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Abstract

We present microscopic, multiple Landau level, (frustration-free and positive semi-
definite) parent Hamiltonians whose ground states, realizing different quantum Hall
fluids, are parton-like and whose excitations display either Abelian or non-Abelian braid-
ing statistics. We prove ground state energy monotonicity theorems for systems with dif-
ferent particle numbers in multiple Landau levels, demonstrate S-duality in the case of
toroidal geometry, and establish complete sets of zero modes of special Hamiltonians sta-
bilizing parton-like states, specifically at filling factor ν = 2/3. The emergent Entangled
Pauli Principle (EPP), introduced in Phys. Rev. B 98, 161118(R) (2018) and which defines
the “DNA” of the quantum Hall fluid, is behind the exact determination of the topolog-
ical characteristics of the fluid, including charge and braiding statistics of excitations,
and effective edge theory descriptions. When the closed-shell condition is satisfied, the
densest (i.e., the highest density and lowest total angular momentum) zero-energy mode
is a unique parton state. We conjecture that parton-like states generally span the sub-
space of many-body wave functions with the two-body M-clustering property within any
given number of Landau levels, that is, wave functions with Mth-order coincidence plane
zeroes and both holomorphic and anti-holomorphic dependence on variables. General
arguments are supplemented by rigorous considerations for the M = 3 case of fermions
in four Landau levels. For this case, we establish that the zero mode counting can be
done by enumerating certain patterns consistent with an underlying EPP. We apply the
coherent state approach of Phys. Rev. X 1, 021015 (2011) to show that the elementary
(localized) bulk excitations are Fibonacci anyons. This demonstrates that the DNA asso-
ciated with fractional quantum Hall states encodes all universal properties. Specifically,
for parton-like states, we establish a link with tensor network structures of finite bond
dimension that emerge via root level entanglement.
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1 Introduction

Realistic many-body problems, in which interactions play an important role can rarely be ex-
actly solved. Over the decades, a rather fruitful modus operandi for analyzing certain many-
body systems has been to construct physically motivated variational wave functions. This
particular approach has been extremely insightful and witnessed monumental successes in
several arenas including the BCS theory of superconductivity [1] and Laughlin’s description of
the simplest odd-denominator Fractional Quantum Hall (FQH) states [2]. The investigation
of numerous variational wave functions and associated “parent Hamiltonians” (i.e., Hamilto-
nians whose ground states are the posited variational wave functions) has attracted renewed
attention. This has, perhaps, been most acute for the rich plethora of FQH states. Certain
FQH states have, for some time by now, been suspected of featuring non-Abelian exchange
statistics [3, 4]. Complementing variational techniques, many other celebrated theoretical
frameworks have been advanced to investigate these systems. These notably include effective
field theories [5,6], Jain’s composite fermion picture [7], general parton constructions [8–11],
and the study of spectral properties of pseudopotentials [12–15] that allows for a systematic
expansion of general rotationally symmetric interactions. Pseudopotentials and parton states
and, in particular, their connection are a central focus of our study.

In the current work, we will demonstrate that an extensive set of systems with only two-
body interactions have ground states that represent arbitrary quantum Hall (QH) fluids. The
kinetic energy will be quenched in low-lying Landau level (LL) states. The resulting associated
Hamiltonians will be positive semi-definite operators whose densest (i.e, minimum total angu-
lar momentum consistent with the largest filling fraction) zero-energy modes realize particular
Abelian or non-Abelian QH vacua. We will investigate the universal short-range components
of these two-body interacting Hamiltonians in the presence of low-lying LLs mixing. By fix-
ing the subspace determined by a chosen number of LLs, we will outline a general scheme to
obtain such positive semi-definite, and frustration-free, parent Hamiltonians and investigate
their many-body (zero-energy) ground states. By altering the number of LLs and pseudopoten-
tials, we will determine FQH states at various filling fractions as ground states of those parent
Hamiltonians.

The recent renewed interest in parton-like FQH states [8–11,16] is, in part, driven by the
advent of new platforms for the physics of the QH effect, specifically graphene and related
structures. Notably, in multi-layer graphene a degeneracy or near degeneracy of multiple
LLs [10,17–19] invites a study through guiding principles based on mixed-LL wave functions.
On the other hand, contrary to the multiple-LL arena, powerful tools to identify the univer-
sality class of (especially non-Abelian) FQH trial wave functions have traditionally favored
holomorphic, lowest Landau level (LLL), guiding principles. The seminal insights by Moore
and Read [3] on conformal block-type holomorphic wave functions and their direct associa-
tion to an edge effective theory allow for an unambiguous transition between microscopic wave
functions and universal physics. It is, a priori, not clear how to achieve such a conversion be-
tween microscopic and universal properties, in similarly general terms, for non-holomorphic,
multiple-LL wave functions. Our recent work [14, 15], however, suggests that such a tool is
now emerging, specifically for a large class of states falling into a paradigm which we called
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the “Entangled Pauli Principle” (EPP). In this work, we will elaborate why this, in particular,
includes all parton-like states.

Our approach rests on three pillars. First, we establish one-dimensional reductions for
the states in question as well as their quasihole/edge excitations. This relies on the general-
ization of concepts involving “dominance” or “root patterns”, first discussed for holomorphic
LLL wave functions [20–25], to the non-holomorphic case. The crucial enrichment resulting
from this generalization is that root states also become locally entangled, as opposed to their
holomorphic counterparts. These root states can be understood as the “DNA” of the underly-
ing QH states [14]. This understanding arguably becomes complete only if one allows for the
possibility of entanglement, as some of us recently demonstrated for (Abelian) Jain composite
fermion states [15].

The second pillar involves the machinery used to derive the aforementioned EPPs not as
properties of trial wave functions, but as necessary criteria satisfied by “root states" of zero-
modes of an associated parent Hamiltonian. This step depends crucially on the correct gener-
alization of the concept of “dominance” from the holomorphic wave function context to that
of mixed-LL wave functions. It is central to establishing the full zero-mode space of the given
Hamiltonian, thus replacing the formalism based on symmetric polynomials characteristic of
the LLL context. This formalism is generally not applicable to non-holomorphic wave func-
tions. Through matching of mode counting with an appropriate conformal field theory (CFT),
the correct edge theory can, in principle, be identified beyond doubt, within the setting of
microscopic wave functions and their parent Hamiltonians. We have demonstrated this pro-
cedure for a variety of pseudopotential and other frustration-free Hamiltonians in Refs [14],
and [15], leading to a variety of non-holomorphic wave functions of interest. As we argued,
the identification of universal physics rests on as solid grounds as it does for any holomor-
phic, LLL, wave function. The detailed structure of the EPP, however, depends on the parent
Hamiltonians themselves. These details of the EPP are necessary to establish the connection
between the microscopic ground state and the corresponding edge excitations. To streamline
the flow of the logic, we have concentrated on a particular Hamiltonian (Trugman-Kivelson
Hamiltonian [13], projected onto four LLs) to further establish the broad applicability of these
techniques. This Hamiltonian is a particular type of positive semi-definite projected density-
density interaction, which enforces a certain analytic clustering condition in its zero modes.
This is analogous to similar interactions for simpler parton states, [10, 14] the ν = 2/5 Jain
state [26–28], and indeed the Laughlin state itself. [12, 13] The formalism is, however, not
limited to density-density interactions. Indeed, as the example of general members of the
Jain sequence shows, [15] more intricate action on Landau level indices is both needed and
tractable within our formalism in order to stabilize states characterized by different types of
non-holomorphic clustering conditions.

The third pillar concerns the bulk properties of the system more directly. It consists of a
method to work out the statistics of the quasiparticles directly from the DNA as defined by the
EPP. While the EPP efficiently encodes field theoretic concepts such as fusion rules [29,30], our
method is different in that it is not built on the assumptions of an effective theory that adheres
to the axioms of local quantum field theory [31, 32]. In particular, no explicit contact with
modular tensor categories is made. Instead, the formalism proceeds based on the knowledge
that a complete set of quasihole excitations is encoded in patterns satisfying the EPP, and on an
Ansatz of how localized quasihole excitations can be expressed through coherent states formed
from a basis that is in one-to-one correspondence with these patterns. Consequences of local-
ity and S-duality on the torus are naturally enforced within this Ansatz, without reliance on
suppositions regarding underlying field-theoretic frameworks. This formalism, too, has been
first worked out in the context of holomorphic LLL wave functions [21, 33–36]. As we will
see, through the notion of an EPP, the formalism generalizes to the context of mixed-LL wave
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functions, where one has to consider the entire root state with its entanglement as opposed
to simple root patterns previously used in the LLL case [33]. It is here where the approach
unfolds its full utility, as alternative methods to ascertain the statistics and underlying topo-
logical quantum field theory are far less abundant and general. The present formalism offers
a general, consistent and highly constraining approach to determine field theoretic makeup
from microscopic principles.

Interestingly, our approach provides a microscopic many-body account for long-sought ex-
citations exhibiting non-trivial anyonic exchange statistics. Non-Abelian anyons are essential
for viable topological quantum computing platforms [37]. Ising anyons have been earlier iden-
tified as excitations of the Moore-Read [3] (MR) Pfaffian and Jain-221 vacua [14]. However,
Ising anyons cannot realize universal topological gates. By contrast, the non-Abelian Fibonacci
anyons obey integer SU(2)3 (or, equivalently, SO(3)3) fusion algebra [38] allowing for uni-
versal quantum computation [39, 40]. In this paper, we will pay particular attention to the
subspace of four LLs. We will compute the Berry (more precisely, the Wilczek-Zee [41, 42])
phase and braiding matrix associated with the braiding of zero-mode excitations [33,34], and
show that the four LLs ground state precisely features Fibonacci anyons. Prior to our work,
it was known that excitations of FQH Hamiltonians with k-body (k > 2) interactions exhibit
Fibonacci anyons. This is the case of the k = 4 Read-Rezayi (RR) state [43, 44] which can
be obtained from correlation functions of certain CFTs. Important differences exist between
our results and the prominent candidate RR state. Our Hamiltonian only contains (k = 2)
two-body interactions projected onto four LLs as opposed to a (k = 4) four-body interacting
Hamiltonian with an RR ground state in the LLL. Related to this, our ground state has order
M > 1 zeros on a two-body (as opposed to a k-body) coincidence plane. Finally, our state
appears at a filling fraction of ν= 2/3, whereas the RR state corresponds to ν= 3/5. Several
earlier investigations depicted putative ν = 2/3 Abelian and non-Abelian phases in terms of
a bilayer FQH system featuring a 1/3 Laughlin state in each layer [45–49]. In these works,
different phases were found when varying interlayer and intralayer interactions of the Hamil-
tonian. In particular, in Refs. [45] and [46] a stable phase with Fibonacci anyon quasiparticles
has been obtained in the thin torus limit. Contrary to these previous studies, our Hamiltonian
has no free parameters. Moreover, our exact calculations are not, in any way, restricted to the
thin torus limit.

In addition, we establish a profound connection between the theory of (anti-)symmetric
multivariate polynomials in holomorphic and anti-holomorphic variables, displaying special
clustering properties, and the zero-modes of certain QH Hamitonians. In first quantization,
a state that is a product of M Slater determinants, formed out of single-particle orbitals, is a
parton-like state. Correspondingly, a closed-shell parton state is a parton-like state with Slater
determinants that have the lowest possible total angular momentum (in the case of Landau
orbitals), rendering them unique. A closed-shell constraint provides the necessary and suffi-
cient condition for the existence of unique densest parton-like states, which can be classified
according to the order of their zeros in the vicinity of coincidence planes. The algebraic order
of these zeros relates to the two-body M -clustering exponents for arbitrary particle pairs in
the wave function. As will be discussed and proved for some cases, parton-like states span
the subspace of many-particle wave functions with the two-body M -clustering property. Fur-
thermore, we will demonstrate that both the closed-shell condition and the fixed two-body
clustering exponent, lead to a unique expression for the densest ground state of the corre-
sponding frustration-free (two-body) QH parent Hamiltonian.

The remainder of this Introduction highlights the organization and original contributions
of the current paper. In Section 2, we will sketch the formalism that we employ to obtain
the frustration-free QH two-body parent Hamiltonian in the subspace of NL LLs. In Section 3,
we discuss the determination of its ground states and, in particular, the densest ground state.
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Here, the concept of EPP [14] will be made vivid for the case of four LLs. For the general class
of k-body, positive semi-definite, parent Hamiltonians with multiple-LLs (and arbitrary internal
degrees of freedom) we show that the ground state energy increases monotonically with the
number of particles. Moreover, we introduce a pseudospin algebra, in terms of pseudofermion
operators, that will turn out to be decisive to establish the EPPs. In Section 4, we prove an
S-duality for our class of multiple-LL Hamiltonians in toroidal geometry, and show how this
duality together with the EPP imply braiding statistics without leaving the microscopic setting.
In general, for multiple-LL systems one requires a non-trivial generalization of the framework
of Ref. [33] that utilizes the entanglement of root states, i.e., the EPP, since knowledge of
the root pattern alone cannot establish the braiding statistics. Interestingly, for the case of
four LLs, we will show that the excitations posses Fibonacci anyon statistics. In Section 5,
we discuss more general propositions on parton states and relate the two-body M -clustering
exponent to necessary and sufficient conditions for parton states to be the unique ground
states of projected frustration-free QH Hamiltonians, providing general considerations and
a simple application of our conjecture. Finally, we close the paper with Section 6 paying
special attention to the case M = 3 in four LLs. We provide a simple algebraic recipe to
determine the root pattern and state of an arbitrary parton-like state. Root states, or DNAs,
are obtained as the solutions to entanglement rules, the EPPs, and encode universal features
of the QH fluid. We will show that the underlying entanglement has a simple tensor network
structure rendering the root states (fermionic) matrix-product states. The inverse problem,
that is, given a root pattern, establishing the parton-like states compatible with such a pattern,
is also addressed algorithmically. This step is crucial to argue for the (over)completeness of
parton-like states in spanning the zero-mode subspace. We conclude by rigorously showing
completeness in the case M = 3 and NL = 4.

2 Frustration-free QH Hamiltonians

In this section, we present a general formalism for establishing the second-quantized
frustration-free Hamiltonians of interacting electrons confined to two spatial dimensions in
the presence of an applied (perpendicular to the plane) magnetic field. As long known [50],
under the influence of such a magnetic field, electrons occupy LL orbitals. Strong interactions
among electrons may, however, effectively lead to the occupation of multiple LLs that Jain
denominated as Λ-levels [51]. We focus on two-body interactions with rotational and trans-
lational symmetry although the general formalism extends to k-body interactions with k > 2.
It is therefore convenient to employ the relative angular momentum eigenstates in order to
construct a basis.

2.1 Building a two-fermion basis

Consider electrons of mass me and charge e < 0 moving on the infinite x y-plane in the pres-
ence of an external perpendicular magnetic field B = ∇ × A = −Bẑ, (B > 0). Let us start
with a brief review of LL physics and establish the notation used in this paper. Denoting the
ith particle’s location in the plane by the complex number(s) zi = xi + i yi (z̄i = xi − i yi), the
kinetic energy of N electrons is given by,

HK =
N
∑

i=1

π2
i

2me
=

N
∑

i=1

�

n̂i +
1
2

�

ħhωc , (1)
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where πi = −iħh∇i −
e
c A(xi, yi) is the kinematic momentum, ħh the reduced Planck’s constant,

and c the speed of light. Ladder operators ai and a†
i given by,

ai =
iℓ

ħh
p

2
(πxi

+ iπyi
) , a†

i =
−iℓ

ħh
p

2
(πxi
− iπyi

) , (2)

where ℓ=
Ç

ħhc
|e|B is the magnetic length, define the (LL index) number operator n̂i = a†

i ai, and

ωc =
|e|B
mec the cyclotron frequency. One can also define a new set of dynamical variables,

bi =
1

ℓ
p

2
z̄i − a†

i , b†
i =

1

ℓ
p

2
zi − ai , (3)

which are known as the cyclotron-orbit-center or guiding center operators. The ladder opera-
tors (ai, bi) with the algebra

[bi, b†
j ] = δij = [ai, a†

j ] , [ai, bj] = [ai, b†
j ] = 0 , (4)

provide a complete description of LL physics, where single particle basis states are given by

|ni, si〉=
1
p

ni! si!
a†ni

i b†si
i |0, 0〉 , (5)

and the integers ni and si are the eigenvalues of the number operators n̂i and n̂b
i = b†

i bi,
respectively. The vacuum state |0,0〉 is obtained by solving ai |0, 0〉= 0= bi |0, 0〉, with ni = 0
corresponding to the LLL. With the aid of the above operators, the total angular momentum
operator of N particles can be written as

Ĵ =
N
∑

i=1

Ĵi , with Ĵi = ħh(n̂b
i − n̂i) , (6)

and, therefore, the single particle basis states satisfy

Ĵi |ni, si〉= ħh(si − ni) |ni, si〉= ħh ji |ni, si〉= Ji |ni, si〉 . (7)

For two particles, raising and lowering operators in the center of mass coordinate frame are
given by [52]

ac =
1
p

2
(a1 + a2) , ar =

1
p

2
(a1 − a2) ,

bc =
1
p

2
(b1 + b2) , br =

1
p

2
(b1 − b2) ,

(8)

where subindex c stands for center of mass and r for relative. Here, n̂c + n̂r = n̂1 + n̂2, with
n̂c,r = a†

c,r ac,r (whose eigenvalues are nc,r), and n̂b
c,r = b†

c,r bc,r (whose eigenvalues are 2 j−m
and m, respectively). Note that j can be an integer or half-integer as 2 j = nc +nr is always an
integer. The relative and total angular momentum operators in the two-particle system are,
respectively, given by

L̂r = ħh (n̂b
r − n̂r) , Ĵ = ħh (Ĵ1 + Ĵ2) . (9)

These center of mass frame operators enable the construction of a two-fermion basis. A nor-
malized fermionic two-particle state of a definite relative angular momentum Lr = ħh(m− nr)
and total angular momentum J = ħh (2 j − nc − nr) can be written as

|nc , nr , 2 j −m, m〉=
a†nc

c a†nr
r b†2 j−m

c b†m
r

p

nc! nr !(2 j −m)! m!
|0, 0〉 . (10)

7

https://scipost.org
https://scipost.org/SciPostPhys.15.2.043


SciPost Phys. 15, 043 (2023)

While the basis states in Eq. (10) are suitable to describe a system with rotational symmetry,
the LL indices of the individual particles, ni, are not fixed. Our aim, however, is to define
a two-fermion basis confined in the subspace of NL lowest lying LLs, i.e., 0 ≤ ni ≤ NL − 1,
for i = 1,2. To systematically generate the fermionic basis with a well-defined LL index for
individual particles, we introduce the following fermionic basis states labeled by {n1, n2, j, m}

|I〉F = Gn1,n2
± |0, 0,2 j −m, m〉=

∑

nc ,nr

Cnc nr
|nc , nr , 2 j −m, m〉 , (11)

where

Gn1,n2
± =

1
Æ

n1!n2! 2(1+δn1,n2
)
(a†n1

1 a†n2
2 ± a†n2

1 a†n1
2 ) ,

Cnc nr
= 〈nc , nr , 2 j −m, m |I〉F

=
nr
∑

s=0

nc
∑

l=0

p

nc!nr !
Æ

2n1+n2+1(1+δn1,n2
)

×
(−1)nr−s
p

(l + s)! (n1 + n2 − l − s)!
(nc − l)! l! (nr − s)! s!

×
�

δl+s,n1
δnc+nr−l−s,n2

±δl+s,n2
δnc+nr−l−s,n1

�

.

The +(−) sign is used whenever m ∈ odd(even).
In a disk geometry, within the symmetric gauge A(xi, yi) =

B
2 (yi x̂ − xi ŷ), as further elabo-

rated on in Appendix A, we obtain

|I〉F =
1

2
Æ

1+δn1,n2

j
∑

k=− j

ηk( j, m) |α1,α2〉 . (12)

Here, we employed the following 2 × 2 determinant Dα1α2
(1, 2) = 〈z1, z̄1; z2, z̄2|α1,α2〉

≡ 〈1, 2|α1,α2〉, and αi = (ni, si),

Dα1α2
(1,2) =

�

�

�

�

φn1, j−k(1) φn1, j−k(2)
φn2, j+k(1) φn2, j+k(2)

�

�

�

�

, (13)

where φni,si
(i) = 〈zi, z̄i|ni, si〉 ≡ φαi

, for i = 1, 2, with s1 = j − k and s2 = j + k. In coordinate
representation

φn,s(z, z̄) =
(−1)n

p
n! e−

zz̄
4ℓ2

p
2πℓ2

p
2s−ns!

�z
ℓ

�s−n
Ls−n

n

�

zz̄
2ℓ2

�

, (14)

where Ls−n
n (x) is the associated Laguerre polynomial.

The functional form of the coefficients ηk( j, m) contains information about the geometry
of the system [24]. For the disk geometry, it is given by

ηk( j, m) = (−1)m+ j−k

√

√ ( j − k)! ( j + k)!
22 j−1(2 j −m)! m!

j−k
∑

q=0

(−1)q
�

2 j −m
q

��

m
j − k− q

�

. (15)

For a given j, each state |I〉F will be specified by the reduced set {n1, n2, m}. By imposing
0 ≤ ni ≤ NL − 1, the basis states of Eq. (12) span a two-fermion basis projected onto the
subspace of the lowest NL LLs.

8

https://scipost.org
https://scipost.org/SciPostPhys.15.2.043


SciPost Phys. 15, 043 (2023)

Figure 1: Projection onto the lowest NL = 4 LLs (black solid bars) with L = 6. Each
solid bar represents a LL orbital φni,si

with horizontal and vertical axis representing
angular momentum Ji (in units of ħh) and LL index ni, respectively.

We can express the two-fermion basis in a second quantization representation. This is espe-
cially advantageous when discussing the QH parent Hamiltonian projected onto the subspace
of NL LLs, and its ground states. Equation (13) suggests a natural map

1
p

2
Dα1α2

→ c†
n1, j−n1−kc†

n2, j−n2+k|0〉 . (16)

Here, |0〉 is the Fock space vacuum and c†
n,l (cn,l) are fermionic creation (annihilation) oper-

ators, creating (annihilating) an electron with LL index n and angular momentum ħhl. Thus,
one may transition from the fermionic states of Eq. (12) to a second quantized representation
by a replacement of the type [24]

|I〉F → T n1,n2+
j;m |0〉 , (17)

where

T n1,n2+
j;m =

1
Æ

2(1+δn1,n2
)

j+n1
∑

k=− j−n2

ηk+ n2−n1
2

�

j +
n2 + n1

2
, m
�

c†
n1, j−kc†

n2, j+k . (18)

It can be checked that the two-fermion operators T n1,n2+
j;m satisfy

〈0|T n1,n2−
j;m T n1,n2+

j;m |0〉= 1 , (19)

where T n1,n2−
j;m = (T n1,n2+

j;m )†.
So far, we examined a system on a plane of an unbounded spatial extent. For finite size

systems, the number of angular momentum orbitals in each LL is restricted by the number L of
available distinct single particle angular momentum modes. As an example, in Fig. 1 we depict
the LL orbitals (solid bars) and project only up to four LLs (black solid bars). The horizontal
axis represents the angular momentum of the LL orbitals and the vertical axis provides the LL
index. Notice that the highest LL will always have L orbitals.

For NL LLs, each single particle angular momentum mode may, at most, correspond
to NL orthogonal orbitals. Consequently, in Eq. (18), j must be restricted to the interval
[−NL + 1, L − NL]. Assuming integer orbital numbers j ± k, it can be checked that j may
assume the 2L− 1 consecutive values [24]

j = −NL + 1,−NL + 3/2,−NL + 2, · · · , L− NL . (20)

Here, −min( ȷ̃, L− 1− ȷ̃)− n1−n2
2 ≤ k ≤min( ȷ̃, L− 1− ȷ̃) + n1−n2

2 , where ȷ̃= j + n1+n2
2 . (A word

of caution: Whenever j refers to angular momentum it must be an integer).
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2.2 Projected two-body Hamiltonians

We next outline a simple general recipe for writing down QH parent Hamiltonians in terms
of fermionic operators. The positive semi-definite property of these Hamiltonians will, im-
portantly, give rise to a systematic way of generating ground states (zero-energy modes) for
NL LLs. To this end, we utilize the two-fermion basis derived above and project a two-body
QH Hamiltonian onto NL LLs. By expressing the projected Hamiltonian in a second quantized
form, we show that the projected Hamiltonian is a “frustration-free Hamiltonian”.

Consider a (repulsive) short range interaction potential

Hint =
∑

i<j

V (ri − rj) , (21)

that enjoys rotational and translational symmetry. The pair interaction V (ri− rj) = V (rij) can,
generally, be represented as an infinite sum [52]

V (ri − rj) =
∞
∑

α=0

Vα Lα(−ℓ2∇2
ij)δ

2(ri − rj) , (22)

where Lα(x) is the αth Laguerre polynomial [53]. The expansion coefficients Vα can be deter-
mined from the specific form of the interaction, viz.,

Vα = 4πℓ2

∫

d2k
(2π)2

Ṽ (k) Lα(ℓ
2k2) e−ℓ

2k2
, (23)

where Ṽ (k) is the Fourier transform of the potential (see Appendix B for a derivation). For
the LLL, α can be identified with the relative angular momentum of the pair, and as such, Vα
would represent the energy penalty for having a pair in such a state. This approach, known as
the pseudopotential expansion, was first pioneered in the context of FQH physics and LLL by
Haldane [12]. Generically, [13] Eq. (22) may be considered as an expansion of the interaction
potential in powers of its range (magnetic length) ℓ. This can be seen by noting that, for
a ground state of Hint with filling fraction ν, a relevant correlation length is [50] ∼ ℓ/

p
ν,

proportional to the Wigner-Seitz radius. Thus, for a short range two-body interaction, it is
typically sufficient to keep the first few pseudopotentials.

As shown below, the interaction potential Hint, when projected onto NL LLs, is a positive
semi-definite and frustration-free operator. These universal properties may be made explicit
by keeping α= 0,1,

V (ri − rj) = (V0 + V1 + V1ℓ
2∇2

ij)δ
2(ri − rj) . (24)

Due to the antisymmetry of the fermionic wave function, the first two terms on the righthand
side of Eq. (24) have vanishing expectation values. Therefore, we analyze only
V (ri − rj) ≡ V1ℓ

2∇2
ijδ

2(ri − rj), as our interaction potential. We will refer to this potential
as the Trugman-Kivelson (TK) [13] Hamiltonian

Hint = V1ℓ
2
∑

i<j

∇2
ijδ

2(ri − rj) , (25)

whose ground states satisfy the M = 3-clustering property in the coordinate representa-
tion. For ground states satisfying the M >3-clustering property we should either consider
higher-order terms in the pseudopotential expansion (see Appendix B), assuring its positive
semi-definite character, or engineer special positive semi-definite Hamiltonians with gradient-
density expansions [15].
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The spectral decomposition of the Hamiltonian in the projected two-fermion basis reads

Ĥint ≡ PNL
Hint PNL

=
∑

j

∑

ξ

Eξ |ξ〉〈ξ| . (26)

Here, PNL
represents the projection operator onto the NL LLs and |ξ〉 =

∑

I Λ
ξ
I |I〉F are the

eigenvectors of the interaction in the two-fermion basis |I〉F with expansion coefficients ΛξI .
The index I runs over the entire two-fermion basis in the subspace of NL LLs. The positive
semi-definite property of the Hamiltonian is evident when Eξ ≥ 0, as will be demonstrated for
the case of four LLs. Putting all of the pieces together, the TK Hamiltonian may be expressed
as a sum over angular momentum terms [24],

Ĥint =
∑

j

Ĥ j , (27)

where Ĥ j =
∑

ξ EξT ξ+j T ξ−j is a positive semi-definite operator with

T ξ+j =
∑

I

Λ
ξ
I T n1,n2+

j,mI
, T ξ−j = (T ξ+j )

† . (28)

Note that for the Hamiltonian in Eq. (27), in general, [Ĥ j , Ĥ j′] ̸= 0 for j ̸= j′. Nevertheless,
there can be a common zero-energy state. In the subspace of NL LLs, Eξ ≥ 0, and a zero-
energy state may appear if and only if Ĥ j|Ψ0〉= 0 for all j. Whenever such a zero-energy state
exists (and as we will explain such states do indeed exist), the projected Hamiltonian is, by
definition, a frustration-free Hamiltonian.

Obtaining the projected Hamiltonian for NL = 1, 2 and 3 LLs was previously explored [14,
24,28]. This led to the discovery of non-trivial structures for ν= 2/5 and ν= 1/2 FQH ground
states and their excitations. In the current paper, we will chiefly focus on NL = 4 LLs.

2.3 QH Hamiltonian in the subspace of four LLs

The two-fermion basis, spanning the positive eigenvalue subspace of the TK Hamiltonian, for
NL = 4 LLs includes up to 40 vectors |I〉F (see Appendix C for their construction). This cutoff
value, 40, includes all those basis vectors having non-vanishing matrix elements of the TK
Hamiltonian. Diagonalizing the interaction matrix leads to only 12 nonzero eigenvalues,

Eξ ∈
V1

4π

¦ 325
16

,
323+ 47

p
17

32
,
69
8

,
31+ 3

p
33

8
, (29)

323− 47
p

17
32

,
75+ 7

p
57

32
,
31− 3

p
33

8
,
13+

p
89

16
,

13+
p

129
32

,
75− 7

p
57

32
,
13−

p
89

16
,
13−

p
129

32
, 0, · · · , 0
©

.

We note that Eξ ≥ 0. Thus, the positive semi-definite Hamiltonian projected onto NL = 4 LLs
is given by

Ĥint =
∑

j

12
∑

ξ=1

EξT ξ+j T ξ−j , (30)

where in the operators T ξ+j each individual operator T n1,n2+
j,m is specified by a set of numbers

{n1, n2, m} as given in Table 8 of Appendix C. The expansion coefficients ΛξI are also given in
Appendix C.
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3 Ground states of QH Hamiltonians

By its nature, any positive semi-definite Hamiltonian can only have non-negative eigenvalues.
Thus, any non-trivial zero-energy eigenstate of Eq. (27), if it exists, will be a ground state
which satisfies

Ĥ j|Ψ0〉= 0 ∀ j⇐⇒ T ξ−j |Ψ0〉= 0 ∀ξ, j . (31)

These zero-energy states collectively exhaust the ground state manifold. As we will explain,
one may indeed precisely find all existing zero-energy states for given number of particles N at
filling fractions ν= (N−1)/(L−1). The filling fraction of the ground state, on the other hand,
determines the electron density ρ = (B/φ0)ν, where φ0 = hc/|e| is the electron’s magnetic
flux quantum. Therefore, exploring the ground states of the Hamiltonian family considered
here leads to candidate incompressible states with different LL filling factors. Assuming that
we have determined a set of zero-energy ground states from Eq. (31), an important question
is whether adding or removing electrons may increase the ground state energy. The answer
to this question establishes the relationship between the electron density and the ground state
energy of the FQH state, which we will explore in the next subsection.

3.1 Monotonicity of the ground state energy

The kinetic energy in our particle number conserving system is quenched; the system is dom-
inated by interparticle interactions. An interesting question for a general system with k-body
interactions is what is the relation between the ground state energies of N and N − n (n > 0)
particles when the total number of available states is fixed. As demonstrated in Ref. [54], for
general k-body interaction positive semi-definite Hamiltonian, the energy of the ground state
is monotonically increasing in the number of particles. Reference [54] focused on flavorless
and spinless electrons (thus, spinless electrons confined only to the LLL). In what follows,
we generalize this earlier result to a broader setting in which the electrons may have several
internal degrees of freedom (such as the LL index, spin and angular momentum).

Consider a general k-body Hamiltonian,

Hk =
∑

[n]

V[n] c
†
n1

c†
n2
· · · c†

nk
cnk+1

cnk+2
· · · cn2k

, (32)

where nl = (n1
l , n2

l , · · · ), l = 1, 2, · · · , 2k, represents a set of labels such as the band (or LL)
index, spin, angular momentum, etc., and [n] = {n1, · · · ,n2k}. Note that the Hamiltonian Hk

conserves the number of particles,
[Hk, N̂] = 0 . (33)

Here, N̂ =
∑

nq
c†
nq

cnq
. We next consider an N ′-particle density matrix ρN ′ and further define

ρN ′−1 =
1
N ′

∑

nq

cnq
ρN ′ c

†
nq

, (34)

such that N̂ρN ′ = ρN ′ N̂ = N ′ρN ′ . This implies that Tr[ρN ′] = Tr[ρN ′−1] = 1. We next establish
the following identity

Tr[ρN ′−1Hk] =
N ′ − k

N ′
Tr[ρN ′Hk] . (35)

To show this, we first compute

Tr[ρN ′Hk] =
1
N ′

Tr[ρN ′ N̂Hk] , (36)
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and use the operator identity

N̂Hk = kHk +
∑

nq

c†
nq

Hkcnq
, (37)

to obtain

Tr[ρN ′Hk] =
k

N ′
Tr[ρN ′Hk] +

1
N ′

Tr
�

Hk

∑

nq

cnq
ρN ′ c

†
nq

�

=
k

N ′
Tr[ρN ′Hk] + Tr[ρN ′−1Hk] . (38)

This indeed establishes the identity in Eq. (35).
Now, if N ′ < N (setting N ′ = N − n) then, by induction,

Tr[ρN−nHk] = [N , n,k] Tr[ρN Hk] , (39)

where

[N , n,k] =
(N − n+ 1− k)(N − n+ 2− k) · · · (N − k)

(N − n+ 1)(N − n+ 2) · · ·N
.

If ρN is chosen such that the ground state energy E0(N) = Tr[ρN Hk], then by the Ritz varia-
tional principle [55], we get

Tr[ρN−nHk]≥ E0(N − n) . (40)

Equivalently,
E0(N − n)≤ [N , n,k] E0(N) . (41)

If the Hamiltonian is a positive semi-definite operator then E0(N)≥ 0 for any N and

E0(N − n)≤ [N , n,k] E0(N)≤ E0(N) .

For the particular case of n= 1, we find that

E0(N − 1)≤
N − k

N
E0(N)≤ E0(N) . (42)

This inequality proves the monotonicity of the ground state energy. Equation (42) allows
for the inclusion of general LLs and angular momentum (ni = (n, j)) indices. Thus, if a zero-
energy ground state exists for a given density then, for all lower electron densities, the ground
state energy must strictly vanish.

The above demonstration of monotonicity may be generalized to a linear combination of
k-body interactions [54]

H =
kmax
∑

k=kmin

Hk , (43)

with kmax − kmin ≥ 0. From Eq. (39),

Tr[ρN−nH] = [N , n,kmin]Tr[ρN H] +δE . (44)

Here,

δE =
kmax
∑

k=kmin

([N , n,k]− [N , n,kmin])Tr[ρN Hk] . (45)

Similar to the above, if E0(N) = Tr[ρN H] then the Ritz variational principle mandates that

E0(N − n)≤ [N , n,kmin]E0(N) +δE. (46)

Note that in (45) the term in parenthesis is negative semi-definite since [N , n,kmin]
≥ [N , n,kmin +δk]≥ 0 when 0≤ δk≤ kmax − kmin. Then, whenever δE ≤ 0

E0(N − n)≤ [N , n,kmin]E0(N)≤ E0(N) , (47)

which is in particular guaranteed if all Hk’s are positive semi-definite.
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Figure 2: All ground states of positive semi-definite Hamiltonians of the form of
Eq. (32), with densities ν less or equal to the maximal density νmax are zero-energy
states. For densities exceeding that threshold value, ν > νmax, the ground states
have positive energies.

3.2 Determining the densest zero-energy mode: Entangled Pauli principle (EPP)

Here, we explicitly determine the ground state of the projected Hamiltonian in Eq. (27) for
an N -particle system. Intuitively, the densest ground state of this type of Hamiltonians corre-
sponds to an incompressible QH liquid. The monotonicity that we established in the previous
subsection indeed indicates that if we find a zero-energy ground state with filling fraction ν,
then for all the smaller filling fractions (with fixed L) the ground states will also be zero-energy
eigenstates, i.e., E0 = 0. (This is schematically illustrated in Fig. 2.)

Since the spatial extent of LL orbitals is directly associated with the magnitude of its angular
momentum, when there are several zero-energy states with the same bulk filling fraction ν,
we will define the one with smallest total angular momentum J to be the densest state. When
alluding to “the ground state", we will mainly refer to the densest zero-energy ground state.

The ground state |Ψ0〉 can be written as a linear superposition of Slater determinants in
the occupation number representation basis,

|Ψ0〉=
∑

n

Cn|n〉 , (48)

with coefficients Cn ∈ C. Each basis state |n〉 (a single Slater determinant),

|n〉= c†
n1, j1

c†
n2, j2
· · · c†

nN , jN
|0〉 , j1 ≤ j2 ≤ · · · ≤ jN ,

is associated with a total angular momentum partition [56] (due to the rotational symmetry
of the projected Hamiltonian) {λ} = λ j1λ j1+1 · · ·λ ji · · ·λ jN . Here, 0 ≤ λ ji ≤ NL represents the
multiplicity of occupied orbitals with fixed angular momentum ħh ji, where jmin = −NL + 1 is
the lowest possible value, and jmax = L − NL the largest possible one. A “multiplicity” λ ji > 1
implies that electrons occupy orbitals with the same angular momentum ħh ji and different
LL index n. An equivalent alternative notation for the occupation number configuration is
afforded by { j1, · · · , jN}. For instance, the N = 3 Slater determinant

c†
n, j1

c†
n′, j1

c†
n′′, j1+2|0〉= |2n,n′01n′′〉= −|2n′,n01n′′〉 (49)

has an associated angular momentum partition {λ}= 201≡ { j1, j1, j1 + 2}.
Any basis state element |n〉 in the expansion above can be classified as being one of two

(mutually exclusive) types: (i) an expandable |n′〉 or a (ii) non-expandable state (which with
some abuse of notation we will denote by |n〉) [24]. By fiat, expandable states can be obtained
by an “inward squeezing” of other basis states appearing in the zero mode under consideration,
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Figure 3: Example of an inward squeezing process for a state consisting of six elec-
trons (J = −2ħh), confined to the four lowest LLs. The electron configuration prior to
(after) squeezing is represented by blue (yellow) color.

Eq. (48), with non-zero coefficient. If this is not the case, we refer to the basis state as “non-
expandable”. Here, by “inward squeezing”, we refer to an inward pair hoping process in the
occupation number basis, i.e.,

|n′〉 ∝ c†
n1, j1

c†
n2, j2

cn3, j3
cn4, j4

|n〉 , (50)

where j3 < j1 ≤ j2 < j4. For instance, in Fig. 3, the state |022,3021,320,3〉 (expandable state in
yellow (or light shade)) is obtained from an inward squeezing of |13021,3030,2,3〉 (the state
in blue (darker shade)). We point out that the total angular momentum of |n〉 given by
J = ħh
∑ jN

l= j1
l λl does not change under the inward squeezing process. Thus, the concept

of (non-)expandable state is relative to the specific ground state |Ψ0〉.
The projection of Eq. (48) onto its non-expandable states is often termed the “root” or

“dominant” state. We can schematically write the ground state in Eq. (48) as

|Ψ0〉= |Ψroot〉+ |Squeezed States〉 . (51)

Here, |Ψroot〉 represents the root state while all expandable Slater determinants are encapsu-
lated in |Squeezed States〉. For the LLL, the root state is typically a single Slater determinant
[20, 24, 57] obeying a generalized Pauli exclusion principle [20]. For example, in the occu-
pation number basis, such a principle may state that q consecutive states can be occupied by
at most p particles. This can gives rise to a QH state at ν = p/q. By contrast, when mul-
tiple LLs are present, in account of the degeneracy of the fixed angular momentum orbitals,
0 ≤ λ j ≤ NL , a given root pattern may correspond to various non-expandable Slater determi-
nants. As a result, the root state is a linear superposition of all such non-expandable Slater
determinant states,

|Ψroot〉=
∑

nroot

Cnroot
|nroot〉 , (52)

where Slater determinants |nroot〉 have a common occupation number configuration {λ}root.
This reveals an essential entangled structure associated with the root state, which replaces the
generalized Pauli exclusion principles with an EPP as the underlying organizing principle [14,
15]. The EPP encodes the entanglement structure that determines the densest possible root
state (associated with the incompressible zero mode state), and various quasihole type and/or
edge excitations, which can be thought of as inserting domain walls of various types into the
densest root state (see below). Generically, |Ψroot〉 contains central information such as density
of the QH state, quasiparticle charge and exchange statistics [33,34], and, in the thin cylinder
(Tao-Thouless [58]) limit, it constitutes the exact ground state [58–65]. For these reasons,
|Ψroot〉 expresses the “DNA” of the QH state [14].
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3.2.1 Entangled Pauli principle and pseudospin classification

We next study the two-particle ground states for NL = 4 LLs and show that their root states can
be understood via its pseudospin structure, i.e., they carry representations of a certain su(2)
pseudospin algebra. For pseudospin classification purposes, it is more convenient to work in
the pseudofermion basis. (The polynomial part of the corresponding pseudofermion orbital
basis states is z̄ni

i z ji+ni
i , in contrast to the orthogonal LL orbitals of Section 2.1.) The many-body

basis elements are defined as

|n) = |{λ})≡ c̃∗n1, j1
c̃∗n2, j2

· · · c̃∗nN , jN
|0〉 , (53)

where c̃∗ni, ji
(c̃ni, ji) are the pseudofermion creation (annihilation) operators [15] satisfying

{c̃∗n1, j1
, c̃n2, j2

} = δn1,n2
δ j1, j2 . Then, the relevant su(2) pseudospin algebra is defined as

S± =
∑

j≥0 S±j and Sz =
∑

j≥0 Sz
j , where

S+j = 3c̃∗1, j c̃0, j + 2c̃∗2, j c̃1, j + c̃∗3, j c̃2, j ,

S−j = 3c̃∗2, j c̃3, j + 2c̃∗1, j c̃2, j + c̃∗0, j c̃1, j , (54)

Sz
j =

3
2

c̃∗3, j c̃3, j +
1
2

c̃∗2, j c̃2, j −
1
2

c̃∗1, j c̃1, j −
3
2

c̃∗0, j c̃0, j .

We note that the pseudospin algebra is local in angular momentum space, i.e., for each j
the generators satisfy the su(2) algebra. Here, the pseudospin Casimir operator is defined as
usual, Ŝ2 = S+S− + (Sz)2 − Sz , with the eigenvalue of S(S + 1). In Section 5, we will expand
on the utility of this algebra to locally detect certain degeneracies associated with elementary
excitations, emerging from the domain wall structure in the EPP description of the zero mode
spectrum.

The pseudospin language is particularly useful to understand the EPP structure. To see
this, we study the root states with the following {λ} patterns: 2, 11, 101, and 1001. We start
our discussion with a two-particle root state with multiplicity 2, i.e., two particles with the
same angular momentum,

|Ψ0〉=
∑

n,n′
Cn,n′ |2n,n′) . (55)

There are 6 coefficients to satisfy the linear constraints defined by Eq. (31). For a single
angular momentum j, due to the fermionic antisymmetry, only 5 out of 12 constraints, are
linearly independent. This leads to 5 linear equations for the coefficients which can be uniquely
solved.

Therefore, the unique ground state becomes

|Ψ0〉= |23,0) + 3|21,2) , (56)

where both particles occupy orbitals with angular momentum index j = 0 (which we sup-
pressed in (56)). One can check that this state is annihilated by both S+ and S− operators in
the pseudospin algebra, and it carries the S = 0 representation. We note that the eigenvalues
of Sz are determined by the total LL index of the states as n+ n′−3. Multiplicity 2 in the root
pattern thus forms a singlet and is generalized entangled with respect to the u(N = 2) algebra
(single Slater determinants are unentangled with respect to the same algebra) [66,67].

Consider next the 11 pattern in the root state. The corresponding ground state,

|Ψ0〉=
∑

n,n′
Cn,n′ |1n1n′) , (57)
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has 16 parameters up to a normalization factor to satisfy 12 constraints. We thus get 4 different
solutions, which can be expressed as

|Ψ̃(1)0 〉= |1012) + |1210)− 2|1111) ,

|Ψ̃(2)0 〉= |1013)− 2|1112) + |1211) ,

|Ψ̃(3)0 〉= |1310)− 2|1211) + |1112) ,

|Ψ̃(4)0 〉= |1113) + |1311)− 2|1212) . (58)

In terms of the su(2) pseudospin algebra, |Ψ̃(1)0 〉, |Ψ̃
(2)
0 〉+ |Ψ̃

(3)
0 〉 and |Ψ̃(4)0 〉 carry a spin triplet

representation, while |Ψ̃(2)0 〉 − |Ψ̃
(3)
0 〉 is a spin singlet. Hence, 11 is the root pattern realizing

pseudospins S = 0 and 1.
Now, let us consider the 101 root pattern. The corresponding ground state,

|Ψ0〉=
∑

n,n′
Cn,n′ |1n01n′) + C ′n,n′ |02n,n′0) , (59)

has 16 coefficients Cn,n′ associated with the root state and 6 coefficients C ′n,n′ associated with
inward-squeezed states to satisfy 12 linear constraints and a normalization condition. We
thus expect to obtain 10 possible solutions. One of those solutions, however, has already been
discussed in Eq. (56), where all the Cn,n′ are zero (i.e., only the squeezed state contributes).
As a result, we obtain 9 independent solutions in the pseudofermion basis, with root states

|Ψ(1)root〉= |11010)− |10011) ,

|Ψ(2)root〉= |12010)− |11011) ,

|Ψ(3)root〉= |11011)− |10012) ,

|Ψ(4)root〉= |12011)− |11012) ,

|Ψ(5)root〉= |13010)− |12011) ,

|Ψ(6)root〉= |11012)− |10013) ,

|Ψ(7)root〉= |13011)− |12012) ,

|Ψ(8)root〉= |12012)− |11013) ,

|Ψ(9)root〉= |13012)− |12013) . (60)

In this case, |Ψ(.)root〉 is no longer the same as |Ψ0〉 as we have excluded inward squeezed terms
C ′n,n′ . These root states can be linearly combined to form pseudospins S = 0, 1, and 2 repre-
sentations in the following way,

S = 0, Sz = 0 : |Ψ(6)root〉+ |Ψ
(5)
root〉 − 2|Ψ(4)root〉 ,

S = 1, Sz = 1 : |Ψ(7)root〉 − |Ψ
(8)
root〉 ,

S = 1, Sz = 0 : |Ψ(5)root〉 − |Ψ
(6)
root〉 ,

S = 1, Sz = −1 : |Ψ(2)root〉 − |Ψ
(3)
root〉 ,

S = 2, Sz = 2 : |Ψ(9)root〉 ,

S = 2, Sz = 1 : |Ψ(8)root〉+ |Ψ
(7)
root〉 ,

S = 2, Sz = 0 : |Ψ(6)root〉+ |Ψ
(5)
root〉+ 4|Ψ(4)root〉 ,

S = 2, Sz = −1 : |Ψ(2)root〉+ |Ψ
(3)
root〉 ,

S = 2, Sz = −2 : |Ψ(1)root〉 . (61)
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Finally, we consider the pattern 1001 in the root state. The corresponding two-particle
ground state,

|Ψ0〉=
∑

n,n′
Cn,n′ |1n001n′) + C̃n,n′ |01n1n′0) , (62)

has 16 parameters Cn,n′ associated with the root state and 16 parameters C̃n,n′ associated with
inward-squeezed states to satisfy 12 linear constraints and a normalization condition. We
thus expect to find 20 possible solutions. Four of those solutions, however, we have already
discussed in Eq. (58), where all the Cn,n′ are zero in Eq. (62). Excluding those 4 solutions,
we get 16 independent solutions each of which consists of an unentangled root state (with
a single Slater determinant) of the form |1n001n′). From these 2-particle considerations, we
may now infer/anticipate the following EPP, to be generalized to N -particle root states further
below:

1. 2 is the highest multiplicity in the allowed ground state root pattern. It can only occur
as a pseudospin singlet with S = 0.

2. 110 pattern can appear in the root state in pseudospins S = 0,1 representations.

3. 101 pattern can appear in the root state in pseudospins S = 0,1, 2 representations.

4. 1001 pattern can appear in the root state as an unentangled state.

Root states (DNA) consistent with the above EPP rules admit a matrix product state (MPS)
representation that highlights its patterns of entanglement. We discuss this next.

3.2.2 MPS construction of DNA from the Entangled Pauli principle

We have so far established constraints for the ground state wave function of two particles,
formulated as two-particle EPPs for the root states. It remains to show two things. First, that
the same constraints apply to the root states of any N -particle zero modes. Moreover, that
any state that is consistent with these constraints does appear as the root state of some zero
mode. Together, this will then allow zero mode counting in terms of all possible “DNAs” of zero
modes, namely, the root states consistent with the EPP. It will also allow for the construction
of a complete set of zero modes in terms of parton-like wave functions. The latter results will
be derived in Sec. 6. In the following several subsections, we focus on elevating the EPP to N -
particle zero modes and their root states, and on solving for all possible N -particle root states
consistent with this EPP.

We begin by assuming that rules 1.-3. of the preceding section apply to any N -particle root
state, and that, in the spirit of rule 4., there are no further constraints. In particular, there are
no constraints, at root level, on particles that are separated by more than two orbitals. We will
prove this below. For now, let us construct the solutions to these constraints.

It is easy to formulate solutions to the EPP, as formulated above, using a generalized AKLT
construction [68]. Note that in our pseudospin description, a pair of particles can be decom-
posed into S = 0,1, 2 and 3 representations, while each individual particle carries a S = 3/2
representation. The latter can be represented as a symmetric rank-3 tensor with indices taking
on two distinct values. This, in turn, can be understood as describing three “virtual” spin-1/2
degrees of freedom in a totally symmetric state, as done in the AKLT-construction, giving rise to
matrix product or simple tensor network states solving the EPP-constraint. We will represent
a symmetric rank-3 tensor M I

I (1) I (2) I (3)
by a circle with three legs, as in Fig. 4. The superscript

I labels the four possible Sz values such a spin-3/2 state can have (not represented in figure).
We now associate each circle with a spin-3/2 state

∑

I

M I
I (1) I (2) I (3) |I〉 . (63)
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21 1 1 1 1 1 1 10 00 010 0 0

21 11 0 11 0 0 1

Figure 4: MPS representation of EPPs. Every circle represents a (pseudo-)spin-3/2
degree of freedom formed by three symmetrized spin-1/2, in a generalized AKLT
construction. Associated MPSs are then formed by associating a rank-3 symmetric
tensor with each circle, whose indices are represented by three emanating lines. Lines
between different tensors can form singlet bonds via contraction (with a Levi-Civita
tensor εαβ), represented by a small solid box, as discussed in the text. The various
constraints of the EPP can be satisfied by such contractions. The top row represents
the various 2-particle root states (labeled by corresponding root patterns) discussed
in Sec. 3.2.1. Degeneracies are recovered by considering “dangling bonds” (see main
text). The bottom row shows a sequence of “minimum charge” (see Sec. 4) domain
walls between 110 and 020 patterns. Such domain walls carry a single spin-1/2
degree of freedom.

We may consider all states obtained by tensoring N copies of these states together. This gives
us many “virtual” degrees of freedom encoded in the subscripts, which we may utilize to satisfy
the desired constraints, associated with a certain root pattern.

We begin by looking at a situation where a 1 in the pattern is padded by two zeros left
and right, i.e., . . . 00100 . . . . In this case, the EPP imposes no constraint on this isolated par-
ticle, and the indices I (1) I (2) I (3) in Eq. (63) can be chosen arbitrarily. Note that the choice of
I (1) I (2) I (3) reflects the Sz values of the virtual spin-1/2 degrees of freedom, thus, the total Sz

of the state. Therefore, only one I in Eq. (63) will contribute for given I (1) I (2) I (3). Note that
due to the symmetry of the tensor, this choice of virtual indices only recovers the four-fold
(not 2× 2× 2 = 8-fold) degeneracy associated with a spin-3/2, as it must. In the following,
we must always take into account this symmetry when counting degeneracies in terms of free,
“dangling spin-1/2 bonds”.

Next we consider a 101 configuration in the root pattern. According to the EPP, these
cannot be in a spin-3 state, i.e., must be in the subspace formed by the spin-0, 1, and 2 rep-
resentations. As in the original AKLT-construction, we can achieve this by joining two virtual
spin-1/2 degrees of freedom into a singlet. This is done by contracting two indices on the two
different tensors representing the two particles with the totally anti-symmetric tensor εαβ , in-
dicated by a small box in Fig. 4. If the 101 unit is unconstrained on either side (there are at
least two 0’s on either side), then there will be two pairs of dangling virtual bonds on either
side. Owing to symmetry, each such pair is associated with a spin-1 degeneracy, i.e., a 3-fold
degeneracy. This recovers the 9-fold degeneracy of the 101-pattern observed in the preceding
section.

Similarly, given now a 11-configuration in the root pattern, we would contract two indices
on the two different tensors via an εαβ -tensor, as shown in the figure. This realizes the con-
straint of the pair being in the spin-0 ⊕ spin-1 subspace. Each of the two isolated dangling
bonds now represents a two-fold degeneracy, recovering the expected 4-fold degeneracy from
the preceding section.
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Finally, we can also represent a doubly occupied mode at root level through two tensors
with all indices paired into singlets. If now I , and I ′ are the physical (spin-3/2) degrees of
freedom of the two fermions, since the latter are now occupying the same “site”, i.e., mode, it
is important to check that the resulting expression is anti-symmetric under exchange of I and
I ′. This is indeed the case. This leads to the generalized entangled [66, 67] two-particle state
associated with a “2” discussed above.

Longer units of entangled . . . 11011 . . . are now formed analogously, as shown in the figure.
An important special situation are domain walls at root level of the form . . . 200200 11011 . . .
and . . . 110110 1 011011 . . . , i.e., domain walls representing shifts between the densest pos-
sible patterns, 200 and/or 110. These domain walls will play an important role in Sec. 4, in
that they represent elementary (charge 1/3, see Sec. 4) excitations. As seen in the figure (bot-
tom row), there is a single dangling bond associated to any such domain wall. The associated
elementary excitations thus carry a pseudospin-1/2.

3.2.3 The densest N -particle ground state

We now formally elevate the EPP to apply to general N -particle zero modes and their root
states, as already assumed in the preceding subsection. Let us begin by showing that in an
N -particle root state, when NL = 4, a single angular momentum orbital can have a maximum
multiplicity of 2 (here, we follow the method utilized in [14]). To see this, we proceed by
assuming multiplicity p for orbitals with angular momentum ħh j. The corresponding root state
can then be written as

|Ψroot〉=
∑

n1,n2,...,np

C j
n1n2...np

c†
n1, jc

†
n2, j . . . c†

np , j|np〉+ |rest〉 ,

where |np〉 is a Slater determinant with N − p particles, and |rest〉 includes other Slater de-
terminants in the root state such that 〈rest|c†

n1, jc
†
n2, j . . . c†

np , j|np〉 = 0. Generically, there are
�4

p

�

coefficients C j
n1n2...np

, which determine the pseudospin structure at angular momentum ħh j.

Now, contracting Eq. (31) with |n2〉= c†
n3, j . . . c†

np , j|np〉 and complex conjugating, we obtain

〈Ψ0|T ξ+j |n2〉=
40
∑

I=1

Λ
ξ
I

∑

k

ηk+ n2−n1
2

�

j +
n2 + n1

2
, mI

�

〈Ψ0|c
†
n1, j−kc†

n2, j+k|n2〉= 0 . (64)

By definition, since the root state consists of the non-expandable states, only k = 0 terms can
be nonzero in the last line. This gives,

40
∑

I=1

Λ
ξ
I η n2−n1

2

�

j +
n2 + n1

2
, mI

�

C j
n1n2...np

= 0 , (65)

where for each set of particles (n3, . . . , np) we get 5 constraints. It is clear that the num-
ber of constraints for p = 3 and 4 is larger than the number of coefficients, which leads to
C j

n1n2...np
= 0. For p = 2, however, we get 6 coefficients and 5 constraints, which uniquely

determine the coefficients up to an overall factor. As a result, multiplicity 2 in the root state
represents the same singlet state identified above for N = 2, irrespective of j.

One can follow steps similar to those that led to Eq. (64) to obtain constraints associated
to the appearance of Slater determinants of the form |n〉= c†

n1, j−k′ c
†
n2, j+k′ |n2〉 in the root state.

Here, for all ni, k′ ≥ 0 and −k′ ≤ k̃ ≤ k′, we assume that c†
ni, j+k̃

c
ni, j+k̃

|n2〉 = 0. The expansion

coefficients C j,k′
n1,n2

of such determinants are found to be subject to the same general constraints
already observed for two particles, e.g., the pattern 11 can appear only in the pseudospin 0
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and 1 representations (or any linear combination thereof). As a result, in an N -particle root
state, the local EPP and thus the spin structure of two-particle clusters, 2, 11, 101, 1001, etc.,
are analogous to the two-particle root states.

It is straightforward to check that 21 and 201 are not allowed in the root pattern, as
they would give rise to an over-constrained system of linear constraints. In these cases, each
electron in 2 would have to be further entangled with the 1 at the right. For a 111 pattern, the
two leftmost 1’s would have to be in the subspace of pseudospin 0 or 1 representation, and
similarly the two rightmost 1’s. An additional constraint would apply to the two outermost 1’s.
Overall, we will get an over-constrained system. We can thus conclude that the configuration
111 is also not allowed in the ground state root pattern. In contrast, as expected from our 2-
particle considerations above, we find no constraint for the pattern 1001. We thus anticipate
that this pattern can generally appear at root level, where the sites corresponding to 1’s are
subject to no other constraints than already mentioned (involving nearest- or next-nearest
neighbor occupied sites next to the 1001 pattern). Analogous statements apply for patterns
2002, 2001, 1002, or patterns with more than two 0’s separating adjacent sites. We may indeed
anticipate that all states satisfying the constraints listed here may appear as root states in some
zero mode. That this is so, however, will follow from explicit construction in Sec. 6.1.2. Indeed,
the results of this section will then lead to a proof that no further zero modes can exist, and
that a complete set of zero modes has been found, thus allowing rigorous zero-mode counting
in terms of possible root states [14].

As an immediate corollary to the above results, no root state can be “denser” than that
corresponding to a pattern with repeated unit cell 200. This pattern corresponds to a filling
factor of 2/3, and thus, no zero modes can exist at higher filling factor. We thus get an upper
bound ν = 2/3 for our ground state. Note that orbitals with negative angular momentum
are somewhat special, as their existence depends on LL index. As as result, we will show in
Appendix D that the densest possible root pattern is subject to a left boundary condition of the
form 1002002002... . Formally, a root state with bulk pattern ...110110110... is also possible
(all constraints can be satisfied, and there is a corresponding zero mode, see Sec. 6.1.2). This
pattern also realizes a state with filling factor 2/3 in the thermodynamic limit. However, this
pattern and the corresponding zero mode have a slightly higher angular momentum, for a
given particle number, than the state associated to the root pattern

{λ}root = 100200200 . . . 2002 . (66)

We will thus consider the zero mode associated with the latter the “densest” zero mode.

4 Braiding Statistics: A case for Fibonacci anyons

A key aspect of our formalism is reduction of parton states to root states. This reduction has
some tradition in the literature for single component states [20, 22, 24, 69, 70]. Indeed, one
benefit of this reduction is that it grants access to the braiding statistics of the underlying
Abelian or non-Abelian QH state. This is so not only by making contact with data predicted
by field theory, such as degeneracies, but rather more directly, under the assumptions of the
“coherent state Ansatz” [33, 34, 65] the root data self-consistently lead to braiding statistics
without invoking or appealing to a field-theoretic formalism. In other words, the assumptions
of the coherent-state Ansatz provide an entirely microscopic framework to arrive at braiding.
Recently [14], we have demonstrated that this approach does, in principle, generalize to parton
states by correctly deriving the braiding statistics [71] for Jain’s 221 state. The application to
the present case, which we will pursue in full detail in the following, will expose more general
features of this formalism.
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Figure 5: Modular space representation of the torus. S-duality, a simple rotation in
the modular space connects two tori of different aspect ratios, namely τ→− 1

τ .

At its core, the coherent state method assumes the existence on the torus of an orthonor-
mal basis of nh-quasihole states labeled by root patterns. This orthogonality is justified by
the assumption of adiabatic evolution [21] of quasihole states in the thin torus limit, where
these states evolve into (torus versions of) our root states discussed in detail in the preced-
ing sections. Wave functions of localized quasiholes are then naturally described as coherent
states in this basis. This Ansatz is then constrained in non-trivial ways by symmetries, no-
tably S-duality on the torus, as well as topological and locality considerations, which strongly
constrain braiding.

Before we review this formalism, and extend it to include fermions and/or entanglement
at the root level, we observe that our ground state pattern 200200 . . . and 110110 . . . are
formally identical to those of the bosonic Gaffnian state, if the underlying entanglement struc-
ture is ignored. For these reasons, much of the following calculations can go in parallel with
that carried out in Ref. [34] for the Gaffnian, explicitly ignoring the fact that the Gaffnian
probably cannot be supplied with a gapped parent Hamiltonian. The present case will differ
from the Gaffnian calculation, as both the fermionic nature of the underlying particles as well
as the entanglement structure of the root state must be taken into account in crucial places
(see Section 4.3.4 on mirror symmetry for further details). More generally, within the coher-
ent state formalism, the result we obtain cannot be attributed to any bosonic state, or any
single-component fermionic state with the given underlying root patterns. Indeed, at the single
component level, a given set of root patterns may or may not be consistent [65] with a given
statistics of the underlying constituent particles (fermions or bosons). As a direct consequence,
entanglement at the root level is necessary to allow for a complete description of certain phases
in the FQH regime via root patterns. In the present context, the aforementioned differences
with the bosonic Gaffnian case of Ref. [34] are of significant physical importance also since
the present case has been linked to a topological phase [72], whereas the Gaffnian is thought
to be critical [73]. In particular, the results obtained in the following will be consistent with
the effective field theory of Ref. [72].

4.1 Symmetry and S-duality on torus

Central to the program described above is the notion of modular S-duality on the torus. We
begin by reviewing how this duality is realized by single-particle LL physics and we will later
generalize it to our interacting multiple LLs many-body Hamiltonians.

We will start with a torus defined as the infinite complex plane modulo a lattice generated
by fundamental periods L1 = Lx x̂ , L2 = L∆ x̂ + L y ŷ: For points on the torus, we may thus
choose complex coordinates z = x + i y with the identification z ≡ z+ Lx(r+τs), where r and
s are any integers and the complex aspect ratio τ= τ1 + iτ2 =

L∆
Lx
+ i

L y
Lx

is called the modular
parameter of the torus. Modular transformations on the torus are generated by the realization
that the periods L1 and L2 are not unique. Specifically, the replacement L2 → L2 + L1 does
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not change the lattice or the underlying torus. The same is true for the replacements L1→ L2,
L2 → −L1. These two transformations acting on the lattice are known as modular T and S-
transformations, respectively, and generate the modular group. These transformations extend
trivially to linear transformations of the 2D plane that leave the lattice of periods invariant,
and as such, generate non-trivial transformations from the torus to itself. Modular parameters
associated to fundamental periods related to each other by a modular transformation describe
the same torus. In particular, this leads to the identification of τ → 1 + τ for the modular
T -transformation, and τ→− 1

τ for the modular S-transformation. If we insist that the period
L1 is always along the x-axis, we may, somewhat loosely speaking, associate to the modular
S-transformation the active “rotation” depicted in Fig. 5.

Note that, for most values of the parameter τ, the formal replacement τ→−1/τ does not
constitute a true symmetry of the Hamiltonian, essentially since the unit cell is not in general
invariant under the change shown in Fig. 5, and generates the same lattice only modulo a
non-trivial rotation. Rather, therefore, the formal replacement τ → −1/τ is associated to
two different descriptions of the same physics. We will now explore the consequences of this
duality first at the level of single particle, LL physics on the torus.

At the single particle level, a chief manifestation of S-duality is the existence of two mu-
tually dual choices of basis that we will denote by ψn, j and ψ̄n, j , respectively. Here, n is a LL
index, and j will index the eigenvalue of ψn, j and ψ̄n, j under magnetic translations along the
L1-direction (for ψ̄n, j) and the L2-direction (for ψn, j), respectively. As we will show below,
these two basis sets are mutually related by discrete Fourier transform in j. This is quite natu-
ral, since in the presence of a magnetic field B, operators corresponding to x and y coordinates
behave as position/momentum conjugate pair upon LL projection. To elaborate this point, we
start with the basis ψ̄n, j , as with our convention, the magnetic translation in the L1-direction
is simpler (L∆-independent)

ψ̄n, j =
∑

s

φ̄n, j+sNφ . (67)

The number of flux quanta, Nφ =
BLx L y

φ0
, can be identified with the integer L = N/ν, for N

electrons on the torus with filling fraction ν, and φ̄n, j is the nth LL wave function on the cylinder
with linear momentum j. By construction, φ̄n, j will satisfy proper magnetic periodic boundary
conditions in the L1-direction, and as we will see, the sum in Eq. (67) will properly periodize
it in the L2-direction. To construct φ̄n, j , we assume a particular gauge Aτ = B y( x̂ − τ1

τ2
ŷ)

which is perpendicular to τ1 x̂ + τ2 ŷ [74]. φ̄n, j can be readily solved for in terms of Hermite
polynomials, as the single particle Hamiltonian H can be expressed in terms of â†â, where,

âφ̄0, j =
1
p

2

�

∂x + i∂y +
τ

τ2
y
�

φ̄0, j = 0 ,

â†φ̄n, j = −
1
p

2

�

∂x − i∂y −
τ̄

τ2
y
�

φ̄n, j = φ̄n+1, j , (68)

with τ̄= τ1 − iτ2. In the above equations, we have set the magnetic length scale to one, i.e.,
ℓ = 1 (2πL = Lx L y). Also, we do not require basis states to be normalized, just that their
normalization is independent of j. We now introduce the magnetic translation operator under
the gauge Aτ,

t(l) = e−l.∇−il y

�

x− τ1
τ2

y
�

, (69)

where l= lx x̂ + l y ŷ . Periodic magnetic boundary conditions read

t(L1)ψ=ψ ,

t(L2)ψ=ψ . (70)
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The evaluation of these conditions is somewhat easier in “skewed” coordinates
Lx(x∆ +τy∆) = x + i y , where the magnetic translation operator reads

t(l) = e−l.∇−il y Lx x∆ . (71)

The orbital φ̄n, j is fully determined by the requirement that it has x-momentum quantum
number j and satisfies Eq. (68). The solution, in skewed coordinates reads

φ̄n, j = Hn

�

p

−i2πτL
�

y∆ −
j
L

��

e−i2π j x∆+iπτL
�

y∆−
j
L

�2

. (72)

Having well-defined x-momentum 2π j/Lx , φ̄n, j already satisfies the first of the boundary
conditions. The smallest nonzero translations in the L1-direction and L2-direction that are
consistent with Eqs. (70) are given by t1 = t(L1/L) and t2 = t(L2/L), respectively. One easily
checks that t2φ̄n, j = φ̄n, j+1, immediately implying t2ψ̄n, j = ψ̄n, j+1, where, at the same time,
ψ̄n, j+L = ψ̄n, j . Since t(L2) = (t2)L , the second of Eqs. (70) follows for ψ̄n, j . We summarize
the algebraic properties of t1, t2 and their action on the ψ̄n, j basis as follows

[t1, H] = [t2, H] = 0 , t1 t2 = ω̄t2 t1 , ω̄=ω−1 = ei 2π
L ,

t1ψ̄n, j = ω̄
jψ̄n, j , t2ψ̄n, j = ψ̄n, j+1 .

In particular t1 and t2 satisfy a Weyl algebra [75], which, as we will see, essentially fixes the
change of basis between the ψ̄n, j basis and its dual counterpart, ψn, j .

Before we elaborate further, we wish to construct theψn, j basis via continuous deformation
of the magnetic lattice. One advantage of the skewed coordinates is that Eq. (72) and the ψ̄n, j
derived via Eq. (67) fully retain their meaning if L1, L2 are arbitrary and in particular L1 is not
necessarily aligned with the x-axis. That is, these equations will define a complete set of LL-
orbitals for a torus described by any magnetic lattice in the complex plane, for some gauge. If
we now continuously deform L1 into the initial L2 and L2 into minus the initial L1, as described
in the beginning of this section, the resulting orbitals will again be a valid basis for the original
torus. This is, however, a different set of orbitals, as τ goes to−1/τ during the transformation,
and the skewed coordinates now refer to (L2,−L1) as opposed to (L1,L2). Restoring the original
skewed coordinates thus amounts to the replacements x∆ → y∆, y∆ → −x∆ in Eq. (72), on
top of the replacement τ → −1/τ. The corresponding replacements in Eq. (67) will then
define the ψn, j in some gauge, not equal to the original gauge.

We proceed by finally showing that after gauge fixing, theψn, j so defined are related to the
ψ̄n, j via discrete Fourier transform. From their characterization in the preceding paragraph, it
is straightforward to see that, t1 and t2 act as follows on the ψn, j:

t2ψn, j =ω
jψn, j , t1ψn, j =ψn, j+1 . (73)

This actually involved a re-labeling j→ L− j, so as to have t1, and not t†
1, increase the j-index.

With the help of Eqs. (73) one immediately shows that the right-hand side of

ψn, j =
1
p

L

∑

j′
ω̄ j j′ψ̄n, j′ (74)

satisfies Eq. (73). Noting further that the quantum numbers n and j uniquely specify an orbital,
by completeness the ψn, j must be linear combinations of the ψ̄n, j with fixed n. Therefore, the
first of Eqs. (73) already requires Eq. (74) to be true up to a phase that possibly depends on n
and j. Requiring also the second of Eqs. (73) renders this phase j-independent, and we may
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Table 1: Action of symmetry operations and S-duality on single-particle wave func-
tions on a torus without skewness (L∆ = 0). In the presence of finite skewness, simi-
lar relations in particular for S-duality can be defined in skewed coordinates (x∆, y∆).
For vanishing skewness, the replacement τ→−1/τ and its associated dual descrip-
tions of the torus reduces to an exchange of inverse radii κ= 2π

L y
, κ̄= 2π

Lx
. The “mirror

symmetries” Ix and I y both involve a time-reversal transformation that we mostly
leave understood, and so are anti-unitary operators. Inversion Ī = Ix I y = I y Ix .

x-translation t1 t1ψn, j =ψn, j+1 t1ψ̄n, j = ω̄ jψ̄n, j

y-translation t2 t2ψn, j =ω jψn, j t2ψ̄n, j = ψ̄n, j+1

Inversion Ī Īψn, j =ψn,− j Īψ̄n, j = ψ̄n,− j

x-mirror Ix Ixψn, j =ψn,− j Ixψ̄n, j = ψ̄n, j

y-mirror I y I yψn, j =ψn, j I yψ̄n, j = ψ̄n,− j

S-duality ψ̄n, j(z) = ei x yψn, j(−z)κ→κ̄

set it equal to 1 by convention. Indeed, in Appendix E we show in detail that the right-hand
side of Eq. (74) evaluates to

ψn, j = e−i2πLx∆ y∆
∑

s

φn, j+sL ,

φn, j = Hn

�√

√

i2π
L
τ

�

x∆ −
j
L

�

�

ei2π j y∆−iπ L
τ

�

x∆−
j
L

�2

. (75)

Notice that this is obtained from Eq. (67) via the replacements τ→−1/τ, x∆→ y∆, y∆→−x∆,
j→− j, up to the initial factor exp(−i2πLx∆ y∆), which fixes the gauge. Thus, the discrete
Fourier transform realizes S-duality at the single-particle level.

In the following, we will usually specialize to tori with L∆ = 0. In this case, x∆ =
x
Lx

and y∆ =
y

L y
, and the S-duality relation as well as additional symmetries can be simply stated

in terms of the original complex z coordinate, as shown in Table 1. We now extend these
symmetries/dualities to interacting many-body systems. For magnetic translations, we define
many-body operators T1 =

∏N
i=1(t1)i and T2 =

∏N
i=1(t2)i, where (t1,2)i acts on the ith par-

ticle. While both of these translation operators commutes with Ĥint, they inherit non-trivial
commutation relations from the single-particle operators via T1T2 = ω̄

N
L T2T1. From this, it

follows that a ground state with filling fraction ν = p
q must have ground state degeneracy

that is a multiple of q. Likewise, one establishes straightforwardly that Ĥint has the inversion
symmetry introduced in Table 1. Moreover, for L∆ = 0 there are anti-unitary operators that
implement the combination of a mirror symmetry (in x or y) with time-reversal symmetry, see
Table 1. For simplicity, we will just refer to these symmetries as “mirror symmetries".

Finally, we wish to evaluate the action of S-duality on the interacting Hamiltonian. In most
situations, we start with an interaction V (r1− r2) defined in the infinite disk that we lift to the
torus by periodizing, i.e., defining the following matrix elements on the torus:

V̂
Lx ,L y

n,j =
1
2

∫

d2r1d2r2ψ
∗
n1, j1
(r1)ψ

∗
n2, j2
(r2)V

t(r1 − r2)ψn3, j3(r2)ψn4, j4(r1) , (76)

with
V t(r1 − r2) =

∑

ℓ1,2=0,±1,...

V (r1 − r2 + ℓ1L1 + ℓ2L2) ,
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where j ≡ ( j1, j2, j3, j4), n ≡ (n1, n2, n3, n4) are multi-indices. This then defines the following
second-quantized two-body interaction on the torus:

Ĥint =
∑

{n,j}

V̂
Lx ,L y

n,j c†
n1, j1

c†
n2, j2

cn3, j3
cn4, j4

. (77)

Here, the sum is taken over all possible pairs (ni, ji) with i = 1, · · · , 4 and j1 + j2= j3 + j4, the
latter being the consequence of translational invariance.

Next, we Fourier transform the fermionic operators,

c†
ni, ji
=

1
p

L

L−1
∑

l=0

ω̄ ji l c̃†
ni,l

, (78)

which, according to Eq. (74), is the same as passing to the basis dual to that of the original
creation operators via S-duality. This leads to the dual Hamiltonian

ĤD
int =

1
L2

∑

l

∑

{n,j}

�

ω̄ j1 l1+ j2 l2ω j3 l3+ j4 l4 V̂
Lx ,L y

n,j c̃†
n1,l1

c̃†
n2,l2

c̃n3,l3
c̃n4,l4

�

.

For the above, one straightforwardly obtains the matrix elements in the dual basis, which are
obtained from the original matrix elements via Fourier transform:

1
L2

∑

j

�

ω j1 l1+ j2 l2ω̄ j3 l3+ j4 l4 V̂
Lx ,L y

n,j

�

≡ ˆ̃V
Lx ,L y

n,l . (79)

By the single-particle analysis at the beginning of this section, these Fourier transformed,
dual matrix elements ˆ̃V

Lx ,L y

n,l are obtained from the original ones V̂
Lx ,L y

n,j via the formal replace-
ment, or analytic continuation, effecting L1 → L2, L2 → −L1. Again, this is so since this
replacement leads to a description of the same magnetic lattice in terms of an alternate basis,
effecting precisely the same change of basis as the Fourier transform Eq. (78). (Note that being
a density-density interaction, V (r1 − r2) is gauge invariant). Moreover, if the original interac-
tion V (r1−r2) in the infinite plane is rotationally invariant, it is equally legitimate to associate
the dual matrix elements ˆ̃V

Lx ,L y

n,l to the actively rotated lattice of Fig. 5. It then follows that,

assuming now L1 to be real, ˆ̃V
Lx ,L y

n,l is obtained from V̂
Lx ,L y

n,j via a formal replacement/analytic
continuation effecting L1→ |L2|, τ→−1/τ. This is precisely the S-duality that all interactions
considered in the work will exhibit. In particular, the TK-Hamiltonian [13] manifestly does so
by rotational invariance in the infinite plane.

4.2 Quasiholes and domain walls in toroidal geometry, coherent state construc-
tion

Braiding statistics in two spatial dimensions are defined as the result of adiabatic transport
when two quasiparticles (quasiholes) are exchanging positions. In a topological phase, one
expects that the result of such adiabatic transport only depends on the topology of the ex-
change path, modulo a trivial Aharonov-Bohm (AB) phase. The non-AB part of the adiabatic
transport then defines a representation of the braid group. In situations where the quasipar-
ticle (quasiholes) positions and other locally observable quantum numbers do not completely
specify the state of the system, one expects this representation to be non-Abelian.

It might seem at first glance hopeless to attempt to describe an intrinsically (2+1)-
dimensional phenomenon such as braiding in a language constructed from one-dimensional
patterns. For starters, we should establish a faithful representation of quasiholes in root pat-
tern descriptions. According to our earlier results, it must be possible in principle, though.
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Indeed, we have established that there exists a one-to-one correspondence between 1D pat-
terns consistent with an EPP, and a complete set of zero modes of the parent Hamiltonian of a 4
LLs-projected Hamiltonian. Therefore, if we limit our discussion to the braiding of quasiholes
(as opposed to quasiparticles) injected into the incompressible ground state, any state describ-
ing such localized quasiholes is guaranteed to have an expansion in a basis labeled by patterns
that correspond to the EPP. Since the states in this basis carry momentum quantum numbers,
such an expansion will be non-trivial – or a coherent state. This is so because localized quasi-
holes break translational invariance in any directions and therefore cannot carry well-defined
momentum quantum numbers. As is by now well-known [33,34], the correspondence between
the 2D space the braiding takes place in, and the “one-dimensional” coherent states is through
a phase-space picture: The coherent states describe wave packets of fractionalized domain
walls centered about certain points in the two-dimensional phase space of a one-dimensional
quantum system. Indeed, even single-particle physics in a LL can be viewed in similar terms,
as a LL has an innate one-dimensional structure. As mentioned before, it is a manifestation
of the fact that the x- and y- position operators satisfy canonical commutation relations af-
ter LL projection. While thus the quasihole locations will be encoded in this manner in the
coherent state, other quantum numbers are represented by patterns more straightforwardly.
Minimum charge domain walls can be created in various ways between the “200200 . . . " and
“110110 . . . " patterns of our ground state, respectively. By a Su-Schrieffer-type counting argu-
ment, these domain walls will have a charge of 1/3, and so do the associated quasiholes. To
further illustrate this point, we consider two wave functions with root patterns of equal length

200200200200200200200200200200200200200 ,
200 11011 00200200 11011 00200200 11011 00200 .

While the first pattern has 26 particles, the second has 24 particles with six domain walls
(indicated by a larger spacing), and same number of single-particle orbitals. Arbitrariness in
the exact position of the domain walls will be discussed in Section 4.3.1. Hence these six
domain walls have a total charge equal to 2. As all domain walls are related by translation
and/or mirror symmetry, each of them must have a 1/3 quasihole charge. The 1/3 quasihole
charge can also be derived from domain walls between a 110110 . . . and a 101101 . . . ground
state pattern, which we see as follows:

200200200200200200200 ,
110110110110110110110 ,

110 1 0110 1 0110110 1 0110 .

Both the “200” and “110” patterns in the first two lines have 14 particles and represent the
densest (ground state) patterns. The last pattern has three domain walls of “110 1 011” type.
By the same counting argument, each carries a 1/3 charge. Any pattern consistent with our
EPP can be decomposed in an arrangement of (possibly fused) charge 1/3 domain walls of the
types discussed.

At the heart of the formalism is the existence of a basis of quasihole states, within each
sector of given charge and/or angular momentum, that is associated to patterns satisfying the
EPP. Such patterns were discussed in the preceding paragraph. So far, we have elaborated in
detail on the existence of such a basis for the disk geometry. Analogous statements hold for the
cylinder and sphere geometries, where essentially the same polynomial wave functions apply.
Here, however, we will be working on the torus. On the torus, there are some fundamental
differences, chiefly because wave functions are not polynomial, and there is no well-defined
notion of “inward-squeezing” or “dominance”. We must therefore first elaborate how this basis
is realized on the torus.

27

https://scipost.org
https://scipost.org/SciPostPhys.15.2.043


SciPost Phys. 15, 043 (2023)

Figure 6: Left- and right-most quasiholes (denoted by white circles) are moved from
gray bands to black bands. Their movement can be faithfully represented using x-
direction movement of corresponding domain walls. This picture breaks down as
soon as quasiholes cross along the x-direction. Such operation is thus topologically
prohibited in the coherent state method. Different ordering of quasiholes belong
to different configurations σs. All configurations for two and three quasiholes are
displayed in Figs. 7 and 8, respectively.

The construction of such a basis rests on the assumption that the quasihole states on the
torus can be adiabatically evolved into the “thin torus limit” that we next briefly discuss. Hence-
forth, we will work with purely imaginary τ. A thin torus is one where τ→ 0 or τ→∞ (for
fixed number of flux quanta). The assumption of adiabatic continuity has been extensively
investigated [69]. It is generally assumed to hold for all frustration-free positive semi-definite
Hamiltonians of the kind discussed here. While torus wave functions and their Hamiltonians
are harder to study directly, the thin torus limit is locally indistinguishable from a thin cylinder
limit. In the latter case, we know that not only does the EPP apply to all zero modes, but that
zero modes must also reduce to the very root states satisfying the EPP [14, 28]. The same
must then hold true on the torus. In the following, we will use the round ket notation |a,α)
for states satisfying the EPP on the torus. The notation will be expounded on below and in
Tables 3, 4. For now, we will take {a,α} to be an abstract label to encode the pattern. Then
|a,α) is a complete set of zero modes in the thin torus limit τ→ 0, where patterns refer to the
ψn, j single particle basis constructed above. Likewise, we can construct a complete set of zero

modes in the dual thin torus limit −iτ→∞, denoted by |a,α). The only difference between
the |a,α) and the |a,α) is that the former refer to patterns (“root states”) constructed from the
single particle basis ψ̄n, j , as opposed to ψn, j . Both kinds of round kets represent thin torus
zero modes, but in opposite thin torus limits.

The zero-mode bases we work with at arbitrary given (imaginary) τ will be defined
via adiabatic evolution from the thin torus bases sets as a function of modular parameter.
We will denote the basis obtained in this way via adiabatic evolution from the |a,α) by
|a,α〉 = U(τ, 0)|a,α), where U(τ,τ′) is a unitary operator associated with the adiabatic evo-
lution from modular parameter τ′ to modular parameter τ. The |a,α〉 thus depend on τ,
but we will mostly leave this understood. Likewise, we define |a,α〉 = U(τ, i∞)|a,α). An
important property of the |a,α〉, and likewise the |a,α〉, is that by virtue of the unitarity of
adiabatic evolution, and the fact that the |a,α) are manifestly orthogonal, they, too, are or-
thogonal. Moreover, we will take the |a,α), |a,α), and thus the |a,α〉, |a,α〉, to be normalized.
An important difference between the |a,α), |a,α) and their adiabatically evolved counterparts
|a,α〉, |a,α〉 is the fact that |a,α), |a,α) represent torus zero modes at very different modular
parameters, whereas the |a,α〉, |a,α〉 are each complete sets of torus zero modes at the same
modular parameter τ. As a consequence, the |a,α〉, |a,α〉 are related to one another by a
unitary transformation. This is the manifestation of S-duality within the zero-mode space on
the torus.
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Figure 7: Configurations σ0,σ1 for two quasiholes. Braid matrix can be expressed
as overlap of coherent states in configurations σ0 and σ1. Application of global path
symmetry Fx , Fy and mirror symmetry Ix , I y takes one configuration to another.

In the ψn, j (ψ̄n, j) basis, domain walls are localized along x (y) direction. The associated
charge depletion is likewise localized in the x (y) direction, but delocalized along y (x) direc-
tion. The latter follows from the fact that these states are adiabatically evolved from states that
are eigenstates of translation in y (x), and the adiabatic evolution preserves these quantum
number. For a description of braiding statistics, we desire to have a description of quasiholes
that are localized in both x and y coordinates. Following Ref. [33], we can construct a coher-
ent state Ansatz, |ψα(h)〉,

|ψα(h)〉=
∑

a

nh
∏

i=1

φαi (hi , ai) |a,α〉 , (80a)

φαi (hi , ai) = eiβ(κhi y+δ
α
i )ai−γ(hix−κai)2 , (80b)

where h = {h1, h2, ...,hnh
} is the set of complex coordinates for the locations of nh quasiholes

such that the position of the i th quasihole is given by hi = hix
+ ihiy

. a = (a1, a2, ..., anh
) is

an ordered set of numbers, to be further specified below, s.t, 1 ≤ a1 < a2 < ... < anh
≤ L

determining the orbital locations of the domain walls inserted into a topological sector iden-
tified by the label α, such that a, α together completely determine the thin torus state |a,α〉
adiabatically evolved from. For given n, α thus identifies a certain sequence of patterns 200
and 110 that are separated by the domain walls. Tables 3 and 4 show our conventions for
nh = 2 and nh = 3. As we will elaborate in later sections, there is a two-fold degeneracy
associated to any minimum charge domain wall, corresponding to a local pseudo-spin 1/2
degree of freedom. We will ignore this degree of freedom here and assume that all quasiholes
are in the same pseudo-spin state, rendering them locally indistinguishable. The Gaussian
form factor φαi (hi , ai) then localizes the ith quasihole in x near hix

, since κai is the x-location
of the ith domain wall in position space, with κ = 2π/L y . γ determines the shape of the
quasihole, and is assumed to be chosen such that it is circular. The precise value of γ will not
be needed. The y-location of the quasihole is determined by the x-momentum phase factor
of the Gaussian. One can determine the parameter β to be 1/3 from S-duality and symme-
tries on the torus with the methods of Ref. [33]. Thus, the Gaussian form factor φαi (hi , ai)
when viewed as a function of hi exactly has the form of the LLL wave function of a charge
1/3-particle. The parameters δαi represent an offset between a quasihole’s x-momentum and
y-position. These offsets are not arbitrary, since they can, in principle, depend on the type of
domain wall. Moreover, are not free to shift the origin of our coordinate system arbitrarily,
as below we will argue that by duality, an analogous expression holds in the dual basis. Such
complete formal analogy does not, however, survive arbitrary changes in origin. One may
indeed see that a certain origin is naturally made special in our description of a LL once the
gauge, and equally importantly, certain arbitrary phases in the magnetic translation operators
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Figure 8: Six configurations for three quasiholes. Braid matrix can be expressed as
overlap of coherent states in configurations σ2n and σ2n+1, for n = 0, 1,2. Applica-
tion of Fx , Fy and Ix , I y changes configurations non-trivially (see Table 2).

have been fixed.1 By symmetry arguments [33], the shifts δαi may be restricted to zero and
π. Moreover, they must be the same for the same types of domain wall (between the same
ground state patterns on either side), and also for domain wall types related by inversion. The
last important observation about the coherent state Ansatz Eq. (80) is that since the domain
wall positions ai are ordered, 1≤ a1 < a2 < ...< anh

≤ L, the Ansatz is justifiable only as long
as the x-positions hix

of the quasiholes are ordered similarly, and are moreover well-separated
(compared to a magnetic length) in x . In is only then that the φαi describe well-separated,
non-overlapping wave packets (see Fig. 6). We now employ our dual basis construct. We will
argue that local operators like the density ρ̂(x , y) are represented by the same matrix when
passing to the dual basis if x and y are rotated with the replacement κ→ κ̄ where κ̄= 2π/Lx .
From this it follows that an analogous coherent state Ansatz exists in the dual basis,

|ψα(h)〉=
∑

a

nh
∏

i=1

φ̄αi (hi , ai)|a,α〉 , (81a)

φ̄αi (hi , ai) = e−iβ(κ̄hix−δ
α
i )ai−γ(hi y−κ̄ai)2 , (81b)

where φ̄αi (hi , ai) = φαi (−ihi , ai)κ→κ̄ according to the S-duality relation in Table 1, and quasi-
holes must now be separated well in the y direction. Thus, different conditions dictate the
validity of Eqs. (80) and (81), respectively. In the following, we will pay special attention to
configurations where both expressions are valid. Understanding that both the hix

and the hiy

must be pairwise distinct (by [much] more than a magnetic length), we will usually follow

1The basis orbitals can be imagined as “rings” traversing the torus in x or y directions for the two bases,
respectively. Take the origin to be the point where the zero-momentum orbitals in the two respective bases intersect.
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Table 2: Transmutation ofσs as a result of global path Fx ,y and mirror Ix ,y operations
for three quasiholes. Fx moves rightmost quasihole from (hx , hy) → (hx − Lx , hy).
Fy moves topmost quasihole from (hx , hy) → (hx , hy − L y). Mirror Ix moves each
quasihole at (hx , hy) to (Lx − hx , hy), while I y moves each quasihole at (hx , hy) to
(hx , L y − hy). For two quasiholes, Fx(σ) = Fy(σ) = Ix(σ) = I y(σ) = σ′ ̸= σ.

σ Fx(σ) Fy(σ) Ix(σ) I y(σ)
σ0 σ2 σ4 σ5 σ5

σ1 σ5 σ5 σ4 σ2

σ2 σ4 σ0 σ3 σ1

σ3 σ1 σ1 σ2 σ4

σ4 σ0 σ2 σ1 σ3

σ5 σ3 σ3 σ0 σ0

Figure 9: In each configuration σ, corresponding to quasihole ordering, quasiholes
can be faithfully represented as domain walls. In the 4 LLs projected ground state of
the Ĥint of Eq. (30), there are 3 types (up to translation symmetry) of domain walls,
namely 200 110, 110 200 and 110 1 011. A sequence of these domain walls, α, is
topologically distinct from another sequence α′. Each α defines a topological sector
within each configuration σ. For 2 and 3 quasiholes configurations, we have 9 and
12 topological sectors, respectively. (see Tables 3 and 4)

the convention h1x
< h2x

< . . . . This is assumed in Eq. (80), because the domain walls ai
are generally ordered in the same manner. For the same reason, however, the right-hand side
of Eq. (81a) assumes that h1y

< h2y
< . . . . Strictly speaking, in general these two ways of

ordering quasiholes need not be the same, but differ by an (implicit) permutation σ. Thus, as
long as we stick with the former convention, Eq. (81a) must thus be replaced with

|ψα(h)〉=
∑

a

nh
∏

i=1

φ̄αi (hσ(i), ai)|a,α〉 . (82)

In essence, σ labels different configurations of quasiholes, as shown in Figs. 7 and 8 for two
and three quasiholes, respectively. It is not possible to traverse from one configuration to
another without violating one of the two conditions that render both Eqs. (80) and (81) valid,
or by crossing the boundaries of the unit cell of our lattice defining the torus in the extended
zone-scheme infinite plane. The latter process, however, also changes the topological sector
(see below).

Consider now a quasihole configuration labeled byσ, such that both the “original” coherent
state expression (80) and its dual (81) are valid. Then, as the quasihole locations h identify a
d-dimensional subspace in the nh-quasihole zero-mode space, where d is the (nh-dependent)
number of topological sectors (see Fig. 9). By assumption, both the original and the dual
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Figure 10: Braiding, an exchange operation of two consecutive quasiholes, can be
thought of in terms of the overlap matrix between |Ψσ〉 and |Ψσ

′
〉. |Ψσ〉 is a column

matrix of |ψσα 〉s for all topological sectors αs. Configurations σ and σ′ are identical
except h1x

< h2x
in σ gets changed to h1x

> h2x
.

coherent states constitute orthonormal bases for this subspace. We thus have the general
relation

|ψα(h)〉=
∑

α′

uσαα′(h)|ψα′(h)〉 , (83)

where uσ(h) is a unitary matrix that depends smoothly on hole positions within each com-
ponent of configurations space characterized by a well-defined σ. Indeed, the h-dependence
of these matrix-valued transitions functions can be determined [33] from adiabatic transport

(holonomy) as follows: uσ(h) = u(h)ξσ, with u(h) = exp[iβ
nh
∑

i=1
hix

hiy
]. From now on, we will

refer to ξσ as the transition matrix.

4.3 Braiding in coherent state language

The goal is now to work out the result of adiabatic transport along an exchange path such as
shown in Fig. 10, using the coherent state description. To understand how non-trivial braiding
comes about in this language, we first observe that we introduced not one but two well distinct
methods of defining what a topological sector is. One is to say that a quasihole state lie in
the topological sector α if its L y → 0 limit under adiabatic evolution consists of a sequence of
patterns identified with α. The alternative definition is analogous, except utilizing the opposite
limit Lx → 0. The relation between these two notions of a topological sector is non-trivial.
Hence, we generally expect the transitions functions to have off-diagonal matrix elements.
The assumption that justifies the term “topological sector” is the following: We assume that
no local operator has matrix elements between |a,α〉 and |a′,α′〉 as long as the same is already
true in the associated thin torus limit, i.e., for the states |a,α) and |a′,α′). For the latter to be
true, it is clearly sufficient that α ̸= α′ and all domain walls are well-separated. In particular,
under the same conditions that the coherent state expression Eq. (80) holds, i.e., that all
quasiholes are well separated in x , no local operator has matrix elements between |ψα(h)〉
and |ψα′(h′)〉. This includes the local density operator. It is for this reason that localized
quasiholes can be formed from |a,α〉 with a fixed α. Moreover, adiabatic transport where
local quasiholes are dragged along some path, where the dragging can be thought of as being
facilitated via slowly changing local potentials, does not lead to changes in the topological
sector, as long as the coherent state |ψα(h)〉 remains well defined. Analogous statements hold
for the dual coherent states, |ψα(h)〉. Luckily, the above does not rule out transitions into a
different topological sector along the exchange path shown in Fig. 10. This is so, because along
such a path, the conditions for the validity of either coherent state certainly becomes violated
somewhere. In particular, the condition that both quasiholes are well separated in x becomes
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Figure 11: Translation moves each particle by one unit in linear momentum space,
|a〉 → |a+ 1〉. If the last orbital L = 25 is occupied, it gets moved to L+1, outside our
modular coordinates. We have to move this last particle from L+1→ 1 by commuting
through other particles. For a system with two quasiholes the total number of parti-
cles are always even, thus we get an extra sign θT (α) in fermionic systems. Moreover,
resulting pattern belongs to a different topological sector α′ = T (α). θT (α), T (α)s
are tabulated for all αs in the table for two and three quasiholes, respectively.

violated. Related to that, the configuration label σ, where well-defined, assumes multiple
values during the path. On the other hand, everywhere along the exchange path, at least one
of the two coherent state expressions holds. We may thus evaluate the result of the adiabatic
exchange in Fig. 10 using the following strategy. Close to the initial/final positions, we use
the coherent state (80) to work out the result of adiabatic transport. At appropriate locations
of well-defined σ, we change between the original and the dual coherent state descriptions
by means of Eq. (83), and so in between those locations, we describe the adiabatic transport
using the dual coherent state description. It follows from the above discussion that locally,
i.e., in the coherent state description appropriate to the respective segment of the path, no
transitions between topological sectors happen, and all the information about the braid matrix
χ that describes the result of the adiabatic exchange is contained in the transition matrices ξσ,
evaluated in the two configurations where a change of basis is performed. Details are given in
Ref. [33]. The result is, with a trivial Aharonov-Bohm phase dropped,

|Ψfinal〉= ξσ0 (ξσ1)† |Ψ initial〉 ⇒ χ = ξσ0 (ξσ1)† . (84)

Here, |Ψ〉 denotes a column vector, respectively for the initial/final state, with the coefficients
of the differentψα(h)with different α as columns. One can proceed analogously for more than
two quasiholes, where one neighboring pair is exchanges with the other quasiholes staying
fixed.

Via Eq. (84), that task of calculating braiding has been reduced to the evaluation of the
transition matrices ξσ. In the following, we will show that these matrices are sufficiently con-
strained by various symmetry and locality considerations. To this end, we find it educational
to discuss some concrete examples of how translation and mirror symmetry as well as certain
processes involving “global paths” act on root patterns (see Figs. 11-13).
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Table 3: Topological table for 2 quasiholes (even fermion number): Sectors α with
hix
∼ κai . Position of domain walls are chosen while maintaining the inversion

symmetry. Moreover, ai + 3 can be identified with ai due to the torus degeneracy
of the wave function. Domain wall 200200 110110 is related to 011011 002002 by
inversion symmetry. Domain wall 110 1 0110 maps to itself under inversion. For
bosonic case, θT = θF = θI = 1 for all α. In [34], the topological sector α is denoted
by (c, α̃).

(c, α̃) α patterns a1 a2
∑

j jn j T (α) θT (α) F(α) θF (α) I(α) θI(α)
(−1,1) 1 0200200 11011011 0020020020 8− s 15+ s 209 2 1 5 1 3 −1
(0,1) 2 00200200 11011011 002002002 9− s 16+ s 225 3 1 6 1 2 −1
(1,1) 3 200200200 11011011 00200200 10− s 17+ s 191 1 1 4 −1 1 −1

(−1,2) 4 1011011 00200200200 1101101 7+ s 19− s 208 5 −1 2 −1 6 1
(0,2) 5 11011011 00200200200 110110 8+ s 20− s 199 6 1 3 1 5 −1
(1,2) 6 011011011 00200200200 11011 9+ s 21− s 215 4 −1 1 1 4 1

(−1,3) 7 10110110 1 0110110 1 01101101 9 17 208 8 −1 8 1 9 1
(0,3) 8 110110110 1 0110110 1 0110110 10 18 199 9 1 9 −1 8 −1
(1,3) 9 0110110110 1 0110110 1 011011 11 19 215 7 −1 7 1 7 1

Table 4: Topological table for 3 quasiholes (odd fermion number): Sectors α with
hix
∼ κai . Position of domain walls are chosen while maintaining the inversion

symmetry. Moreover, ai + 3 can be identified with ai due to the torus degeneracy
of the wave function. Domain wall 200200 110110 is related to 011011 002002 by
inversion symmetry. Domain wall 110 1 0110 maps to itself under inversion. For the
bosonic case, θT = θF = θI = 1 for all α. In [34], the topological sector α is denoted
by (c, α̃).

(c, α̃) α patterns a1 a2 a3
∑

j jn j T (α) θT (α) F(α) θF (α) I(α) θI(α)
(−1,1) 1 0200 110110110 1 011011011 0020020 5− s 14 23+ s 296 2 1 8 1 3 1
(0,1) 2 00200 110110110 1 011011011 002002 6− s 15 24+ s 315 3 1 9 1 2 1
(1,1) 3 200200 110110110 1 011011011 00200 7− s 16 25+ s 275 1 1 7 1 1 1

(−1,2) 4 10110 1 011011 00200200200 1101101 6 12+ s 24− s 296 5 1 2 1 9 1
(0,2) 5 110110 1 011011 00200200200 110110 7 13+ s 25− s 285 6 1 3 1 8 1
(1,2) 6 0110110 1 011011 00200200200 11011 8 14+ s 26− s 304 4 1 1 1 7 1

(−1,3) 7 1011 00200200200 110110 1 01101101 4+ s 16− s 22 296 8 1 5 1 6 1
(0,3) 8 11011 00200200200 110110 1 0110110 5+ s 17− s 23 285 9 1 6 1 5 1
(1,3) 9 011011 00200200200 110110 1 011011 6+ s 18− s 24 304 7 1 4 1 4 1

(−1,4) 10 10110 1 0110110 1 0110110 1 01101101 6 14 22 296 11 1 11 1 12 1
(0,4) 11 110110 1 0110110 1 0110110 1 0110110 7 15 23 285 12 1 12 1 11 1
(1,4) 12 0110110 1 0110110 1 0110110 1 011011 8 16 24 304 10 1 10 1 10 1

4.3.1 Inversion symmetry

In Table 1, we defined inversion symmetry with respect to a rather arbitrary center. In combi-
nation with magnetic translations, we can, of course, fix any point on the torus to be the center
of our inversion symmetry (note that on the torus, inversion always fixes two points). This can
be used to constrain or fix a number of parameters we so far introduced explicitly or implic-
itly. Consider the domain wall positions ai , which we think of as the “orbital positions” of our
domain walls. Our different types of domain walls have different symmetry character when it
comes to inversion. If we regard a symmetric domain wall of the type . . . 110110 1 011011 . . . ,
symmetry dictates that its domain wall position should coincide with the orbital index of the
central 1 in this pattern. This can be made rigorous as follows. One consequence of its sym-
metry is that it is possible to have a single domain wall of this type on the torus, with no other
domain walls present, if we appropriately choose the number of flux quanta. We may then
write a single quasihole coherent state of the form Eq. (80) for the topological sector associ-
ated to the pattern . . . 110110 1 011011 . . . . Now choose an inversion center that preserves
this topological sector. We may then demand that applying this inversion to the coherent state
produces, up to a phase, the coherent state in the same topological sector with the hole sent
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from position h to 2hI−h, with hI the inversion center. From the completeness of our coherent
states, the operation of inversion as described will produce a zero mode in the same topologi-
cal sector with a quasihole localized at 2hI −h. One may show that to be consistent with these
observations, the domain wall position a1 entering the (nh = 1) coherent state Eq. (80) must
indeed coincide with the orbital index of the unpaired 1 in the pattern associated to |a1,α〉.
For details, we again refer the reader to Ref. [33].

The situation is rather different for the other type of domain wall. Consider the pattern
200200 11011 00200200. It is easy to see that due to lack of inversion symmetry, on the torus
such domain wall must always come in pairs. There is then no argument that the “correct”
way to choose the domain wall positions a1 and a2 in the pattern is for them to be chosen
integers. Here, “correct” again means that the coherent state expression (80) succeeds at
localizing the two quasiholes precisely at the complex coordinates given by the parameters h1,
h2. Clearly, the first domain wall is localized somewhere between the terminal zero of the first
200-string and the leading 1 of the 110-string. However, there is no immediately obvious way
to make this more precise. However, we must plug in some real numbers a1 into the coherent
state Ansatz Eq. (80). Hence we must make a choice. The only way to avoid bias is to
introduce a parameter s and say that the domain wall position is of the form integer−s for the
first domain wall. Inversion symmetry arguments of the flavor discussed for single, inversion-
symmetric domain wall then still imply that the second domain-wall position must be of the
form integer+s, as shown in the following schematic: 200200

1−s s

11011
s 1−s

00200200,

where represents domain walls. This shows, in particular, that the parameter s cannot be
absorbed into a coordinate shift (which would in any case also adversely affect conventions
for the 110 1 011-type domain walls). We will subsequently constrain s, and our solution for
the braid matrix will crucially depend on it.

Similar arguments can be made about the parameters δαi . In the case of
a 200200 11011 00200200-type topological sector, one can similarly show that
δα1 = −δ

α
2 mod 2π. Anticipating that mirror symmetries, which we will discuss in more de-

tail below, lead to similar constraints, we note that analogous requirements with respect to
Ix -symmetry imply δα1 = δ

α
2 mod 2π. Together, these two constraints fix all δαi -parameters to

be 0 or π modulo 2π. Since a shift of any δαi by 2π only changes coherent state by overall
phases, we can simply take δαi = 0,π for all i and α. Furthermore, all δαi referring to domain
walls related by mirror/inversion symmetry must be the same, and similarly, using transla-
tional symmetry, all δαi referring to domain walls related by translational symmetry must be
the same. It follows that there are only two independent δαi , one for 200200 110110-type
domain walls (and their mirror images), and one for 110110 1 011011-type domain walls.
Lastly, for reasons related to the fact that the 110110 1 011011-type domain walls can exist
as single domain walls on the torus, combining the above symmetries with duality turns out
to fix the δαi for such domain walls completely (mod 2π). In the following subsection, we will
show the associated δαi to be 0.

4.3.2 Translation symmetry

The Hamiltonian commutes with magnetic translations. Thus, under adiabatic evolution in the
thin torus limit, the action of magnetic translations on the basis |a,α〉 is the same as that on
the “bare”, thin torus states |a,α). This is straightforward to work out. Analogous statements
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hold for the dual basis, giving:

Tx |a,α〉= θT (α) |a+ 1, T (α)〉 , (85a)

Ty |a,α〉= e−iκκ̄
∑

j jn j |a,α〉

⇒ Ty |a,α〉= f (α)eiβκκ̄
∑

i ai |a,α〉 , (85b)

Ty |a,α〉= θT (α)|a+ 1, T (α)〉 , (85c)

Tx |a,α〉= eiκκ̄
∑

j jn j |a,α〉

⇒ Tx |a,α〉= f ∗(α)e−iβκκ̄
∑

i ai |a,α〉 . (85d)

Here, T (α) and θT (α) are tabulated in Tables 3-4 for two and three quasiholes, respectively.
In Eqs. (85b),(85d), we have used β = 1/3 to recast the phase factor appearing in terms of
domain-wall positions. The factor

e−iκκ̄
�

∑

j jn j+β
∑

i ai

�

= f (α) , (86)

with κκ̄= 2π/L, does not depend on the positions ai themselves, but only on the topological
sector (in Tables 3 and 4 it only depends on c). Keep in mind that within a fixed topological
sector, each domain wall has a stride of 3, i.e., the value ai is fixed modulo 3. Related, the
choice β = 1/3 is crucial in rendering Eq. (86) dependent on the topological sector only.

The above equations crucially differ from those in Ref. [34] by a fermionic sign θT (α).
The application of Tx on |a,α〉 moves every particle to one site to the right (a → a + 1). In
this operation if a particle on the rightmost orbital crosses the boundary used in our fermionic
ordering conventions (which may be taken to be increasing in orbital index), it reappears as the
leftmost particle, thanks to periodic boundary conditions, thus θT (α) = (−1)(#of fermionic permutations).
Here (#of fermionic permutations) is the number of permutations needed to reorder fermion
operators in the root state according to increasing orbital index.

As an example, consider Table 3 for two quasiholes. In the α = 1 case, we get no particle
moving from left to right, hence, θT (1) = 1. For α= 2, two particles simultaneously cross the
boundary, hence, θT (2) = 1. For α= 4, one particle crosses the boundary, hence, θT (4) = −1.
In the three quasihole case, due to odd total particle number, the number of permutations is
always even, hence, θT (α) = 1 for all αs and there is no difference with the case studied in
Ref. [34].

Using Eqs. (85) in Eqs. (80), (81) we obtain the effect of the translation operators on
coherent states:

Tx |ψα(h)〉= θT (α)e
−iβ
∑

i(κhi y+δ
α
i ) |ψT (α)(h+κ)〉 , (87a)

Ty |ψα(h)〉= f (α) |ψα(h+ iκ̄)〉 , (87b)

Ty |ψα(h)〉= θT (α)e
iβ
∑

i(κ̄hix−δ
α
i )|ψT (α)(h+ iκ̄)〉 , (87c)

Tx |ψα(h)〉= f ∗(α)|ψα(h+κ)〉 . (87d)

One sees that this has the expected effect, namely, up to phase, to shift the position variables
by κ and κ̄, respectively, for Tx and Ty . While the first and third of these equations follow
straightforwardly from the definition of the coherent states, the remaining two crucially de-
pend on Eq. (86) and thus the fact that β = 1/3. β can thus be uniquely determined from the
requirement that Tx and Ty act consistently on the two mutually dual versions of the coherent
states [33].
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Now we are in a position to apply these operations directly in the S-duality relation (83),
in order to obtain a first crucial set of constraints on the transition matrices:

|ψα(h)〉= u(h)
∑

α′

ξσαα′ |ψα′(h)〉

⇒ Tx |ψα(h)〉= θT (α)e
−iβ
∑

i(κhi y+δ
α
i ) |ψT (α)(h+κ)〉

= u(h+ κ)e−iβ
∑

i κhi y θT (α)e
−iβ
∑

i δ
α
i

∑

α′

ξσT (α)α′ |ψα′(h+ κ)〉

= u(h)
∑

α′

ξσαα′ f
∗(α′)|ψα′(h+ κ)〉

⇒ θT (α)e
−iβ
∑

i δ
α
i ξσT (α)α′ = ξ

σ
αα′ f

∗(α′) , (88a)

where we have used Eq. (83) (first line) on the right hand side of Eq. (87a) (second line), and
compared this to the effect of applying Tx to the first line and evaluating the right hand side
via Eq. (87d). The last line is obtained by comparing coefficients in the two lines preceding it.

It is advantageous to cast this as a matrix equation. Let us define the following matrices
using the Kronecker delta δαα′ ,

e−iβδT
αα′ = δαα′e

−iβ
∑

i δ
α
i , (88b)

BTαα′ = θT (α)δT (α)α′ , fαα′ = δαα′ f (α) . (88c)

With this we can condense Eq. (88a) into matrix form,

e−iβδT BTξ
σ f = ξσ . (89)

Similarly, while the above was obtained from the action of Tx along with S-duality, we can
get analogous equations by using Ty instead:

f (α)ξσαα′′ = ξ
σ
αα′e

−iβ
∑

i δ
α
i θT (α

′)δT (α′)α′′ (90a)

⇒ f ξσ = ξσe−iβδT BT . (90b)

The effect of these equations is the following. Following [33], one may group the topo-
logical sectors in Tables 3-4 into “supersectors” of three sectors each, related by local lattice
translations (Tx or Ty in the mutually dual cases, respectively). Using the above equations uti-
lizing translational symmetry, all matrix elements of ξσ between any two given supersectors
are linearly related. Thus, the number of independent variables in the ξσ-matrix, for nh = 2
quasiholes, is reduced from 27 to 9. These equations also further constrain the δαi -parameters.
To see this, let us focus again on nh = 2 quasiholes for the moment. Iterating Eq. (89) three
times, we obtain

ξσ = (e−iβδT BT )
3ξσ( f )3 . (91)

One easily finds that f 3 is the identity, while (e−iβδT BT )3 = (e−iβδT )3. This equation thus
reduces to

ξσ = e−3iβδTξσ . (92)

e−3iβδT is a diagonal matrix, and any of its entries that is not equal to 1 would, by the above
equation, force an entire row of ξσ to vanish. This cannot happen, since ξσ is unitary. Hence,
e−3iβδT is the identity. Since 3β = 1, this gives

∑

i

δαi = 0 mod 2π . (93)

For two domain walls, this is just the familiar fact that δαi for two mutually inverted domain
walls are either both 0 or both π, also already concluded from mirror and inversion symmetry.
However, when the above argument is repeated for a single or for three domain walls, one
finds that δαi = 0 for the 110110 1 011011-type domain walls.
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Figure 12: Global path operation Fx moves rightmost domain walls to the further
right by three lattice sites at a time. Application of Fx twice more moves the do-
main wall across the right boundary (in the modular space), which in turn, changes
topological sector α(= 4) to F(α). To determine F(α)(= 2), we next apply T3

x twice.
Notice that T3

x does not change the topological sector. In this example, 11 00200-type
domain wall finally gets moved to the left. The resulting state can also be constructed
by moving one particle for each arrow. In this case, the leftmost particle has to cross
the boundary to go to rightmost position. This process introduces a fermionic sign
factor θF (α) as well as a change in topological sector, α→ F(α).

4.3.3 Global path (F) operation

So far, we have one separate transition matrix ξσ for every configuration σ. To eliminate
enough parameters in order to evaluate the braid matrix Eq. (84), it will be necessary to
establish relations between the transition matrices for different configurations. As we hinted
when introducing the different configurationsσ, it is not possible to move quasiholes from one
configuration σ to another configuration σ′ while keeping both our expressions for |ψα(h)〉
and |ψα(h)〉 well defined, unless we move across the boundary of our unit cell defining the
torus in the magnetic “extended zone scheme”. Now we wish to make use of this feature. To
do so, we define two operations that cross boundaries in the extended zone scheme. Let Fx

be the operation of analytically continuing2 the expressions for |ψα(h)〉 and |ψα(h)〉 in hnh
,

i.e., the “righmost” particle coordinate, into the region hnhx
> Lx . In the case of |ψα(h)〉,

one thereby transitions into a different topological sector F(α), but not so for |ψα(h)〉. The
analytically continued state |ψα(h)〉 now describes a zero mode in the topological sector F(α)
with quasiholes at positions h′, which is the same as h, except the rightmost position hn has
become the leftmost position at hn− Lx > 0. This also changes the configuration σ associated
with h to σ′ = Fx(σ) associated to h′. By the usual completeness argument, the analytically
continued state |ψα(h)〉must be equal up to a phase to the coherent state |ψF(α)(h′)〉. Indeed, it
may be checked directly that this is so. The analytically continued state, however, by means of
the duality relations Eq. (83), is still related to the dual coherent states via the transition matrix
elements ξσαα′ , whereas the state |ψF(α)(h′)〉 is, by means of the same equation, connected to

the dual states via the matrix elements ξFx (σ)
F(α)α′ . In this way, we establish a matrix relation

2Alternatively, we may define this via adiabatic transport.
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between ξσ and ξFx (σ). In a completely analogous manner, we define an operation Fy that
takes the topmost particle and moves it over the boundary in the extended zone scheme,
affecting now the sector of the dual coherent state |ψα(h)〉 via the function F(α), and sending
the configuration σ to Fy(σ). In this way, we obtain a matrix relation between ξσ and ξFy (σ).

For two quasiholes, there are only two configurations σ (Fig. 7), and the above will suffice
to express the transition matrices for one in terms of that of the other, a crucial step in evalu-
ating the braid matrix from Eq. (84). For three particles, all configurations σ (Fig. 8) can still
be related to each other via the actions of the Fx and Fy moves and the mirror symmetries to
be discussed in the following subsection. These actions are summarized in Table 2.

Beyond relating transition matrices for different σ, the Fx/y -moves also lead to additional
constraints on any one ξσ. To see this, we will focus in σ0 = id, i.e., where particles are
ascending in hx as well as hy . For σ = id, one easily verifies the relation,

Fx(Fy(id)) = id , (94)

which constraints ξid, and, via the aforementioned relations, all other ξσ.
At the level of the basis |a,α〉, the Fx operation can be given an interpretation that manifests

continuity under periodic boundary conditions. Let a = (a1, . . . , anh
) be a set of domain wall

positions in the topological sector α. Suppose anh
+ 3 ≤ L. In this case, Fx |a,α〉 = |a′,α〉 is

simply the state in the same topological sector where the “last” domain wall has hopped to the
right by 3 units, such that a′ = (a1, . . . , anh

+ 3). On the other hand, if anh
+ 3 > L, we move

into a different topological sector. In this case, a′ = (anh
+ 3− L, a1, . . . anh

− 1), and

Fx |a,α〉= θF (α) |a′, F(α)〉 . (95)

Here, θF (α) is a fermionic factor as a result of restoring the order of fermionic orbitals after
hopping.3 It is given in Tables 3 and 4. This operation now allows us to continuously evolve
the coherent state |ψα(h)〉 as the x-coordinate of the rightmost particle changes from hnhx

< Lx
to hnhx

> Lx : In the coherent state expression Eq. (80), we usually assume that all quasihole
coordinates are well away from the boundaries of our extended zone scheme unit cell. In this
manner, we need not worry about the limits of the sums over domains wall positions, due to
exponential localization. This changes when, hnhx

≈ Lx . In this case, many basis states |a′,α〉
may enter the coherent state with appreciable weight such that a′ = (a1, . . . , anh

+ 3q), where
q, and anh

≤ L, but anh
+ 3q > L. Then, since a = (a1, . . . , anh

) is still a proper set of domain
wall positions in the topological sector α, we can make the identification

|a′,α〉 ≡ Fq
x |a,α〉 . (96)

Here, Fq
x is the operation that applies the action defined for Fx to the last domain wall in a q-

times (even after this domain wall possibly becomes the “first” during this process, thus strictly,
Fq

x ̸= (Fx)q). With this, the coherent state |ψα(h)〉 evolves smoothly as hnhx
≈ Lx and even as

hnhx
≫ Lx (where≫ signifies multiple magnetic lengths). In the latter case, the identification

(96) straightforwardly leads to the following identification of coherent states:

|ψα(h)〉 ≡Fx
θF (α)e

iβ L(κhi y+δ
α
i ) |ψF(α)(h

′)〉 , (97a)

where h′ is obtained from h= (h1, . . . , hnh
) via h′ = (hnh

− Lx , h1, . . . , hnh−1) (we tacitly assume
hnh
− Lx < h1).
On the other hand, |ψα(h)〉 already evolves smoothly as hiy

is increased beyond L y . It is
straightforward to verify that

|ψα(h)〉= ei2πβai(α) |ψα(h′′)〉 , (97b)

3Again, this can be worked out from the “basis” |a,α), as a result of translational invariance and the fact that
translations commute with adiabatic evolution.
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where i is the index of the quasihole with largest hiy
, h′′ = (h1, . . . , hi − i L y , . . . , hnh

), and we
have defined ai(α) the domain wall position of the ith particle in the topological sector α,
which is well-defined modulo 3. The above two equations then also hold, mutatis mutandis,
for the dual coherent states |ψα(h)〉:

|ψα(h)〉 ≡Fy
θF (α)e

−iβ L(κhi′y
−δα

i′ )|ψF(α)(h′′)〉 , (97c)

|ψα(h)〉= e−i2πβai(α)|ψα(h′)〉 . (97d)

Using these relations now in the usual manner inside the S-duality relation (83), we get, for
Fx :

|ψα(h)〉= u(h)
∑

α′

ξσαα′ |ψα′(h)〉

⇒ θF (α)e
iβ Lδαi δF(α)α′′ξ

Fx (σ)
α′′α′

= ξσαα′e
−i2πβai(α′) ,

from which we read off the corresponding matrix equation:

eiβδi BFξ
Fx (σ)ei2πβai = ξσ . (98a)

Similarly, using Fy and the S-duality, (83), gives

ei2πβaiξFy (σ)(eiβδFi′ BF )
−1 = ξσ , (98b)

where, in the above, we have defined the following matrices:

eiβδFi αα′ = δαα′e
iβ Lδαi , BFαα′ = θF (α)δF(α)α′ ,

ei2πβai
αα′ = δαα′e

i2πβai(α′) .

Finally, using Eqs. (98) together with the observation (94) gives the following matrix equation
constraining ξid:

ei2πβai eiβδi BF ξ
idei2πβai (eiβδFi′ BF )

−1 = ξid . (99)

4.3.4 Mirror symmetry

We summarized the representation of mirror symmetry in Table 1. Since mirror symmetries
commute with the Hamiltonian and adiabatic evolutions, their actors on the basis |a,α〉 can be
worked out from the bare thin torus limits |a,α), and similarly for |a,α〉. We stress again, that
Ix and I y are both anti-linear, in fact, anti-unitary operators, where the basis |a,α〉 is invariant

under I y , and the basis |a,α〉 is invariant under Ix , but the two other pairings are non-trivial,
and change, in general, the topological sector. Detailed actions are as follows:

Ix |a,α〉= θI(α) |L − a, I(α)〉 , (100a)

I y |a,α〉= |a,α〉 , (100b)

I y |a,α〉= θI(α)|L − a, I(α)〉 , (100c)

Ix |a,α〉= |a,α〉 . (100d)

In the above, we used the shorthand notation L − a for (L − anh
, L − anh−1, . . . , L − a1). The

map I(α) is given in Tables 3 and 4. A sign θI(α) is generated in the non-trivial ones of
these operations, also shown in these tables, similar to the sign generated in translation and
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Figure 13: A mirror symmetry operation is defined here with respect to a mirror
positioned at a = L = 25. A mirror symmetry operation can be viewed as composi-
tion of two operations. First operation, that needs the explicit form of the root state,
moves |a〉 → |L − a〉 and adds an overall minus sign due to the entanglement struc-
ture of the root state, see Section 3.2.2 and Eq. (212). In the starting configuration,
a takes value from 1 to L. Any particle at angular momentum L will go to 0 after
this operation. In order to keep the original modular coordinates, we have to com-
mute the leftmost particle from 0 to L. This process generate extra fermionic phase
θI(α) = −θT (α) and a change in topological sector, α→ I(α).

F -moves. However, unlike for translations and F -moves, this sign does not only depend on the
fermionic nature of their underlying particles, but also receives non-trivial contributions from
the reversal of bonds connecting these particles. To understand the origin of these extra minus
signs, one must consider the entanglement structure of the root states, constructed later in Eq.
(212). Each bond in the MPS representation of the root state carries a Levi-Civita tensor.
Under mirror symmetry they will acquire an extra −1 sign. At this point, our “topological
tables” crucially differ from both single-component bosons (the Gaffnian case of Ref. [34]) as
well as single component fermions (there would be no consistent solution for reasons related
to results of Ref. [65]).

Using the above, it is straightforward to work out the action of mirror (anti-unitary) oper-
ations on coherent states:

Ix |ψα(h)〉= θI(α)e
−iβ L
∑

i(κhi y+δ
α
i ) |ψI(α)(Lx − h∗)〉 , (101a)

I y |ψα(h)〉= e−i2β
∑

i(π+δ
α
i )ai(α) |ψα(h∗ + i L y)〉 , (101b)

I y |ψα(h)〉= θI(α)e
iβ L
∑

i(κ̄hix−δ
α
i )|ψI(α)(h∗ + i L y)〉 , (101c)

Ix |ψα(h)〉= ei2β
∑

i(π−δ
α
i )ai(α)|ψα(Lx − h∗)〉 , (101d)

where, again, expressions like Lx − h∗ are shorthand notations for the implicated action on
all quasihole coordinates. This also changes the configuration from σ to Ix(σ) or I y(σ), as
shown in Table 2. Just as with the other symmetries, we will use the above in the S-duality
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relation Eq. (83):

|ψα(h)〉= u(h)
∑

α′

ξσαα′ |ψα′(h)〉

⇒ Ix(y) |ψα(h)〉= u∗(h)
∑

α′

�

ξσαα′
�∗

Ix(y)|ψα′(h)〉 .

Simplifying above, just as we did for the other symmetries and operations, we obtain two
matrix equations,

e−iβ L
∑

i δ
α
i θI(α)δI(α)α′ξ

Ix (σ)
α′α′′

= (ξσαα′′)
∗ei2β
∑

i(π−δ
α′′
i )ai(α′′)

⇒ e−iβδI BIξ
Ix (σ)e−iβ−aI = (ξσ)∗ , (102a)

e−i2β
∑

i(π+δ
α
i )ai(α)ξ

I y (σ)
αα′′

= (ξσαα′)
∗e−iβ L
∑

i δ
α′
i θI(α

′)δI(α′)α′′

⇒ e−iβ+aIξI y (σ)
�

e−iβδI BI

�−1
= (ξσ)∗ . (102b)

Here, we have again introduced following matrices:

e−iβδI
αα′ = δαα′e

−iβ L
∑

i δ
α
i , BIαα′ = θI(α)δI(α)α′ ,

eiβ±aI
αα′ = δαα′e

i2β
∑

i(π±δ
α′
i )ai(α′) ,

which defines the parameter β±.
If we combine the above two equations, we arrive at every possible constraint on transition

matrices from inversion symmetry alone. In particular, this can be used, in a manner similar
to the one observed for F -moves, to constrain ξσ for one given σ. Since, again, all σ’s are
related by F -moves and mirror symmetry (for two and three particles), it suffices to focus on
σ = id.

Ix(I y(id)) = id . (103)

This then leads to the following constraint on ξid:

(e−iβ+aI )∗e−iβδI BIξ
ide−iβ−aI
�

(e−iβδI )∗BI

�−1
= ξid . (104)

4.3.5 Locality constraints

We have so far determined symmetry/operations constraints on the transition matrix ξσs. Fur-
ther constraints can be derived considering locality constraints on the braid matrix χ itself. In
Section 4.2, we already commented on the way locality factors into the coherent state formal-
ism: Matrix elements of local operators between basis states |a,α〉, |a′,α′〉 can be non-zero
only if the underlying root states |a,α), |a′,α′) differ from one another only locally. This is in
particular true for matrix elements of the identity operator, i.e, the inner products 〈a′,α′|a,α〉.
In particular, we argued in this way that the Berry connection matrix 〈ψα|∇i jψα′(h)〉, where
∇i j contains derivatives with respect to the coordinates of the moving quasiholes i and j, is
diagonal in α, α′ as long as quasiholes are well separated in hx . It is useful to contemplate
a calculation of the Berry matrix along the whole exchange path using the |ψα(h)〉 coherent
state, even for segments where the hx -separation of the braided quasiholes is small. This
should be possible in principle, even though we avoid technicalities by using the dual states
|ψα(h)〉 along those segments.

Let’s contemplate a pair of quasiholes that initially, for well separated hx , is in the first of
the following two topological sectors:

transition is possible between:
1011011 00200200200 1101101 ,

10110110 1 0110110 1 01101101 .
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The pair will remain in the first of these two topological sectors while well separated in x;
however, at some point along the exchange path, the intermediate 200-string of the pattern will
become small. By the above argument, off-diagonal matrix elements in the Berry connection
matrix between the first and the second sector are then possible. Hence, the transition between
these two sectors as a result of the exchange path is possible. Note that we regard the “outer”
110-strings as essentially infinitely long during the process, as we consider the braided pair is
well removed in x from all other quasiholes. In particular, then no transition is possible during
which these outer strings change. An example is the following:

transition is not possible between:
0200200 11011011 0020020020 ,
1011011 00200200200 1101101 .

Indeed, a stronger statement is possible. Consider the first of the two sectors above. It is
not possible to replace the inner 110-string with any other string such that two charge 1/3
domain walls remain between strings. Thus, given the outer 200-strings, by locality (and
charge constervation), we cannot make a transition from the first of these two sectors into any
other sector.

The above considerations impose strong constraints on the braid matrix. Let us write the
topological sector label α as α = (c, α̃), as shown in Tables 3 and 4. Here, α̃ is thought of
as labeling a “supersector” of translationally related sub-sectors c. This leads to the following
structure of the braid matrix:

χαα′ = δcc′χ̃α̃α̃′ . (105)

Indeed, the labeling is such that identical “outer” strings only happen for identical c. Moreover,
sectors with different c but same α are related by translation, justifying the above factorization.
Further constraints apply to the super-sector factor χ̃. For two quasiholes, the above arguments
imply:

χ̃(2) =





× 0 0
0 × ×
0 × ×



 , (106)

where × stands for elements that are not necessarily zero. The zeros, on the other hand, are
required precisely by the arguments made for the two cases studied above for two domain
walls. Similar arguments imply the following structure for χ̃ for three quasiholes, where we
assume that the two leftmost quasiholes are being braided:

χ̃(3) =







+ 0 0 0
0 + 0 0
0 0 + +
0 0 + +






, (107)

where we used a different symbol, +, for matrix elements not necessarily zero, for reasons that
will become apparent shortly. The study of three quasiholes is necessary in this formalism,
among other things, because certain pairings of domain walls require a third domain wall
on the torus. This is true for the leftmost domain wall with α̃ = 1, and α̃ = 2. Our locality
arguments then immediately imply that the braiding in these sectors, again for the two leftmost
quasiholes, is diagonal, as shown above. For α̃ = 3 and α̃ = 4, however, the braiding of the
two leftmost quasiholes involve pairs of domains walls that were already resent in the two-
quasihole cases. In those cases, locality implies that the result does not depend on the presence
or absence of a third, far removed, quasihole. For these reasons, the lower right 2× 2 blocks
of χ̃(2) and χ̃(3) must be same:

43

https://scipost.org
https://scipost.org/SciPostPhys.15.2.043


SciPost Phys. 15, 043 (2023)

�

× ×
× ×

�

=

�

+ +
+ +

�

. (108)

In the remainder of this section, we will use the symmetry and locality constraints discussed
above, respectively, on the transition matrices and the braid matrix for two and three quasi-
holes to determine braiding statistics.

4.4 Braid matrix for two quasiholes

We begin by considering the linear constraints on the transition matrix ξid from translation
symmetries. Using Eqs. (89), (90b), along with the inversion symmetry δα1 = −δ

α
2 mod 2π,

ξid is reduced to the following form,

ξid =





ξ̃11V ξ̃12V I ξ̃13V I
ξ̃21 IV ξ̃22 IV I ξ̃23 IV I
ξ̃31 IV ξ̃32 IV I ξ̃33 IV I



 , (109)

with

V =





1 Ω2 Ω

Ω2 1 Ω

Ω Ω Ω



 , I =





1 0 0
0 −1 0
0 0 −1



 , (110)

in the α basis of Table 3, where, to simplify expressions, we introduced Ω = ei2π/3. From
F -moves, Eq. (99), it turns out that ξ̃22 =∆2p2ξ̃11, ξ̃23 = −∆pξ̃13, and ξ̃32 = −∆pξ̃31 with
p = −Ω−1−s and ∆= Ω−La, where a is related to the one unknown δ-parameter related to the
...200200 110110... type domain wall via δαi = 2πa, a= 0, 1

2 . Note that for two quasiholes on
the torus, L = 1 mod 3. Using, finally, the inversion symmetry constraint Eq. (104), most of
the parameters ξ̃i j are forced to vanish if a = 1/2. The only solution consistent with a = 1/2
can only have 4s = −1 mod 3 with ξ̃12, ξ̃21 = ∆2p2ξ̃12, and ξ̃33 non-zero, and in Eq. (84),
gives a diagonal braid matrix. a = 1/2, 4s = −1 mod 3 solution, however, can be shown to
be inconsistent while considering mirror symmetry for the three quasiholes case. We will thus
proceed with a= 0, thus fixing the last remaining δ-parameter. In summary, we have reduced
ξid, Eq. (109), to the following:

ξid =





ξ̃11V ξ̃12V I ξ̃13V I
ξ̃12 IV p2ξ̃11 IV I −ξ̃13 IV I
ξ̃31 IV −pξ̃31 IV I ξ̃33 IV I



 . (111)

We may now use the above form for ξid to continue the program described above. For
determining ξσ1 , where σ1 denotes the only other configuration for two particles, we may
use either F -moves, Eq. (98), or mirror symmetry Eq. (102). Since one involves complex
conjugation, and the other does not, by comparison we may express all complex conjugated
remaining ξ̃i j parameters through their un-conjugated counterparts in the following. We then
obtain the braid matrix from Eq. (84). Comparing this braid matrix with the locality constraint
(106) yields two quadratic equations in the ξ̃i j-parameters. Furthermore, one obtains four
more quadratic equations from the requirement that the braid matrix is unitary. This yields
the following six non-linear equations,

2pξ̃11ξ̃12 + pξ̃2
13 = −Ω

2 ,

2pξ̃2
31 − ξ̃

2
33 = −Ω

2 ,

p2ξ̃2
11 + ξ̃

2
12 − pξ̃2

13 = 0 ,
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ξ̃31(−pξ̃11 + pξ̃12) + ξ̃13ξ̃33 = 0 ,

(1+ p2)ξ̃11ξ̃12 − pξ̃2
13 = 0 ,

ξ̃31(ξ̃11 − pξ̃12) + ξ̃13ξ̃33 = 0 , (112)

where the first four express unitarity, and the last two locality. From these equations, all the
ξ̃i j can be determined when the parameter p, is known.

ξ̃2
11 = −

Ω2

(1+ p)2
,

ξ̃12 = ξ̃11 ,

ξ̃2
13 = ξ

2
31 = (p+ p−1)ξ̃2

11 ,

ξ̃2
33 = (1− p)2ξ̃2

11 . (113)

One then obtains for the braid matrix:

χ̃(2) = e−iβπ





p−1 0 0
0 p(p+ p−1 − 1) ±(1− p)

p

p+ p−1

0 ±(1− p)
p

p+ p−1 p+ p−1 − 1



 . (114)

Not yet having enough information to determine the remaining parameter gives us another
reason to proceed to three particles. Indeed, the remaining parameters can ultimately be
determined from Eq. (108). For completeness, we mention that in writing Eq. (114), we have
tacitly assumed p ̸= ±i. For p = ±i one finds additional solutions that lead to a diagonal braid
matrix. These solutions turn out to be inconsistent when compared with the three quasihole
result below, as already remarked in a similar context above. For details, we refer to Ref. [33],
where equations differ in detail, but the procedure is similar.

4.5 Braid matrix for three quasiholes

For three quasiholes, we may proceed in a manner that is perfectly analogous to that for two
quasiholes in the preceding section. As opposed to two quasiholes (see Table 3), in this case
the total number of fermions is always odd for all topological sectors (see Table 4). Hence,
all the fermionic sign-factors θT , θF , and θI are identical to the bosonic ones [34], since in
those topological sectors permutations do not distinguish bosons from fermions. Therefore,
the formulas in this section will be identical to corresponding formulas in Ref. [34]. We will
nonetheless reproduce them here for self-containedness.

Again, there are a great multitude of simple linear constraint rendering many of the ele-
ments of ξid proportional to one another. These are the constraints ended in translational-,
F -move, and inversion symmetry, ξid by itself, to wit, Eqs. (89), (90b), (99), and (104). In-
deed, in the present case, translational symmetry by itself leads to a major simplification of
the ξσ, in that they factorize via

ξσ = ξ̃σ ⊗ U , (115)

where ξ̃σ acts on supersectors α̃, and U acts on subsectors c, and where

U =





1 Ω Ω2

Ω Ω Ω

Ω2 Ω 1



 , ξ̃id =









ξ̃11 ξ̃12 ξ̃13 ξ̃14

ξ̃21 ξ̃22 ξ̃23 ξ̃24

ξ̃31 ξ̃32 ξ̃33 ξ̃34

ξ̃41 ξ̃42 ξ̃43 ξ̃44









.

This factorization happens here, and not for two quasiholes, because of the aforementioned
absence of non-trivial fermionic-phase factors. The elements of ξ̃id, which we will denote by
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ξ̃i j , can then be further determined using the global path operation and mirror symmetry, Eqs.
(99), (104), yielding the following additional relations:

ξ̃22 = ξ̃33 = p2ξ̃11 , (116a)

ξ̃31 = ξ̃13 = ξ̃21 = ξ̃12 , (116b)

ξ̃32 = ξ̃23 = −pξ̃12 , (116c)

ξ̃34 = ξ̃24 = −pξ̃14 , (116d)

ξ̃43 = ξ̃42 = −pξ̃41 . (116e)

Again, we may now evaluate the braid matrix by plugging in the above into Eq. (84), by
first obtaining (ξσ2)∗ for the other configuration (σ2) that appears when the leftmost pair is
braided, starting in the configuration σ0 = id. This can be done by subsequently applying first
I y via Eq. (102b), and then Fx via Eq. (98a), to the transition matrix ξid. For the resulting
braid matrix we then obtain

χ̃(3) =









ξ̃11 ξ̃12 ξ̃12 ξ̃14

ξ̃12 ξ̃11p2 −ξ̃12p −ξ̃14p
ξ̃12 −ξ̃12p ξ̃11p2 −ξ̃14p
ξ̃41 −ξ̃41p −ξ̃41p ξ̃44









·









−ξ̃12pΩ ξ̃11p2Ω ξ̃12Ω −ξ̃41pΩ

−ξ̃11pΩ ξ̃12Ω − ξ̃12Ω
p ξ̃41Ω

−ξ̃12pΩ −ξ̃12pΩ −ξ̃11pΩ −ξ̃41pΩ
−ξ̃14pΩ −ξ̃14pΩ ξ̃14Ω ξ̃44Ω









,

(117)
where again we only display the “supersector” factor in Eq. (105), and where the zeros come
from the locality constraint Eq. (107). These matrix elements are not automatically zero, but
rather, enforcing their vanishing gives us the following three constraints:

p2ξ̃2
11 − (p− 1)ξ̃2

12 − pξ̃2
14 = 0 , (118a)

(p2 − p)ξ̃11ξ̃12 + ξ̃
2
12 − pξ̃2

14 = 0 , (118b)

−pξ̃11ξ̃41 − (p− 1)ξ̃12ξ̃41 + ξ̃14ξ̃44 = 0 . (118c)

Finally, by imposing the locality of ξid one imposes that of ξ̃id, as U is already unitary. This
yields the following four additional equations:

|ξ̃11|2 + 2|ξ̃12|2 + |ξ̃14|2 = 1 , (119a)

3|ξ̃41|2 + |ξ̃44|2 = 1 , (119b)

ξ̃12ξ̃
∗
11 + p2ξ̃11ξ̃

∗
12 − p|ξ̃12|2 − p|ξ̃14|2 = 0 , (119c)

ξ̃41ξ̃
∗
11 − 2pξ̃41ξ̃

∗
12 + ξ̃44ξ̃

∗
14 = 0 . (119d)

The non-linear equations (116-118) have the following [34] solution:

ξ̃11 = −
eiθ1

(1+ p)2
ξ̃12 = ξ̃11 ,

ξ̃2
14 = e−i2θ2 ξ̃2

41 = (p+ p−1 − 1)ξ̃2
11 ,

ξ̃44 = eiθ2 ξ̃11 , (120)

in terms of two additional unknown phases θ1 and θ2. In Eq. (117), this gives the following
result for the braid matrix:

χ̃(3) = e−iβπeiθ1









1 0 0 0
0 1 0 0
0 0 p(1− p) ±eiθ2 p

p

p+ p−1 − 1
0 0 ±eiθ2 p
p

p+ p−1 − 1 ei2θ2(1− p)









. (121)
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As a final step, it turns out that the remaining unknowns are largely determined by the local-
ity argument requiring consistency between the two quasihole and the three quasihole braid
matrix, Eq. (108):
�

p(p+ p−1 − 1) ±(1− p)
p

p+ p−1

±(1− p)
p

p+ p−1 p+ p−1 − 1

�

= eiθ1

�

p(1− p) ±eiθ2 p
p

p+ p−1 − 1
±eiθ2 p
p

p+ p−1 − 1 ei2θ2(1− p)

�

.

(122)
Comparing matrix elements yields the following equations:

eiθ1 = p2, eiθ2 = 1 , (123a)

p+ p−1 = ϕ =
1+
p

5
2

⇒ p = e±iπ/5 , (123b)

and from p = −Ω−1−s, s = 1
2 ±

3
10 .

As we will now explain, this determines all braiding processes in terms of two possible and
closely related non-Abelian solutions. Eqs. (123) in the two quasihole and three quasibole
braid matrices, Eq. (114) and Eq. (121), respectively, then give the following

χ̃2 = Ω





p 0 0
0 p−1ϕ−1 p2ϕ−1/2

0 p2ϕ−1/2 ϕ−1



 , χ̃3 = Ω









p−2 0 0 0
0 p−2 0 0
0 0 p−1ϕ−1 p2ϕ−1/2

0 0 p2ϕ−1/2 ϕ−1









. (124)

Together, these equations imply the following when applied to the braiding of any pair of
quasiholes, in a pattern with nh quasiholes: If the pair was linked by a 110-string bounded by
two 200-strings (as for two quasiholes, α = 1,2, 3), the state picks up a phase e−iβπp. If the
pair was linked by a 110-string bounded by one 110-string and one 200-string (as for three
quasiholes, α= 1–6), the state picks up a phase e−iβπp−2. Finally, if the linking string is either
200 or 110, and is bounded by 110-strings on both sides (as is is for the last six α’s for both
two and three quasiholes), the state stays in the same topological sector with an amplitude
e−iβπp−1ϕ−1 if the linking string is 200, and an amplitude e−iβπp−1ϕ−1 if the linking string
is 110. Furthermore, there is an amplitude for transitioning between these two respective
sectors of e−iβπp2ϕ−

1
2 . It is easy to see that these off-diagonal blocks, which we just described,

have the same eigenvalues as those appearing in the diagonal blocks described above. In the
topological sector basis, one can thus determine the result of any braiding process, for each of
the two solutions associated to the two ways to resolve the ± sign in these expressions. One
may easily see, though, that these two solutions are related by an Abelian phase plus complex
conjugation. Moreover, they share the same Abelian phase with the bosonic case of Ref. [34].
Just as in this reference, one may therefore show that these solutions describe Fibonacci-type
anyons. However, we stress once more that both the assumptions of fermionic constituent
particles, as well as that of root state entanglement of a certain type have been essential to
arrive at this solution using the coherent state method.

5 Partons as the densest zero modes

In the previous sections, we have developed a general framework and an organizing principle
(the EPP) for determining the densest zero-energy state of frustration-free QH Hamiltonians.
While our second quantized technique is applicable to any k-body Hamiltonian with LL mixing,
it is often the case that QH physics is studied in the first quantization language. In this section,
we make connections to the theory of symmetric (and antisymmetric) polynomials in holo-
morphic and anti-holomorphic variables, which correspond to the first-quantized description
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of the QH problem. For simplicity, we work in the symmetric gauge. In the LLL (the holomor-
phic case), many tools exist to uniquely identify subsets of these polynomials as determined
by various clustering conditions enforced by frustration-free Hamiltonians. For multiple LLs,
these tools generally do not work. The present section is devoted to the development of alter-
native methods. As we will show, the parton states have the fundamental polynomial property
of being the densest zero modes of certain frustration-free QH Hamiltonians in presence of
multiple LL mixing.

5.1 Multivariate polynomials with the M -clustering property

Let AN be the algebra of multivariate polynomials P(Z , Z̄) in variables (Z , Z̄), where
Z = {z1, z2, · · · , zN} and Z̄ = {z̄1, z̄2, · · · , z̄N}, with zi = xi + i yi and z̄i = xi − i yi, i = 1, · · · , N .
Polynomials P(Z , Z̄) consist of sums of monomials, which are products of (not normalized and
without Gaussian factors) non-orthogonal single-particle orbitals (already used to define the
pseudofermion basis in Eq. (53)),

φαi
(zi, z̄i) = φαi

(i) = z̄ni
i zsi

i , si = ji + ni . (125)

Here, αi = (ni, si) represents a pair of non-negative integers. We will be interested in working
within linear subspaces satisfying 0≤ ni ≤ NL − 1 (i.e., those restricted to NL LLs). Moreover,
as we will now discuss, finite dimensional subspaces may be obtained by placing additional
restrictions on (the number operator n̂b

i = b†
i bi eigenvalues of Eq. (5)) si, via 0 ≤ si ≤ smax

and/or restrictions on the total angular momentum of the polynomial. Finally, we will fur-
ther restrict our linear subspaces of interest by the condition that their elements are either
symmetric or antisymmetric under the exchange operations

(zi, z̄i)↔ (zj, z̄j) , i, j= 1, · · · , N , i ̸= j , (126)

of all pairs of variables. Let the total angular momentum operator be defined as

Ĵ = ħh
N
∑

i=1

(zi∂zi
− z̄i∂z̄i

) . (127)

The application of the total angular momentum operator on any monomial in the vari-
ables (Z , Z̄) leaves the monomial invariant up to a multiplicative (angular momentum) factor
J = ħh
∑N

i=1(si− ni). It is clear that the total angular momentum operator defines a linear map
Ĵ : AN → AN that also preserves all linear subspaces defined above. Ĵ has the natural (infi-
nite) basis of eigenstates (125). However, we shall now consider the finite-dimensional linear
subspaces HN ,J ,n of AN of polynomials of angular momentum less than or equal to J and max-
imum degree n= NL−1 in each z̄i, and their (anti-)symmetrized subspaces (Â)ŜHN ,J ,n. Note
that, moreover, all such polynomials automatically have bounded si, i.e., satisfy 0 ≤ si ≤ smax

with an appropriately chosen smax depending on N , J , and n. The subspaces HN ,J ,n form finite
dimensional Hilbert spaces having an inner product (ℓ= 1/

p
2)

〈P|P ′〉=
∫

dZd Z̄ P̄(Z , Z̄)P ′(Z , Z̄) e−
1
2

∑N
i=1 ziz̄i . (128)

From now on, we will be working in these finite dimensional Hilbert spaces HN ,J ,n.
Within the space of polynomials HN ,J ,n, there are families of polynomials that have special

properties. A polynomial P(Z , Z̄) ∈ HN ,J ,n has the M -clustering property, with M a positive
integer, in the pair (i, j) if

P(Z , Z̄) =
M
∑

q=0

zq
ij z̄M−q

ij Pq(Z , Z̄) = P(M)(Z , Z̄) , (129)
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where zij = zi − zj, z̄ij = z̄i − z̄j, and Pq(Z , Z̄) ∈ HN ,J+M−2q,n. If furthermore
P(Z , Z̄) ∈ (Â)ŜHN ,J ,n, then P(Z , Z̄) is a polynomial (anti-)symmetric with respect to vari-
ables exchanges (zi, z̄i)↔ (zj, z̄j). Clearly, polynomials with the M -clustering property can
only exist if smax ≥ M or n≥ M . Those polynomials with the M -clustering property in all pairs
(i, j) form a subspace HN ,J ,n,M ⊂ HN ,J ,n. Moreover, P(Z , Z̄) ∈ HN ,J ,n has the M -clustering
property in the pair (i, j), iff ∀ s+ t < M ,

Qst
ij P(Z , Z̄)≡ ∂ s

zij
∂ t

z̄ij
P(Z , Z̄)
�

�

�

zi=zj,z̄i=z̄ j

= 0 . (130)

A little reflection shows that for N even and P(Z , Z̄) ∈ (Â)ŜHN ,J ,n,M , Eq. (129) can be
written as

P(M)(Z , Z̄) =
M
∑

q=0

zq1
12z̄M−q1

12 . . . z
qN/2

N−1N z̄
M−qN/2

N−1N Pq (Z , Z̄) , (131)

where q ≡ (q1, q2, . . . , qN/2), and Pq (Z , Z̄) is a polynomial symmetric under the exchange of
all pair of coordinates (z2i−1, z̄2i−1)↔ (z2i, z̄2i), i= 1, · · · , N/2.

We will mostly be interested in the antisymmetric subspace ÂHN ,J ,n,M of polynomials with
the M -clustering property. Slater determinants

χp(Z , Z̄) =

�

�

�

�

�

�

�

�

�

φα1
(1) φα1

(2) · · · φα1
(N)

φα2
(1) φα2

(2) · · · φα2
(N)

...
... · · ·

...
φαN
(1) φαN

(2) · · · φαN
(N)

�

�

�

�

�

�

�

�

�

(132)

represent the simplest examples of those polynomials with an M = 1 clustering property, since
they do have a linear behavior as two-particles approach each other.4 Specifically, any Slater

4This is due to the fact that any Slater determinant for N -particles can be expressed as

χeven =
1
N
∑

σ∈SN

sign (σ)Dασ1ασ2
(1,2)Dασ3ασ4

(3,4) . . . DασN−1ασN
(N − 1, N) ,

where σ ∈ SN are permutations of particle indices

Dασ1ασ2
(1,2) =

�

�

�

�

φασ1
(1) φασ1

(2)
φασ2

(1) φασ2
(2)

�

�

�

�

,

when N ∈ even, while

χodd =
1
N
∑

σ∈SN

sign (σ)Dασ1ασ2ασ3
(1,2, 3)Dασ4ασ5

(4, 5) . . . DασN−1ασN
(N − 1, N) ,

when N ∈ odd, where N is a normalization factor. In the vicinity of a coincidence hyperplane for particles 1, 2 for
example, one gets as particle coordinate 1 approaches particle coordinate 2, i.e., r1→ r2,

Dα1α2
(1,2)≈
�

φα1
(1)∇φα2

(1)−φα2
(1)∇φα1

(1)
�

· (r2 − r1) ,

while for the 3× 3 determinant

Dα1α2α3
(1, 2,3)≈

1
2

∑

σ∈S3

sign (σ) φασ1
(3)
�

φασ2
(1)∇φασ3

(1)−φασ3
(1)∇φασ2

(1)
�

·(r2 − r1) .

Since the orbitals are linearly independent and have well-defined derivatives, the expression inside the parenthesis
(the Wronskian) is nonzero. Hence,

|χ(ri→ rj)| ∝ |ri − rj| .

Applied to our orbital basis φασi
(i) = z̄

nσi
i z

sσi
i ,

Dασ1ασ2
(1, 2) = z̄

nσ2
1 z

sσ2
1 z̄

nσ2
2 z

sσ2
2 (z̄

δn
1 zδs

1 − z̄δn
2 zδs

2 ) ,
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determinant satisfies the following identity

χp(Z , Z̄) = Sp(Z , Z̄) zij + S̃p(Z , Z̄) z̄ij , (133)

where Sp and S̃p are symmetric polynomials with respect to the coordinate exchange
(zi, z̄i)↔ (zj, z̄j). Another example of polynomials with the M -clustering property are parton-
like states Ψp(Z , Z̄), defined as a product of M Slater determinants

Ψp(Z , Z̄) =
M
∏

µ=1

χpµ(Z , Z̄) , (134)

where M ∈ odd for fermions and M ∈ even for bosons. Using Eq. (133) for each Slater deter-
minant in Ψp(Z , Z̄), it is straightforward to show that Ψp(Z , Z̄) is an element of HN ,J ,n,M and
can be written as the P(Z , Z̄) of Eq. (129). Although, Ψp(Z , Z̄) is an element of (Â)ŜHN ,J ,n,M ,
i.e., the (anti-)symmetric subspace of HN ,J ,n,M , it is not clear whether parton-like states lin-
early generate this subspace. While in the following, we will be mostly concerned with the
antisymmetric case, our reasoning and results carry, without difficulty, to the symmetric case.

5.2 Schmidt decomposition of M-clustering polynomials

The Schmidt decomposition of a many-body state can be used to study the non-trivial proper-
ties of the system such as entanglement entropy. Entanglement properties are often employed
to determine the particular topological phase of matter that a given many-body state may be-
long to [76]. In this subsection, we will not emphasize the entanglement properties but rather
demonstrate an analog of the Schmidt decomposition to polynomials P(Z , Z̄) that satisfy the
M -clustering property.

Lemma 1: Let P ∈ ÂHN ,J ,n,M and 1≤ n< N . Then

P = Â
∑

λ

cλPλn (1, 2, . . . , n)P̃λN−n(n+ 1, . . . , N) , (135)

where λ runs over a finite index set, and Pλn ∈ ÂHn,J ,n,M , P̃λN−n ∈ ÂHN−n,J ,n,M .
Proof: Note that, so far, we have been considering abstract polynomials. Two such ab-

stract polynomials are identical if and only if they are identical as maps from CN to C, since
all the coefficients are encoded in the associated maps via differential operations. We will
now identify polynomials with their associated evaluation maps. For Pλn we now choose an
orthonormal basis {Pλn } of ÂHn,J ,n,M . If we now fix zi, z̄i to arbitrary complex numbers ai, āi

for i> n, then P(z1, z̄1, . . . , zn, z̄n, an+1, ān+1, . . . , aN , āN ) is an element of ÂHn,J ,n,M . As a result

P(z1, z̄1, . . . , zn, z̄n, an+1, ān+1, . . . , aN , āN ) =
∑

λ

cλPλn (z1, z̄1, . . . , zn, z̄n)P̃
λ
N−n(an+1, ān+1, . . . , aN , āN ) ,

(136)

where, without loss of generality, we assumed δn= nσ1
− nσ2

≥ 0 and δs = sσ1
− sσ2

≥ 0. Since

2(z̄δn
1 zδs

1 − z̄δn
2 zδs

2 ) = (z
δs
1 + zδs

2 )(z̄
δn
1 − z̄δn

2 ) + (z̄
δn
1 + z̄δn

2 )(z
δs
1 − zδs

2 ) ,

and,
zδs

1 − zδs
2

z1 − z2
=
δs−1
∑

ℓ=0

zδs−ℓ−1
1 zℓ2 ,

with a similar expression for z̄, then

Dασ1ασ2
(1,2) = S(1,2)(z̄1 − z̄2) + S̃(1, 2)(z1 − z2) ,

where S(1,2), S̃(1, 2) are symmetric polynomials with no coincidence plane zeroes.
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where

cλ P̃λN−n =

∫

dz1dz̄1 · · · dzndz̄n P̄λn P e−
1
2

∑n
i=1 ziz̄i . (137)

It is clear that as a function of ai, āi, the righthand side defines a polynomial in the variables
an+1, . . . , āN , which we will argue to be an element of ÂHN−n,J ,n,M . Since Eq. (136) holds as
an identity for fixed but arbitrary z1, z̄1, . . . , zn, z̄n and an+1, . . . , āN , the two sides are identical
as polynomial maps and therefore as elements of ÂHN ,J ,n. Furthermore, since the lefthand
side is in ÂHN ,J ,n,M so is the righthand side (though individual terms are not). We can thus
introduce the (anti-)symmetrizer Â on the righthand side as it is in Eq. (135) without changing
the polynomial.

We finally show that the polynomials P̃λN−n also enjoy the M -clustering property. This is
easy: In Eq. (137) change (ai, āi)→ (zi, z̄i), then apply Qst

ij for i, j > n on both sides. On the

righthand side, this results in 0 for s+ t < M . Thus, P̃λN−n ∈ ÂHN−n,J ,n,M . This completes the
proof of the Lemma.

Indeed, a Slater determinant is the simplest example illustrating the Lemma for M = 1.
The following identity

P(Z , Z̄) = n!(N − n)!

�

�

�

�

�

�

�

�

�

φα1
(1) φα1

(2) · · · φα1
(N)

φα2
(1) φα2

(2) · · · φα2
(N)

...
... · · ·

...
φαN
(1) φαN

(2) · · · φαN
(N)

�

�

�

�

�

�

�

�

�

= Â [Dn(1, · · · , n)DN−n(n+ 1, · · · , N)] (138)

explicitly realizes a Schmidt decomposition. Here, the determinants in the argument of the
antisymmetrizer are

Dn(1, · · · , n) =

�

�

�

�

�

�

�

φα1
(1) · · · φα1

(n)
... · · ·

...
φαn
(1) · · · φαn

(n)

�

�

�

�

�

�

�

, (139)

DN−n(n+ 1, · · · , N) =

�

�

�

�

�

�

�

φαn+1
(n+ 1) · · · φαn+1

(N)
... · · ·

...
φαN
(n+ 1) · · · φαN

(N)

�

�

�

�

�

�

�

.

More sophisticated relations appear for M ≥ 3. The first non-trivial example is a product
of an odd number of Slater determinants, i.e., the parton-like state,

Ψp(Z , Z̄) =
M
∏

µ=1

χpµ(Z , Z̄) =
M
∏

µ=1

Â
h

D
(pµ)
n (1, · · · , n)D(pµ)N−n(n+ 1, · · · , N)

i

. (140)

If M ∈ odd,

S(Z , Z̄) =
M
∏

µ=2

χpµ(Z , Z̄) (141)

is a totally symmetric function of all particle coordinates, and

Ψp(Z , Z̄) = Â
�

D(p1)
n D(p1)

N−nS(Z , Z̄)
�

= Â
∑

λ

cλPλn P̃λN−n. (142)

Here, we employed the property that D(p1)
n S(Z , Z̄) =
∑

λ cλPλn SλN−n, where SλN−n(n+ 1, . . . , N)
is totally symmetric in its arguments, holds by arguments similar to those used in the proof of
Eq. (135). Moreover, D(p1)

N−nSλN−n = P̃λN−n.
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Figure 14: The state χ4(Z , Z̄), with L = 6, NL = 4, and Norb = 18, filled with N = 17
and 18 particles. For the state with 17 particles, the largest angular momentum
orbitals are not completely filled, i.e., the “shell" is not closed. For N = 18 particles,
χ4 is a closed-shell Slater determinant.

5.3 Closed-shell parton states

Consider a parton-like state Ψp(Z , Z̄). When its Slater determinant components are con-
structed out of single-particle orbitals φαi

(i) of νµ LLs (maximum degree of z̄i is νµ − 1), it is
easy to verify that the number of single-particle orbitals for νµ LLs, with distinct
Lµ = L(NL = νµ) defining the highest available angular momenta for each Slater determi-
nant, is given by

Nshell = νµLµ −
νµ(νµ − 1)

2
. (143)

We define a Slater determinant to be closed-shell whenever N = Nshell. Equivalently, a closed-
shell Slater determinant is obtained when all the orbitals with certain angular momentum and
less are filled, which results in a unique and densest possible configuration (Fig. 14).

We will define a parton state to be given by

Φν(Z , Z̄) =
M
∏

µ=1

χνµ(Z , Z̄) , (144)

when all Slater determinants χνµ are closed-shell. That is, the parton states are a special
subset of all possible parton-like states (Eq. (134)).

One can associate with any such parton state, a string [ν1,ν2, · · · ,νM ] of positive integers
νµ, µ = 1, 2, · · · , M , such that ν1 ≤ ν2 ≤ · · · ≤ νM , and show that [8] Φν(Z , Z̄) represents a

state of filling fraction ν= (
∑M
µ=1 ν

−1
µ )
−1. Restricting the single-particle orbitals to be confined

to the subspace generated by the NL LLs imposes the constraint

M
∑

µ=1

νµ = NL +M − 1 . (145)

A natural question concerns the possible filling fractions ν compatible with this constraint.
To answer this question, we write down the generating function of partitions of the integer
NL +M − 1 into M elements

∞
∏

t=1

1
1− ut vwt−1 =

∑

t1,t2

ut1vt2

∑

ν

wν
−1

, (146)

from which one can extract all possible ν’s by inspection of the coefficient of the term with
t1 = NL +M − 1, and t2 = M . For M = 3, up to NL = 6, we obtain
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u3v3 (w3) ,

u4v3 (w5/2) ,

u5v3 (w2 +w7/3) ,

u6v3 (w3/2 +w11/6 +w9/4) ,

u7v3 (w4/3 +w5/3 +w7/4 +w11/5) ,

u8v3
�

w7/6 +w5/4 +w19/12 +w17/10 +w13/6
�

. (147)

For instance, scanning the third line in Eq. (147), we see that when NL = 3, one could get
parton states of filling fractions ν= 1/2 and ν= 3/7.

Both the smallest, νmin, and the largest, νmax, possible values of ν carry a special physical
meaning. The minimum corresponds to the Jain sequence νmin =

NL
2NL+1 . The maximum, on

the other hand, plays a role in the determination of incompressible (highest density) zero
modes of TK type frustration-free QH Hamiltonians, Eq. (25). For fixed NL and M , we next
obtain the largest possible filling fraction νmax in a systematic manner.

The filling fraction νmax can be computed by maximizing ν (over integers) subject to the
constraint of Eq. (145). This integer optimization procedure leads to the following condition

¨

νµ(νµ + 1) = νµ′(νµ′ + 1) , or

νµ(νµ + 1) = νµ′(νµ′ − 1) ,
(148)

for all pairs µ,µ′ = 1, 2, . . . , M . This associates the unique ordered string

[ν1, . . . ,ν1
︸ ︷︷ ︸

M−nν

,ν1 + 1, · · · ,ν1 + 1
︸ ︷︷ ︸

nν

] (149)

to νmax, with Mν1 = M + NL − 1− nν. This results in

νmax =
ν1(ν1 + 1)

2Mν1 − NL + 1
. (150)

Table 5 displays various examples of parton states [ν1,ν2, · · · ,νM ] corresponding to maximun
filling fraction. It is clear, from Eq. (149), that a unique string of numbers [ν1,ν2, · · · ,νM ]
is associated to a maximum filling-fraction parton state. However, this does not imply that
there is a unique parton state associated with this unique string. Indeed, there are, in general,
several parton-like states (with different total angular momentum) that are associated with a
given ordered string. We next study the conditions for the existence of a unique parton-like
state.

Since each closed-shell Slater determinant χνµ(Z , Z̄) is an eigenstate of total angular mo-
mentum

Ĵχνµ(Z , Z̄) = Jµχνµ(Z , Z̄) , (151)

with

Jµ =
ħh
6
(νµ + 3Lµνµ + 3L2

µνµ − 3ν2
µ − 6Lµν

2
µ + 2ν3

µ)

=
ħh
24
(
12N2

νµ
− (12N − 1)νµ − ν3

µ) , (152)

this implies that parton states are also eigenstates of total angular momentum

ĴΦν(Z , Z̄) = JminΦν(Z , Z̄) , (153)

53

https://scipost.org
https://scipost.org/SciPostPhys.15.2.043


SciPost Phys. 15, 043 (2023)

Table 5: Parton states Φν(Z , Z̄) = [ν1,ν2, . . . ,νM ] =
∏M
µ=1χνµ(Z , Z̄) corresponding

to maximum filling fraction νmax, given M and NL .

M NL [ν1,ν2, . . . ,νM ] νmax

3 1 [1,1, 1] 1/3
3 2 [1,1, 2] 2/5
3 3 [1,2, 2] 1/2
3 4 [2,2, 2] 2/3
3 5 [2,2, 3] 3/4
3 6 [2,3, 3] 6/7
3 7 [3,3, 3] 1
3 8 [3,3, 4] 12/11
3 9 [3,4, 4] 6/5
5 1 [1,1, 1,1, 1] 1/5
5 2 [1,1, 1,1, 2] 2/9
5 3 [1,1, 1,2, 2] 1/4
5 4 [1,1, 2,2, 2] 2/7
5 5 [1,2, 2,2, 2] 1/3
5 6 [2,2, 2,2, 2] 2/5
5 7 [2,2, 2,2, 3] 3/7
5 8 [2,2, 2,3, 3] 6/13
5 9 [2,2, 3,3, 3] 1/2
7 1 [1, 1,1, 1,1, 1,1] 1/7
7 2 [1, 1,1, 1,1, 1,2] 2/13
7 3 [1, 1,1, 1,1, 2,2] 1/6
7 4 [1, 1,1, 1,2, 2,2] 2/11
7 5 [1, 1,1, 2,2, 2,2] 1/5
7 6 [1, 1,2, 2,2, 2,2] 2/9
7 7 [1, 2,2, 2,2, 2,2] 1/4
7 8 [2, 2,2, 2,2, 2,2] 2/7
7 9 [2, 2,2, 2,2, 2,3] 3/10

with eigenvalue Jmin

Jmin

ħh
=

N2

2ν
−

∑M
µ=1 ν

3
µ + (12N − 1)(NL +M − 1)

24
. (154)

For a fixed filling fraction ν, it is possible to have several parton states with different values
of J . This is also true for the minimum total angular momentum J = Jmin. As we showed
previously, the constraint that makes the parton-like state with ν= νmax and Jmin to be unique,
is the closed-shell condition. In conclusion, a closed-shell parton state projected onto NL LLs
is the unique and densest (in the sense of angular momentum) possible parton-like state. As
will be demonstrated in the next section, the unique closed-shell parton state with ν = νmax

and Jmin will be related to our densest zero mode of previous sections.

5.4 Parton-like states as a basis

The set of Slater determinants forms a basis for the entire antisymmetric Hilbert subspace
ÂHN ,J ,n. In other words, any polynomial in ÂHN ,J ,n can be written as a linear superposition
of Slater determinants. Given a single-particle orbital basisB = {φαi

(z, z̄)}with 0≤ ni ≤ NL−1
and 0≤ si ≤ smax, the total number of orbitals is Norb = NL(smax+1)≥ N . Then, the dimension
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of the Hilbert subspace ÂHN ,J ,n is given by dH =
�Norb

N

�

. Any polynomial P(Z , Z̄) ∈ ÂHN ,J ,n
can be written as

P(Z , Z̄) =
dH
∑

µ=1

cµχpµ(Z , Z̄) . (155)

Obviously, this expansion also applies for the subspaces ÂHN ,J ,n,M , whose dimension dHM
< dH,

but it does not apply for the symmetric subspaces ŜHN ,J ,n,M . Then, given a polynomial with the
M -clustering property, it seems reasonable (and resource efficient) to look for an expansion in
terms of elements of HN ,J ,n,M .

Do parton-like states form a basis for the symmetric and antisymmetric polynomials with the
M-clustering property? Consider the simple case of N = 2 particles,

P(M)(Z , Z̄) =
M
∑

q=0

zq
12z̄M−q

12 Pq(Z , Z̄) . (156)

Since the Slater determinants χpµ(Z , Z̄) form a complete basis of ÂH2,J ,n

z12Pq(Z , Z̄) =
∑

µ

cµχpµ(Z , Z̄) , (157)

z̄12Pq(Z , Z̄) =
∑

µ

c̃µχpµ(Z , Z̄) . (158)

It thus follows that

P(M)(Z , Z̄) =
∑

µ

�

M
∑

q=1

cµχpµ zq−1
12 z̄M−q

12 + c̃µχpµ z̄
M−1
12

�

=
∑

µ

dµΨpµ(Z , Z̄) (159)

can be expanded in terms of parton-like states Ψpµ(Z , Z̄).
This simple line of reasoning cannot be straightforwardly generalized to N > 2. For poly-

nomials depending only on variables (holomorphic coordinates) Z (NL = 1), one can use an
alternative proof: consider the simple case of polynomials with the M -clustering property de-
pending only on variables Z . It is a well-known result from commutative algebra, that the ring
of multivariate polynomials over the complex field is a unique factorization domain (UFD), or
factorial [77]. In our case, this implies the factorization

P(M)(Z) = S(Z) χ1(Z)
M , (160)

with S(Z) a totally symmetric polynomial under the exchange of arbitrary indices i and j, and

χ1(Z) =
∏

i<j

(zi − zj) (161)

a Vandermonde determinant, i.e., a totally antisymmetric polynomial under the exchange of
arbitrary indices i and j. This factorization is valid for M even or odd (i.e., bosons or fermions,
respectively). Expanding the totally antisymmetric polynomial

S(Z) χ1(Z) =
∑

µ

cµχpµ(Z) , (162)

in terms of Slater determinants χpµ(Z), one obtains

P(M)(Z) =
∑

µ

cµΨpµ(Z) , (163)
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with parton-like states
Ψpµ(Z) = χpµ(Z)χ1(Z)

M−1 . (164)

The proof of the expansion in Eq. (159) for any N > 2 and arbitrary NL is beyond the scope
of this paper. If one conjectured that all elements of the space of polynomials with M -clustering
exponent, P(M)(Z , Z̄) ∈HN ,J ,n,M , can always be written as

P(M)(Z , Z̄) =
∑

µ

cµP(M−1)
µ (Z , Z̄) P̃(1)µ (Z , Z̄) , (165)

then, it is straightforward to show by induction that those same elements can always be written
as linear superpositions of parton-like states, i.e., Eq. (159). We will further elaborate on the
completeness of parton-like states in the M -clustering subspace in the following section(s).

5.5 Generating algebras of polynomials P(Z , Z̄)

We are interested in determining a generating algebra of the elements of
⊕

J ÂHN ,J ,n,M . Con-
cretely, we mean by that the idea of understanding

⊕

J ÂHN ,J ,n,M as a cyclic module of some
symmetry algebra. Here, a cyclic module is a representation that is generated by one particu-
lar element (a “vacuum”) via the action of the algebra in question. Since, for given N , n, M ,
⊕

J ÂHN ,J ,n,M is the zero-mode space of an associated frustration-free TK Hamiltonian (25),
we can think of the algebras in question as symmetry algebras preserving the ground state sub-
space of this Hamiltonian. The goal of this section is thus to define algebras of operators acting
on polynomials that are as rich as possible while preserving the number of LLs NL = n+ 1 as
well as the (anti-)symmetry and the M -clustering property of these polynomials. At first, we
will let n→∞, so as to remove the restriction on the number of LLs. We will subsequently
identify sub-algebras that preserve a given maximum n.

Define the following symmetric linear operators,

A1
α = Ŝ
�

ϕα(Z , Z̄)∂z̄N

�

, A−1
α = Ŝ
�

ϕα(Z , Z̄)∂zN
] , A0

α = Ŝ
�

ϕα(Z , Z̄)] , (166)

where Ŝ is the symmetrizer with respect to variable indices i= 1, · · · , N , and

ϕα(Z , Z̄)≡
N
∏

i=1

φαi
(i) . (167)

These operators form a Lie algebra,

[Aϵα, Aϵ
′

α′] =
∑

β

Cβαα′ A
ϵ
β +
∑

β ′

Cβ
′

αα′ A
ϵ′

β ′ , (168)

where Cβαα′ are integers, and ϵ,ϵ′ = 0,±1. They satisfy

�

Ĵ , Aϵα
�

= (Jα +ħhϵ)Aϵα . (169)

The action of these symmetric operators on elements of ÂHN ,J ,n,M , preserves their (anti-)
symmetry. As for the invariance of the M -clustering property, it is evident that the action of
the symmetric operator A0

α on any polynomial does not change that property since its action
is multiplicative. It remains to analyze the action of A±1

α . Without loss of generality, we single
out a pair (i, j) of indices and write the action of A−1

α on P(Z , Z̄) as

A−1
α P(Z , Z̄) =
∑

q

(A−1
α zq

ij z̄
M−q
ij )Pq(Z , Z̄) + zq

ij z̄
M−q
ij A−1

α Pq(Z , Z̄) . (170)
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The last term in (170) preserves the M -clustering property in the pair (i, j). Our last task
is thus to show that A−1

α zq
ij z̄

M−q
ij also preserves the M -clustering property in (i, j), since we

know the expression (170) to be totally (anti-)symmetric, so the pair (i, j) is arbitrary. We may
rewrite A−1

α = Ŝ
�

Si(Z , Z̄)φαN
(i)∂zi

�

= Ŝ
�

Sj(Z , Z̄)φαN
(j)∂zj

�

, where Si(j)(Z , Z̄) is a symmetric
polynomial of N − 1 variables that does not contain particle index i(j) and orbital αN . As a
result,

A−1
α zq

ij z̄
M−q
ij =
�

Si(Z , Z̄)φαN
(i)− Sj(Z , Z̄)φαN

(j)
�

qzq−1
ij z̄M−q

ij . (171)

It is clear that in this expression, the bracketed term is antisymmetric with respect to exchang-
ing i and j. The latter antisymmetry restores the overall clustering exponent M in the expres-
sion. This concludes the proof that A−1

α zq
ij z̄

M−q
ij preserves the M -clustering property. Finally,

since the steps above generalize to ϵ = ±1, if P(Z , Z̄) ∈ ÂHN ,J ,n,M one gets

Aϵα P(Z , Z̄) = P̃(Z , Z̄) ∈ ÂHN ,J+Jα+ħhϵ,ñ,M , (172)

where ñ = n− ϵ(ϵ + 1)/2+max (ni). Moreover, it is easy to see that the action of Aϵα on any
parton-like state results in a linear superposition of parton-like states,

AϵαΨp(Z , Z̄) =
∑

µ

dµΨpµ(Z , Z̄) . (173)

Finally, all of the above clearly carries over in straightforward ways to any element of the
algebra generated by the Aϵα.

The Lie algebra (168) has several interesting sub-algebras that are noteworthy for their
preservation of a maximum number of LLs NL . Their action is graphically depicted in Table 6,
with definitions given as follows:

• Affine Kac-Moody algebra. For m > 0, and n = NL − 1 non-negative integers, the
generators

S+m =
∑

i

zm+1
i (nz̄i − z̄2

i ∂z̄i
) ,

S−m =
∑

i

zm−1
i ∂z̄i

,

Sz
m =
∑

i

zm
i (z̄i∂z̄i

− n/2) (174)

define an untwisted affine Kac-Moody [78] algebra

[S+m, S−m′] = 2Sz
m+m′ , [Sz

m, S±m′] = ±S±m+m′ . (175)

The action of these operators on P(Z , Z̄) changes its total angular momentum via

[Ĵ , S±,z
m ] = mħhS±,z

m . (176)

• su(2) algebras. For given smax and n = NL − 1, we define generators of three indepen-
dent su(2) algebras:

S+ =
∑

i

ziz̄i(n− z̄i∂z̄i
) , S− =
∑

i

z−1
i ∂z̄i

,

Sz =
∑

i

(z̄i∂z̄i
− n/2) , (177)
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Table 6: Action of sub-algebra generators. Arrows represent direction of change in
a (J , L̄z) plane, where right direction corresponds to increasing angular momentum
while up refers to increasing LL index.

S+m S−m S+ S− L− L+ L̄− L̄+
↱m ↰

m ↑ ↓ ← → ↘ ↖

where [S+, S−] = 2Sz , [Sz , S±] = ±S±,

L+ =
∑

i

(smaxzi − z2
i ∂zi
) , L− =
∑

i

∂zi
,

Lz =
∑

i

(zi∂zi
− smax/2) , (178)

such that [L+, L−] = 2Lz , [Lz , L±] = ±L±, and

L̄+ =
∑

i

(nz̄i − z̄2
i ∂z̄i
) , L̄− =
∑

i

∂z̄i
,

L̄z =
∑

i

(z̄i∂z̄i
− n/2) , (179)

satisfying [ L̄+, L̄−] = 2 L̄z , [ L̄z , L̄±] = ± L̄±. One may verify that

[Ĵ , S±] = 0 , [Ĵ , L±] = ±ħhL± , [Ĵ , L̄±] = ∓ħhL̄± . (180)

We point out that the algebra defined in Eq. (177) is the first quantization representation
of the pseudospin algebra in Eq. (54), which is well-defined only when ji ≥ 0 (away from the
boundary).

Consider now polynomials P(Z , Z̄) ∈
⊕

J ÂHN ,J ,n,M with well-defined angular momentum
J (parton-like states are examples of such polynomials). What is(are) the Pmin(Z , Z̄) with
lowest total angular momentum, i.e., Ĵ Pmin(Z , Z̄) = JminPmin(Z , Z̄)? We will approach this
question first by defining a highest weight state(s) of the algebra generated by the Aϵα to be a
polynomial Phw(Z , Z̄) satisfying

AϵαPhw(Z , Z̄) = 0 , (181)

whenever Jα + ħhϵ < 0 and ñ ≤ n. For instance, for n = 0, the polynomial χ1(Z)M (Laughlin
states) is a highest weight state of the algebra. Clearly, any Pmin(Z , Z̄) must also be a heighest
weight state, otherwise the condition of minimal angular momentum would be violated. By
the same token, any minimum angular momentum parton-like state is a heighest weight state,
as the action of the algebra preserves the parton-like character. We claim that for arbitrary
n the highest weight states of the algebra are parton-like states. If such a parton-like state
satisfies the condition of being closed-shell, then, according to the claim, it must be the unique
minimum angular momentum highest weight state. This is so since by Section 5.3, such a
closed-shell parton state is the unique parton-like state with lowest total angular momentum.

Here we give a heuristic justification for the above claim. We wish to argue that the gen-
eral symmetric operators given in Eq. (166) are the “generators of all polynomials with M -
clustering exponent” in the following sense. Consider the sub-algebra that preserves NL LLs.
The claim follows if it can be argued that this algebra is rich enough such that

⊕

J ÂHN ,J ,n,M
is irreducible as a representation of this algebra. As is well known in the representation theory
of algebras, every irreducible representation is cyclic, where every single state can serve to
generate the whole representation: Otherwise, the cyclic module generated by such a state
would be a proper invariant sub-module, contradicting irreducibility. Thus, then, every state
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in
⊕

J ÂHN ,J ,n,M can be reached from any other via actions of the algebra. Moreover, since
⊕

J ÂHN ,J ,n,M contains parton-like states, and the action of the algebra preserves the prop-
erty of being a parton-like superposition, any element of

⊕

J ÂHN ,J ,n,M must be a parton-like
superposition. All the above conjectures then follow from properties of parton-like states, in
particular the uniqueness of partons as minimum angular momentum parton-like states. While
we find it plausible that the algebra defined here is rich enough in the precise sense defined
above, we leave the proof of this as an interesting mathematical problem.

As a useful application, we note the following corollary: The MR Pfaffian and RR states can-
not be densest–incompressible–ground states of the two-body frustration-free parent Hamil-
tonians of this work. The reason is that these states are not closed-shell parton states but are
expanded in terms of parton-like states. For instance, consider the MR Pfaffian state

ΨMR(Z) = Pf

�

1
zi − zj

�

χ1(Z)
M+1. (182)

One can check that for N = 4 it can be expanded as

ΨMR(Z) = Ψ1(Z)− 2Ψ2(Z) + 10Ψ3(Z) , (183)

where the parton-like states are

Ψ1(Z) =

�

�

�

�

�

�

�

�

1 1 1 1
z1 z2 z3 z4
z4

1 z4
2 z4

3 z4
4

z5
1 z5

2 z5
3 z5

4

�

�

�

�

�

�

�

�

χ1(Z)
M−1 ,

Ψ2(Z) =

�

�

�

�

�

�

�

�

1 1 1 1
z2

1 z2
2 z2

3 z2
4

z3
1 z3

2 z3
3 z3

4
z5

1 z5
2 z5

3 z5
4

�

�

�

�

�

�

�

�

χ1(Z)
M−1 ,

Ψ3(Z) =

�

�

�

�

�

�

�

�

z1 z2 z3 z4
z2

1 z2
2 z2

3 z2
4

z3
1 z3

2 z3
3 z3

4
z4

1 z4
2 z4

3 z4
4

�

�

�

�

�

�

�

�

χ1(Z)
M−1 . (184)

Similarly, for the (N = 4) Read-Rezayi state one obtains ΨRR(Z) = 2ΨMR(Z).

6 Partons, DNA, and MPS states

When we determined, in the preceding sections, the ground subspace of the general two-body
frustration-free Hamiltonians of the type of Eq. (25), we discussed two seemingly distinct
threads. These centered on the EPP on the one hand and the parton construction on the other.
The emergent EPP establishes constraints on any pair of particles in the DNA or root pattern of
the ground state. Thus far, we have, however, refrained from demonstrating that any ground
states satisfying the EPP indeed qualify as ground states of our frustration-free Hamiltonian.
The closed-shell parton states Φν(Z , Z̄) represent the densest ground states. Nevertheless, on
its own, this property does not yield the complete set of ground states of Hamiltonians given
by Eq. (25). By combining the rules set by the EPP and parton constructs, one can provide a
rigorous method to establish completeness of parton-like states to span

⊕

J ÂHN ,J ,n,M . In this
Section, we will establish completeness for the special case of M = 3, n = NL − 1 = 3. Prior
to doing so, we will start our discussion by constructing root patterns and root states (DNA)
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from a given parton-like state. We will firmly connect these to the EPPs. We will next show the
MPS structure of the DNA illustrating the complex and interesting pattern of entanglement
that encodes those non-Abelian fluids. We will then derive a scheme that will enable us to
extract possible parton-like states given a root pattern.

6.1 Root pattern and DNA of parton-like states

Consider a single Slater determinant χp(Z , Z̄) with a root pattern { j}root = { j1, j2, . . . , jN}root
that is arranged in an ascending order of angular momenta j1 ≤ j2 ≤ · · · ≤ jN , where ji is
the angular momentum of particle i. It is clear that this root pattern is extracted from the
monomial ϕα(Z , Z̄), where χp(Z , Z̄) = Â

�

ϕα(Z , Z̄)
�

. In the LLL, due to the Pauli exclusion
principle, the monomial ϕα(Z , Z̄) is unique. When multiple LLs are present, several orbitals
may share the same angular momenta. This allows for many monomialsϕα(Z , Z̄) satisfying the
rule of ascending ji. Among all N ! monomials comprising a Slater determinant, the number of
distinct monomials ϕα(Z , Z̄) satisfying this rule is Mp =

∏L
j=1λ j!, where λ j is the multiplicity

of angular momentum j. For example, consider N = 3 with j1 = j2 < j3. The corresponding
distinct monomials (Mp = 2) would be

ϕα(Z , Z̄) = φα1
(1)φα2

(2)φα3
(3) ,

ϕσα(Z , Z̄) = φα2
(1)φα1

(2)φα3
(3) , (185)

where σ ∈ SN is a permutation of the αi indices. The root pattern of the product
χp(Z , Z̄)χp′(Z , Z̄) is [28,79]

{ j1 + j′1, · · · , jN + j′N}root ≡ { j}root + { j
′}root , (186)

which is associated with the MpMp′ monomials

ϕα(Z , Z̄)ϕα′(Z , Z̄) = ϕα+α′(Z , Z̄) . (187)

We stress that, althoughMpµ is the number of distinct monomials in each individual Slater χpµ ,
not all of the monomials MpMp′ may be distinct. This implies that MpMp′ constitutes an
upper bound on the number of distinct monomials in the root state of χp(Z , Z̄)χp′(Z , Z̄). Now,
in an arbitrary parton-like state with M Slater determinants, the number of distinct monomials

ϕα⃗(Z , Z̄)≡
M
∏

µ=1

ϕαpµ
(Z , Z̄) = ϕ∑M

µ=1αpµ
(Z , Z̄) (188)

is upper bounded by
∏M
µ=1 Mpµ . With M ∈ (odd)even, the (anti)symmetrization of

each monomial provides a non-expandable (Slater determinant)permanent. The corre-
sponding root state is a linear superposition of all such non-expandable (Slater determi-
nants)permanents. Such a superposition encodes a specific pattern of entanglement. In what
follows, we focus on the root pattern of parton-like states. We will then study the correspond-
ing root states in the next subsection.

To illustrate our basic premise for the root patterns, we examine a specific example.
We will then discuss the generalization to other states. Towards this end, we first con-
sider the particular closed-shell parton state of N = 7 particles and NL = 3 (see Fig. 15),
Φ1/2(Z , Z̄) = χ1(Z , Z̄)χ2(Z , Z̄)χ2(Z , Z̄). The root occupation configuration for the two Slater
determinants, χ2(Z , Z̄) and χ1(Z , Z̄) are, respectively,

{ j′}root = {−1, 0,0, 1,1, 2,2}root ,
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Figure 15: Angular momentum (in units of ħh) occupation configura-
tion of Slater determinants components of the seven particles parton state
Φ1/2(Z , Z̄) = χ1(Z , Z̄)χ2(Z , Z̄)χ2(Z , Z̄).

Table 7: Bulk root patterns, {λ}broot, for densest closed-shell parton states Φν with
third order zeroes, M = 3, and filling fractions ν.

NL Bulk root pattern ν

1 {100} 1/3
2 {10100} 2/5
3 {1100} 1/2
4 {200} 2/3
5 {20020110} 3/4
6 {2002101} 6/7
7 {300} 1
8 {30030120210} 12/11

{ j′′}root = {0,1, 2,3, 4,5, 6}root , (189)

so that the final root occupation configuration of the parton is { j}root = { j′}root + { j′}root
+ { j′′}root, with

j1 = −1− 1+ 0= −2 ,

j2 = 0+ 0+ 1= 1 ,

j3 = 0+ 0+ 2= 2 ,

j4 = 1+ 1+ 3= 5 ,

j5 = 1+ 1+ 4= 6 ,

j6 = 2+ 2+ 5= 9 ,

j7 = 2+ 2+ 6= 10 . (190)

This leads to the following map

j −2 −1 0 1 2 3 4 5 6 7 8 9 10
λ j 1 0 0 1 1 0 0 1 1 0 0 1 1

with root pattern {λ}root = 1001100110011. Neglecting boundaries ( j < 0), in the bulk
each four consecutive states are filled by two electrons. This defines the “bulk root pattern”
{λ}broot = {1100}. The above analysis may be repeated for other states. In Table 7, we show
examples of bulk root patterns and their corresponding filling fractions for other closed-shell
parton states.
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6.1.1 Root states or DNAs from a given parton-like state

When confined to the LLL, the root patterns encode all of the important information regarding
the parton-like states. However, in the presence of higher LL mixing, there is an entanglement
between the patterns in the root states. This entanglement contains important information,
such as zero-mode counting, on the parton-like states. In order to extract this information,
we need to determine the root states, or DNAs, for the root patterns obtained from the given
parton-like states.

As described above, given an N particle parton-like state Ψp(Z , Z̄) in the subspace of NL
LLs, one can determine its root pattern {λ}root. Since we are interested in the bulk part of
the root pattern, {λ}broot, consider the Ψp(Z , Z̄) which consists of single-particle orbitals of
non-negative angular momenta, ji ≥ 0. Our aim is to keep all of the non-expandable Slater
determinants in the expansion of Ψp(Z , Z̄) with pattern {λ}root. Thus, we exclude inward-
squeezed states.

To that end, consider a simple rescaling of the coordinates zi→ ζizi and z̄i→ ζ−1
i z̄i, where

i = 1, . . . , N . Let us denote the rescaled coordinates by (Z ′, Z̄ ′). An algebraic algorithmic way
of extracting the root state is the following: In the expansion of Ψp(Z ′, Z̄ ′), the monomials

with a common factor ΠN
i=1ζ

ji
i relate to the non-expandable determinants and are determined

by
N
∏

i=1

1
ji!
(∂ζi
) ji Ψp(Z

′, Z̄ ′) =
�

N
∏

i=1

z ji
i

�

f {λ}brootNL ,ν =
∑

α⃗

Cα⃗ϕα⃗(Z , Z̄) . (191)

Here, f {λ}brootNL ,ν (Z , Z̄) has zero total angular momentum Ĵ f {λ}brootNL ,ν = 0, Cα⃗ = ±1. The sum

contains
∏M
µ=1 Mpµ terms. As a result, the root state (DNA) can be obtained by performing a

simple antisymmetrization,

Ψroot(Z , Z̄) = Â
�

�

N
∏

i=1

z ji
i

�

f {λ}brootNL ,ν

�

. (192)

Let us provide a few examples (with N even). The root state for the ν= 1/M Laughlin state

is obtained by f {10M−1}
1, 1

M
(Z , Z̄) = 1 (representing a single Slater determinant). Next, consider

the parton state with {10100} (ν= 2/5), NL = 2 and root pattern { j}root = {0,2, 5,7, · · · }root.
For this state, we obtain

f {10100}
2, 2

5
=

N−2
2
∏

r=0

Dα1α2
(2r + 1,2r + 2) . (193)

In this example and throughout this section, α1 = (1, 1) and α2 = (0,0), i.e.,

Dα1α2
(2r + 1,2r + 2)≡

�

�

�

�

z2r+1z̄2r+1 z2r+2z̄2r+2
1 1

�

�

�

�

. (194)

For the parton state with {200} (ν = 2/3), NL = 4, and { j}root = {0, 0,3, 3, · · · }root, it can be
checked that

f {200}
4, 2

3
=

N−2
2
∏

r=0

D3
α1α2
(2r + 1,2r + 2) . (195)

From the above structure, it is evident that the {200} pattern is a simple product state of
entangled pairs in the root pattern. Applying the pseudospin algebra of Eq. (177),

Sz f {200}
4, 2

3
= S± f {200}

4, 2
3
= 0 . (196)
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This suggests that the 2 in the root pattern indeed represents a singlet state.
We have, so far, discussed bulk root patterns for (closed-shell) parton states. For these,

there is a one-to-one correspondence between the parton state and its root pattern. However,
in general, several parton-like states may share the same root pattern. For instance, for the
{110} pattern, NL = 4, we have four different root states corresponding to the four different
parton-like states given by {110}n1

nN
=1n1

10110...11011nN
0. Here, n1, nN identify the pseu-

dospin degrees of freedom. The corresponding parton-like states are χn1nN
(Z , Z̄)χ2(Z , Z̄)2,

n1, nN = 0,1, with χn1nN
(Z , Z̄) constructed such that the lowest and highest angular mo-

mentum orbitals are, respectively, occupied by electrons with LL indices given by n1 and nN .
Consequently,

f
{110}n1

nN

4, 2
3

= (z1z̄1)
n1(zN z̄N )

nN

N−2
2
∏

r=0

D2
α1α2
(2r + 1,2r + 2)

[ N−3
2 ]
∏

r=0

Dα1α2
(2r + 2, 2r + 3) , (197)

where [x] represents the integer part of x . As another example, consider the root pattern
20011011 with N = 6 particles, which includes a domain wall. We obtain

f
{200}{110}n3

n6

4, 5
7

= (z3z̄3)
n3(z6z̄6)

n6 D3
α1α2
(1, 2)D2

α1α2
(3,4)Dα1α2

(4, 5)D2
α1α2
(5, 6) , (198)

where n3, n6 = 0, 1. The choice of even N allowed us to obtain compact expressions for
f {λ}brootNL ,ν . We could have similarly considered states with odd N , starting from Eq. (192), by

appropriate modifications of f {λ}brootNL ,ν . For instance, consider an N = 5 particle state with root
pattern 1101011. We obtain the following eight states

f
{110}n1 1n3

{011}n5

4, 3
4

= (z1z̄1)
n1(z3z̄3)

n3(z5z̄5)
n5 D2

α1α2
(1,2)Dα1α2

(2, 3)Dα1α2
(3, 4)D2

α1α2
(4,5) , (199)

where n1, n3, n5 = 0, 1. It turns out that f {λ}brootNL ,ν carries the pseudospin structure of the root
state since

SzΨroot(Z , Z̄) = Â
�

�

N
∏

i=1

z ji
i

�

Sz f {λ}brootNL ,ν

�

. (200)

Furthermore, as we will show in the following, it contains the pattern of entanglement dictating
the EPP rules for the complete zero-mode subspace.

6.1.2 MPS representation of DNA from polynomials

The EPP does not rule out entangled root states formed by combining the 11 and 101 patterns.
Such root states do not only give rise to a ground state root pattern ...110110... with filling
fraction 2/3 but also play an important role in determining the domain wall structures and
braiding statistics as discussed before. These states cannot be formed by simple products of 11
and 101 patterns. If all such simple products were feasible then the ground state degeneracy
would scale exponentially in the particle number. However, Eq. (197), unlike Eq. (195),
indeed does not suggest the appearance of such simple products of entangled motifs in the
root states. In Eq. (197), the 2r + 2 particle is connected with particles 2r + 1 and 2r + 3.
This construct hints at an underlying MPS structure. This representation may capture the root
state entanglement while satisfying the EPP for the 11 and 101 patterns. Towards this end,
we consider the following identity

(z1z̄1)
n1(z2z̄2)

n2 Db
α1α2
(1, 2) =Ó
∑

(z1z̄1)
I1 εI2 I1

(z2z̄2)
I2 , (201)
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37

FIG. 15. (Top) Diagrammatic representation of the poly-
nomial (ziz̄i)

ni(zjz̄j)
njDb

↵1↵2
(i, j) for all possible values of

(ni, nj, b) where ni, nj  NL � b � 1, with NL = 4. Each
disk represents a particle with LLs index 1, 2, or 3. Each
bond connecting two disks is equivalent to an index contrac-
tion. Generically, the number of bonds is given by b, and
each dangling bond corresponds to a factor of zz̄. (Bot-
tom) left and right diagrams are for Eq. (199) and (200),
respectively.(ni, nj, b) = (1, 1, 2) = (2, 2, 1) = (3, 3, 0) (0, 0, 3)

states do not only give rise to a ground state root pat-
tern ...110110... with filling fraction 2/3 but also play
an important role in determining the domain wall struc-
tures and braiding statistics as discussed before. These
states cannot be formed by simple products of 11 and
101 patterns. If all such simple products were feasible
then the ground state degeneracy would scale exponen-
tially in the particle number. However, Eq. (198), un-
like Eq. (196), indeed does not suggest the appearance
of such simple products of entangled motifs in the root
states. In Eq. (198), the 2r + 2 particle is connected
with particles 2r + 1 and 2r + 3. This construct hints at
an underlying MPS structure. This representation may
capture the root state entanglement while satisfying the
EPP for the 11 and 101 patterns. Towards this end, we
consider the following identity
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is the number of indices that are summed over. In the
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can be generalized to (ziz̄i)
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(i, j), where

ni, nj  NL �b�1. This suggests a diagrammatic repre-
sentation as follows: Assign a disk to each particle. Con-
nect the adjacent disks by b bonds, where b is the number
of contracted indices (see Fig. 15). For a given disk i, the
contraction of b indices leaves ni free indices, which are
shown as dangling bonds in Fig. 15. In this manner,

we may represent, diagrammatically, any f
{�}broot

NL,⌫ with a
simple diagram. In Fig. 15, we show the corresponding
diagrams for Eq. (199) and (200).

Now, we express the full root state in an MPS type
representation. In the following, for the simplicity of no-

tation, we will (i) set �
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tion. Generically, the number of bonds is given by b, and
each dangling bond corresponds to a factor of zz̄. (Bot-
tom) left and right diagrams are for Eq. (199) and (200),
respectively.(ni, nj, b) = (1, 1, 2) = (2, 2, 1) = (3, 3, 0) (0, 0, 3)
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Figure 16: (Top) Diagrammatic representation of the polynomial
(ziz̄i)ni(zjz̄j)

nj Db
α1α2
(i, j) for all possible values of (ni, nj,b) where ni = nj ≤ NL −b−1,

with NL = 4. Each disk represents a particle associated with NL − 1 bonds. Each
bond connecting two disks is equivalent to an index contraction and decreases
the relative angular momentum between ith and jth particle by 1. The number of
bonds in between ith and jth particle is given by b and relative angular momentum
is given by, M − b, where M is the order of two particle zeros in the ground state
wave function. Thus for M = 3, b = 0, 1, 2, 3 represent the 1001, 101, 11 and 2
patterns in the root states, respectively. The m non-contracted (dangling) bonds
associated with each disk gives rise to a m+1 degeneracy and can be represented by
a m/2 pseudospin algebra. (Bottom) Above patterns glued together to construct an
N = 11-particle MPS state. Same MPS structure can be obtained from the viewpoint
of EPPs as shown in Fig. 4.

where Ii = I (1)i + · · · + I (NL−1)
i , I (i)i = 0,1, ni ≤ NL − b − 1, i = 1,2, and εI2 I1

≡
∏b

i=1 εI (i)2 I (i)1
,

with εI (i)2 I (i)1
the Levi-Civita tensor (ε01 = +1). The symbol Ò

∑

(N = 2 in Eq. (201)) involves

the contracted I (i)i indices
Ó

∑

≡
∑

{I (i)1 ,I (i)2 ,···I (i)N }i=1,b

, (202)

i.e., sums only over b indices that appear in the Levi-Civita tensor. The sum of free I (i)i , i > b,
indices is identified with ni ≤ NL−b−1. Figure 16 (top) shows a diagrammatic representation
of Eq. (201). The contraction of indices can be shown as horizontal connections between
adjacent disks where each box contains a Levi-Civita symbol. On the other hand, contraction
of b leaves ni free indices. These are shown as dangling bonds in Fig. 16. Accordingly, the
number of bonds and dangling bonds can be read directly from a generic f {λ}brootNL ,ν polynomial
that renders the corresponding diagram for such polynomial, e.g., see Fig. 16 (bottom).

The polynomial (z1z̄1)n1(z2z̄2)n2 Db
α1α2
(1,2) can be written as an MPS by defining rank-3

tensors
M Ii

I (1)i I (2)i I (3)i

≡ δIi,I
(1)
i +I (2)i +I (3)i

, (203)

so that,

(z1z̄1)
n1(z2z̄2)

n2 Db
α1α2
(1, 2) =Ó
∑

M I1 ∗b M I2 (z1z̄1)
I1(z2z̄2)

I2 , (204)

where the ∗b symbol indicates the number of inserted Levi-Civita symbols, ∗b ≡ εI2 I1
.

The expression above facilitates a simple generalization of the MPS representation for a
generic f {λ}brootNL ,ν polynomial. Consider

f
{110}n1

n4

4, 2
3

= (z1z̄1)
n1(z4z̄4)

n4 D2
α1α2
(1, 2)Dα1α2
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<latexit sha1_base64="TvUnOO+IYQmHXRb0XGbO0zTAaEM=">AAAB/nicbZDLSsNAFIZP6q3WW1VcuRksgquSSL0si25cVrAXaEKYTCft0MkkzEyEEgq+ihsXirj1Odz5Nk7aLLT1wAwf/38Oc+YPEs6Utu1vq7Syura+Ud6sbG3v7O5V9w86Kk4loW0S81j2AqwoZ4K2NdOc9hJJcRRw2g3Gt7nffaRSsVg86ElCvQgPBQsZwdpIfvXIpYli3GDmRqnfyK+LqV+t2XV7VmgZnAJqUFTLr365g5ikERWacKxU37ET7WVYakY4nVbcVNEEkzEe0r5BgSOqvGy2/hSdGmWAwliaIzSaqb8nMhwpNYkC0xlhPVKLXi7+5/VTHV57GRNJqqkg84fClCMdozwLNGCSEs0nBjCRzOyKyAhLTLRJrGJCcBa/vAyd87pzWW/cN2rNmyKOMhzDCZyBA1fQhDtoQRsIZPAMr/BmPVkv1rv1MW8tWcXMIfwp6/MHfmWV1g==</latexit>✏µ4µ5

<latexit sha1_base64="+VNd+Z8nD7hiZS7sbw4S6tilFEQ=">AAAB/nicbZDLSsNAFIZPvNZ6i4orN4NFcFUSKbbLohuXFewFmhAm00k7dCYJMxOhhIKv4saFIm59Dne+jdM2C209MMPH/5/DnPnDlDOlHefbWlvf2NzaLu2Ud/f2Dw7to+OOSjJJaJskPJG9ECvKWUzbmmlOe6mkWIScdsPx7czvPlKpWBI/6ElKfYGHMYsYwdpIgX3q0VQxbjD3RBbUZ1djGtgVp+rMC62CW0AFimoF9pc3SEgmaKwJx0r1XSfVfo6lZoTTadnLFE0xGeMh7RuMsaDKz+frT9GFUQYoSqQ5sUZz9fdEjoVSExGaToH1SC17M/E/r5/pqOHnLE4zTWOyeCjKONIJmmWBBkxSovnEACaSmV0RGWGJiTaJlU0I7vKXV6FzVXWvq7X7WqV5U8RRgjM4h0twoQ5NuIMWtIFADs/wCm/Wk/VivVsfi9Y1q5g5gT9lff4Ah5KV3A==</latexit>✏µ7µ8

<latexit sha1_base64="T539D5Qxxr3OOURfOzHHT2A/ims=">AAACBnicbZDLSsNAFIYnXmu9RV2KECyCq5JIsV0W3bisYC/QhDCZnLRDJ5MwMxFK6MqNr+LGhSJufQZ3vo3TNoK2/jDw8Z9zOHP+IGVUKtv+MlZW19Y3Nktb5e2d3b198+CwI5NMEGiThCWiF2AJjHJoK6oY9FIBOA4YdIPR9bTevQchacLv1DgFL8YDTiNKsNKWb564kErKNOYu02Mh9us/0Jj4ZsWu2jNZy+AUUEGFWr756YYJyWLgijAsZd+xU+XlWChKGEzKbiYhxWSEB9DXyHEM0stnZ0ysM+2EVpQI/biyZu7viRzHUo7jQHfGWA3lYm1q/lfrZypqeDnlaaaAk/miKGOWSqxpJlZIBRDFxhowEVT/1SJDLDBROrmyDsFZPHkZOhdV57Jau61VmldFHCV0jE7ROXJQHTXRDWqhNiLoAT2hF/RqPBrPxpvxPm9dMYqZI/RHxsc3h9mZKg==</latexit>✏�7�8
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Figure 17: MPS diagrammatic representation of DNA for N = 8.
We have identified M Ii

I (1)i I (2)i I (3)i

= Mµiσiλi
. Here, the diagram is for

f {λ}brootNL ,ν = (z1z̄1)µ1+σ1+λ1(z4z̄4)λ4(z6z̄6)µ6(z8z̄8)σ8 D3
α1α2
(2,3)D2

α1α2
(4,5)Dα1α2

(5, 6)
Dα1α2

(6,7)D2
α1α2
(7, 8) where µ1 = σ1 = λ1 = λ4 = µ6 = σ8 = 1. The number of

bonds can easily be read from the graph: bi = (0, 3,0, 2,1, 1,2).

for N = 4, where

D2
α1α2
(1, 2) =Ó
∑

M I1 ∗2 M I2 (z1z̄1)
I1(z2z̄2)

I2 , (206)

Dα1α2
(2, 3) =Ó
∑

M I2 ∗1 M I3 (z2z̄2)
I2(z3z̄3)

I3 , (207)

D2
α1α2
(3, 4) =Ó
∑

M I3 ∗2 M I4 (z3z̄3)
I3(z4z̄4)

I4 . (208)

Combining the above representations one obtains

f
{110}n1

n4

4, 2
3

=Ó
∑

M I1 ∗2 M I2 ∗1 M I3 ∗2 M I4(z1z̄1)
I1(z2z̄2)

I2(z3z̄3)
I3(z4z̄4)

I4 , (209)

where n1 = I (3)1 and n4 = I (3)4 . Similarly, a generic polynomial f {λ}brootNL ,ν can be represented by
the MPS

f {λ}brootNL ,ν =Ó
∑

M I ×
N
∏

i=1

(ziz̄i)
Ii , (210)

where we have used the abbreviation for the tensor network

M I1 ∗b1 M I2 · · ·M IN−1 ∗bN−1 M IN ≡ M I . (211)

Figure 17, shows and example of a tensor network for N = 8. Now, using Eq. (192), we can
rewrite the root state as an MPS

Ψroot(Z , Z̄) = Â
�

�

N
∏

i=1

z ji
i

�

f {λ}brootNL ,ν

�

=Ó
∑

M I |I〉 , (212)

where

|I〉 ≡ Â
�

�

N
∏

i=1

z ji
i

�

(z1z̄1)
I1(z2z̄2)

I2 · · · (zN z̄N )
IN

�

(213)

are the non-expandable Slater determinants in the root state.

6.2 Parton construction and the entangled Pauli principle for the 2/3 state

We now return to the Hamiltonian construct for the assembled EPPs and the two particle
selection rules for the root patterns of the ground state for the four LLs projected Hamiltonian.
We have so far postponed the task of showing that there are indeed two particle solutions
satisfying EPPs constraints. To establish a ground state obeying the EPPs, we start with parton
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state χ2(Z , Z̄)3. The DNA corresponding to this state is given by 100200200200... . This
parton state has a {200} pattern in the bulk having two particles in three consecutive “sites”,
i.e. modes. The filling fraction for this state is 2/3 and our EPP construction already excludes
any other parton-like state as being a zero-energy state of higher density. Each “2” in the
100200200.. pattern is entangled as predicted by Eq. (56).

Before examining other admissible patterns in the ground state root, we introduce the two
Slater determinants χ ′nn′(Z , Z̄) and χ ′′nn′(Z , Z̄) appearing in Fig. 18. The EPP predicted four
possible 11 patterns which can be derived from the four parton states, χ ′nn′(Z , Z̄)χ2(Z , Z̄)2

with n, n′ = 0,1. The root patterns of these four 2-particle parton states can be mapped to Eq.
(58) in the following way,

Ψ̃
(1)
0 (Z , Z̄) = χ ′00(Z , Z̄)χ2(Z , Z̄)2 ,

Ψ̃
(2)
0 (Z , Z̄) = χ ′01(Z , Z̄)χ2(Z , Z̄)2 ,

Ψ̃
(3)
0 (Z , Z̄) = χ ′10(Z , Z̄)χ2(Z , Z̄)2 ,

Ψ̃
(4)
0 (Z , Z̄) = χ ′11(Z , Z̄)χ2(Z , Z̄)2 . (214)

While parton states naturally realize the zero-energy modes, we must keep in mind that
parton states constitute an overcomplete basis. Thus, caution must be exercised. It is possible
to double count topologically identical zero modes (i.e., zero modes with same root patterns)
in the parton construction. To convey this message more concretely, we will now consider the
101 pattern and their root states. While the EPP suggests that there are only 9 such states,
from the parton construction we get 10 states of the form, χ ′n1n2

(Z , Z̄)χ ′
n′1n′2
(Z , Z̄)χ2(Z , Z̄) and

4 states of the form χ ′′nn′(Z , Z̄)χ2(Z , Z̄)2. All of these 14 states can be constructed from the
root pattern of Eq. (60). The zero modes corresponding to the root states of Eq. (60) are

Ψ
(1)
0 (Z , Z̄) = χ ′00(Z , Z̄)χ ′00(Z , Z̄)χ2(Z , Z̄) ,

Ψ
(2)
0 (Z , Z̄) = χ ′00(Z , Z̄)χ ′01(Z , Z̄)χ2(Z , Z̄) ,

Ψ
(3)
0 (Z , Z̄) = χ ′00(Z , Z̄)χ ′10(Z , Z̄)χ2(Z , Z̄) ,

Ψ
(4)
0 (Z , Z̄) = χ ′11(Z , Z̄)χ ′00(Z , Z̄)χ2(Z , Z̄) ,

Ψ
(5)
0 (Z , Z̄) = χ ′10(Z , Z̄)χ ′10(Z , Z̄)χ2(Z , Z̄) ,

Ψ
(6)
0 (Z , Z̄) = χ ′11(Z , Z̄)χ ′10(Z , Z̄)χ2(Z , Z̄) ,

Ψ
(7)
0 (Z , Z̄) = χ ′01(Z , Z̄)χ ′01(Z , Z̄)χ2(Z , Z̄) ,

Ψ
(8)
0 (Z , Z̄) = χ ′11(Z , Z̄)χ ′01(Z , Z̄)χ2(Z , Z̄) ,

Ψ
(9)
0 (Z , Z̄) = χ ′11(Z , Z̄)χ ′11(Z , Z̄)χ2(Z , Z̄) . (215)

Here, the root state corresponding to Ψ(i)0 (Z , Z̄) is given by 〈Z , Z̄ |Ψ(i)root〉 as in Eq. (60) for
N = 2. Using the parton construction, we have successfully determined all possible two par-
ticle ground states for the EPPs we have derived for NL = 4 projected Hamiltonian. We will
use these constraints for many-particle systems to construct many-particle root patterns of the
zero-energy modes of our Hamiltonian.

6.3 Parton-like states from a given root pattern

We have, so far, discussed how to extract root patterns from parton-like states. One may be
interested in determining whether a given root pattern is compatible with a valid ground state,
that is, one that respects the EPP. We will now start with a given root pattern and construct
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Figure 18: Slater determinants χ ′nn′(Z , Z̄) and χ ′′nn′(Z , Z̄) for 2r − 1 particles in two
LLs. In χ ′nn′(Z , Z̄) there is single occupancy in ji = 0 and r −1. For ji = 0 ( ji = r −1)
the nth (n′ th) orbital is occupied. In χ ′′nn′(Z , Z̄), the ji = r−1 is unoccupied and ji = 0
and r are singly occupied. For ji = 0 ( ji = r) the nth (n′ th) orbital is occupied. For
the states above, one can use the pseudospin algebra of Eq. (177). For χ ′nn′ and χ ′′nn′

the pseudospin is given by n+ n′ − 1.

possible parton-like states. It is useful to remind the reader of the concise definition of parton-
like states. A parton-like state is a product of M building blocks. Each building block is a
Slater determinant of particle coordinates zi, z̄i, i = 1, · · · , N . These Slater determinants can
be further translated into an increasing set of angular momenta in second quantized language.
For a given root pattern {λ}root, in the angular momentum basis { j}root = { j1, j2, j3, ..., jN}root,
an allowed parton-like state should enable an integer M -partition for each ji

ji = j(1)i + j(2)i + ...+ j(M)i , i= 1, ..., N , (216)

such that j(µ)i ≤ j(µ)j , ∀ µ ∈ {1, ..., M}, i< j, with the constraint that for fixed µ the number of

identical j(µ)i ’s must be≤ N (µ)m where N (µ)m =min (N (µ)L + j(µ)i , N (µ)L ) is the maximal multiplicity.

Here, N (µ)L , 1 ≤ N (µ)L ≤ NL , represents the number of LLs making up the µ Slater determinant

satisfying
∑

µ N (µ)L = NL+M −1 (see Eq. (145)). Under these constraints we can organize the
data in the following table

j1 j2 j3 · · · jN










j(1)1 j(1)2 j(1)3 · · · j(1)N

j(2)1 j(2)2 j(2)3 · · · j(2)N
...

...
...

. . .
...

j(M)1 j(M)2 j(M)3 · · · j(M)N











N (1)m

N (2)m
...

N (M)m

(217)

and, if the constraints are satisfied, it leads to the parton-like state

Ψp(Z , Z̄) =
M
∏

µ=1

χN (µ)L
(Z , Z̄) , (218)

where the N -particles Slater determinants χN (µ)L
(Z , Z̄) are made out of orbitals spanning N (µ)L

LLs with angular momenta { j(µ)1 , j(µ)2 , j(µ)3 , · · · , j(µ)N }root.
Let us illustrate the algorithm by applying it to a simple example. Consider the case of

N = 5, M = 3, NL = 4 with root pattern 1002002 ({−3,0, 0,3, 3}root in angular momentum
representation). Our first step amounts to finding the possible integer partitions of six (since
NL+M−1= 4+3−1= 6), subject to the above noted constraints, leading to [N (1)L , N (2)L , N (3)L ].
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In this example, these integer partitions are [2, 2,2], [1, 2,3], and [1, 1,4]. Next, following Eq.
(216), we find all possible partitions of {−3,0, 0,3, 3}root in each decomposition. For [2, 2,2]
the solution can be written as

−3 0 0 3 3




−1 0 0 1 1
−1 0 0 1 1
−1 0 0 1 1





2
2
2

(219)

Notice that the boundary state with angular momentum −1 can only appear once as per our
algorithm. For the other two decompositions, i.e., [1, 2,3], [1,1, 4], we do not have any so-
lution which satisfies Eq. (216) and the constraints. In each decomposition, one Slater de-
terminant has N (3)L = 1. Hence, j(1)1 < j(1)2 < j(1)3 < j(1)4 < j(1)5 . But, j2 = j3 = 0, imply-

ing j2 − j(1)2 > j3 − j(1)3 . Using ji = j(1)i + j(2)i + j(3)i together with the above observation we

get, j(2)2 + j(3)2 > j(2)3 + j(3)3 . This clearly contradicts our assumption that, j(µ)i ≤ j(µ)j ,∀i < j.
Hence, we conclude that the root pattern 1002002 has associated only the parton state [2,2, 2]
with identical Slater determinants of angular momentum {−1, 0,0,1, 1}root. This state corre-
sponds to the closed-shell parton structure χ2(Z , Z̄)3, the unique parton solution allowed for
the 1002002 root pattern.

For a (non closed-shell) less dense root pattern in the ground state, one usually has multiple
parton-like solutions. Consider the root pattern 1101010101 (N = 6, M = 3, NL = 4) having
the angular momentum representation {0, 1,3, 5,7, 9}root. This pattern admits more than one
solution,

0 1 3 5 7 9




0 0 1 1 2 2
0 0 1 2 2 3
0 1 1 2 3 4





2
2
2

→ [2,2, 2] , (220)

0 1 3 5 7 9




0 0 1 1 2 2
0 0 1 1 2 2
0 1 1 3 3 5





2
2
2

→ [2,2, 2] . (221)

Both of these parton-like states share the same, 1101010101, root pattern.
Clearly, given a root pattern it is possible not to have any single parton-like state associated

to it. To illustrate, we discuss N = 7, M = 3 and NL = 4, which has root pattern 100111000111
with angular momentum representation {−3,0, 1,2, 6,7, 8}root. To derive this root pattern, we
need to satisfy following constraints

j2 = j(1)2 + j(2)2 + j(3)2 = 0 ,

j3 = j(1)3 + j(2)3 + j(3)3 = 1 , (222)

j4 = j(1)4 + j(2)4 + j(3)4 = 2 .

To satisfy these constraints along with, j(µ)i ≤ j(µ)j ,∀i< j, { j(1)3 , j(2)3 , j(3)3 }must have at least two

common elements with both { j(1)2 , j(2)2 , j(3)2 } and { j(1)4 , j(2)4 , j(3)4 }. In other words, at least one j(µ)i

must appear in all three cases. Without loss of generality, we assume all j(1)i ’s for i= 2,3, 4 are
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identical. Thus, one Slater determinant must have, at least N (1)L = 3. Moreover, { j(1)2 , j(2)2 , j(3)2 }
and { j(1)3 , j(2)3 , j(3)3 } have one more common element. Again, we assume without any loss of

generality, identical j(2)i ’s for i = 2,3. Finally, { j(1)3 , j(2)3 , j(3)3 } and { j(1)4 , j(2)4 , j(3)4 } should have

two common elements. Given identical j(1)i ’s for i = 2,3, 4 and identical j(2)i ’s for i = 2,3, we
have two scenarios,

1. j(2)3 = j(2)4 . In this scenario, j(2)i s for i = 2,3, 4 are the same and N (2)L ≥ 3. In this case,

N (1)L + N (2)L + N (3)L ≥ 3+ 3+ 1> 6.

2. j(3)3 = j(3)4 =⇒ N (2)L ≥ 2 and N (3)L ≥ 2. Thus, N (1)L + N (2)L + N (3)L ≥ 3+ 2+ 2> 6.

In both scenarios, in order to have a parton-like solution, we need NL +M − 1> 6. However,
this inequality is not satisfied given that NL = 4 and M = 3.

As an illuminating application of our algorithm, we next show that the bulk root pattern
{11000} (equal to {0,1, 5,6, 10,11, . . .}root in angular momentum representation) for arbitrary
NL (the Gaffnian 2/5 state [80] corresponds to NL = 1) cannot have a closed-shell parton
structure associated to it, although it can have a parton-like structure. For a closed-shell parton,
we have one additional constraint, j(µ)i+1 ≤ j(µ)i +1 for all µ, i.e., all shells must be filled. Assume
that there exists a closed-shell parton state with a zero of order M ∈ odd. Then, starting at
j1 = 0

j1 = j(1)1 + j(2)1 + j(3)1 + . . .+ j(M)1 = 0 ,

j2 = j(1)2 + j(2)2 + j(3)2 + . . .+ j(M)2 = 1 .

Thus, j(µ)1 = j(µ)2 for any set of M − 1 µ values. Without any loss of generality, we assume

j(1)2 = j(1)1 + 1. Being a closed-shell parton, this is possible only if the first Slater determi-
nant has a single LL (no degeneracy) with angular momentum {0,1, 2,3, 4,5, ...}root. Sub-
tructing {0, 1,2, 3,4, 5, ...}root from the original root pattern {0,1, 5,6, 10,11, . . .}root leads to
{0,0, 3,3, 6,6, . . .}root, which is the same as {λ}broot={200}. Then, the rest of the Slater de-
terminants in the parton must form a root pattern of the form {200}. But we have already
shown that the only closed-shell parton associated with such root pattern is [2, 2,2]. Thus, for
{11000} the only possible closed-shell parton is [1,2, 2,2] with a 4th order zero, i.e., M = 4.
However, a fermionic state should have M ∈ odd. Thus, we proved that the fermionic {11000}
root pattern cannot have a closed-shell parton structure.

6.4 Completeness of parton-like states for M = 3 in 4 LLs

We begin by showing that there exist parton-like states giving every possible root pattern con-
sistent with the EPP. We do so by solving explicitly Eq. (216) for N (µ)L = 2, µ= 1,2, 3. This can
be done in the following way:

j(1)i = ⌊ ji/3⌋ ,

j(2)i = ⌈ ji/3⌉ ,

j(3)i = ji − j(1)i − j(2)i ,

(223)

where, ⌊ ⌋ and ⌈ ⌉ are the floor and ceiling functions, respectively. This obviously satisfies
Eq. (216), is monotonically increasing in i, and it is consistent with N (µ)L = 2 for the following
reason: For any pattern consistent with the EPP, increasing the particle index i by 2 increases
ji by at least 3, thus, every row in Eq. (223) by at least 1. Thus, for every fixed µ= 1, 2,3, j(µ)i
can assume every value at most twice as a function of i. It remains to be shown that the value
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of −1 can occur at most once. The EPP must be supplemented by boundary conditions “on
the left”, associated to negative angular momenta, as shown in Appendix D. For root patterns,
these boundary conditions can be simply summarized as enforcing

j2 ≥ 0 , (224)

in addition to the already established rules. In Eq. (223), this then trivially also implies
j(µ)i ≥ 0.

Next, we argue that, moreover, for every root state that is the product of MPS as constructed
in Sec. 6.1.2 and general factors 00200 and 001sz

00, there is a corresponding parton-like
state. Given now a root state |Φ〉 with the MPS/product structure defined above, we construct
a parton-like |ψ〉 state having a root state corresponding to the root pattern of |Φ〉. Now we
compare |Φ〉 to the root state |ψroot〉 of |ψ〉, each in general a tensor product of mutually un-
entangled units. Every factor ‘2’ in this product must be the same in |Φ〉 and |ψ〉, as |ψ〉 is a
zero mode, and this determines the state of any ‘2’ in its root state uniquely, as we have seen.
Likewise, any 1100-string in |ψroot〉 automatically follows the MPS construction principle of
Sec. 6.1.2. However, a string involving 1’s has certain degeneracies associated to it that must
be recovered in general root states obtained (via the rule of (223)) from parton-like states.
Indeed, one verifies from this rule that every leading 1 in a . . . 00101 unit will be mapped
to a singly occupied j-orbital in exactly two of the three Slater determinants. An analogous
statement holds for the left-right reversed situation. Every central 1 in a 10101-pattern will be
mapped to a singly occupied j-orbital in exactly one of the three Slater determinants. Every
. . . 001sz

00 unit will be mapped to singly occupied j-orbitals in all three Slater determinants.
Each singly occupied j-orbital in a Slater determinant leads to a free spin-1/2 degree of free-
dom in the root level of the MPS. Indeed, all of the expected spin-1/2 degrees of freedom of
the MPS associated with the 1-carrying patterns are generated in this way and lead to all of
the possible MPS described in Sec. 6.1.2. This illustrates that for every possible MPS-solution
for the EPP, we find a parton-like state whose root state or DNA is precisely this MPS-solution.

The completeness of the parton-like states as zero modes is now obtained as follows. We
may assume that the MPS states described in Sec. 6.1.2 represent a complete set of solutions
for the EEP governing the . . . 110110 . . . pattern, based on general arguments for AKLT-type
constructions [68]. Then, the MPS/product states discussed here represent a complete set of
possible root states {|Φd〉}, where d is some label referencing all such states. (Here and in the
following, we may restrict to fixed total angular momentum J to keep the setting finite dimen-
sional). By the above, we always have a parton-like state |ψd〉 whose root state is |Φd〉. We
may now reproduce the proof given in Ref. [14] for the completeness of the states |ψd〉 as zero
modes. By construction, 〈Φd |ψd〉 ̸= 0 yet the matrix 〈Φd ′ |ψd〉 need not be diagonal. Nonethe-
less, for given |ψd〉, every |Φd ′〉 with d ′ ̸= d is not the root state of |ψd〉. If 〈Φd ′ |ψd〉 ≠ 0,
then |Φd ′〉 consists of Slater determinants that can be obtained from those of |Φd〉 via inward-
squeezing processes. This is enough to show that an ordering of the labels {d} exists such
that the matrix 〈Φd ′ |ψd〉 is triangular. Thus, this matrix is invertible. Given any zero-mode
|ψ〉, this fact allows the construction of a superposition |ψ′〉 of parton-like states |ψd〉 such
that 〈Φd |ψ〉 = 〈Φd |ψ′〉. The difference |ψ〉 − |ψ′〉 is then a zero mode that is orthogonal to
all possible root states, a contradiction unless |ψ〉 = |ψ′〉. Therefore, |ψ〉 is a superposition
of |ψd〉’s.

7 Conclusions and outlook

Traditionally, FQH systems have been largely examined either via wave function Ansatz or
effective field theories. The links between these two approaches run deep with illuminating
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insights between edge conformal field theories (CFTs) and bulk polynomial wave functions,
and relations to edge CFTs and topological quantum field theories (TQFTs) on the other. In
this paper, we proceeded along an inter-related third approach rooted in the study of micro-
scopic many-body Hamiltonians. We studied the structure of entangled multiple Landau level
(LL) states and their local (in real space) many-body parent Hamiltonians. Our results may
potentially further help bridge the divide between the above noted microscopic wave functions
and long distance continuum field theories. A focus of our work was the study of universal
structures present in multiple, NL , LL FQH systems. We have studied the general zero-mode
structure of rather general positive semi-definite local Hamiltonians. In our analysis of their
zero modes, a key role was played by the “M -clustering property” of QH wave functions- the
existence of M -th order zeroes near a two-particle coincidence hyperplane. Since Laughlin’s
celebrated construction of his variational wave function for the 1/3 FQH state, numerous wave
functions with M -clustering properties have seen proposed. Laughlin’s wave function can be
expressed as the product of M Slater determinants of lowest LL (LLL) orbitals (expressed in
terms of holomorphic variables), with filling fraction of the form 1/M (odd M). Jain has fur-
ther extended this construct by introducing his composite fermion picture, wherein a single
LL is replaced by multiple Λ-levels. In spite of their immense success in explaining a plethora
of FQH plateaus, all of these states are qualitatively similar to integer QH states. Filling frac-
tions observed at higher LLs, such as [81] 5/2, 12/5, 7/3, and 8/3 are, however, suspected
to exhibit more intricate physics demanding far more complicated wave functions. A unified
systematic understanding of these systems invites the search of general principles and tools of
analysis.

Inspired by these all too well-known challenges, we extended the Hamiltonian approach
to more general FQH states. In the current work, we examined, in great detail, the zero-mode
subspace of the aforementioned local, multiple LL, two-body Hamiltonians. Consequently, we
determined a basis for the Hilbert space formed by polynomials associated with general states
that entangle the different LLs and obey the M -clustering property. We conjectured that these
basis elements are parton-like, i.e., are products of M Slater determinants, and rigorously
demonstrated it for M = 3, NL ≤ 4. These parton-like structures capture a very rich class
of states. Our parent Hamiltonians are frustration-free QH Hamiltonians. The construction
of the Laughlin wave function as the above noted product of Slater determinants—a parton
state built from LLL wave functions satisfying the two-body M -clustering properties—can be
extended in several ways. These principally include the construction of (a) LLL (holomorphic)
wave function with k-body (k> 2) M -clustering properties or, as we pursue in this paper, of (b)
parton states (two-body M -clustering) from multiple LLs. The more traditional approach (a)
gives rise to the Moore-Read (MR) 1/2 state (candidate for 5/2 filling fraction [3]), the Read-
Rezayi (RR) 2/3 state (candidate for 12/5 filling fraction [82]), and many other CFT inspired
states. The MR and RR states are members of a polynomial space satisfying the M -clustering
property. We have, instead, followed the aforementioned approach (b). As emphasized above,
we extended parton states to higher LLs. In particular, we constructed candidate FQH states
that are topologically similar to the MR and RR states. These states not only provide candidate
wave functions for several FQH plateaus but can also be further associated with frustration-
free positive semi-definite two-body parent Hamiltonians in flat bands with higher Chern num-
bers [83]. Our specific analysis focused on degenerate LLs arising when the kinetic energy is
quenched. As such, our results may capture the detailed physics of systems that allow for mix-
ing between multiple nearly flat bands such as those realized in layered graphene [10,84]. In
multi-layer graphene, multiple degenerate LLs can appear with quenched kinetic energy.

Within our parton construction, we are not limited to states with conformal block struc-
tures. Constructing a multiple LL parton state is far more challenging than that of its single
LL counterpart. There exist no effective flux attachment analogies in the former case and the
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resulting wave function can have very different edge excitation than the constituting Slater de-
terminant states. In order to establish these states as the unique densest ground state of some
two-body parent Hamiltonian, we have used fundamental organizing principles, known as the
Entangled Pauli Principles (EPPs). The EPP provides a rigorous zero-mode counting method
for zero-energy excitations and determines, in a way that we make precise, the quintessential
DNA of the densest ground state. The zero-mode counting enabled by the EPP for the non-
holomorphic multiple LL states prompted queries that go beyond known mathematical results.
In particular, our results and resulting conjectures can be interpreted as new developments in
commutative algebra, of which we prove special instances. Specifically, we posit that all poly-
nomials P(z1, z2, . . . , zN , z̄1, z̄2, . . . z̄N ) of complex variables {zi} and their complex conjugates
{z̄i} that (a) adhere to (anti-)symmetry under the interchange of any pair of complex coordi-
nates, (b) satisfy the M -clustering property, and (c) are not of order higher than n = NL − 1
in any z̄i, are linearly spanned by parton-like states. Our study of the EPP and FQH DNAs can
further be used in torus geometry to construct a coherent state description of the ground state
encoding useful information such as exchange statistics and topological classification for the
corresponding parton states.

We have shown that in the toroidal geometry, our parent Hamiltonians satisfy an S-duality.
That is, there exists a duality that links Hamiltonians associated with two different aspect ratios
of the torus (i.e., those with Lx/L y < 1 to those with Lx/L y > 1). The S-duality enabled us to
extract characteristic properties of the QH fluid, being a key ingredient in our approach to the
quasiparticle statistics. For instance, for a QH system in the subspace of four LLs we have ob-
tained the DNA of the fluid and topological classifications. We have furthermore demonstrated
that the excitations are none other than Fibonacci anyons. As is well known, Fibonacci anyons
may provide a simple platform for achieving universal topological quantum computation. In
an earlier work, we found that the corresponding excitations for the Jain-221 state [15] are
Majorana fermions. Majorana and Fibonacci statistics are naturally associated with groups
suggested by underlying TQFTs (related to SU(2)2 and SU(2)3 respectively). Thus, the results
of our braiding analysis exhibit natural connections between the DNA and associated EPPs,
which emerge microscopically in our models, and TQFTs. It is noteworthy that the domain
walls generally arising in our multiple LL setting are not simple domain walls such as those in
classical spin chains nor a tensor product of such defects. Rather, these are bona fide quantum
topological defects that may feature entanglement.

In the context of strongly correlated physics, one often uses the Hilbert space of Slater de-
terminants as a basis for numerical calculations. However, the dimension of the Hilbert space
of parton-like states with an M -clustering property is drastically smaller than the Hilbert space
of Slater determinants. For this reason, we believe that using the Hilbert space of parton-like
states reduces complexity of numerical calculations for strongly correlated many-body systems
such as QH systems, or other non-Fermi liquids. In the particular context of Quantum Monte
Carlo simulations, updating Slater determinants becomes polynomially efficient because of the
Sherman-Morrison formula [85]. This procedure can also be extended to the case of parton-
like states. We postpone the elaboration of these ideas for a later publication.

Beyond our specific results, our work provides a general framework that naturally high-
lights several broad concepts and further underscores several open questions. We elaborate
on one of these below.

The relation between generic parton states and boundary Conformal Field Theories. In the
current work, we derived numerous results for the system bulk. However, apart from insight-
ful Chern-Simons theory type conjectures, [9] a systematic understanding of the edge theory
of general parton states is non-existent. Our general approach to QH states lies outside the
purview of standard CFT framework in which the boundary behaviors are transparent. Indeed,
nowhere in our analysis have we relied on CFT notions. This is partially so since standard CFT
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recipes cannot be straightforwardly applied to general non-holomorphic states such as the one
that we investigate here. Obtaining the associated boundary theories for generic parton states
is a non-trivial challenge.

We next briefly speculate on how our exact many-body Hamiltonian and zero-mode count-
ing based scheme may be effective in establishing the link between non-holomorphic QH states
and their effective boundary theories. The results of our approach must be in a one-to-one cor-
respondence with the zero-mode counting of the conformal edge theory. In the conventional
CFT type modus operandi, plausible CFTs are guessed and, subsequently, a check is performed
to see whether the conformal blocks in these proposed CFTs match with those of the wave
function. Given a candidate CFT, the number of possible edge modes of a given angular mo-
mentum may be computed. Our method should enable the unambiguous identification of the
boundary theory by employing zero-mode counting that can be rigorously established via the
use of the EPPs. This may afford as strong a connection between mixed-LL parton QH states
and their effective edge CFTs as that which one usually takes for granted in the lowest LL.
For the Jain-221 state [15], we have indeed made such a zero-mode counting based “bulk-
boundary correspondence type” connection rigorous. We anticipate such a link to be far more
general. This may complement, especially for non-holomorphic states, the insightful confor-
mal block trick of Moore and Read. In other words, we speculate that a zero-mode counting
of the bulk states (using the precise many-body microscopic Hamiltonian that we employed
in the current work) may, generally, lead to the relevant edge theories. This approach will
not invoke discussions of effective Chern-Simons theories. In particular, such a many-body
based technique may be applicable for generic parton theories for which there are currently
no known CFTs. As we additionally explained in the current work, the coherent state method
enables a way to infer the bulk braiding statistics. Taken together, all of the above ingredients
suggest how our many-body approach may allow unambiguous determination of effective field
theory from microscopic Hamiltonians.
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A Two-particle states: From wave functions to Fock states

Consider the following normalized vacua

|0, 0,2 j −m, m〉=
1
p

(2 j −m)!m!
b†2 j−m

c b†m
r |0〉=

1
p

(2 j −m)!m!

∑

k

Cmjk

2 j
b† j−k

1 b† j+k
2 |0〉 ,

where

〈zc , z̄c; zr , z̄r |0〉=
1
Æ

2πℓ2
c

e
− zc z̄c

4ℓ2c
1
Æ

2πℓ2
r

e
− zr z̄r

4ℓ2r , (A.1)
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Table 8: Quantum numbers labeling the fermionic basis operators T n1,n2−
j,m for fixed j

and NL = 4 LLs.

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
n1 0 0 1 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 3 3 3 3
n2 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 2 2 2 3 3 0 0 0 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 3
m 1 0 2 1 1 3 1 3 0 2 1 3 0 2 4 1 3 5 1 3 0 2 4 0 2 4 1 3 5 0 2 4 6 1 3 5 1 3 5 7

with zc = (z1 + z2)/2, zr = z1 − z2, ℓc = ℓ/
p

2, and ℓr =
p

2ℓ. In this paper, unless specified
otherwise, we set the magnetic length ℓr to be the unit of length, i.e., ℓr = 1 or ℓ= 1/

p
2. On

the torus geometry, for convenience, we will work with ℓ= 1.
Each individual vacuum state is of total angular momentum 2 j and lies in the LLL (i.e., is

a holomorphic state in a first quantization description). In a disk geometry, when using the
symmetric gauge A(xi, yi) =

B
2 (yi x̂ − xi ŷ), the LL and cyclotron-orbit-center ladder operators

become

ai =
1
p

2
(

zi

2ℓ
+ 2ℓ∂z̄i

) , a†
i =

1
p

2
(

z̄i

2ℓ
− 2ℓ∂zi

) ,

bi =
1
p

2
(

z̄i

2ℓ
+ 2ℓ∂zi

) , b†
i =

1
p

2
(

zi

2ℓ
− 2ℓ∂z̄i

) . (A.2)

As a result, the coefficients in the expansion of Eq. (A.1) are given by [24]

Cmjk = (−1)m+ j−k
j−k
∑

q=0

(−1)q
�

2 j −m
q

��

m
j − k− q

�

. (A.3)

This expression indicates that j−k is an integer. Thus, if j is an integer (half-odd integer) then
k is an integer (half-odd integer). The normalized vacua in Eq. (A.1) may be either symmetric
(m ∈ even) or antisymmetric (m ∈ odd) under particle exchange, the fermionic basis states
|I〉F given in Eq. (11) are, by definition, antisymmetric.

We want now to find the Slater determinant decomposition of the two-particle states |I〉F .
This decomposition will allow us to find an immediate representation of the corresponding
state in terms of fermionic operators. In turn, this decomposition will reveal a fundamental
two-particle generator in Fock space. It can be checked that Eq. (11) can be expressed as

|I〉F =
1

Æ

n1!n2! 22 j+1(1+δn1,n2
)

j
∑

k=− j

Cmjk
p

(2 j −m)!m!
Q(k)|0〉 ,

where we have used the property that, for m odd (even), Cmj−k = −(+)Cmjk, and

Q(k) =

�

�

�

�

�

a†n1
1 b† j−k

1 a†n1
2 b† j−k

2

a†n2
1 b† j+k

1 a†n2
2 b† j+k

2

�

�

�

�

�

. (A.4)

In first quantization,

〈z1, z̄1; z2, z̄2|Q(k)|0〉=
Æ

n1!n2!( j − k)!( j + k)! Dα1α2
,

showing that the operator Q(k) is a generator of two-particles Slater determinants. Now defin-
ing

ηk( j, m)≡
√

√ ( j − k)!( j + k)!
22 j−1(2 j −m)!m!

Cmjk , (A.5)

Eq. (12) is obtained.
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B Interaction potential expansion

In this Appendix, we will obtain the general pseudopotential expansion for any sufficiently
short range two-body (rotationally symmetric) interaction. Consider the two-body interaction
V (ri − rj) = V (rij) with Fourier transform

V (rij) =

∫

d2k
(2π)2

Ṽ (k) eik·rij =

∫ ∞

0

dk
2π

kṼ (k) J0(k|rij|) , (B.1)

where J0(x) is the zeroth spherical Bessel function [53]. From the definition of the delta
function

Lα(−ℓ2∇2
ij)δ

2(rij) =

∫

d2q
(2π)2

Lα(ℓ
2q2) eiq·rij =

∫ ∞

0

dq
2π

qLα(ℓ
2q2) J0(q|rij|) , (B.2)

where Lα(x) is the αth Laguerre polynomial [53], and ℓ the magnetic length. We multiply the
last expression by

Vα = ℓ
2

∫ ∞

0

dk2 Ṽ (k) Lα(ℓ
2k2) e−ℓ

2k2
, (B.3)

and sum over the whole range of α’s. After using the identity

ℓ2
∞
∑

α=0

Lα(ℓ
2k2)Lα(ℓ

2q2) = δ(q2 − k2) eℓ
2(k2+q2)/2 ,

we arrive at the pseudopotential expansion [52,86]

V (ri − rj) =
∞
∑

α=0

Vα Lα(−ℓ2∇2
ij)δ

2(ri − rj) . (B.4)

The expansion to lowest order is

V (ri − rj) = (V0 + V1 + V1ℓ
2∇2

ij)δ
2(ri − rj) . (B.5)

Note that terms proportional to δ2(ri− rj) have vanishing matrix elements for fermionic wave
functions.

When projected onto the LLL, the expansion above coincides with the Haldane pseudopo-
tential over the relative angular momentum ħhα= ħhm.

Eigensolutions of Eq. (25) with vanishing eigenvalue must have (at least) third order zeros
when two fermions coalesce. This defines the clustering properties of the zero modes, as we
show next.

Given a zero energy state |Ψ0〉, i.e., 〈Ψ0|Hint |Ψ0〉= 0, assume it is of the general form

Ψ0(Z , Z̄) =
M
∑

q=0

zq
ij z̄M−q

ij Pq(Z , Z̄) e−
1

4ℓ2

∑N
i=1 ziz̄i (B.6)

in coordinate representation, with Z = {z1, z2, · · · , zN} and Z̄ = {z̄1, z̄2, · · · , z̄N}, zij = zi − zj,
z̄ij = z̄i − z̄j, Pq(Z , Z̄) a polynomial symmetric with respect to (zi, z̄i) ↔ (zj, z̄j), and (anti-
)symmetric with respect to other variables exchanges (it does not depend on the coordinate
differences zij, z̄ij), and M an (odd)even integer.

Then, from the zero energy condition and integration by parts

〈Ψ0|Hint |Ψ0〉= V1ℓ
2

∫

dZd Z̄
∑

i<j

δ2(rij)∂zij
∂z̄ij
|Ψ0(Z , Z̄)|2 = 0 , (B.7)

given the general form of Eq. (B.6), M must satisfy M ≥ 2. For fermions, due to antisymmetry,
M should be larger than 3.
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C Projection onto four LLs

Using the states defined in Eq. (11) in the subspace of four LLs such that 0≤ ni ≤ 3 for i= 1,2,
we find a forty dimensional basis (n1+n2 = nc+nr). This basis is not an eigenbasis of relative
angular momentum Lr . In Table 8, we present the set of numbers {n1, n2, m} used to construct
each basis state |I〉F . We express these states (in which subscript F is dropped for brevity) in
terms of |nc , nr , 2 j −m, m〉 (see Section 2.1),

|I〉= Gn1,n2
± |0, 0,2 j −m, m〉=

∑

nc ,nr

Cnc nr
|nc , nr , 2 j −m, m〉 , (C.1)

where
〈zc , z̄c; zr , z̄r |nc , nr , 2 j −m, m〉= φc

nc ,2 j−m(zc , z̄c)φ
r
nr ,m(zr , z̄r) , (C.2)

with Landau orbital defined as [51] (ϑ = c, r)

φϑn,s(z, z̄) =
(−1)n

p
n! e

− zz̄
4ℓ2
ϑ

q

2πℓ2
ϑ

p
2s−ns!

�

z
ℓϑ

�s−n

Ls−n
n

�

zz̄
2ℓ2
ϑ

�

. (C.3)

Here, Ls−n
n (x) is the associated Laguerre polynomial. Due to the fermionic nature of the states

|I〉, Lr/ħh= m− nr ∈ odd. Then, the basis vectors are given by

|1〉= |0,0, 2 j − 1, 1〉 ,
|2〉= |0,1, 2 j, 0〉 ,
|3〉= |0,1, 2 j − 2, 2〉 ,
|4〉= |1,0, 2 j − 1, 1〉 ,

|5〉=
1
p

2
(|2, 0,2 j − 1,1〉 − |0,2, 2 j − 1,1〉) ,

|6〉=
1
p

2
(|2, 0,2 j − 3,3〉 − |0,2, 2 j − 3,3〉) ,

|7〉=
1
p

2
(|2, 0,2 j − 1,1〉+ |0,2, 2 j − 1,1〉) ,

|8〉=
1
p

2
(|2, 0,2 j − 3,3〉+ |0,2, 2 j − 3,3〉) ,

|9〉= |1,1, 2 j, 0〉 ,
|10〉= |1,1, 2 j − 2,2〉,

|11〉=
1
2
(
p

3 |3,0, 2 j − 1,1〉 − |1,2, 2 j − 1, 1〉) ,

|12〉=
1
2
(
p

3 |3,0, 2 j − 3,3〉 − |1,2, 2 j − 3, 3〉) ,

|13〉=
1
2
(|2,1, 2 j, 0〉 −

p
3 |0, 3,2 j, 0〉) ,

|14〉=
1
2
(|2,1, 2 j − 2, 2〉 −

p
3 |0,3, 2 j − 2, 2〉) ,

|15〉=
1
2
(|2,1, 2 j − 4, 4〉 −

p
3 |0,3, 2 j − 4, 4〉) ,

|16〉=
1
p

64
(
p

24|4, 0,2 j − 1,1〉+
p

24|0, 4,2 j − 1,1〉

− 4|2, 2,2 j − 1,1〉) ,
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|17〉=
1
p

64
(
p

24|4, 0,2 j − 3,3〉+
p

24|0, 4,2 j − 3,3〉

− 4|2, 2,2 j − 3,3〉) ,

|18〉=
1
p

64
(
p

24|4, 0,2 j − 5,5〉+
p

24|0, 4,2 j − 5,5〉

− 4|2, 2,2 j − 5,5〉) ,

|19〉=
1
p

24
(
p

3!|3, 0,2 j − 1,1〉+ 3
p

2|1, 2,2 j − 1,1〉) ,

|20〉=
1
p

24
(
p

3!|3, 0,2 j − 3,3〉+ 3
p

2|1, 2,2 j − 3,3〉) ,

|21〉=
1
p

24
(
p

3!|0, 3,2 j, 0〉+ 3
p

2|2, 1,2 j, 0〉) ,

|22〉=
1
p

24
(
p

3!|0, 3,2 j − 2,2〉+ 3
p

2|2, 1,2 j − 2,2〉) ,

|23〉=
1
p

24
(
p

3!|0, 3,2 j − 4,4〉+ 3
p

2|2, 1,2 j − 4,4〉) ,

|24〉=
1
p

12
(
p

3!|1, 3,2 j, 0〉 −
p

3!|3,1, 2 j, 0〉) ,

|25〉=
1
p

12
(
p

3!|1, 3,2 j − 2,2〉 −
p

3!|3, 1,2 j − 2,2〉) ,

|26〉=
1
p

12
(
p

3!|1, 3,2 j − 4,4〉 −
p

3!|3, 1,2 j − 4,4〉) ,

|27〉=
1
p

48
(
p

4!|4, 0,2 j − 1,1〉 −
p

4!|0, 4,2 j − 1,1〉) ,

|28〉=
1
p

48
(
p

4!|4, 0,2 j − 3,3〉 −
p

4!|0, 4,2 j − 3,3〉) ,

|29〉=
1
p

48
(
p

4!|4, 0,2 j − 5,5〉 −
p

4!|0, 4,2 j − 5,5〉) ,

|30〉=
1
p

192
(
p

4!|4, 1,2 j, 0〉+
p

5!|0,5, 2 j, 0〉

− 4
p

3|2,3, 2 j, 0〉) ,

|31〉=
1
p

192
(
p

4!|4, 1,2 j − 2,2〉+
p

5!|0,5, 2 j − 2,2〉

− 4
p

3|2,3, 2 j − 2, 2〉) ,

|32〉=
1
p

192
(
p

4!|4, 1,2 j − 4,4〉+
p

5!|0,5, 2 j − 4,4〉

− 4
p

3|2,3, 2 j − 4, 4〉) ,

|33〉=
1
p

192
(
p

4!|4, 1,2 j − 6,6〉+
p

5!|0,5, 2 j − 6,6〉

− 4
p

3|2,3, 2 j − 6, 6〉) ,

|34〉=
1
p

192
(
p

5!|5, 0,2 j − 1,1〉+
p

4!|1,4, 2 j − 1,1〉

− 4
p

3|3,2, 2 j − 1, 1〉) ,

|35〉=
1
p

192
(
p

5!|5, 0,2 j − 3,3〉+
p

4!|1,4, 2 j − 3,3〉

− 4
p

3|3,2, 2 j − 3, 3〉) ,
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|36〉=
1
p

192
(
p

5!|5, 0,2 j − 5,5〉+
p

4!|1,4, 2 j − 5,5〉

− 4
p

3|3,2, 2 j − 5, 5〉) ,

|37〉=
1

p
2304

(
p

6!|6,0, 2 j − 1,1〉

− 3
p

4!
p

2|4,2, 2 j − 1,1〉 −
p

6!|0,6, 2 j − 1, 1〉

+ 3
p

4!
p

2|2,4, 2 j − 1,1〉) ,

|38〉=
1

p
2304

(
p

6!|6,0, 2 j − 3,3〉

− 3
p

4!
p

2|4,2, 2 j − 3,3〉 −
p

6!|0,6, 2 j − 3, 3〉

+ 3
p

4!
p

2|2,4, 2 j − 3,3〉) ,

|39〉=
1

p
2304

(
p

6!|6,0, 2 j − 5,5〉

− 3
p

4!
p

2|4,2, 2 j − 5,5〉 −
p

6!|0,6, 2 j − 5, 5〉

+ 3
p

4!
p

2|2,4, 2 j − 5,5〉) ,

|40〉=
1

p
2304

(
p

6!|6,0, 2 j − 7,7〉

− 3
p

4!
p

2|4,2, 2 j − 7,7〉 −
p

6!|0,6, 2 j − 7, 7〉

+ 3
p

4!
p

2|2,4, 2 j − 7,7〉) . (C.4)

Notice that all these 40 vectors contain a vector component |nc , nr , 2 j −m, m〉 with Lr = ±1ħh.
These vectors are the ones that lead to non-vanishing matrix elements of the TK Hamilto-
nian. States |I〉 with m > 7 components do not contribute to the subspace of positive energy
eigenvalues since max(nr) = 6.

We have diagonalized the interaction potential in this basis and obtained only 12 non-
zero positive eigenvalues Eξ, ξ = 1, · · · , 12. The expansion coefficients ΛξI are presented as
elements of a 40× 12 matrix in Table 9, with (I ,ξ) specifying number of rows and columns,
respectively.

D The boundary root pattern

Here, we follow the method of Section 3.2.3 to establish the left boundary conditions for a
generic N -particle zero-energy ground state |Ψ0〉 with NL = 4 LLs. By left boundary con-
ditions, we specifically refer to the allowed negative angular momentum orbitals of |Ψroot〉.
Two-fermion operators T ξ−j and their linear superpositions annihilate |Ψ0〉. For the present

purposes, a convenient linear superposition, T ξ
′

j , is shown in Table 10. Near the boundary,
since the two-body basis elements must obey

n1 + n2 −m≥ −2 j , (D.1)

not all two-fermion operators T ξ
′

j satisfy the constraint. For example, when j = −3 + 1/2
= −5/2 only two-fermion operators with ξ′ = 1,2 are well defined. When j = −2, the well
defined two-fermion operators are ξ′ = 1, · · · , 4. For j = −3/2, we get ξ′ = 1, · · · , 6. And for
j = −1, we get ξ′ = 1, · · · , 8.

To study the multiplicity of orbitals with −3 < j < 0, we can utilize Eq. (65). Note that
the smallest angular momentum orbital j = −3 can only be occupied by a single electron.
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Table 9: The matrix ΛξI , with ξ= 1, · · · , 12 and I = 1, · · · , 40.
















































































































































































− 4p
35

0 0 0 0 0 0 0 0 0 0 0

0
p

17−1p
30

0 0 −
p

17+1p
30

0 0 0 0 0 0 0

4
q

2
35 0 0 0 0 0 0 0 0 0 0 0

0 0 2
q

2
5 0 0 0 0 0 0 0 0 0

0 2
q

2
15 0 0 2

q

2
15 0 0 0 0 0 0 0

2
q

6
35 0 0 0 0 0 0 0 0 0 0 0

0 −
q

2
15

�p
17− 3
�

0 0
q

2
15

�p
17+ 3
�

0 0 0 0 0 0 0

−2
q

6
35 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1−
p

33
4
p

2
0 0

p
33+1
4
p

2
0 0 0 0 0

0 0 − 4p
5

0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 −1 0 0 0 0 0

0 0 −
q

6
5 0 0 0 0 0 0 0 0 0

0 0 0 0 0 5−
p

57
4
p

3
0 0 0

p
57+5
4
p

3
0 0

0 −
p

17+7
2
p

30
0 0 −7−

p
17

2
p

30
0 0 0 0 0 0 0

−4
q

3
35 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −
q

2
3 0 0 0 −

q

2
3 0 0

0 − 2p
5

0 0 − 2p
5

0 0 0 0 0 0 0

−
q

6
7 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
2

�p
11−

p
3
�

0 0 −1
2

�p
3+
p

11
�

0 0 0 0 0

0 0 3
q

2
5 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
4

�

5−
p

57
�

0 0 0 1
4

�p
57+ 5
�

0 0

0 3
p

17−11
2
p

10
0 0 −3

p
17+11

2
p

10
0 0 0 0 0 0 0

4p
35

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
8

�p
89− 5
�

0 0 −1
8

�p
89+ 5
�

0
0 0 0 1

8

�

5
p

3+
p

11
�

0 0 1
8

�

5
p

3−
p

11
�

0 0 0 0 0
0 0 4p

5
0 0 0 0 0 0 0 0 0

0 0 0 0 0
p

57−9
3
p

2
0 0 0 −

p
57+9
3
p

2
0 0

0
p

17−1p
15

0 0 −
p

17+1p
15

0 0 0 0 0 0 0

2
q

2
7 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
4

�p
43− 3

p
3
�

0 0 −1
4

�

3
p

3+
p

43
�

0 0 0 0 0 1
12

�p
57+ 3
�

0 0 0 1
12

�

3−
p

57
�

0 0

0
p

17+15
4
p

15
0 0 15−

p
17

4
p

15
0 0 0 0 0 0 0

2
q

3
7 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0

















































































































































































When orbitals with j = −2 are occupied by two electrons, the resultant root state with a
single coefficient C j

n1,n2
= C−2

2,3 has to satisfy 4 constraints from Eq. (65). As a result, the
multiplicity two in j = −2 orbitals is not allowed. Similarly, j = −1 orbitals occupied by
two electrons cannot be allowed since such a root state has only 3 coefficients C−1

n1,n2
, which

cannot simultaneously satisfy the 8 constraints of Eq. (65). As a result, in a generic root state,
we conclude that multiplicity of j < 0 orbitals can be at most one. That is, 111 · · · , 110 · · · ,
101 · · · , 011 · · · , 100 · · · , 010 · · · , or 001 · · · , where · · · refers to some bulk root pattern with
orbitals j ≥ 0.

The root pattern 111 · · · can have 6 coefficients. Steps similar to those that led to Eq. (64)
can be followed to obtain constraints governing the appearance of Slater determinants of the
form |n〉 = c†

n1, j−k′ c
†
n2, j+k′ |n2〉 in the root state. However, the corresponding root state must

simultaneously satisfy the j = −5/2, −2, −3/2 constraints which indicates that such a pat-
tern is not possible. The patterns 110 · · · , 101 · · · , and 011 · · · have, respectively, 2, 4, and 6
coefficients that are needed to satisfy, in each case, just as many constraints.

Invoking the linear independence of the equations, in the homogeneous set of linear equa-
tions, leads to only the trivial solution, where all the coefficients are zero. As a result, none of
the patterns with two particles occupying the j < 0 orbitals are allowed.

Consequently, in a root state satisfying the EPP conditions in the bulk ( j ≥ 0) the boundary
orbitals ( j < 0) can only be occupied with a single particle. For example, pattern 100 · · · is
generally allowed (N ≥ 2). Fusing this admissible left boundary and the densest bulk patterns,
and assuming no change in the bulk pattern to ensure the existence of no excitation, we obtain
that the densest pattern consistent with the EPP is the root pattern

100200200 . . . 2002 . (D.2)
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Table 10: T I
j ≡ T n1,n2,−

j,m , for I (n1, n2 m) given in Table 8. The ground state |Ψ0〉

satisfies 12 linear constraints, T ξ
′

j |Ψ0〉= 0, for ξ′ = 1, · · · , 12. These constraints are

established using the matrix ΛξI in Table 9.

ξ′ T ξ
′

j

1 T30
j

2 T37
j

3 T24
j

4 T34
j

5
p

3T13
j + 3T21

j − 2
p

2T27
j − T31

j

6 − 2p
3

T13
j +
q

2
3 T16

j − 2T21
j + 2

p
2T27

j − T38
j

7
p

6T9
j − 4T19

j − T25
j

8 T11
j + 3

p
3T19

j − T35
j − 2

p
2T9

j

9
p

2T14
j − 2

p
2T2

j − 3
p

6T22
j − 4T28

j − T32
j + 4

p
2T7

j

10 4p
5

T10
j +
q

6
5 T12

j − 3
q

2
5 T20

j −
4p
5

T26
j − T36

j − 2
q

2
5 T4

j

11 −2
q

2
15 T14

j +
2p
5

T17
j + 8
q

2
15 T2

j + 14
q

2
5 T22

j +
16p
15

T28
j − T39

j − 2
q

2
15 T5

j − 6
q

6
5 T7

j

12 4p
35

T1
j + 4
q

3
35 T15

j +
q

6
7 T18

j −
4p
35

T23
j − 2
q

2
7 T29

j − 4
q

2
35 T3

j − 2
q

3
7 T33

j − T40
j − 2
q

6
35 T6

j + 2
q

6
35 T8

j

E Braiding statistics: Proof of Eq. (75)

ψn, j =
1
p

L

∑

j′
ω j j′ψ̄n, j′ =

1
p

L

∑

j′,s′
ei 2π

L j j′φ̄n, j′+s′L =
1
p

L

∑

j′,s,s′
ei 2π

L ( j+sL)( j′+s′L)φ̄n, j′+s′L

=
1
p

L

∑

s, j′
ei 2π

L ( j+sL) j′φ̄n, j′

=⇒ ψn, j =
1
p

L

∑

s, j′
ei 2π

L ( j+sL) j′e−i2π j′x∆Hn

�

p

−i2πτL
�

y∆ −
j′

L

��

e
iπτL
�

y∆−
j′
L

�2

=⇒ ψn, j =
1
p

L

∑

s, j′
e

i2πL
�

y∆−
j′
L −y∆
�
�

x∆−
j
L−s
�

Hn

�

p

−i2πτL
�

y∆ −
j′

L

��

e
iπτL
�

y∆−
j′
L

�2

=⇒ ψn, j = e−i2πLx∆ y∆
∑

s

e2π( j+sL)y∆ 1
p

L

∑

j′
e

i2πL
�

y∆−
j′
L

�
�

x∆−
j
L−s
�

×Hn

�

p

−i2πτL
�

y∆ −
j′

L

��

e
iπτL
�

y∆−
j′
L

�2

=⇒ ψn, j = e−i2πLx∆ y∆
∑

s

e2π( j+sL)y∆Hn

�√

√

i2π
L
τ

�

x −
j
L
− s
�

�

e−iπ L
τ

�

x− j
L−s
�2

= e−i2πLx∆ y∆
∑

s

φn, j+sL .

80

https://scipost.org
https://scipost.org/SciPostPhys.15.2.043


SciPost Phys. 15, 043 (2023)

References

[1] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108,
1175 (1957), doi:10.1103/PhysRev.108.1175.

[2] R. B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum
fluid with fractionally charged excitations, Phys. Rev. Lett. 50, 1395 (1983),
doi:10.1103/PhysRevLett.50.1395.

[3] G. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B
360, 362 (1991), doi:10.1016/0550-3213(91)90407-O.

[4] W. N. Faugno, A. C. Balram, M. Barkeshli and J. K. Jain, Prediction of a non-Abelian
fractional quantum Hall state with f-wave pairing of composite fermions in wide quantum
wells, Phys. Rev. Lett. 123, 016802 (2019), doi:10.1103/PhysRevLett.123.016802.

[5] S. C. Zhang, T. H. Hansson and S. Kivelson, Effective-field-theory model for the fractional
quantum Hall effect, Phys. Rev. Lett. 62, 82 (1989), doi:10.1103/PhysRevLett.62.82.

[6] A. Lopez and E. Fradkin, Fractional quantum Hall effect and Chern-Simons gauge theories,
Phys. Rev. B 44, 5246 (1991), doi:10.1103/PhysRevB.44.5246.

[7] J. K. Jain, Fractional quantum Hall effects: New developments, World Scientific, Singapore,
ISBN 9789811217487 (2020), doi:10.1142/11751.

[8] J. K. Jain, Incompressible quantum Hall states, Phys. Rev. B 40, 8079(R) (1989),
doi:10.1103/PhysRevB.40.8079; Theory of the fractional quantum Hall effect, Phys. Rev.
B 41, 7653 (1990), doi:10.1103/PhysRevB.41.7653.

[9] X. G. Wen, Projective construction of non-Abelian quantum Hall liquids, Phys.
Rev. B 60, 8827 (1999), doi:10.1103/PhysRevB.60.8827; Theory of the edge
states in fractional quantum Hall effect, Int. J. Mod. Phys. B 06, 1711 (1992),
doi:10.1142/S0217979292000840.

[10] Y.-H. Wu, T. Shi and J. K. Jain, Non-Abelian parton fractional quantum Hall effect in mul-
tilayer graphene, Nano Lett. 17, 4643 (2017), doi:10.1021/acs.nanolett.7b01080.

[11] A. C. Balram, S. Mukherjee, K. Park, M. Barkeshli, M. S. Rudner and J. K. Jain, Fractional
quantum Hall effect at ν = 2 + 6/13: The parton paradigm for the second Landau level,
Phys. Rev. Lett. 121, 186601 (2018), doi:10.1103/PhysRevLett.121.186601; A. C.
Balram, M. Barkeshli, and M. S. Rudner, Parton construction of a wave function in the
anti-Pfaffian phase, Phys. Rev. B 98, 035127 (2018), doi:10.1103/PhysRevB.98.035127;
Parton construction of particle-hole-conjugate Read-Rezayi parafermion frac-
tional quantum Hall states and beyond, Phys. Rev. B 99, 241108(R) (2019),
doi:10.1103/PhysRevB.99.241108; A. C. Balram, Abelian parton state for the
ν = 4/11 fractional quantum Hall effect, Phys. Rev. B 103, 155103 (2021),
doi:10.1103/PhysRevB.103.155103.

[12] F. D. M. Haldane, Fractional quantization of the Hall effect: A hierarchy of incompressible
quantum fluid states, Phys. Rev. Lett. 51, 605 (1983), doi:10.1103/PhysRevLett.51.605.

[13] S. A. Trugman and S. Kivelson, Exact results for the fractional quantum Hall effect with
general interactions, Phys. Rev. B 31, 5280 (1985), doi:10.1103/PhysRevB.31.5280.

81

https://scipost.org
https://scipost.org/SciPostPhys.15.2.043
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1103/PhysRevLett.123.016802
https://doi.org/10.1103/PhysRevLett.62.82
https://doi.org/10.1103/PhysRevB.44.5246
https://doi.org/10.1142/11751
https://doi.org/10.1103/PhysRevB.40.8079
https://doi.org/10.1103/PhysRevB.41.7653
https://doi.org/10.1103/PhysRevB.60.8827
https://doi.org/10.1142/S0217979292000840
https://doi.org/10.1021/acs.nanolett.7b01080
https://doi.org/10.1103/PhysRevLett.121.186601
https://doi.org/10.1103/PhysRevB.98.035127
https://doi.org/10.1103/PhysRevB.99.241108
https://doi.org/10.1103/PhysRevB.103.155103
https://doi.org/10.1103/PhysRevLett.51.605
https://doi.org/10.1103/PhysRevB.31.5280


SciPost Phys. 15, 043 (2023)

[14] S. Bandyopadhyay, L. Chen, M. T. Ahari, G. Ortiz, Z. Nussinov and A. Seidel, Entan-
gled Pauli principles: The DNA of quantum Hall fluids, Phys. Rev. B 98, 161118 (2018),
doi:10.1103/PhysRevB.98.161118.

[15] S. Bandyopadhyay, G. Ortiz, Z. Nussinov and A. Seidel, Local two-body parent
Hamiltonians for the entire Jain sequence, Phys. Rev. Lett. 124, 196803 (2020),
doi:10.1103/PhysRevLett.124.196803.

[16] X. G. Wen, Non-Abelian statistics in the fractional quantum Hall states, Phys. Rev. Lett. 66,
802 (1991), doi:10.1103/PhysRevLett.66.802.

[17] E. McCann and V. I. Fal’ko, Landau-level degeneracy and quantum Hall effect in a graphite
bilayer, Phys. Rev. Lett. 96, 086805 (2006), doi:10.1103/PhysRevLett.96.086805.

[18] Y. Barlas, K. Yang and A. MacDonald, Quantum Hall effects in graphene-based two-
dimensional electron systems, Nanotechnology 23, 052001 (2012), doi:10.1088/0957-
4484/23/5/052001.

[19] W. N. Faugno, J. K. Jain and A. C. Balram, Non-Abelian fractional quan-
tum Hall state at 3/7-filled Landau level, Phys. Rev. Res. 2, 033223 (2020),
doi:10.1103/PhysRevResearch.2.033223.

[20] B. A. Bernevig and F. D. M. Haldane, Model fractional quantum Hall states and Jack poly-
nomials, Phys. Rev. Lett. 100, 246802 (2008), doi:10.1103/PhysRevLett.100.246802.

[21] A. Seidel, H. Fu, D.-H. Lee, J. M. Leinaas and J. Moore, Incompressible quan-
tum liquids and new conservation laws, Phys. Rev. Lett. 95, 266405 (2005),
doi:10.1103/PhysRevLett.95.266405.

[22] A. Seidel and D.-H. Lee, Abelian and non-Abelian Hall liquids and charge-density wave:
Quantum number fractionalization in one and two dimensions, Phys. Rev. Lett. 97, 056804
(2006), doi:10.1103/PhysRevLett.97.056804.

[23] X.-G. Wen and Z. Wang, Classification of symmetric polynomials of infinite variables: Con-
struction of Abelian and non-Abelian quantum Hall states, Phys. Rev. B 77, 235108 (2008),
doi:10.1103/PhysRevB.77.235108.

[24] G. Ortiz, Z. Nussinov, J. Dukelsky and A. Seidel, Repulsive interactions in quan-
tum Hall systems as a pairing problem, Phys. Rev. B 88, 165303 (2013),
doi:10.1103/PhysRevB.88.165303.

[25] T. Mazaheri, G. Ortiz, Z. Nussinov and A. Seidel, Zero modes, bosonization, and topolog-
ical quantum order: The Laughlin state in second quantization, Phys. Rev. B. 91, 085115
(2015), doi:10.1103/PhysRevB.91.085115.

[26] J. K. Jain, S. A. Kivelson and N. Trivedi, Scaling theory of the fractional quantum Hall
effect, Phys. Rev. Lett. 64, 1297 (1990), doi:10.1103/PhysRevLett.64.1297.

[27] E. H. Rezayi and A. H. MacDonald, Origin of the ν = 2/5 fractional quantum Hall effect,
Phys. Rev. B 44, 8395 (1991), doi:10.1103/PhysRevB.44.8395.

[28] L. Chen, S. Bandyopadhyay and A. Seidel, Jain-2/5 parent Hamiltonian: Structure of zero
modes, dominance patterns, and zero mode generators, Phys. Rev. B 95, 195169 (2017),
doi:10.1103/PhysRevB.95.195169.

82

https://scipost.org
https://scipost.org/SciPostPhys.15.2.043
https://doi.org/10.1103/PhysRevB.98.161118
https://doi.org/10.1103/PhysRevLett.124.196803
https://doi.org/10.1103/PhysRevLett.66.802
https://doi.org/10.1103/PhysRevLett.96.086805
https://doi.org/10.1088/0957-4484/23/5/052001
https://doi.org/10.1088/0957-4484/23/5/052001
https://doi.org/10.1103/PhysRevResearch.2.033223
https://doi.org/10.1103/PhysRevLett.100.246802
https://doi.org/10.1103/PhysRevLett.95.266405
https://doi.org/10.1103/PhysRevLett.97.056804
https://doi.org/10.1103/PhysRevB.77.235108
https://doi.org/10.1103/PhysRevB.88.165303
https://doi.org/10.1103/PhysRevB.91.085115
https://doi.org/10.1103/PhysRevLett.64.1297
https://doi.org/10.1103/PhysRevB.44.8395
https://doi.org/10.1103/PhysRevB.95.195169


SciPost Phys. 15, 043 (2023)

[29] E. Ardonne, Domain walls, fusion rules, and conformal field theory in the quantum Hall
regime, Phys. Rev. Lett. 102, 180401 (2009), doi:10.1103/PhysRevLett.102.180401.

[30] E. Ardonne, E. J. Bergholtz, J. Kailasvuori and E. Wikberg, Degeneracy of non-Abelian
quantum Hall states on the torus: Domain walls and conformal field theory, J. Stat. Mech.:
Theory Exp. P04016 (2008), doi:10.1088/1742-5468/2008/04/P04016.

[31] J. Fröhlich and F. Gabbiani, Braid statistics in local quantum theory, Rev. Math. Phys. 2,
251 (1990), doi:10.1142/S0129055X90000107.

[32] R. Haag, Local quantum physics: Fields, particles, algebras, Springer, Berlin, Heidelberg,
Germany, ISBN 9783540610496 (1996), doi:10.1007/978-3-642-61458-3.

[33] J. Flavin and A. Seidel, Abelian and non-Abelian statistics in the coherent state representa-
tion, Phys. Rev. X 1, 021015 (2011), doi:10.1103/PhysRevX.1.021015.

[34] J. Flavin, R. Thomale and A. Seidel, Gaffnian holonomy through the coherent state method,
Phys. Rev. B 86, 125316 (2012), doi:10.1103/PhysRevB.86.125316.

[35] A. Seidel and D.-H. Lee, Domain-wall-type defects as anyons in phase space, Phys. Rev. B
76, 155101 (2007), doi:10.1103/PhysRevB.76.155101.

[36] A. Seidel, Pfaffian statistics through adiabatic transport in the 1D coherent state represen-
tation, Phys. Rev. Lett. 101, 196802 (2008), doi:10.1103/PhysRevLett.101.196802.

[37] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003),
doi:10.1016/S0003-4916(02)00018-0.

[38] P. H. Bonderson, Non-Abelian anyons and interferometry, PhD thesis, California Institute
of Technology, USA (2007), doi:10.7907/5NDZ-W890.

[39] M. H. Freedman, M. J. Larsen and Z. Wang, A modular finction which is
universal for quantum computation, Commun. Math. Phys. 228, 177 (2002),
doi:10.1007/s002200200645.

[40] M. H. Freedman, A. Y. Kitaev, M. J. Larsen and Z. Wang, Topological quantum computation,
Bull. Amer. Math. Soc. 40, 31 (2003), doi:10.1090/S0273-0979-02-00964-3.

[41] F. Wilczek and A. Zee, Appearance of gauge structure in simple dynamical systems, Phys.
Rev. Lett. 52, 2111 (1984), doi:10.1103/PhysRevLett.52.2111.

[42] G. Rigolin and G. Ortiz, Adiabatic perturbation theory and geometric phases for degenerate
systems, Phys. Rev. Lett. 104, 170406 (2010), doi:10.1103/PhysRevLett.104.170406;
Adiabatic theorem for quantum systems with spectral degeneracy, Phys. Rev. A 85, 062111
(2012), doi:10.1103/PhysRevA.85.062111.

[43] N. Read and E. Rezayi, Beyond paired quantum Hall states: Parafermions and in-
compressible states in the first excited Landau level, Phys. Rev. B 59, 8084 (1999),
doi:10.1103/PhysRevB.59.8084.

[44] L. Hormozi, N. E. Bonesteel and S. H. Simon, Topological quantum com-
puting with Read-Rezayi states, Phys. Rev. Lett. 103, 160501 (2009),
doi:10.1103/PhysRevLett.103.160501.

[45] A. Vaezi and M. Barkeshli, Fibonacci anyons from Abelian bilayer quantum Hall states,
Phys. Rev. Lett. 113, 236804 (2014), doi:10.1103/PhysRevLett.113.236804.

83

https://scipost.org
https://scipost.org/SciPostPhys.15.2.043
https://doi.org/10.1103/PhysRevLett.102.180401
https://doi.org/10.1088/1742-5468/2008/04/P04016
https://doi.org/10.1142/S0129055X90000107
https://doi.org/10.1007/978-3-642-61458-3
https://doi.org/10.1103/PhysRevX.1.021015
https://doi.org/10.1103/PhysRevB.86.125316
https://doi.org/10.1103/PhysRevB.76.155101
https://doi.org/10.1103/PhysRevLett.101.196802
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.7907/5NDZ-W890
https://doi.org/10.1007/s002200200645
https://doi.org/10.1090/S0273-0979-02-00964-3
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1103/PhysRevLett.104.170406
https://doi.org/10.1103/PhysRevA.85.062111
https://doi.org/10.1103/PhysRevB.59.8084
https://doi.org/10.1103/PhysRevLett.103.160501
https://doi.org/10.1103/PhysRevLett.113.236804


SciPost Phys. 15, 043 (2023)

[46] Z. Liu, A. Vaezi, K. Lee and E.-A. Kim, Non-Abelian phases in two-component ν= 2/3 frac-
tional quantum Hall states: Emergence of Fibonacci anyons, Phys. Rev. B 92, 081102(R)
(2015), doi:10.1103/PhysRevB.92.081102.
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