the (green) long-

dashed-dotted line to ω = π
2 . The (blue) solid arrows point to the discontinuities

with ∆Sz = 2, the (brown) long-dashed arrow to the discontinuity with ∆Sz = 3,
the (violet) long-dashed-dotted arrow to the discontinuity with ∆Sz = 4, and the
(cyan) double-dashed-dotted arrow to the discontinuity with ∆Sz = 7.

Table 4: Hamiltonian (1) with h = 0 for C20 for arbitrary s. The columns list the
sector Sz , the first-order degenerate perturbation theory energy correction per spin
magnitude ∆E1

s on ω (away from the Ising limit ω = 0), its degeneracy (deg.), and
the irreducible representation (irrep.) of the Ih symmetry group it belongs. ∆E1 has
been calculated with double-precision accuracy but less digits are shown.

Sz ∆E1
s deg. irrep.

Ns− 6 −7.37374 1 Ag

Ns− 5 −7.08838 4 Fg

Ns− 4 −7.18588 1 Au

Ns− 3 −6.05876 3 T1u

Ns− 2 −4.26553 5 Hg

Ns− 1 −
p

5 3 T2u

Ns 0 1 Ag

along the z axis ferromagnetic, and eventually the discontinuity disappears at ω= 0.68562π.
The detrimental effect of the x y-plane fluctuations on the ∆Sz = 2 discontinuity away from
the Ising limit is getting stronger with s as shown in Fig. 7, which plots the highest ω value
for which the jump survives as a function of s (Table 5). The jump does not survive at the
isotropic Heisenberg limit for s > 1.
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Figure 7: Maximum value ωmax as a function of s for which the ground state of
Hamiltonian (1) for C20 has a ∆Sz = 2 magnetization discontinuity five spin flips
away from saturation. The dashed line shows the isotropic Heisenberg limit ω= π

4 .

Table 5: Maximum value ωmax for different s for which the ground state of Hamilto-
nian (1) for C20 has a∆Sz = 2 magnetization discontinuity between Sz = Ns−6 and
Ns−4. The jump does not survive at the isotropic Heisenberg limit ω= π

4 for s > 1.

s ωmax(π)
1
2 0.68562
1 0.26685
3
2 0.12745
2 0.08186
5
2 0.06007
3 0.04739

4 Truncated Icosahedron C60

The truncated icosahedron, whose planar projection is shown in Fig. 8, has N = 60 and
is an Archimedean solid [50], having all vertices geometrically equivalent and two different
types of polygons, pentagons and hexagons. It is the most representative fullerene in the
form of C60 [1–8]. It has two symmetrically unique types of edges, which correspond to two
independent exchange interactions in Hamiltonian (1). The first type links vertices of the same
pentagon and is taken to have strength J1 ≡ cosφ (blue thick lines in Fig. 8), while the second
vertices that belong to different pentagons and has strength J2 ≡ sinφ (red thin lines in Fig. 8)
with 0 ≤ φ ≤ π

2 , interpolating between isolated pentagons and isolated dimers. Unlike the
dodecahedron the pentagons do not share vertices but rather interact via the interpentagon
bonds, which represent the interaction strength between neighboring pentagons.

Very close to the isolated pentagon limit φ is small and first-order degenerate perturbation
theory away from the Ising limit shows that there is no ∆Sz = 2 ground-state discontinuity
five spin flips away from saturation. A minimum value of φ is required for the discontinuity
to appear within first-order perturbation theory, and it exists for φ ≥ 0.01143π for arbitrary s.
Table 6 lists the first-order perturbation theory corrections away from the antiferromagnetic
Ising limit ω = 0 for arbitrary s, higher Sz and three different values of φ: one close to the
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Figure 8: Planar projection of the truncated icosahedron C60. The (blue) thick
lines correspond to the twelve pentagons and the intrapentagon bonds and their ex-
change interaction strength J1 ≡ cosφ, while the (red) thin lines to the interpentagon
(dimer) bonds and their exchange interaction strength J2 ≡ sinφ.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

φ (π)

0
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0.2
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0.6

0.7

ω
m

a
x

(π
)
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0.6

0.65

0.7
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Figure 9: Maximum value ωmax for which the s = 1
2 (black circles), 1 (red squares),

and 3
2 (green diamonds) ground state of Hamiltonian (1) for C60 has a∆Sz = 2 mag-

netization discontinuity between Sz = Ns−6 and Ns−4 as a function ofφ = tan−1 J2
J1

,
which determines the relative strength of the two symmetrically independent ex-
change interactions. The dashed line shows the isotropic Heisenberg limit ω = π

4 .
The inset focuses on the high range of φ.
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isolated pentagon limit J2≪ J1 (φ = π
50), one corresponding to uniform exchange interactions

(φ = π
4 ), and one close to the dimer limit J2 ≫ J1 (φ = 49

100π). Like for the dodecahedron,
the sector with five spin-flips from saturation is never the ground state in a magnetic field
(Figs 4(b), (c), and (d)). The ∆Sz = 2 discontinuity of the dodecahedron is inherited from

1 2 3 4 5

2s

0.2

0.25

0.3

0.35

0.4

0.45

0.5
φ

m
in

 (
π

)

Figure 10: Minimum value φmin as a function of s for which the ground state of
Hamiltonian (1) for C60 has a ∆Sz = 2 magnetization discontinuity five spin flips
away from saturation at the isotropic Heisenberg limit ω= π

4 .
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Figure 11: Differences of the first-order degenerate perturbation theory corrections
of the energy δ(∆E1) =∆E1(Sz +1)−∆E1(Sz) between successive Sz sectors of C60
away from the dimer limit φ = π

2 at the antiferromagnetic isotropic Heisenberg limit
ω = π

4 of Hamiltonian (1) for h = 0 and (a) s = 1
2 (∆E1 given in Table 10), (b)

s = 1 (∆E1 given in Table 11), and (c) s = 3
2 (∆E1 given in Table 12). The (red)

solid arrows show the locations of the ∆Sz = 2 magnetization discontinuities, and
the (green) long-dashed arrows the locations of standard ∆Sz = 1 discontinuities
which are due to the unperturbed energies (App. A).
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the truncated icosahedron, which shares its spatial symmetry, within first-order degenerate
perturbation theory away from the Ising limit, as long as the interpentagon coupling is not
very small. Further evidence to that is provided by the irreducible representations that include
the lowest-energy state in each Sz sector, which are very similar for the two molecules.

Table 6: Hamiltonian (1) with h= 0 for C60 for arbitrary s and three different values
of φ = tan−1 J2

J1
that determines the relative strength of the symmetrically indepen-

dent exchange interactions. φ = π
50 is close to the isolated pentagon limit J2 ≪ J1,

φ = π
4 corresponds to uniform exchange interactions, and φ = 49

100π is close to the
dimer limit J2 ≫ J1. The columns list the sector Sz (with saturation value Ns), and
for each φ value the first-order degenerate perturbation theory energy correction per
spin magnitude ∆E1

s on ω (away from the Ising limit ω = 0), its degeneracy (deg.),
and the irreducible representation (irrep.) of the Ih symmetry group it belongs. ∆E1
has been calculated with double-precision accuracy but less digits are shown.

φ = π
50 φ = π

4 φ = 49
100π

Sz ∆E1
s deg. irrep. ∆E1

s deg. irrep. ∆E1
s deg. irrep.

Ns− 7 -11.41820 4 Fu -11.43936 4 Fu -7.19164 4 Fu

Ns− 6 -9.89498 1 Ag -10.22177 1 Ag -6.20833 1 Ag

Ns− 5 -8.28299 4 Fu -8.69749 3 T1g -5.19086 4 Fu

Ns− 4 -6.67365 1 Au -7.19834 1 Au -4.17734 1 Au

Ns− 3 -5.01822 3 T1g -5.46684 3 T1g -3.14149 3 T1g

Ns− 2 -3.35042 5 Hg -3.67399 5 Hg -2.09766 5 Hg

Ns− 1 -1.67763 3 T2g -1.85123 3 T2g -1.05033 3 T2g

Ns 0 1 Ag 0 1 Ag 0 1 Ag

For the dodecahedron it was found that the fluctuations around the Ising axis work against
the ∆Sz = 2 ground-state magnetization discontinuity, and eventually a sufficiently strong
value ofωmakes the discontinuity disappear. The same is true for the truncated icosahedron,
and Fig. 9 plots the maximum valueωmax for which the∆Sz = 2 magnetization discontinuity
exists as a function of φ for s up to 3

2 (the corresponding data is listed in Table 7 and have been
calculated with Lanczos diagonalization). For φ < 0.01143π it takes a minimum value ωmin
for the jump to appear, and ωmax is small and slightly decreases with φ. The ωmin values are
listed in Table 8 for s = 1

2 , 1, and 3
2 . Within the accuracy of the calculation they are inversely

proportional to 2s. As φ increases the interpentagon bonds get stronger at the expense of the
intrapentagon bonds, resulting in a discontinuity that survives up to higher values of ω, until
a sufficiently strong φ supports the jump up to the isotropic limit ω= π

4 .
Theωmax value for which the discontinuity survives decreases with s for fixed φ according

to Fig. 9, showing that the interactions in the x y plane are becoming more detrimental to the
jump with increasing s, as has also been found for the dodecahedron. Simultaneously, the re-
quired minimum value φmin for the jump to survive at the isotropic Heisenberg limit increases
with s, and is already close to π

2 for s = 3
2 (Fig. 10 and Table 9). These results demonstrate

that the stronger the interaction between the pentagons the more “dodecahedron-like” the
truncated icosahedron becomes in terms of ∆Sz = 2 discontinuous ground-state magnetic re-
sponse. They also explain the common magnetic properties of the two molecules, and also
point to a similar mechanism for bigger Ih fullerenes that also share these properties [30].

The inset of Fig. 9 focuses on values of φ close to π2 . Contrary to what happens for smaller
φ,ωmax increases with s as φ approaches π2 . When φ→ π

2 the truncated icosahedron reduces
to 30 dimers perturbatively coupled via intrapentagon bonds, which form an icosidodecahe-
dron. First-order degenerate perturbation theory gives the lowest-energy correction ∆E1 at
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Table 7: Maximum valueωmax for which the s = 1
2 , 1, and 3

2 ground state of Hamilto-
nian (1) for C60 has a∆Sz = 2 magnetization discontinuity between Sz = Ns−6 and
Ns−4 for different values of φ = tan−1 J2

J1
, which determines the relative strength of

the two symmetrically independent exchange interactions. The values for 0.5π− are
found from first-order perturbation theory on the dimer limit φ = π

2 (Table 13).

φ(π) ωmax(s =
1
2)(π) ωmax(s = 1)(π) ωmax(s =

3
2)(π)

0.001 0.10693 0.05497 0.03684
0.01 0.10558 0.05385 0.03598
0.05 0.10358 0.05114 0.03375
0.1 0.11293 0.05304 0.03439
0.15 0.14775 0.06311 0.03971
0.2 0.23722 0.08522 0.05109
0.25 0.37183 0.11856 0.06764
0.3 0.46865 0.15763 0.08718
0.35 0.51236 0.20175 0.11042
0.4 0.52813 0.25949 0.14385
0.45 0.54835 0.33235 0.20304
0.49 0.57578 0.51511 0.42140

0.495 0.58107 0.56995 0.51947
0.496 0.58223 0.58366 0.54571
0.497 0.58342 0.59883 0.57525
0.498 0.58464 0.61600 0.60929
0.499 0.58591 0.63632 0.65086
0.5− 0.58723 0.66303 0.72301

Table 8: Minimum valueωmin for which the s = 1
2 , 1, and 3

2 ground state of Hamilto-
nian (1) for C60 has a∆Sz = 2 magnetization discontinuity between Sz = Ns−6 and
Ns − 4 for different values of φ = tan−1 J2

J1
, which determines the relative strength

of the two symmetrically independent exchange interactions. For φ ≥ 0.01143π it
is ωmin = 0 for arbitrary s.

φ(π) ωmin(s =
1
2)(π) ωmin(s = 1)(π) ωmin(s =

3
2)(π)

0.001 0.00681 0.00341 0.00227
0.01 0.00089 0.00044 0.00030

the isotropic Heisenberg limit ω = π
4 for every Sz sector, and not only close to saturation as

with Lanczos diagonalization, as long as s is not too big (Tables 10, 11, and 12). Figure 11
plots the differences δ(∆E1) between successive Sz sectors (App. A). These typically increase
with Sz , resulting in magnetization jumps∆Sz = 1. For Sz sectors which are multiples of 5 the
dependence of δ(∆E1) on Sz is not as smooth, and in particular around the sectors Sz = N

2 i+5
and Sz = N

2 (i + 1)− 5 with i = 0, 1, . . . , 2s− 1 δ(∆E1) decreases with Sz . These sectors never
include the ground state in a magnetic field, resulting in a number of 4s discontinuities as a
function of s with ∆Sz = 2. These are sectors with an Sz value differing by 5 from sectors
whose Sz is an integer multiple of N

2 . The appearance of∆Sz = 2 ground-state discontinuities
in pairs for regions of Sz where N

2 i ≤ Sz ≤ N
2 (i+1) originates from the hole-particle symmetry

with respect to the center of the region, after the projection to the lowest-energy dimer states
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Table 9: Minimum value φmin as a function of s for which the ground state of Hamil-
tonian (1) for C60 has a ∆Sz = 2 magnetization discontinuity between Sz = Ns − 6
and Ns− 4 at the isotropic Heisenberg limit ω= π

4 .

s φmin(π)
1
2 0.20503
1 0.39310
3
2 0.46766
2 0.48299
5
2 0.48894

has been made [44–46]. Since Lanczos diagonalization shows that the ∆Sz = 2 discontinuity
five spin flips away from saturation is present at the isotropic Heisenberg limit away from the
perturbative dimer limit the further the smaller s is, it is expected that the other discontinu-
ities can also survive relatively far from the strong dimer limit, allowing to infer the magnetic
response for not-so-high Sz , where the Hilbert space is enormous, from the dimer limit where
the size of the Hilbert space is tractable. Table 13 lists the ωmax values for the different dis-
continuities when φ→ π

2 , which increase with s as was also found in the inset of Fig. 9. Each
value belongs to a pair of discontinuities.

Table 10: First-order degenerate perturbation theory correction of the energy ∆E1
for the different Sz sectors of C60 away from the dimer limit φ = π

2 at the antiferro-
magnetic isotropic Heisenberg limit ω= π

4 of Hamiltonian (1) for h= 0 and s = 1
2 .

Sz ∆E1 Sz ∆E1 Sz ∆E1 Sz ∆E1

0 0 8 -3.37593 16 -2.17645 24 3.44460

1 −
p

2
8 (
p

5+ 1) 9 -3.51988 17 -1.75230 25 4.55445
2 -1.12036 10 -3.61148 18 -1.25823 26 5.63228
3 -1.64789 11 -3.52543 19 -0.69700 27 6.83739
4 -2.14589 12 -3.37955 20 -0.07595 28 8.07203

5 -2.51661 13 -3.16651 21 0.72276 29
p

2
8 (55−

p
5)

6 -2.91936 14 -2.88356 22 1.57382 30 15
2

p
2

7 -3.17653 15 -2.54002 23 2.48032
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Table 11: Same as Tab. 10 for s = 1.

Sz ∆E1 Sz ∆E1 Sz ∆E1 Sz ∆E1

0 0 16 -9.90661 31 10.16959 46 15.11256

1 −
p

2
3 (
p

5+ 1) 17 -9.41163 32 9.77693 47 16.28654
2 -2.99310 18 -8.77918 33 9.42314 48 17.57092
3 -4.40984 19 -8.01996 34 9.11786 49 18.95782
4 -5.76557 20 -7.14364 35 9.03347 50 20.43860
5 -6.83962 21 -5.92341 36 8.90460 51 22.19653
6 -7.96525 22 -4.58861 37 9.00707 52 24.04421
7 -8.80401 23 -3.14716 38 9.19497 53 25.97763
8 -9.53836 24 -1.60129 39 9.46861 54 27.99649
9 -10.16605 25 0.23145 40 9.83200 55 30.24667
10 -10.67917 26 2.01260 41 10.47254 56 32.45238
11 -10.84838 27 4.07544 42 11.20696 57 34.87899
12 -10.90051 28 6.19929 43 12.04390 58 37.35409

13 -10.82584 29
p

2
3 (20−

p
5) 44 12.99124 59 39.86807

14 -10.61371 30 15
2

p
2 45 14.03629 60 30

p
2

15 -10.27938

Table 12: Same as Tab. 10 for s = 3
2 .

Sz ∆E1 Sz ∆E1 Sz ∆E1 Sz ∆E1

0 0 23 -11.04769 46 2.08329 69 43.65523

1 −5
p

2
8 (
p

5+ 1) 24 -8.67899 47 3.37494 70 44.47147
2 -5.61564 25 -5.83354 48 4.89081 71 45.66505
3 -8.27830 26 -3.05808 49 6.61187 72 46.98738
4 -10.83625 27 0.20699 50 8.52480 73 48.44870
5 -12.90461 28 3.57675 51 10.99590 74 50.06102

6 -15.04295 29
p

2
8 (51− 5

p
5) 52 13.66065 75 51.80777

7 -16.70454 30 15
2

p
2 53 16.49980 76 53.59655

8 -18.19429 31 8.56781 54 19.50498 77 55.51977
9 -19.50325 32 6.62997 55 22.97068 78 57.59398
10 -20.61117 33 4.78123 56 26.36796 79 59.80719
11 -21.14082 34 3.03344 57 30.23707 80 62.14914
12 -21.47156 35 1.75747 58 34.20713 81 64.86843
13 -21.58974 36 0.41310 59 38.26630 82 67.71467
14 -21.47556 37 -0.47076 60 30

p
2 83 70.67810

15 -21.15379 38 -1.18859 61 42.12444 84 73.75551
16 -20.76846 39 -1.73202 62 41.88711 85 77.14699
17 -20.17553 40 -2.08180 63 41.70662 86 80.48426
18 -19.35024 41 -1.87341 64 41.59339 87 84.13303
19 -18.31239 42 -1.47315 65 41.79165 88 87.84905
20 -17.07563 43 -0.86770 66 41.93570 89 91.62191
21 -15.26061 44 -0.03803 67 42.39383 90 135

2

p
2

22 -13.24454 45 0.99192 68 42.96594
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Table 13: Maximum value ωmax for which the s = 1
2 , 1, and 3

2 first-order degenerate
perturbation theory ground state of Hamiltonian (1) for C60 away from the dimer
limitφ = π

2 has∆Sz = 2 magnetization discontinuities, where the sectors Sz = N
2 i+5

and N
2 (i+1)−5 with i = 0, 1, . . . , 2s−1 never include the ground state in the external

field h.

s i ωmax(π)
1
2 0 0.58723
1 0 0.72291
1 1 0.66303
3
2 0 0.75-
3
2 1 0.75-
3
2 2 0.72301

5 Conclusions

In this paper it was shown that the ∆Sz = 2 quantum magnetization discontinuity of the
isotropic quantum antiferromagnetic Heisenberg model on C20 in an external field can be
continuously traced to a strong discontinuity present at the Ising limit of the model for finite s.
This discontinuity originates from the special connectivity of the dodecahedron. C60, which
also has Ih symmetry, inherits the discontinuity also at the isotropic limit for sufficiently strong
interpentagon interactions. Perturbing away from the limit of infinitely strong interpentagon
interactions the number of ∆Sz = 2 discontinuities equals 4s, and these discontinuities are
expected to survive at least close to this limit.

Since the N = 80 Ih-symmetry fullerene, the chamfered dodecahedron [1], also has a jump
in a magnetic field for s = 1

2 when its two symmetrically unique interactions are equal [30], it is
expected that bigger molecules with the same symmetry will follow the∆Sz = 2 discontinuity
pattern of C60. In their case the interpentagon coupling depends on the strength of exchange
interactions of one or more kinds.

The results of the paper show how the magnetization response is determined by the spatial
symmetry for the Ih fullerene molecules. The twelve pentagons are distributed according to a
specific symmetry that is directly connected with how the spins react to an external magnetic
field. This can lead to the prediction of the magnetic properties of large molecules, which
are computationally intractable, through the treatment of their smaller symmetric relatives.
Especially at the strong-coupling limit of the twelve pentagons perturbation theory can gen-
erate the magnetic response for the whole Sz range, and not only for the higher Sz numbers,
which are accessible with Lanczos diagonalization. The response at the dimer limit provides
insights into the magnetization response at least close to this limit, as has been shown for the
∆Sz = 2 discontinuity close to saturation. It is highly desirable to find correlations between
magnetic behavior and spatial symmetry [11, 27, 29, 30, 51, 52]. In addition, and since the
AHM is the large-U limit of the Hubbard model at half-filling [17, 18], it is expected that the
Ih-symmetry fullerene molecules will share properties related to strongly-correlated models of
itinerant electrons, at least for some range of their parameters.
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A Degenerate Perturbation Theory on the Intrapentagon Coupling
for C60

As an example, the case s = 1 is considered. The interaction between nearest-neighbor spins
belonging to different pentagons is given by the term inside the brackets in Hamiltonian (1)
and 0 ≤ ω < 3

4π is taken. The lowest energies of these dimers in the different Sz
dimer sectors

are

Sz
dimer = 0 , e0 = −

1
2

�

cosω+
p

1+ 7sin2ω
�

,

Sz
dimer = 1 , e1 = − sinω ,

Sz
dimer = 2 , e2 = cosω . (A.1)

It is e0 < e1 < e2 for 0 ≤ ω < 3
4π. The corresponding dimer eigenstates are called

|0 >, |1 >, and |2 > respectively. The unperturbed Hamiltonian (1) at the φ = π
2 -limit

for C60 has only the interpentagon bonds different from zero, resulting in isolated dimers.
The lowest-energy unperturbed states for the different Sz sectors are given as sets of the
number of dimers found in each one of the three different dimer eigenstates (# in |0 >,#
in |1 >,# in |2 >) = (n0, n1, n2) (Table 14). The corresponding unperturbed energies are
E0(Sz) = n0e0 + n1e1 + n2e2. Interdimer interactions, which are nearest-neighbor intrapen-
tagon interactions, are taken as a perturbation to the φ = π

2 -limit of Hamiltonian (1). Ta-
bles 10, 11, and 12 list the first-order degenerate perturbation theory energy corrections ∆E1
of the intrapentagon bonds on the φ = π

2 -dimer limit of Hamiltonian (1) for s = 1
2 , 1, and 3

2
at the isotropic Heisenberg limit ω= π

4 .
Within first-order perturbation theory the lowest-energy levels in the different Sz sectors

are given as E0(Sz)+∆E1(Sz)λ, with λ≡ J1
J2

the perturbation parameter away from the dimer
limit. The difference between successive unperturbed energies E0(Sz+1)− E0(Sz) is the same
for N

2 i ≤ Sz ≤ N
2 (i + 1) − 1, i = 0,1, . . . , 2s − 1. For s = 1 there are two such Sz ranges,

one between Sz = 0 to 30 and the second between Sz = 30 and 60 (Fig. 11(b)). At the
borders between these 2s regions the magnetization step ∆Sz = 1, due to the unperturbed
energies. Within first-order perturbation theory the magnitude of∆Sz within the 2s regions is
determined by the difference in the perturbative energy corrections between successive sectors
[∆E1(Sz+1)−∆E1(Sz)]λ= δ(∆E1)λ, which is taken to correspond to the middle point Sz+ 1

2 .
These differences are symmetric with respect to the center of each region, with symmetrically
placed differences adding up to 2i+1p

2
. This is a manifestation of the hole-particle symmetry

with respect to the center of the region, after the projection to the lowest-energy dimer states
has been made. If these differences do not increase with Sz the magnetization step ∆Sz > 1.
According to Tables 10, 11, and 12 and Fig. 11 there are 4s discontinuities for a specific s,
with the sectors Sz = N

2 i + 5 and Sz = N
2 (i + 1)− 5 with i = 0,1, . . . , 2s − 1 never including

the ground state in a magnetic field. These are sectors whose Sz value differs by 5 from the
sectors Sz = N

2 i, with i = 0, 1, . . . , 2s. Table 13 lists the ωmax values for the 4s discontinuities
for every s, with each value belonging to a pair of discontinuities.
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Table 14: Lowest-energy unperturbed states for Hamiltonian (1) for the truncated
icosahedron for φ = π

2 and s = 1 as a function of Sz given as sets of the number of
dimers found in each one of the three different dimer eigenstates (# in |0 >,# in
|1>,# in |2>) = (n0, n1, n2), and their number.

Sz dimer eigenstate number
types of states

60 (0,0,30) 1
59 (0,1,29) 30
58 (0,2,28) 435
57 (0,3,27) 4060
56 (0,4,26) 27405
55 (0,5,25) 142506
54 (0,6,24) 593775
...

...
...

32 (0,28,2) 435
31 (0,29,1) 30
30 (0,30,0) 1
29 (1,29,0) 30
28 (2,28,0) 435
27 (3,27,0) 4060
26 (4,26,0) 27405
25 (5,25,0) 142506
24 (6,24,0) 593775
...

...
...

2 (28,2,0) 435
1 (29,1,0) 30
0 (30,0,0) 1
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