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Abstract

The centred pyrochlore lattice is a novel geometrically frustrated lattice, realized in the
metal-organic framework Mn(ta)2 [1] where the basic unit of spins is a five site cen-
tred tetrahedron. Here, we present an in-depth theoretical study of the J1 − J2 classical
Heisenberg model on this lattice, using a combination of mean-field analytical methods
and Monte Carlo simulations. We find a rich phase diagram with low temperature states
exhibiting ferrimagnetic order, partial ordering, and a highly degenerate spin liquid with
distinct regimes of low temperature correlations. We discuss in detail how the regime
displaying broadened pinch points in its spin structure factor is consistent with an ef-
fective description in terms of a fluid of interacting charges. We also show how this
picture holds in two dimensions on the analogous centred kagome lattice and elucidate
the connection to the physics of thin films in (d +1) dimensions. Furthermore, we show
that a Coulomb phase can be stabilized on the centred pyrochlore lattice by the addi-
tion of further neighbour couplings. This demonstrates the centred pyrochlore lattice is
an experimentally relevant geometry which naturally hosts emergent gauge fields in the
presence of charges at low energies.
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1 Introduction

The study of frustrated magnetic systems [2] occupies an important position in modern con-
densed matter physics as a route to realizing states of matter exhibiting fractionalization, topo-
logical order and the emergence of gauge fields [3–5]. Such features can already emerge in
classical systems, most famously in spin ice [6–8]where low-lying excitations may be described
as magnetic monopoles interacting via an energetic Coulomb potential and entropic emergent
gauge field. A similar picture extends to other spin models on the pyrochlore, such as the classi-
cal Heisenberg model, where the excitations are not monopoles of a true magnetic field, rather
scalar charges of the emergent gauge field. This is known as a Coulomb phase [9, 10], since
the low-energy theory above the vacuum ground state is classical electrostatics with charges
interacting via effective Coulomb interactions. The appearance of such a phase is readily di-
agnosed by pinch point singularities in the spin structure factor and corresponding algebraic
1/r3 correlations in real space. To stabilize monopoles in ground states (of spin-ice systems)
requires the use of magnetic fields [11–13], further neighbour exchange [14, 15], artificial
interactions [16–18] or magneto-elastic coupling [19, 20], resulting in a monopole fluid, or,
long-range order leading to the phenomenon of magnetic fragmentation [21].

In the quantum case, although the ground state of the spin 1/2 Heisenberg model remains
ambiguous, see e.g [22,23] and references therein, one can realize a U(1) quantum spin liquid,
effectively described by (compact) quantum electrodynamics, in the spin 1/2 XXZ model close
to the Ising limit [24–28]. Here, the topological character of the ground state manifold of the
Ising model on the pyrochlore is supplemented by quantum fluctuations to stabilize a massive
superposition of topologically ordered states. Since the effective theory of the quantum spin
liquid is in (3 + 1) dimensions, the algebraic correlations go instead as 1/r4, destroying the
sharp pinch points in the structure factor [29].
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Recent work [1] has established that the metal-organic framework Mn(ta)2 realizes a cen-
tred pyrochlore lattice, where the basic unit of spins is a five site centred tetrahedron. Com-
parison of bulk thermodynamic measurements to MC simulations suggest that Mn(ta)2 is well
approximated above ∼ 1 K by a classical J1 − J2 Heisenberg model on the centred pyrochlore
lattice, although ultimately dipolar interactions lead to ordering at lower temperatures. This
opens up new avenues to explore frustrated magnetism beyond the pyrochlore lattice. In par-
ticular, the highly versatile nature of metal-organic frameworks [30] raises the possibility of
engineering desired quantum or classical Hamiltonians on the centred pyrochlore lattice.

In this work, we perform a detailed theoretical study of the J1 − J2 classical Heisenberg
model on the centred pyrochlore lattice, finding a rich phase diagram with competition be-
tween ferrimagnetic order on the one hand, and Coulomb physics on the other. This gives rise
to unusual low temperature states of matter. Furthermore, this introduces a new paradigm of
geometrically frustrated lattices based on centred units of spins where vertex sites are shared
between adjacent clusters but central sites are not. Where a nearest neighbour spin model on
the lattice made up of vertex sites can realize a Coulomb phase ground state, the addition of
central spins introduces effective charges, exponentially screening spin correlations and caus-
ing the pinch points to acquire a finite width, as discussed in ref. [1]. In this paper we elaborate
on this point, also demonstrating a similar effect on the 2D centred kagome lattice and mak-
ing a connection to the physics of pyrochlore thin films, seen by mapping the periodic lattice
in d-dimensional space to a d + 1-dimensional ‘slab’ with open boundaries in the additional
dimension.

This article is organized as follows. In section 2 we introduce the lattice and model. Sec-
tion 3 provides a brief summary of the main results. We then discuss our results for the J1− J2
model, describing the ground state properties from an analytic perspective in section 4, the
phase diagram obtained from Monte Carlo (MC) simulations in section 5 and finally describe
the spin liquid in more detail in section 6, including discussion of the appropriate low-energy
theory. In section 7 we present results for the analogous model on the centred kagome lattice,
the 2D analogue of the centred pyrochlore lattice, before discussing the effect of an additional
J3 term on the centred pyrochlore in section 8. We conclude in section 9 with a summary and
outlook.

2 Lattice and model

The centred pyrochlore lattice is obtained from the pyrochlore lattice [31] by the addition of
a lattice site at the centre of each tetrahedron (see fig. 1a). Explicitly, it is defined by sites at
positions

rI ,µ = RI +δµ , (1)

where RI = n1a1 + n2a2 + n3a3 are the sites of a face-centred cubic (fcc) lattice with integer
ni and lattice vectors a1 =

1
2(1, 1,0), a2 =

1
2(0,1, 1), a3 =

1
2(1,0, 1), and µ labels the six

sublattices with basis vectors

δa = 0 , δb =
1
4





1
1
1



 , δ1 =
1
8





1
1
1



 ,

δ2 =
1
8





−1
−1
1



 , δ3 =
1
8





1
−1
−1



 , δ4 =
1
8





−1
1
−1



 .

(2)

All quantities are given in units where the side length of the conventional fcc unit cell a = 1.
In what follows, we will refer to the sites at the centre of a tetrahedron, µ = a, b, as central
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Figure 1: a. The conventional 24 site cubic unit cell of the centred pyrochlore lattice
with the six basis sites labelled. b. Finite temperature phase diagram of eq. 3 for
antiferromagnetic J1, J2 obtained from MC simulations for L = 14. Crosses are where
there is a peak in the magnetic suceptibility, circles where ∂ Lt/∂ T is a maximum
(see eq. 5). At T = 0, the ferrimagnetic (ferri) phase is characterized by saturated
ferrimagnetic order, whereas the partial ferrimagnet (PF) remains unsaturated. No
ordering is observed in the spin liquid regime for the temperatures simulated. The
spin structure factor evolves continuously with η in the spin liquid regime.

sites and those at the vertices of the tetrahedron, µ= 1, 2,3, 4, as vertex sites. The tetrahedra
centred on a(b) sites are referred to as a(b) tetrahedra.

We consider the classical Heisenberg model on the centred pyrochlore lattice,

H = J1

∑

〈i j〉

Si · S j + J2

∑

〈〈i j〉〉

Si · S j , (3)

with exchange interactions of strength J1 coupling nearest neighbours; the centre and vertex
spins of a tetrahedron, and J2 coupling next-nearest neighbours; the vertex spins on the same
tetrahedron. In what follows we set J1 = S = 1 and typically parametrize the model by η= J2

J1
,

using γ= 1
η instead when we would like to work close to the pyrochlore limit (η=∞, where

centre and vertex spins are decoupled).

3 Summary of results

The main result of this paper is the phase diagram presented in figure 1b. For η ≤ 1
4 the

ground state is a ferrimagnet with all vertex and centre spins antiparallel. On the other hand,
for η > 1

4 the ground state is defined by a local constraint (eq. 6), where we find several
unconventional low temperature states.

In the region 1
4 < η < 0.343, we find a partially ordered state with unsaturated ferrimag-

netic order, retaining significant fluctuations in the magnetization. For η > 0.343 we find a
disordered state characterized by distinct regimes of correlations (see figs 4d-f). For η≲ 0.5, at
low T , the dominant features of the structure factor are diffuse, ferrimagnetic maxima which
are indicative of short-ranged ferrimagnetic correlations. These correlations are not captured
by mean-field calculations, indicating that the microscopic enforcement of the constraint on
the lattice determines the correlation structure.

For η≳ 0.5, the structure factor is characterized by broadened pinch points, which are well
captured by our mean-field calculations. These show that the pinch points are never sharp for
any finite η, so is not strictly a Coulomb phase. Instead the central spins act as fluctuating
sources of flux, which leads to the broadening of the pinch points. Remarkably the width of
the pinch points scales linearly with 1

η in the range 0.8 ≲ η <∞ (see fig. 6), which can
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be understood in terms of Debye screening in a charged fluid, where the charge strength is
parameterized by η.

Similarly, we also compute the structure factor of the analogous J1 − J2 model on the 2D
centred kagome lattice and also find broadened pinch points (fig. 8), providing evidence that
this is a generic feature of lattices made up of centred corner-sharing units. Indeed, one can
view the centred lattices as thin films of a higher dimensional lattice, which makes clear the
connection between what we observe and previous examples of Coulomb phases destroyed by
(reduced) lattice symmetry [32].

In addition, we show that by adding a small ferromagnetic J3 one can stabilize a 3D
Coulomb phase on the centred pyrochlore lattice (fig. 9), an example of how adding per-
turbations to the J1 − J2 Hamiltonian can pick out desired ground states. We also discuss the
case of a large antiferromagnetic J3 which leads to a state where Neel ordered centres and
Coulomb phase vertex spins are entirely decoupled.

4 Ground state properties

4.1 Local constraint

For J2 < 0 the model is unfrustrated and the ground state is a simple ferro or ferrimagnet,
depending on the sign of J1. In the ferrimagnet all central spins are anti-parallel to vertex
spins. In this paper we focus on the (experimentally relevant [1]) quadrant of parameter
space where J1 > 0, J2 > 0, which we call the centred pyrochlore Heisenberg antiferromagnet
(CPHAF). We can map from J1 to−J1 by a global flip of all central spins, so the results presented
here can be easily generalized to the J1 < 0 region of the parameter space.

As for the pyrochlore Heisenberg antiferromagnet (PHAF) [33, 34], the Hamiltonian can
be rewritten in terms of the tetrahedral units, t, of the lattice,

H =
J2

2

∑

t

|Lt |
2 −

N
3

� J2
1

2J2
+ 2J2

�

, (4)

however, due to the presence of the centre site, we require that Lt be given by

Lt = γSt,c +
4
∑

v=1

St,v , (5)

where γ rescales the contribution of the central spin. Centre sites are labelled by the index c,
and the sum over v runs over the vertices of the tetrahedron. The ground state is the state
which minimizes Lt = |Lt | on all tetrahedra. For η ≤ 1

4 , Lt is minimized by the ferrimagnetic
state, whereas for η≥ 1

4 , the ground state is defined by the local constraint

Lt = 0 , ∀t . (6)

On the pyrochlore lattice, such a constraint gives rise to an emergent U(1) gauge field [9] and
the subsequent Coulomb phase description [10].

4.2 Ising spins

To understand how the form of the Hamiltonian in equation 4 affects the possible ground
states of the model, it is instructive to consider the analogous Ising model, where we replace
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Figure 2: Ground states of the Ising model on the centred pyrochlore lattice. a-c
Examples of the allowed single tetrahedron spin configurations in each of the ground
states and d. the ground state phase diagram. For η < 1/3 (a.), the ground state is
a long range ordered ferrimagnet. In the region 1/3 < η < 1 (b.) the ground state
manifold is made up of 3-up/1-down and 3-down/1-up vertex spin configurations
with central spins correspondingly pointing opposite to the net polarization on each
tetrahedron. For η > 1 (c.) the ground state is the spin ice state of the pyrochlore
lattice, but with paramagnetic central spins which are decoupled from the vertex
spins. d. Example of a move which changes the parity of the winding number in the
3 : 1 ground state of the Ising model. Cyan (pink) spheres represent a centre site
with spin −1(+1) and we use the spin-ice convention for the spins at the vertices
which are flipped during the move. All other spins residing on central (red) and
vertex (black) sites remain unchanged. The move can be viewed as switching the
direction of a pair of directed strings (highlighted) which begin and end on the same
tetrahedra.

Heisenberg spins by Ising spins, Si → σi = ±1. As for the Heisenberg Hamiltonian, the ground
state is obtained by minimizing

L I
t =

�

�

�

�

�

γσt,c +
4
∑

v=1

σt,v

�

�

�

�

�

, ∀t , (7)

which gives the ground state phase diagram presented in figure 2d. Besides the ferrimagnetic
ground state, there are also a pair of extensively degenerate disordered ground states. For
η > 1 the ground state is the familiar spin-ice state of the antiferromagnetic Ising model on
the pyrochlore lattice [6, 8]. The vertex spins of each tetrahedron must satisfy the 2-up/2-
down (2 : 2) rule, but now with an additional free spin variable occupying the central sites.
This doubles the number of permutations of spin configurations allowed on a tetrahedron in
the ground state to 12 and so by Pauling’s argument [35] gives a residual entropy of ln (3) per
tetrahedron.

In between the ferrimagnet and 2 : 2 state, from 1
3 < η < 1, the ground state is where the

vertex spins are either 3-up/1-down or 3-down/1-up configurations (3 : 1) on all tetrahedra,
with the correspoding central spins constrained to point antiparallel to the net moment of
their vertex spins. There are 8 possible permutations of spin configurations giving a residual
entropy of ln (2) per tetrahedron. Such 3 : 1 single tetrahedra configurations have previously
been studied in dilute concentrations in the context of excited states of spin ice, where the
defects act as charges of the emergent gauge field [10]. In the presence of dipolar interactions
in spin-ice, these charges become monopoles of a magnetic field. On the centred pyrochlore,
the ‘monopoles’ (they are not sources of a physical magnetic field) are stabilized in the ground
state of a large region of the parameter space, are disordered and have maximal density, with
a monopole on each tetrahedron.

6

https://scipost.org
https://scipost.org/SciPostPhys.15.2.040


SciPost Phys. 15, 040 (2023)

At, η= 1, the boundary of the 2 : 2 and 3 : 1 states, the ground state manifold contains any
combinations of 2 : 2 and 3 : 1 states, with a large residual entropy of ln (5) per tetrahedron.
Therefore the ground state manifold contains densities of monopoles from 0 to Nt , where Nt
is the number of tetrahedra, albeit at a fine-tuned point in the parameter space.

The 2 : 2 and 3 : 1 ground states can be distinguished by the topological nature of the
respective ground state manifolds, characterized by a winding number or its parity respectively.
For the 2 : 2 states, the central spins are entirely decoupled from the vertex spins so the
U(1) topological order of the spin ice ground state [24] is preserved. The connection to U(1)
topological order can be seen by mapping the vertex Ising spin variables σ = +1(−1) to the
presence (absence) of a dimer on the links of the diamond lattice. Any local operation (not
encircling the system) which maintains the ground state condition will leave the number of
dimers, wk, crossing the plane perpendicular to k̂, invariant. This allows one to define the U(1)
winding numbers, w = (wx , w y , wz), which label distinct topological sectors. However, in the
3 : 1 ground state, only the parity of these winding numbers are conserved by local operations,
so one can instead define Z2 topological invariants. An example of a local operation which
changes the winding number is presented in fig. 2e. In general, any pair of strings of vertex
spins which begin and end on the same tetrahedra are now flippable, by flipping both of the
centre spins at the beginning and end tetrahedra and all vertex spins in between. This is
easiest to see in the spin-ice representation, where σi = +1(−1) corresponds to a directed link
variable pointing from a to b (b to a tetrahedra).

Therefore, the Ising model hosts distinct classical topological spin liquids at zero tempera-
ture, as seen for example in ref. [32] in spin ice thin films. As we discuss in section 6.2.2 there
is also a more explicit connection to such thin films as a consequence of the geometry of the
centred pyrochlore lattice. In the case of spin ice thin films, the transition between topolog-
ically ordered spin liquids requires a change in sign of the orphan bonds, whereas here this
transition can occur by tuning the ratio of (antiferromagnetic) exchange couplings.

4.3 Degeneracy and flat bands

Returning to the Heisenberg model, we first consider how the form of the constraint (eq. 6)
restricts the possible ground states of the model. For a single tetrahedron, the degree of fer-
rimagnetic correlation decreases continuously as η is increased, from a saturated ferrimagnet
at η≤ 1

4 to decoupled centre and vertex spins as η→∞. The corresponding Ising states form
part of the Heisenberg ground state manifold at η ≤ 1

4 ,η = 1
2 and η→∞. The degeneracy,

D, of the ground state manifold may be estimated for η ≈ 1 using the counting argument of
refs [33, 36, 37], yielding D = 3Nt [1]. This is a higher degeneracy than the PHAF ground
state, where D = Nt , with the additional degeneracy arising from the additional degrees of
freedom carried by the (fixed length) central spin. Furthermore, the ground state degeneracy
of a spin liquid can manifest itself in momentum space as degenerate flat bands, for example
in the kagome [38] and pyrochlore ( [39]) antiferromagnets, with 1 out of 3 and 2 out of 4
flat bands respectively.

Here, both the generalized Luttinger-Tisza method (sec. 4.3.1) and the rewriting of the
Hamiltonian in terms of a connectivity matrix (sec. 4.3.2) show that the disordered state of
the CPHAF is characterized by a ground state with 4 out of 6 flat bands. As a result, the
disordered ground state provides a large manifold of states to which perturbations could be
added in order to stabilize particular ground states. For example, in section 8 we show how a
3D Coulomb phase can be stabilized by the addition of a small ferromagnetic J3. Furthermore,
this large degeneracy means that at finite temperature entropy can wash out the effect of small
perturbations, maintaining the behaviour of the unperturbed J1 − J2 model, as demonstrated
in ref. [1] in the case of dipolar interactions.
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4.3.1 Luttinger-Tisza method

The generalized Luttinger-Tisza (LT) method [40,41] is a mean-field method for obtaining the
energy spectrum of a classical spin Hamiltonian in momentum space. To apply the LT, we first
rewrite the Hamiltonian in Fourier space by introducing the momentum space spin variables

Sµq =
1
p

Nu.c

∑

I

e−iq·(RI+δµ)SµI , (8)

where I labels the primitive unit cell, µ the sublattice of the spin and Nu.c is the number of
primitive unit cells. This yields the Hamiltonian

H
J1
=
∑

q

∑

µ,ν

Kµνq Sµq · S
ν
−q , (9)

with (Hermitian) coupling matrix

Kµνq (η) =















0 0 a1 a2 a3 a4
0 0 a∗1 a∗2 a∗3 a∗4
a∗1 a1 0 c12 c13 c14
a∗2 a2 c12 0 c23 c24
a∗3 a3 c13 c23 0 c34
a∗4 a4 c14 c24 c34 0















, (10)

and components

aµ =
1
2

e−iq·δµ , (11)

cµν = η cosq · (δµ −δν) . (12)

In the standard LT method [40], the strong constraint, that the spin on each lattice site is
normalized,

|Si|
2 = 1 , ∀i , (13)

is replaced by the weak constraint,
∑

i

|Si|
2 =
∑

q

∑

µ

Sµq · S
µ
−q = N , (14)

where the normalization is enforced only on average. Diagonalizing Kµνq , one can propose a
ground state of the system by putting all of the weight from equation 14 into the mode at
momentum q which corresponds to the minimum eigenvalue. However, this state will only
be a valid physical ground state of the system if it also respects equation 13. In models with
inequivalent spins, as is the case here, this standard method often fails to find physical states.

Lyons and Kaplan realized [41] that this can be remedied by modifying equation 14 to the
form

∑

I

∑

µ

�

�SµI
�

�

2

β2
µ

=
∑

q

∑

µ

tµq · t
µ
−q = Nu.c

∑

µ

1
β2
µ

, (15)

where we introduced the rescaled momentum space spin variables, tµq =
Sµq
βµ

, and {βµ} are
sublattice dependent parameters.

Using Lagrange multipliers to incorporate the constraint in equation 15 gives the condition
that the state which minimizes the energy must satisfy the eigenvalue equation

∑

ν

Lµνq tνq = λtµq , (16)

8

https://scipost.org
https://scipost.org/SciPostPhys.15.2.040


SciPost Phys. 15, 040 (2023)

[hh0]

2π0−2π[00l]

−2π
0

2π

1

0

1
E
N

η= 0.1

[hh0]

2π0−2π[00l]

−2π
0

2π

1
0
1
2
3

E
N

η= 0.25

Figure 3: Energy spectrum obtained from the generalized LT method. For η < 0.25
(left), there is a unique ferrimagnetic ground state, corresponding to the band min-
imum at q = 0. For η > 0.25 (right), the ground state is defined by a four-fold
degenerate flat band with a gap to excitations.

with energy per unit cell

ε= λ
∑

µ

1
β2
µ

, (17)

where the matrix Lµνq = βµβνK
µν
q . As before, a candidate ground state can be found by placing

all of the weight into the mode corresponding to the minimum eigenvalue (over all q) of Lµνq .
But now the eigenvalues and eigenvectors of Lµνq depend on the {βµ} so these can be tuned to
ensure that the proposed ground state also satisfies equation 13.

For our model, we make the ansatz that

βµ =

¨

1 , µ= a, b ,

β , µ= 1, ..., 4 ,
(18)

which means the matrices in the standard and generalized variants of the LT are related by

Lµνq (β ,η) = βKµνq (ηeff = βη) , (19)

where Kµνq is evaluated for a rescaled effective η, dependent on the β we choose. For

0 < η < 1
4 , we recover the known ferrimagnetic ground state by setting β =

Ç

2
1−3η . On

the other hand, for η ≥ 1
4 , an important observation is that at ηeff =

1p
2

the spectrum of

Kµνq consists of a lower four-fold degenerate flat band and two higher dispersive bands. This
degeneracy can be preserved in the spectrum of Lµνq for arbitrary η by choosing β = 1p

2η
,

ensuring

Lµνq (β ,η)∝ Kµνq

�

ηeff =
1
p

2

�

. (20)

From eq. 17 one obtains the energy corresponding to the minimum eigenvalues

E
J1N

= −
1

6η
−

2η
3

. (21)

Comparing to eq. 4, we know that this is the ground state energy of the system for η ≥ 1
4 .

Therefore, assuming that equation 13 can be satisfied by forming superpositions of the flat

9
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band modes, we have found physical ground states of the system. Note that in this construction
β is continuous across the boundary at η= 1

4 .
To summarize, for η ≥ 1

4 , the CPH ground state may be described in terms of a four-fold
degenerate flat band. The full energy spectrum obtained using the generalized LT method is
displayed in figure 3. Besides the increased number of flat bands, there is a gap in the mean-
field spectrum, whereas for the kagome [38] and pyrochlore [39] the spectrum is gapless.

4.3.2 Connectivity matrix

Here, we reiterate the application of the method from refs. [42,43] to the centred pyrochlore
lattice, originally presented in [1], as it provides complementary evidence the ground state
corresponds to a four-fold degenerate flat band for η ≥ 1

4 . The Hamiltonian in the form of
equation 4, can be rewritten in terms of an N

3 × N connectivity matrix, A t,n,

H =
J2

2

N/3
∑

t=1

N
∑

n,m=1

A t,nA t,mSn · Sm , (22)

where the constant term has been dropped. The elements of A are given by

A t,n =











1 , if n ∈ vertices of t ,

γ , if n ∈ centre of t ,

0 , otherwise.

(23)

The labels n, m enumerate all sites of the lattice, whereas t enumerates the tetrahedra. The
dimension of the null space of A imposes a limit on the number of zero modes of H and thus
on the number of flat bands. For η≥ 1

4 the minimum energy of H as written in eq. 22 is zero,
so these zero modes make up the ground state. Since

rank(A)≤
N
3

, (24)

the dimension of the null space,

Nullity(A)≥ N −
N
3
=

2N
3

, (25)

by the rank-nullity theorem [44, 45]. The dimension of a band in momentum space is N
6 , so

4 out of 6 bands of the mean-field energy spectrum of the CPHAF must belong to the ground
state.

5 Phase diagram

Moving beyond mean-field methods, we obtain the finite temperature phase diagram in figure
1b from MC simulations. In particular we identify distinct regimes of what (on the mean-field
level) is expected to be the disordered region of the model. Some important thermodynamic
quantities as calculated from MC simulations for various η are displayed in figs. 4a-c. Defini-
tions for quantities computed in MC are given in appendix A. We also define a ferrimagnetic
order parameter,

f = 〈mcentres ·mvertices〉 , (26)

which is −1 in the saturated ferrimagnet and 0 in a paramagnet. The various low temperature
phases, which we define by their features in the T → 0 limit, are described as follows.
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Figure 4: a-c. MC results of bulk thermodynamic quantities for various η. a. The
ferrimagnetic order parameter (eq. 26). In the range 0.25 ≤ η ≤ 0.325 its (finite)
T → 0 value decreases continuously, until vanishing in the SL phase. b. The suscep-
tibility exhibits a low temperature Curie law, χT = const for η > 1

4 . The low T Curie
constant decreases to zero at η = 0.5 before increasing again. c. The specific heat,
c(T → 0)→ 0.5 for all η > 1

4 , indicative of soft fluctuation modes about the ground
state manifold. d-f. Structure factors calculated from mean-field (left panels) and
MC at T = 0.005 (right panels). For η < 0.4 (d.), the mean-field calculation does
not capture the broad maxima observed in MC. For η > 0.5 (e,f), the structure factor
is characterized by broadened pinch points whose width decreases as η is increased
(see also [1]).

Ferrimagnet, 0< η≤ 1
4 :

The state identified analytically in section 4.1, with saturated ferrimagnetic order as T → 0,
magnetization mall =

1
3 and f = −1. Low energy excitations about the ground state are

transverse spin waves so the specific heat c→ 1 as T → 0.
Partial Ferrimagnet (PF), 1

4 < η≲ 0.343(3):
This phase is characterized by unsaturated ferrimagnetic order, mal l <

1
3 and f > −1, with

both continuously approaching zero as η is increased. Fluctuations which preserve the local
constraint, equation 6, are allowed, giving rise to zero modes which lower the heat capacity
below 1 at the boundary (η = 1/4) and to c = 1

2 for η > 1/4. We also observe a low tem-
perature Curie law, χT = const, usually a signature of a spin liquid [46], below the ordering
transition. In the structure factor we do not observe any additional features beyond those as-
sociated with peaks at momenta corresponding to ferrimagnetic ordering. The coexistence of
long-range order and fluctuations in the PF is superficially reminiscent of magnetic fragmen-
tation in Coulomb spin liquids [21], however as we discuss in section 6 we do not expect an
emergent field description to capture this.
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2
√

2Sc

S1

S2

S3

S4

2Sc

S1
S2

S3

S4

Figure 5: Diagrams representing the single tetrahedron spin configurations which
satisfy eq. 6 for η = 1

2
p

2
(left) and η = 1

2 (right) whilst allowing for one or two
spins respectively to be perpendicular to the central spin. Increasing η decreases the
effective central spin length, 1

ηSc , meaning that the perpendicular spins can acquire
a finite component parallel to the direction of the centre spin, whereas decreasing η
leads to a finite antiparallel component for at least one of these spins. We propose
this as a qualitative explanation for the different correlation regimes we observe in
our MC simulations.

Spin Liquid (SL), η≳ 0.343(3):
We do not identify long range order in the magnetization or nematic order parameter, Q(2), nor
do we find peaks in the specific heat or susceptibility. The susceptibility displays a Curie law
crossover, where the low temperature Curie constant decreases continuously as η increases,
reaching zero at η = 0.5, before again increasing continuously with η. As in the partial ferri-
magnet, c = 1

2 , indicative of the zero modes allowed by the local constraint. We can further
distinguish two different regimes of the spin liquid by the spin structure factor. Firstly, for
0.343 ≲ η ≲ 0.5, the structure factor is characterized by broad maxima at momenta associ-
ated with ferrimagnetic ordering (fig. 4d), indicative of short range ferrimagnetic correlations
in the ground state. Secondly, for η≳ 0.5, diffuse broadened pinch points are the key features
of the structure factor (figs 4e,f). The width of these pinch points decreases as the pyrochlore
limit, η→∞, is approached. These regimes of the structure factor evolve continuously into
one another as η crosses 0.5.

We can qualitatively rationalize the location of the different correlation regimes in param-
eter space by inspecting the single tetrahedron configurations allowed by the local constraint
(eq. 6) in more detail. For 1

4 ≤ η ≤
1

2
p

2
all vertex spins must have a component anti-parallel

to the central spin, as illustrated in fig. 5. Enforcing this on closed loops in the lattice would
restrict the degree to which the central spins may deviate from pointing along a global direc-
tion, giving rise to long-range partial ferrimagnetic order. Then for η > 1

2
p

2
, a vertex spin may

have a component parallel to the central spin. This would weaken the correlations between
neighbouring central spins and could destroy any long-range order in the system. In MC simu-
lations, extrapolating to the L→∞ limit at T = 0.005, the transition between the PF and SL
occurs at η= 0.343(3), not too far away from the predicted value of η= 1

2
p

2
≈ 0.354. A simi-

lar effect could be responsible for the change in correlations across η= 0.5, with 1 or 2 vertex
spins allowed components parallel to the central spin for η < 0.5 and η > 0.5 respectively
(see fig. 5).
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6 Spin liquid

6.1 Mean-field structure factor

To calculate the ground state structure factor in the regime governed by the local constraint,
we employ Henley’s (approximate) projection-based approach [47]. This method is equivalent
to the lowest order of a large-N expansion (e.g ref. [9] on the pyrochlore) and was recently
employed to distinguish classical spin liquids from a topological perspective [48].

We are interested in the regime where the ground state is defined by eq. 6, so restrict our
attention to η > 1

4 . On the centred pyrochlore lattice, taking the Fourier transform of eq. 5
yields

Lx(q) = γScx
(q) +

4
∑

m=1

e±iq·δmSm(q) = 0 , (27)

where x = a, b labels the tetrahedra centred on the corresponding sublattice, with spin Scx

occupying the centre site. The exponent takes positive (negative) sign for x = a(b) and the
second equality is the ground state constraint. This may be rewritten in vector form as

Lx(q) = L⃗x(q) · S⃗(q) = 0 , (28)

where

L⃗a(q) = (γ, 0, eiq·δ1 , eiq·δ2 , eiq·δ3 , eiq·δ4)T ,

L⃗b(q) = (0,γ, e−iq·δ1 , e−iq·δ2 , e−iq·δ3 , e−iq·δ4)T , (29)

S⃗(q) = (Sca
(q),Scb

(q),S1(q),S2(q),S3(q),S4(q))
T .

The key object is the 6× 2 matrix
E=
�

L⃗∗a L⃗∗b
�

, (30)

whose columns are the L⃗∗x . Assuming weakly interacting spins, such that the probability dis-
tribution of spin configurations is Gaussian in the spin variables and enforcing equation 28 by
projecting onto the subspace orthogonal to the L∗x , the structure factor is given by

〈Sµ(−q) · Sν(q)〉= s2
0Pµν(q) , (31)

where µ,ν label the sublattices, s2
0 is a normalization constant and

Pµν(q) = δµν − [E(E†E)−1E†]µν . (32)

Enforcing spin normalization on average, the structure factor over all sublattices (see eq. A.4)
is

S(q) =
Nu.c

N

∑

µ,ν

〈Sµ(−q) · Sν(q)〉=
1

Tr(P)
M T PM , (33)

where M = (1,1, 1,1, 1,1)T .
Pinch point singularities may arise in the structure factor at the q where E†E is singular.

Since

det(E†E) = (γ2 + 4)2 −

�

�

�

�

�

4
∑

m=1

e2iq·δm

�

�

�

�

�

2

, (34)

for any finite γ, det(E†E) ̸= 0 and thus we do not expect to find pinch point singularities in the
structure factor on the centred pyrochlore lattice. This is confirmed by our MC simulations.
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Since these mean-field structure factors are for T = 0, results are displayed alongside those
from low T MC simulations in figs. 4d-f. We find good agreement for η > 0.5 so therefore
expect that a long wavelength effective description is appropriate in this regime. Although
the structure factor here does not have sharp pinch points for any finite η, the finite width
pinch points suggest a close connection to the 3D Coulomb phase on the pyrochlore, which
we explore in more detail in the next section. On the other hand, for 0.25 < η < 0.5, we
find mean-field deviates from MC; it cannot properly capture the short-range ferrimagnetic
correlations which result from microscopically satisfying the local constraint. Nevertheless at
intermediate temperature T ≈ 0.5, mean-field and MC are in good agreement for all relevant
η, even in the 0.25 < η < 0.5 regime, likely due to the large entropy of the long wavelength
spin liquid. This crossover from long wavelength spin liquid to short-range ferrimagnetic cor-
relations could also explain the bump in specific heat seen for these values of η around T ≈ 0.1
in fig. 4c, which indicates a loss in entropy.

6.2 Coulomb physics

6.2.1 Charge fluid description

Here, we first restate the mapping (initially proposed in ref. [9]) which allows one to describe
the PHAF ground state as a Coulomb phase, then explain how the centred pyrochlore geometry
modifies this picture. We pointed out the resulting charge fluid description in ref. [1], but here
we explain in more detail.

On each tetrahedron, at position Rt , we define the three-component vector field

Eα(Rt) =
4
∑

m=1

ûmSα(Rt ±δm) , (35)

where there is one copy for each of the α = x , y, z spin components and use the orientation
ûm =

δm
|δm|

which points from a to b tetrahedra. The ground state condition for the PHAF is eq.
5 with γ= 0, which after coarse-graining translates to

∇ · Eα = 0 . (36)

Assuming a Gaussian effective free energy within the ground state manifold, the structure
factor

Eαµν(q) =
1
Nt

∑

t,t ′
eiq·(Rt′−Rt )〈Eαµ(Rt)E

α
ν (Rt ′)〉 , (37)

where the Eαµ are the vector components of Eα and the sum runs over all tetrahedra, t, t ′, will
take the form

Eαµν(q)∝ δµν −
qµqν
q2

, (38)

giving rise to characteristic pinch points at the centre of the Brillouin zone. In real space this
corresponds to algebraic 1/r3 decay of correlations. The effective low energy theory is classical
electrostatics, where excitations above the ground state introduce charges which interact via
an (entropic in origin) Coulomb potential.

Now consider switching on a small, but finite, γ in the local constraint on only n ‘defect’
tetrahedra, whilst maintaining γ= 0 on all others. Provided these defects are well separated,
after coarse graining the central spins on the defects can be viewed as n charges

∇ · Eα(Rt) =Qα(Rt)∝±γSα(Rt) , (39)

in each of the α channels with −(+) on a(b) tetrahedra. Qα ∈ [−γ,γ] and therefore γ
parametrizes the maximum charge strength. Now the low-energy picture is that of three copies
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Figure 6: a-c. Computing the width of pinch points in E x
x x(q) from MC simulations,

reproduced from [1]. a. The E x
x x(q) structure factor, eq. 37, as computed from MC

for γ = 0.67, T = 0.005 in the [hk0] plane. A cut is taken along the red line shown.
b. Fitting the Lorentzian in eq. 41 to the MC data for various γ (the same colours
are used in b and c). c. κ which parametrizes the width of the pinch point against γ,
with linear fit up to γ = 1.25. The linear relation is characteristic of a dilute charge
fluid with charge strength parameterized by γ.

of an emergent U(1) gauge field, coupled to scalar charges on diamond lattice sites. Following
the same arguments for the PHAF, these charges will experience an entropic effective Coulomb
interaction. Then arguments from Debye-Hueckel theory [49–51] tell us that the field corre-
lations must be screened as e−κr with κ∝ γ, as any charge in the system carries a factor of
γ. In momentum space, this results in the pinch points acquiring a finite width parametrized
by κ

Eαµν(q)∝ δµν −
qµqν

q2 +κ2
. (40)

Remarkably when we compute the structure factor of the CPHAF in MC simulations and
fit to the form

E x
x x(qx , qy = 0, qz = 0) =

A
q2

x + κ2
, (41)

wth A and κ fitting parameters, we find that κ ∝ γ over a large region of the parameter
space, 0 < γ ≲ 1.25. These results are summarized in fig. 6. This is despite the fact that the
centred pyrochlore lattice corresponds to taking the limit n→ Nt and Debye-Hueckel theory
is used to describe systems of dilute charges at high temperature. Here there are charges,
albeit with strength parametrized by γ, in at least one α channel on every tetrahedron (the
effective temperature is a priori not known). The ground state can thus be viewed as the
Heisenberg model variant of a monopole fluid in spin ice, for example studied in refs. [52,53].
This description does not impose any energetic constraints on the distribution of central spins,
only accounting for how the central spins entropically rearrange themselves according to the
effective electrostatic interactions between them. For small γ, we expect that all possible
configurations of central spins will be allowed in the ground state. However for larger γ,
certain configurations may no longer be energetically feasible and thus this view of the central
spins as mobile charges will break down.

6.2.2 Analogy with pyrochlore thin films

Finite width pinch points have also been observed in the study of spin-ice thin-films [32],
also featuring the existence of Z2 and U(1) classical spin liquids, which we found for the
Ising model on the centred pyrochlore. The connection between pyrochlore thin-films and the
centred pyrochlore lattice can be clarified by mapping the centred pyrochlore to a slab of a 4D
lattice of corner-sharing pentachora, which we term the pentachore lattice.
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Figure 7: a. Mapping of the 2D centred kagome lattice to a slab of the pyrochlore
lattice in 3D, analogous to the mapping of the 3D centred pyrochlore lattice to a slab
of the 4D pentachore lattice. Left: The centred kagome lattice made up of corner-
sharing centred triangles. Right: The corresponding slab of the pyrochlore lattice.
Bulk tetrahedra are grey, whereas the pink virtual tetrahedra above and below the
slab host unordered surface charges (blue) in the spin liquid ground state. b. Struc-
ture factor, S(q), in the [hhl0] plane calculated using the analytical mean-field calcu-
lation for η= 1 for the 3D centred pyrochlore lattice (left) and 4D pentachore lattice
(right). The sharp pinch points on the 4D lattice along [4π, 4π, l, 0] become broad-
ened in the 3D case as pinch point singularities are not allowed by the symmetry of
the 3D lattice.

The slab geometry is obtained by shifting central sites of the a(b) tetrahedra alternately by
δt = +(−)

p
5

8 , whilst the vertex spins remain in the t = 0 hyperplane, where t is the additional
Cartesian coordinate needed to describe the 4D space. Thus the slab has open boundaries at
the t = ±

p
5

8 edges. To illustrate the idea, the analogous 2D to 3D mapping from a centred
kagome lattice to a slab of the pyrochlore lattice is shown in fig. 7a. We study this analogous
situation in more detail in the next section. Returning to 4D, the slab can be generalized to a
fully periodic pentachore lattice, specified by the positions

r(4)I ,µ = R(4)I +δ
(4)
µ , (42)

with lattice vectors
R(4)I = n1a1 + n2a2 + n3a3 + n4a4 , (43)

where,

a1 =
1
2







1
1
0
0






, a2 =

1
2







1
0
1
0






, a3 =

1
2







0
1
1
0






, a4 =

1
4







−1
−1
−1p

5






, (44)

and basis vectors

δ(4)1 =
1
8









1
1
1
− 1p

5









, δ(4)2 =
1
8









−1
−1
1
− 1p

5









, δ(4)3 =
1
8









1
−1
−1
− 1p

5









,

δ(4)4 =
1
8









−1
1
−1
− 1p

5









, δ(4)c =
1
8









0
0
0
4p
5









.

(45)
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Note that the pentachore lattice has a 5 site basis, as the sites which in the slab geometry
can be identified with central sites of the centred pyrochlore lattice become equivalent in the
translational sense and are shared between neighbouring pentachora.

What can we say about the ground state on the periodic pentachore lattice? The gener-
alization of our model will have a ground state (for η > 1

4) defined by an analogous local
constraint to equations 5 and 6, on each pentachoron. Crucially, now all spins are shared be-
tween clusters centred on a bipartite lattice. We can modify the mean-field structure factor
calculation to account for the pentachore lattice geometry by letting

L⃗a(q) = (γeiq·δ(4)c , eiq·δ(4)1 , eiq·δ(4)2 , eiq·δ(4)3 , eiq·δ(4)4 )T ,

L⃗b(q) = (L⃗a(q))∗ , (46)

S⃗(q) = (Sc(q),S1(q),S2(q),S3(q),S4(q))T ,

where (. . . )∗ is the element-wise complex conjugate and redefining the E matrix accordingly.
Now

det(E†E) = (γ2 + 4)2 −

�

�

�

�

�

γ2e2iq·δ(4)c

4
∑

m=1

e2iq·δ(4)m

�

�

�

�

�

2

, (47)

which vanishes at certain q, where the structure factor may exhibit pinch point singularities.
Therefore we see that the symmetry of the centred pyrochlore lattice (equivalent to a penta-
chore slab) does not allow for sharp pinch points in the structure factor, while they are present
for the fully periodic 4D pentachore lattice. Plots of the structure factor in both cases are
shown in fig. 7b.

The sharp pinch points on the pentachore lattice suggest that there is a description of the
ground state in terms of a 4D Coulomb phase. Indeed, one can define such a Coulomb phase
in terms of a four-component vector field which is the higher dimensional version of Eα (eq.
35). We introduce an orientation for the field with the unit vectors

û(4)µ = 2
p

5δ(4)µ , µ= 1,2, 3,4, c , (48)

and then define the four-component vector field

Eα(R(4)p ) = γû
(4)
c Sα(R(4)p ±δ

(4)
c ) +

4
∑

m=1

û(4)m Sα(R(4)p ±δ
(4)
m ), (49)

at the centre of each pentachoron, R(4)p , for each spin component, α = x , y, z with ± = +(−)
for a(b) pentachora. Note that the Eαx , Eαy , Eαz vector components of the Eα = (Eαx , Eαy , Eαz , Eαt )
field are proportional to the corresponding components of the 3D field. After coarse-graining,
the ground state constraint, eq. 6, becomes

div(Eα(r(4))) = 0 . (50)

Following the same arguments as for the pyrochlore we expect sharp pinch points in the struc-
ture factor and a 1/r4 decay of correlations in real space. Defects would interact via a 1/r2

effective Coulomb potential; the effective theory for dilute defects is 4D electrostatics.
Returning to the pentachore slab, this can be viewed as the thinnest possible thin-film

geometry which keeps both a and b pentachora of the lattice intact. Therefore, we can under-
stand the properties of the ground state of the Heisenberg model on the centred pyrochlore
lattice in a similar way to the spin-ice thin films studied by Lantagne-Hurtubise, Rau and Gin-
gras (L-HRG) in ref. [32]. There, the authors considered various geometries of thin films of
nearest neighbour spin-ice, also including so-called orphan bonds; bonds at the surface which
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do not belong to a bulk tetrahedron, but instead can be thought of as belonging to a fictitious
virtual tetrahedron. In our case, the central spins lie on the surface in the slab geometry; they
not only belong to a bulk pentachoron but are also the single spin of a virtual pentachoron,
see fig. 7a. As a result, the closest analogue to the pentachore slab (albeit in 3D rather than
4D) studied in ref. [32] is the [001] thin-film with orphan bonds set to zero. For such systems,
L-HRG showed that at low T the structure factor will also be characterized by finite width
pinch points, which they argue is the result of fluctuating surface charges on the virtual tetra-
hedra. In our model, the flux entering/exiting a virtual pentachoron is γSαc , so is a continuous
variable in [−γ,γ]. Note that due to the spin length constraint on a Heisenberg spin, there
must be non-zero flux entering each bulk pentachoron in at least one of the α = x , y, z chan-
nels. Therefore we would also expect these fluctuating surface charges to destroy the Coulomb
phase, with a screening length proportional to γ, as seen in our MC simulations.

The descriptions in terms of surface charges in higher dimensions or bulk charges as pre-
sented in the previous section describe the same effect. On the microsopic level, a spin at a
surface or centre belongs only to a single (bulk) unit and therefore is less constrained than a
spin shared between two corner-sharing units, modifying the allowed spin correlations in the
ground state manifold in such a way as to destroy the Coulomb phase. The analogy between
thin films and centred lattices can be useful in considering how to induce a desired effect in
either system through the addition of perturbations as well as giving insight into the physics
described by the bare Hamiltonian.

7 Centred kagome lattice

The mechanisms discussed on the centred pyrochlore lattice, whereby the central spins act as
mobile sources of flux, should also apply to other lattices made up of suitable corner-sharing
centred clusters, regardless of dimensionality or number of spins making up the cluster. There-
fore, we also investigate the Hamiltonian, eq. 3, on the 2D analogue of the centred pyrochlore
lattice, the centred kagome lattice. Here, an additional site at the centre of each triangular
unit of the kagome lattice is coupled to the vertex spins by J1 and the vertex spins are mutually
coupled by J2.

The centred kagome lattice is defined by the position vectors

r(2)i,µ = R(2)i +δ
(2)
µ , (51)

where R(2)i = n1a(2)1 + n2a(2)2 , with the triangular lattice vectors a(2)1 = 1
2(1,−

p
3),

a(2)2 = 1
2(−1,−

p
3) and integer n1, n2. We choose units of

�

�

�a(2)1

�

�

� =
�

�

�a(2)2

�

�

� = 1. The lattice

has a 5-site basis of

δ(2)a =

�

0
0

�

, δ(2)b =

�

0
1p
3

�

, (52)

δ(2)1 =

�

0
1

2
p

3

�

, δ(2)2 =

� 1
4
−1

4
p

3

�

, δ(2)3 =

� −1
4
−1

4
p

3

�

.

Sites labelled by a(b) occupy the centre of up (down) triangles. As for the centred pyrochlore,
the Hamiltonian may be rewritten in the form of eq. 4, which gives rise to the ground state
constraint

Lt = 0 , ∀t , (53)

for η≥ 1
3 , where

Lt = γSt,c +
3
∑

v=1

St,v , (54)
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Figure 8: Comparison of the structure factor of the nearest neighbour Heisenberg
model on the pyrochlore lattice (left, computed using the mean-field calculation in
[47]) and the centred kagome lattice (right, computed from MC at T = 0.02 for a
system size of L = 48). The sharp pinch points on the pyrochlore become broadened
upon reducing the dimension to the centred kagome lattice.

with t now labelling centred triangular units. For η ≤ 1
3 , the energy is minimized by the

ferrimagnetic state.
Analogous to the mapping from the 3D centred pyrochlore lattice to the 4D pentachore

slab, one can map the 2D centred kagome lattice to a slab of the 3D pyrochlore lattice, as
shown in fig. 7a. This is done by considering the centred kagome lattice as occupying the
z = 0 plane of a 3D space, then shifting the central sites alternately up(down) to z = ± 1p

6
,

with ± = +(−) respectively. Thus the centred triangles become tetrahedra and we have a
pyrochlore slab with open boundaries at the z = ± 1p

6
edges, which is the thinnest possible

thin-film geometry keeping both a and b tetrahedra intact. Adapting the calculations of sec.
6.1 to the centred kagome it can be shown that the disordered state would not have any
pinch point singularities for finite γ, as we would expect from the arguments of the previous
sections. This is confirmed by our MC simulations on the centred kagome lattice where we
find broadened pinch points in the structure factor, as shown in figure 8. Thus, we see that the
picture of central spins acting as mobile sources of flux in the effective low energy field theory
is not unique to the centred pyrochlore lattice.

8 J1 − J2 − J3 model

Returning to the centred pyrochlore lattice, we now investigate the possibility to realize dif-
ferent states of matter by applying perturbations to the bare J1 − J2 Hamiltonian, targeting
specific regions of the degenerate ground state manifold. In particular, we consider the effect
of a J3 term coupling next next nearest neighbours, i.e centre spins on adjacent tetrahedra.

8.1 Ferromagnetic J3

After the addition of a ferromagnetic J3 the ground state manifold is made up of states with
ferromagnetic centre spins and vertex spins correspondingly satisfying the local constraint.
Selecting the ẑ direction as that along which the centres are aligned, the local constraint can

19

https://scipost.org
https://scipost.org/SciPostPhys.15.2.040


SciPost Phys. 15, 040 (2023)

be rewritten as
4
∑

v=1





S x
v

S y
v

Sz
v +

γ
4



=
4
∑

v=1

S̃v = 0 , (55)

such that the rescaled vertex spins, S̃v can be mapped to the usual divergence-less field of the
3D Coulomb phase (eq. 35). The structure factor of S̃v should then yield sharp pinch points as
well as a 1/r3 algebraic decay in real space. This is verified in MC simulations, by calculating
the structure factor

S⊥(q) =
1
N

∑

i, j

S⊥i · S
⊥
j eiq·(ri−r j) , (56)

where S⊥i = (S
x
i , S y

i )
T and the orientation of the axes is chosen such that ẑ= m̂centres for each

spin configuration sampled. We find sharp pinch points for all η ≥ 0.3 simulated. The full
structure factor, eq. A.4, for η = 0.4 is presented in figure 9a, showing the coexistence of
Bragg peaks and pinch points. Considering the local constraint, we would expect sharp pinch
points to persist all the way down to η= 1/4, but the lower temperature required to enter the
Coulomb phase at low η and the reduced weight in the perpendicular spin components, makes
their observation challenging as this limit is approached. Furthermore, we also calculate the
real space spin correlations for perpendicular spin components and find the characteristic 1/r3

decay expected for a 3D Coulomb phase, as shown in figure 9b.
This recovery of the Coulomb phase can be easily understood in the effective field theory

picture. When the central spins order ferromagnetically they form a perfect zinc blende charge
crystal in the z channel with charges Qz = ±γ on alternating diamond sublattices. This leaves
the x and y channels of the effective field with no charges, therefore restoring the divergence-
free condition of the 3D Coulomb phase. This is analogous to the situation in spin ice thin films
where one can stabilize the 2D Coulomb phase by inducing ordering in the surface charges
[32,54].

8.2 Antiferromagnetic J3

Taking antiferromagnetic J3 introduces additional frustration into the model as J1 and J3 bonds
cannot be simultaneously satifised; J1 bonds connecting a pair of centre sites through an in-
termediate vertex spin favours ferromagnetic order of the centres, whereas J3 favours Néel
order. For J2 = 0 one can think of the lattice as a singly decorated diamond lattice, where
the basic frustrated unit can be represented as the triangle in fig. 9c. Minimizing the energy
on a single triangle, the ground state is the same ferrimagnetic state as in the J1 − J2 model
for J3

J1
≤ 1

2 , whereas for J3
J1
> 1

2 the ground state is the canted state shown (fig. 9c), with the

angle between the centres and their shared vertex spin cosφ = − J1
2J3

. In the limit J3
J1
→∞

this becomes a state with Néel ordered centre sites which are decoupled from the vertex sites.
On the full lattice, the ferrimagnetic state remains the ground state, however for the canted

state the spiral order of the centre spins must be commensurate with closed loops on the
lattice to guarantee it remains a ground state. This requires that Nloopφ = πn where Nloop
is the number of centre sites in a given loop. For example, considering only the shortest
hexagonal loops, a commensurate spiral order of the centre sites is obtained at φ = 2π

3 and
5π
6 , corresponding to J3

J1
= 1 and J3

J1
= 1p

3
respectively. The difference in energy between the

Neel J3
J1
→∞ ground state and the canted state is EN − Ec =

J2
1

J3
. Therefore for large but finite

J3 the energy difference is small. Combined with the fact that commensurate spiral orders will
not be possible on hexagonal loops for large J3

J1
, this leaves the state with Neel ordered centres

as the likely ground state.
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Figure 9: a. Structure factor for η = 0.4, J3 = −0.1 at T = 0.001 computed from
MC. The colour scale is restricted to a maximum of 2 to show the coexistence of
Bragg peaks from long-range ordering of the centre spins and pinch points from the
vertex spins. The width of the pinch points continues to decrease with temperature
up to the resolution allowed by the finite system size. b. Real space spin correlations
(for perpendicular spin components to the ordering axis) computed from MC in the
[110] direction at T = 0.001. They decay as 1/r3 for all η shown, except at η= 0.3,
where we are not able to access low enough temperatures in our simulations. c. The
basic frustrated unit of the antiferromagnetic J1−J3 model on the centred pyrochlore
lattice. For J3

J1
> 1

2 the ground state is that shown with the angle between centre spins

(red) and their shared vertex spin (grey) given by cosφ = − J1
2J3

.

Returning to the J1 − J2 − J3 model and assuming Neel ordered centre sites, vertex sites
become decoupled from central sites, so the lowest energy configuration is achieved when the
vertices satisfy the usual pyrochlore local constraint, i.e eq. 6 with γ= 0. Therefore the vertex
spins should realize the usual 3D Coulomb phase, which unlike in the ferro J3 case does not
require any rescaling of the spin. In MC simulations, we find a state with Neel ordered centres
and vertex spins satisfying the local constraint with γ= 0 as T → 0 (down to T = 10−3) for a
system size of L = 4 and J3 = 10. However, upon increasing the system size, it becomes chal-
lenging to thermalize the MC simulations at low temperature. More experimentally relevant
would be a small antiferromagnetic J3, however MC simulations also struggle to thermalize in
this case, so we were unable to identify which ground states such a perturbation would favour
in the thermodynamic limit.

9 Summary and Outlook

The CPHAF hosts a highly degenerate spin liquid ground state over a large region of the param-
eter space. This gives rise to several unusual low temperature phases: a partial ferrimagnet
where partial long-range order and fluctuations coexist, a disordered regime where the mi-
croscopic need to satisfy the ground state constraint leads to a short-range ferrimagnetically
correlated ground state, and a spin liquid regime which admits an effective description in terms
of a fluid of mobile charges. In the latter the central spins act as sources and sinks of flux of
the effective field, interacting entropically via a Coulomb potential, causing screening of the
spin correlations in the ground state and therefore broadening of pinch points in momentum
space. This broadening of pinch points due to the addition of a central spin is not unique to the
centred pyrochlore lattice; we find the same phenomenon on the 2D centred kagome lattice.
One can connect this physics to that of thin films by viewing these d-dimensional lattices as
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slabs in a higher d +1 dimensional space, where the periodic d +1 dimensional lattice would
host a Coulomb phase ground state.

We have also shown how additional terms can be added to the pure J1 − J2 centred py-
rochlore Hamiltonian in order to stabilize specific states of matter, in this case the 3D Coulomb
phase with the addition of a ferromagnetic J3. Therefore the centred pyrochlore lattice offers
a new frustrated geometry to explore the rich physics of spin liquids.

Although the focus of this paper has been purely theoretical, we should remember that
the centred pyrochlore lattice may be realized in the lab in (highly tunable) metal-organic
frameworks [1]. Therefore with continued theoretical and experimental work there exists the
real possibility to experimentally realize novel states of matter.

Going forward, there remain some open questions to fully characterize the low temperature
states of the CPHAF. For η ≲ 0.8 the effective description in terms of a dilute fluid of charges
appears to break down; a correct description would probably have to incorporate the energetic
constraints on central spin configurations, as well as corrections to the Debye-Hueckel theory
arising from the fact that the charge density becomes large. Furthermore, we have not focussed
much on the partial ferrimagnetic state, where a microscopic understanding of the system
appears crucial. Understanding how to satisfy the local constraints on tetrahedra forming
closed loops in the lattice is probably important, which may be possible to capture with an
effective model on the diamond lattice. Returning to the regime characterized by broadened
pinch points and in light of the Z2 nature of the Ising ground state over a broad range of η,
future work could investigate whether the CPHAF realizes a Z2 classical Heisenberg spin liquid
as introduced in ref. [55].

Further afield, it is interesting to consider whether quantum spin liquid ground states of
quantum Hamiltonians exist on the centred pyrochlore lattice. For example, how does the
addition of a central spin affect the U(1) quantum spin liquid of the XXZ Hamiltonian on the
pyrochlore? We have discussed how we expect the Ising model on the centred pyrochlore lat-
tice to host both Z2 and U(1) classical spin liquids, so could it be that the addition of quantum
fluctuations would realize a Z2 quantum spin liquid?

On the experimental front, further experimental measurements such as NMR, µ-SR or
neutron scattering on Mn(ta)2 would be useful to probe the putative proximate spin liquid
above∼ 1K, to see if signatures of the spin liquid state can be observed, as well as verifying the
nature of ordering below Tc . Away from the classical regime, the synthesis and measurement
of Cu based MOFs realizing the centred pyrochlore lattice would be of great interest in order
to probe the properties of S = 1/2 quantum spins in this geometry. Cu(ta)2 has already been
studied in ref. [56], where it was found that a Jahn-Teller distortion at low temperature breaks
the cubic symmetry of the lattice and thus one would expect differing exchange interactions
between the vertex spins of the tetrahedra. Nevertheless, one of the great strengths of metal-
organic frameworks is their tunability, and it is possible that the correct choice of ligands
may be able to preserve the cubic symmetry of the centred pyrochlore lattice down to low
temperatures.
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A Monte Carlo simulations

Classical Monte Carlo simulations on the centred pyrochlore lattice were performed for cubic
systems of N = 24L3 spins, where L is the number of conventional unit cells along each
Cartesian axis. On the centred kagome lattice systems of N = 5L2 spins were used, where L
specifies the number of primitive unit cells spanning each direction of the triangular Bravais
lattice. Each MC sweep consists of a sweep of overrelaxation [58–61] and heatbath [58,62,63]
updates through the entire lattice.

Quantities computed during MC simulations include: magnetizations

m j =
1
N j
〈
∑

i∈ j

Si〉 , (A.1)

where j may include all or a subset of spins on the lattice, the ferrimagnetic order parameter,
eq. 26, the nematic order parameter, Q(2), defined in ref. [64], which measures quadrupolar
moments, the magnetic susceptibility (per site)

χ =
N
T

�

〈m2
all〉 − 〈mall〉2
�

, (A.2)

and specific heat (per site)

c =
1
T2

�

〈E2〉 − 〈E〉2
�

, (A.3)

where E is the energy calculated according to equation 3.
To probe spin correlations we also compute the structure factor

S(q) =
1
N

∑

i, j

eiq·(r j−ri)〈S(ri) · S(r j)〉 , (A.4)

where ri , r j are the position vectors of all lattice sites, enumerated by the indices i, j, as well
as the structure factor of the effective field, defined in eq. 37. Simulations were performed up
to system sizes of L = 10 when computing the structure factor and L = 14 for thermodynamic
quantities.
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