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Abstract

We generalize the area-law violating models of Fredkin and Motzkin spin chains into
two dimensions by building quantum six- and nineteen-vertex models with correlated
interactions. The Hamiltonian is frustration free, and its projectors generate ergodic dy-
namics within the subspace of height configuration that are non negative. The ground
state is a volume- and color-weighted superposition of classical bi-color vertex config-
urations with non-negative heights in the bulk and zero height on the boundary. The
entanglement entropy between subsystems has a phase transition as the g-deformation
parameter is tuned, which is shown to be robust in the presence of an external field acting
on the color degree of freedom. The ground state undergoes a quantum phase transition
between area- and volume-law entanglement phases with a critical point where entan-
glement entropy scales as a function LlogL of the linear system size L. Intermediate
power law scalings between LlogL and L? can be achieved with an inhomogeneous de-
formation parameter that approaches 1 at different rates in the thermodynamic limit.
For the g > 1 phase, we construct a variational wave function that establishes an upper
bound on the spectral gap that scales as q~L°/8,
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1 Introduction

Entanglement entropy (EE) and its scaling has been a central theme of quantum many-body
physics [1], not only because entanglement is a unique feature in the quantum world by itself,
but also for their crucial role in determining the computational complexity of the numerical
simulations of quantum many-body systems [2], indication of topological order [3] and un-
derstanding of the holographic principle and black hole entropy [4]. While EE of a generic
eigenstate in the Hilbert space is shown to scale with the systems size [5], EE of the ground
states of gapped local Hamiltonians are generally observed to obey the so-called area-law,
scaling with the size of the boundary. A milestone in the study of area-law has been Hast-
ings’ rigorous proof of the result in one-dimensional systems [6]. Recently, a similar result
in two-dimension has been proven for frustration-free models [7]. While area-law has been
ubiquitous in gapped systems, plenty of examples of area-law violation has also been found
in various gapless systems. (1+1)-dimensional critical system described by a conformal field
theory has EE of logarithmic scaling [8,9]. EE of a system consisting of free fermions with
a Fermi sea in dimension d scales as L% ' logL [10]. On the other hand, violations beyond
logarithmic have only been known in one dimension so far.!

Quantum vertex and height models are an invaluable tool for the description of phases of
strongly correlated systems [12-15]. They often emerge as an efficient description of quantum
dimer models where strong local constraints facilitate the existence of a well defined “height”
degree of freedom. In such models, a ground state may be well described in terms of a height
field and its fluctuations. When coupled to other local degrees of freedom in such a way that
the height field remains single valued, it is possible to enrich the model to use the fluctuating
height field in order to further mediate correlations. One of the most spectacular examples of
such a behavior is exhibited in the colored Motzkin and Fredkin spin chains [16-22], where
the height degree of freedom can assist in generating an extensive entanglement entropy in
the ground state. Such ground states thus exhibit a maximal violation of entanglement “area
law”. It is important to note that the degrees of freedom associated with the height field,
due to continuity constraints, although playing a crucial role in facilitating the entanglement
contribution from the color degree of freedom to be discussed in this work, cannot solely
reproduce such area violation in higher dimensions by itself [23]. In this paper we construct
a bicolor six- and nineteen-vertex models that admit exactly such behavior, in analogy with
the recent lozenge tiling based model we have presented [24]. Our models are frustration
free, with ground states being superpositions of surfaces with colorings, when viewed along
a horizontal or vertical direction, obeying the coloring rules of arrays of colored Fredkin or
Motzkin spin chains.

The paper is organized as follows. In Sec. 2, we quickly review the definition of Fred-
kin and Motzkin chains in one dimension and their common entanglement phase diagram.
In Sec. 3, we first introduce the six-vertex construction of coupled Fredkin chains, with the
Hamiltonian and its ground state explicitly written. In Sec. 4, the EE scaling of the ground
state is extracted from a field theory description of the random surfaces in the ground state
superposition, showing an entanglement phase transition of the g-deformation parameter. In
Sec. 5, an upper bound on the spectral gap of the highly entangled phase is provided with a
variational wave function. Sec. 6 sketches a similar nineteen-vertex construction of coupled
Motzkin chains with similar EE scalings based on the previous sections. Finally, a summary
and discussions of future direction are given in Sec. 7.

A recent model with extensive entanglement has been found with a different mechanism in two dimensional
space, but the lattice of the system has Hausdorff dimension one [11].
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Figure 1: Two configurations of a colored Fredkin chain of length 8 that differ by the
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ground state superposition with a relative weight of q.

two local configurations related by the projector
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2 Review of the colored Fredkin and Motzkin chains

The colored Fredkin spin chain [20-22] has a local Hilbert space of spin-% with two colors (red
and blue) for up and down spins. It has a unique ground state as a superposition of colored
Dyck walks/paths, which are random walks starting and ending at the origin and staying on
one side in between, when spin up and down are mapped to an up and down move respectively,
as depicted in Fig. 1. Its parent Hamiltonian consists of projection operators designed to make
the ground state orthogonal to the projection onto the vectors

C1,€2,C3 Cz Cy
Fl,j > o J+1> T lJ+1TJ+2>
(D
FCI:CZ:C3 Cz C1
2,j =q ]+1 ]+1

in the spin or height sector to enforce weighted superposition of Dyck paths of different height
between the j’th and (j + 1)’th spin, and

1) =15d500) = | Tidje) » 2)

in the color sector to enforce a balanced mixture of coloring of neighboring up-down pairs.
Together with the projectors that applies energy penalty on color mismatching in the bulk and
starting or ending the chain in the wrong direction, the Hamiltonian of the colored Fredkin

chain is
1
H=3 > Y L

j=2a=1¢, c2c3—rb

+Z( J|+|TJ J+1><TJ J+1|+|TJ J+1><TJ J+1|) 3)
+ Z (ENIERIANH))

c=r,b

Cl €2,C3 > <FC1,Cz,C3

a ] a)]

where the q-deformed integer 2 is defined as [2], :=q + q!. Its ground state can be written

as
1 1 A(w
G =+ 2, a7, @

F yecolored Dyck walks

where A is the normalization constant and A(w) denotes the area underneath the Dyck
path w.

The integer spin counterpart of colored Fredkin chain is called colored Motzkin chain [17,
18], for its ground state is a superposition of Motzkin paths/walks, which are Dyck paths
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Figure 2: The common entanglement phase diagram of colored Fredkin and
Motzkin chains.

diluted with spin-0’s or flat steps. The bulk Hamiltonian projects onto the vectors orthogonal
to the superposition in the ground state

‘Mlc’j> ‘T 0]+1 ‘O TJ+1
‘Mg,j = ‘0 lJ+1 ’l OJ+1 (5)
‘MC 150) = [001) -

As color matching is automatically enforced, the colored Motzkin Hamiltonian is just the sum
over these bulk terms and the same boundary terms as the Fredkin Hamiltonian.

). ©
The ground state of the colored Motzkin chain is given as

1 w
GSw) =7+ > ¢ ™w), 7)

M yecolored Motzkin walks

where Ny, is the normalization constant and .A(w) denotes the area underneath the Motzkin
path w.

When a cut in the middle separates the chain into two subsystems, both of the ground
states (4) and (7) can be Schmidt decomposed by the height m of the path in the middle at
the cut, and the coloring of the m spins in one of the subsystems, which is to be matched with
those in the other subsystem

L/2

|GSrany) = Z\/_ Z Wi ® Wik ®)

where |W§l )L’R are the normalized superposition of all paths on the left and right subsystems
that have height m in the middle point. Any such walk will have m uncompensated up spins
on the left whose colors are exactly matched with m down spins respectively on the right
subsystem. The vector ¢ specifies the colors of the extra up steps on the left. The Schmidt
coefficient p,, determines the EE of the half chain

L/2
Sp=— Z 2"pp 10g Py - )

m=0

Detailed analysis of the probability distribution of m or its weighted average among the
Motzkin and Fredkin walks shows that the two model share the same phase diagram 2, char-
acterized by the scaling of half chain EE [17,18,20-22].
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Figure 3: (a) A coloring of the minimal height configuration configuration of a lat-
tice of linear size 6. Three colors are used to manifest the matching pattern. The
shaded area with dashed line boundary marks the subsystem A, where the location
of the cut giving rise to the Schmidt decomposition (19) is along the left coloumn of
vertical spins. Then numbers in the plaquettes indicate the height configuration in
the dual lattice. (In both (a) and (b), an additional green color is used to illustrate
the pairing of up-down spins at the same hight that match in color, even though in
the rest of the paper, the local Hilbert space of the model is defined with only red
and blue color.) (b) A coloring of the maximal height configuration. The heights
in the i’th square of plaquettes counting from boundary inward alternates between
i and i + 1.(c) The convention of positive direction of the spins living on the array
of horizontal chains S® and vertical chains S" at vertex (i, j), along with the other 5
allowed vertex configurations.

3 Six-vertex construction of coupled Fredkin chains

The degrees of freedom of the model live on the edges or bonds between vertices of a square
lattice of linear size L. They can be decomposed into two arrays of one-dimensional spin-%
chains, one horizontally and one vertically aligned. Each of the edges in the array of horizontal
(resp. vertical) chains can have a spin S" (resp. S¥) either up or down (resp. left or right)
corresponding to :l:%. These two sets of degrees of freedom are coupled to each other by the
ice rule [25,26] in Fig. 3 (c), enforced by the bulk local Hamiltonian

L

2
_ h h
Hy= Z (Sx,y—l ~Sey _Si—l,y + S;,y) : (10)
x,y=1

The spins Sz)’y and S‘L’y, y=1,---,L and S}; o and SLlL, x =1,---, L are auxiliary spins fixed
to be alternating ups and downs as shown in Fig. 3 (a) and (b), and are not part of the degrees
of freedom of the system. The global Hilbert space can be constrained to the subspace of six-

vertex configurations by making the coefficient of this term V; > 1. The boundary spins can
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be fixed by the Hamiltonian

=~

—1

LZ(Sh —sh )+ >0 (st -sy,) (11)

1

=
Il

such that the boundary configurations in Fig. 3 has the minimal energy of 0, and any other
configurations will be penalized in proportion to the number of local differences from them
along the boundary.

The six-vertex condition allows a well-defined height function ¢ 11yl living on the dual
lattice of plaquette centers satisfying the rules according to the conventlon in Fig. 3 (c¢)

¢x+%,y+% - ¢x+%,y—— 25; Y (12)
¢x+%,y+% - ¢x—%,y+ 253}: y? (13)

up to a global gauge transformation of shifting the heights by a constant. For convenience we
will fix the gauge so that the height ¢, = 0 at the lower left corner of the lattice. The effect
of boundary Hamiltonian amounts to picking a (Dirichlet) boundary condition on the height
for the ground state wave-function, as shown in Fig. 3(a), Fig. 3(b) where the height function
alternates between 0 and 1 along the boundary.

To enrich the entanglement of the ground state, the local Hilbert space of each spin is
further enlarged to have either a red or blue color, along with a local Hamiltonian H. between
neighboring up-down spin pairs to match in color

Yy Yy

L—
Z (IT berndy (et ey (bl +[257) (257

+ :y+1> <:y+1
x

+ [2] (r_i |Txlx+1>y _r% |Txlx+1>y)(r_% (Txlx+1|y % (Txlx+1| )

e J)
(14)

where the up and down (resp. left and right) arrows are used to denote spin % in the horizontal
(resp. vertical) direction. The terms in the first line energetically penalize adjacent up-down
spin pairs mismatching in color, so that spin configurations containing, say |Txlx+1)§ do not
appear in the spin configuration of the zero energy ground state. Two colored spin configura-
tions that are not penalized by the mismatch penalty terms in H. are examplified in Fig. 3 (a)
and (b), where an additional color green is employed to better illustrate the color matching
between up-down pairs of the same height. The terms in the next two lines enforce a superposi-
tion of colorings of such adjacent up-down spin pairs when their color is matched, tuned by the
deformation parameter 0 < r < 1. Indeed, whenever a spin/color configuration |1, |,;) y ap-

1
:y+1> —r3
Y X

x Y

pears in the ground state, it must appear through the combination r [Telys1) y +ro2 ITelys1) y
in order to a avoid an energy penalty from these projection operators. In this way, these pro-
jection operators are necessary to provide color mixing and ergodicity within the subspace of
product states annihilated by the terms in the first line.

The deformation parameter r plays the role of an external color field, such that whenr =1,
the ground state will have a uniform superposition of different coloring, while when r > 1,
the configurations with more red colored spins will be favored.

Since the color Hamiltonian only acts on up-down and left-right pairs, for it to affect all
the spins in the system, there must be a net surplus of up (resp. left) spins in any sub-chain
counting from left (resp. bottom). In other words, the height function in the dual lattice must
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stay non-negative and the spins form Dyck paths along the chains in both directions. This can
be enforced by the correlated swapping Hamiltonian

c C C5eeesC
Ho = E > > e N (it 15
S [2] Xy’fh:fv x:.y;fhsfv ’ ( )
X,y=2 fp.fy=%c1,...06=1,D
where
Cy Ce
C15..-5Co >_ _1 Ce 1 cs
T = 2 —a?
xy—+1 =4 C:‘I 0102 q "'I pzc;; )
C5 Cq
co cs
C1,Co >_ 1 s 1 cy
T =q~2 —q?2
X, y,+,+ q 01(:2 l(:;5> q (:3(‘,] l(‘z ’
4 Ce
(16)
C3 Ci| T,y |C2 Cc1 co|l T,y |c3
ClyeeCe \ _ —1 I 1 1
Tcx,y,— —> =q ° 4 —q? Cs >
cg Cq
Cg Caq
c1|x,y |c2 C3 1 |e]Ty1a C2
ﬂ:x’_y,+,—> =q 2 Cs —q:2 Co .
—
Cq Cs5
The total Hamiltonian
HCF:HO+H3 +Hc+H5, (17)

is a frustration-free sum of projection operators, meaning its zero energy ground state is the
simultaneous lowest energy eigenstate of each term. Since each term in the Hamiltonian re-
quires a superposition of locally different height and coloring in a particular way, the ground
state is therefore a weighted superposition of bicolored six-vertex configurations with alter-
nating heights between 0 and 1 along the boundary, and non-negative heights in the bulk

GS) = r > 1_[0(¢xy)2 e, (18)

p(@P)=5 5y=1

where for simplified notation, the height function of each spin is taken to be the average
between the heights of its two adjacent plaquettes, the first sum is over all six-vertex configu-
rations P with boundary height %, the second primed sum is over coloring patterns with spins
in the same chain on the same height matching. 6 is the Heaviside step function, indicating
the sum is over configurations with non negative height in the bulk. The volume of a con-
figuration is defined as V(P) = ZX =1 Pyl Flyls M(C) is the “warmness” magnetization of
coloring C, defined as the difference between the number of pairs of red and blue spins, and
N is the normalization constant that depends only on q and r. The uniqueness of the ground
state is guaranteed by the ergodicity of the Hamiltonian (15), which is proven in the appendix.

4 Scaling of entanglement entropy
The model has an apparent D, lattice symmetry, so a cut across the middle along either the

horizontal or vertical direction gives the same bipartite entanglement entropy between sub-
systems. Unlike a quasi-2D model of trivial stacking an array of Fredkin or Motzkin chains,


https://scipost.org
https://scipost.org/SciPostPhys.15.2.044

Scil SciPost Phys. 15, 044 (2023)

Figure 4: Cross-sectional view of the stepped surface outlined by the height function
along the middle cut. Area A is defined as the sum of heights at each step counting
from the minimal heights in Fig. 3 (a).

the ground state EE scaling behavior of this coupled 2D model is the same for cuts in any
direction. Without loss of generality, we choose a vertical cut as shown in Fig. 3. Just like the
one-dimensional model described in Sec. 2, the entanglement comes from the extra up spins
in the left subsystem, or equivalently the surplus of down spins in the right subsystem. Here,
when performing the Schmidt decomposition on the ground state (18), we need to keep track
of the heights of each chain in the array along the cut in the middle, denoted by the vector
q_5 L4, as well as the vectors ¢,’s denoting the colors of the spins in each row to be matched
between the two subsystem. The number of components of each vector ¢,, is given by the value
of the component of height vector ¢ L Notice that 4; L itself is constrained to be a Dyck
path in the vertical direction, the bulk components of which are always larger than or equal to
the first and last components ¢ 1= ¢ L1 = 0, 1. Therefore the Schmidt decompostion
can be written as

2
M¢7 Lo e
GS)= > e [1
> ¢ 141 $1+1 y=1
(;b%eDyck paths & elnb) LEL 32 g, e(rb) L 1412

where the “warmness” magnetization m(c, ) of the unmatched colors of the half system in the
y’th chain is the difference between the number of red and blue spin pairs among them, and

- - 1 7 MyR) VL(R)(PC)
P(%};""CL> — —Z r2 q—z \PC>L(R) (20)

7 yw \/ng%

2
are normalized wave functions of the left (resp. right) subsystems, the primed sum is a short-
hand notation for summing over six-vertex configurations with non-negative height in the
bulk plaquettes and in particular of height specified by qb% on the middle boundary. myg,

is the redness magnetization of the pairs with color matched within the subsystem, which
A(Q p+1)+3L R B

takes value between 0 and (L?>—L — —5——+1)/2, with A(qb%) = Zf,:ll qb% Y412 being

the cross-sectional area of the stepped surface outlined by the height function, as depicted in

Fig. 4.
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The normalization constants are given by

A 141)

2_ _ 2
M o=[2) R Y g, ©3))

and

N=DT20 T M (22)
4')' Tz
=21 >, " (23)
$(@P)=}

The Schmidt coefficients are given by the probability of height configuration d_; with coloring
{¢;,...,¢, } of the cross-section between subsystems

(nf’zlrm(?)) Mz L+1
p(bun, (@, tr}) = % = =p(@, @} )p(dn), @0
with 3
A 141) L
(@} B ) =12, % ] [, (25)
y=1

can be factorized as a product of probability of having a particular coloring {¢;, ...,¢;} of the
unmatched pairs within the subsystems, conditioned on having a Dyck path d_; L along the
cut, and the marginal probability p(¢ L ) = Za’l "'ZEL p(d)%, {¢4,...,¢,}) of finding such
a cross section among uncolored random height configurations. The entanglement entropy
decomposed into a piece given in terms of average cross-sectional area of a random height
configuration, and another subleading contribution from the fluctuation of the random surface

SLxL(q,r)— ZZ Zp(d)m {ci,... cL})logp(qS {1, })

¢L+1 & 3
=2 p(Fuy)s5, (rnn)+S] @ 26)
S
Cr ¢
? ((A)+3L—2)+5/(q),

where ngL(q) = _Z$m p(d_;%)logp(d;%l) and in third line we have used
2
Siu @ == > p(fer 0} i )logp (0, .0}  $p)

L

A(&sz) , I L
=—(logr)[2], > > >’ (Zm(zy))r[rmwy)

{1, \oy=1

2 27)
A(¢pra)
+logl2]. (¢_ g 8L 1)
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The sum in the second line can also be written as a sum over the total number of pairs of red

spin among {¢;,...,C;}, I = 2521 % which ranges from 0 to N = AwM) + 2 —1:
Z (Z m(c, )l_[ m(cy) :ﬁ:(N)(Zi—N)rZi_N
{¢,nC} i=0 i (28)
-1
=%[2]7 N,
which gives the coefficient B
C, = r[ 21, logr +1log[2], . (29)

This kind of decomposition of entanglement entropy as a result of enlarging the local Hilbert
space has also been observed recently in the Bethe Ansatz integrable excited states of a non-
integrable one-dimensional multicomponent spin chain [27], which emerges from certain
phases of a quasi-2D spin ladder [28].

For any finite r, C, is a finite constant independent of L, so the problem is reduced to
finding the scaling of the average area (A). That can be done in a field theoretic fashion,
as was previously used to study the dynamics of the one-dimensional Motzkin and Fredkin
chains [29, 30]. A continuous field of the height configuration can be defined as a piece-wise
linear function ¢ (x,y), which takes the value of ¢,1/541/2 on the dual lattice. It is well
known that the “entropy” of random surface is captured by a surface tension o(V¢(x,y))
as a function of the height gradient alone [31-34]. Also taking into account the “energy”
contribution from volume weighting, we get the partition function

= J D (x, y)el ] 4xdyo(Vetxy)+log )¢ (x.y)) (30)

where D¢ (x, y) is a continuous version of

+00 +00
l_[J dsrrjoys1js = l_[J dh,6(h,), 31)
y JO v —00

and where ¢ obeys a Lipschitz condition |d,,¢, d,,¢ | < 1, and 0 is the Heaviside step function.
The linear contribution in ¢ is dominant when q > 1. To see this explicitly, we substitute

x=Lx", y=Ly, (32)

which makes
v=L"V, dx=Ldx', dy=Ldy'. (33)

The free energy associated to a height configuration then becomes

F[¢]—L2H dxdy V‘“x’y))—(long(x’,y’)), (34

where ¢(x’,y’) = ¢(x,y) now satisfy the Lipschitz property of |3,.¢, ,.¢| < L instead. The
surface tension term counts the entropy of height configurations associated with height varia-
tions in a small region with height differences d,/ ¢, 9,.¢ on the boundary of the region, and is
thus trivially bounded by the entropy density of ice. Thus, in the thermodynamic limit, the sur-
face tension term becomes irrelevant compared to the linear term (logq)¢ (x’, y") when q # 1.
Therefore F[ ¢ ] is minimized by the Lipschitz property for the g > 1 case, where minimization

10
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" O(Llog L)
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Figure 5: The entanglement phase diagram with two distinct EE scaling separated
by the critical line at g = 1.

of F is achieved with maximal gradient and maximal volume; and by the positivity for the
g < 1 case, where F is minimized taking ¢ (x, y) = 0. Therefore, for q larger and smaller than
1 respectively, we have (A4) = O(L?) and O(L). (26) then says S;(q,) goes through a phase
transition at ¢ = 1 from volume scaling to area law.

At the critical point, the height field becomes a massless field conditioned on staying pos-
itive. Given that the surface tension is a strictly convex even function of the height vari-
able [31-33,35-38], the average height was rigorously shown to have the scaling O(log L), as
a result of being repelled by the hard-wall at zero height [39]. This gives the same EE scal-
ing of O(LlogL) as in the recent quantum lozenge tiling model [40], despite the height field
of uniform weighted six-vertex model being interacting and not described by a Gaussian free
field. This entanglement phase transition can be summarized in the phase diagram in Fig. 5.

The stark phase transition for any € = g — 1 is a consequence of the discontinuity of the
partition function Z when the thermodynamic/scaling limit is taken. To obtain an intermediate
scaling between LlogL and L2, one can consider a varying g = e*" that approaches 1 as
L — oo. Such scaling limits are of interest random surface models, as they admit existence
of non-trivial limit shapes [41]. For a € (1,2), simple scaling argument gives an EE scaling of
L3 with a A dependent coefficient. Whereas for a > 2, it gives the LlogL scaling, and for
a < 1, it gives the L? scaling. Interestingly, one can think of this intermediate entropy scaling
as the scaling of entropy associated with a square neighbourhood of size L’ attached to the
corner of a larger lattice where the deformation parameter is inhomogenous, decaying as a
function e*? " of the distance d from the corner of the lattice to the center.

5 Scaling of spectral gap

Following the strategy in the proof of the gaplessness of the highly entangled phase of the
one-dimensional models [22,42], we construct a variational wave function that has both a
small overlap with the ground state (18) and an exponentially small expectation value of the
Hamiltonian (17). Hence it inevitably implies that the spectral gap of the ¢ > 1 phase is
exponentially small and hence gapless in the thermodynamic limit.

We start by defining a subset £ of the six-vertex configurations with non-negative height
in the bulk, which will appear in the superposition of the trial excited state.

Definition of £. A non-negative six-vertex configuration obeying the alternating Dirichlet
condition of Fig. 3 belongs to £ if: (i) the lowest height in the bulk of a configuration is either
0 or 1; and (ii), the longest distance between the lowest height in the bulk (be it 0 or 1) and
any of the four sides of the boundary is larger than %

An example of a configuration in this set, incidentally also one of the four such ones with
lowest total volume, is shown in Fig. 6 (a). Whereas the configuration with largest volume
among those not belonging to this set is given in Fig. 6 (b). Note that in this section, for clarity
of presentation we have replaced the step-wise structure of the six-vertex height model with a
linear interpolating representation that would more easily resemble the 1D construction [22,
42].
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Figure 6: Two height configurations of a 14 x 14 system that differ by the height
of one plaquette (6 + %, 7+ %), with the corresponding height profiles of the cross-
section along the dashed line (x,7 + %). (a) belongs to the set £: the longest span of
non-negative height is larger than %, while (b) doesn’t.

The trial excited state is defined by changing the color of the spin on the endpoint inside
the bulk along the said longest distance to the boundary from the plaquette with lowest height

1 /MO V(EP)
|eX)=WZZ r2oq2 |PC>, (35)

pPeE C

where v/N’ is the new normalization constant, and compared to (18), the double primed sum
over colored refers the matching of all the other pairs of spins at the same height in color
except the one at the endpoint of the longest nonzero height streak that is now forced to
mismatch in color, as examplified in Fig. 7 (b). Due to this mismatching, the excited state
must be orthogonal to the ground state

(ex|GS) =0. (36)

Furthermore, since all the configurations in £ are of larger volume than the one with
the longest streak containing the color mismatch, the two mismatched spins never appear as
neighbors in the superposition, we have

Hylex) =0, Hzlex)=0, and H;lex)=0. (37)

So the non-vanishing contribution to the energy expectation can only come from Hg, precisely
from the term acting on the plaquette, decreasing the height on which would result in a con-
figuration outside the set £. In the case of the configuration P, in Fig. 6 (a), the terms involved

in Hg will be
1
h6,7 = o1 (

C15ee05C6=T

Clseeey Co C1,--5C6
n6,7,+,+><n6,7,+,+ T

) . 38)

Together they contribute (P,|hg-|P,) = 1f7, for each particular color configuration. The

number of such height configurations that can be brought out of set £ can be very roughly up-
per bounded by the total number of spin and color configurations (4 max{(1+r2), (1+r=2)})L".

12


https://scipost.org
https://scipost.org/SciPostPhys.15.2.044

Scil SciPost Phys. 15, 044 (2023)

15

ZN ZN
RSN AON

(a) (0)

Figure 7: One particular color configuration (b) of the horizontal spins 5;1,7 along
the cut of the dashed line in one of the 2D configuration with lowest volume (a) in
the trial wave function (35) where the two endpoints of the longest nonzero height
streak are mismatched in color.

However, all of them has a volume L—83 smaller than the maximum configuration, as depicted
in Fig. 8. Lower bounding the normalization N by the weight of the largest volume configu-
ration, we have the upper bound on spectral gap

2(4max{(1+r2),(1+r2)HF q—§

ex|H.r |ex) <
< | CF| ) 1+q2

; (39)

which is gapless in the thermodynamic limit for the g > 1 phase.

6 Nineteen-vertex construction of coupled Motzkin chains

Building on the previous sections, we introduce a 2D generalization to the Motzkin chain,
where each spin takes value of either &1 or 0. This can be mapped to solid edges with arrows
and dashed edges without (which correspond to spin 0 in the one-dimensional chain) respec-
tively, giving 19 vertex configurations in Fig. 9 (b) a full loop around each of which the net
height change is 0, so that the height change is well-defined counting from two different paths
from one plaquette to another. Nineteen-vertex model is a generalization to six-vertex model
and is well-studied in the context of classical statistical mechanics [43-49]. Note that classi-
cal nineteen-vertex models are mapped to quantum spin-1 chains, by transfer matrix method,
which was studied in the context of integrability [50,51]. However, in this section, we con-
struct a different (2D) quantum Hamiltonian that is frustration free, which enforce the ground
state to be a weighted superposition between pairs of locally different configurations in Fig. 10.
The boundary spins in the lattice shown in Fig. 9 (a) is enforced by boundary Hamiltonians
that penalizes —1 spins on the left and bottom side and +1 on the right and top side. The bulk
Hamiltonian can be defined as

3
1
Hu= D, 2, Z@

pebulk h,y=1¢;,co=r,b

C1,C2 C1,Co
Tphy > <np,h,v ’ (40)
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Figure 8: The volume of the dent between the minimal volume configuration in Fig. 6
3
and the maximal volume configuration scales as % with the system size.
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Figure 9: (a) A random coupled Motzkin lattice configuration with Aztec diamond
boundary. (b) The 19 vertices in the constrained Hilbert space satisfying equal num-
ber of in and out arrows.
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Figure 10: One coloring configuration for each of the 9 coupled Motzkin moves de-
fined on plaquette (x, y) that generate the ergodic dynamics in the Hilbert space of
random surfaces of height function conditioned to be non-negative.
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where

- Co
cep\ . —1 cil pler \ — 1 —
”p,1,2>—q 2 U q*|ipi)s
Co b
Co r—-n
C1,Co _ 1 1 1 1
”p,1,3>_q ? Cl|p|01>_q2 -Tl;-‘>
C1
1, -1 1e==
pai)=at Cz|p:>—q2 L_fi](’2>
C1
c1.c0\ _ -1 i 1] C2
np’2’2>_q 2Py _q2 :1) C1 > (41)
Co | B,
1,2 -3 = Hipte
mpas) =4t afn] )—at i)

===
c| p : >
C2

H, and H, are defined in exactly the same way as in the model of coupled Fredkin chains
enforcing local constraints on the Hilbert space in Fig. 9 (b) and boundary configurations as
in Fig. 9 (a), but the Hamiltonian acting on the color sector is already encoded in H,;.

7 Conclusions

In this paper we have shown how quantum height models may be enhanced to give a range
of exotic entropy scalings. Our models can be viewed as coupled Fredkin and Motzkin chains.
They provide another example of a local Hamiltonian with volume scaling of EE. While the
height degree of freedom can be described via an appropriate field theory, the addition of the
color degrees of freedom within such a description is an interesting open question. Moreover
the field theory description only holds for the ground state, while structure of excited states is
a subject for additional work.

The equal time correlation functions of the ground state of our model are given by the cor-
relation functions of classical six-vertex model subject to the constraint of positive height. Even
in the absence of such a constraint, the analytical result of its two-point correlation functions
are only computed for certain boundary conditions such as the domain wall boundary [52-54].
But it’s possible to compute them numerically using Markov Chain Monte Carlo method [55].
Adding the non-negative height constraint would pose a challenge to the application of worm
or loop-building algorithms, as maintaining the non-negativity would require checking a larger
neighborhood as the loops get longer in each update. Another interesting next step in that di-
rection will be the construction of a tensor network characterization for the state, as was done
for in the 1D case [56,57]. Finally, our model in the absence of an internal color degree of
freedom is of interest as it promises anomalous slow dynamics and fragmentation analogous
to the classical and quantum Fredkin chains in one dimension [58-60].
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Figure 11: A snippet of plateaux contour of the maximal height ¢,,, with the sur-
rounding lower height plaquettes coded by sequentially lighter shades. The heights
of the plaquettes numbered @ located at the corners of the contour are ready to be
lowered, while those numbered (3) are not. The plaquette (2) is an accidental mobile
plaquette in this contour configuration despite not lying on the corner.
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A Ergodicity of the Hamiltonian and uniqueness of ground state

We now show that when the Hamiltonian Hg acts on a properly colored height configuration it
generates another such configuration, and that moreover by actions of Hg we can get from any
such configuration to any other. Thus the set of non-negative weighted height configurations
with Dirichlet boundaries is closed under the operation, with the weighted superposition of
states a unique ground state. In complete analogy with the 1D Motzkin and Fredkin chains,
starting from a state which violates non-positivity in the bulk, by applying the projectors we
create a superposition that will carry the negative region back to the end of the sample to get
penalized by the boundary terms. Just as in the Fredkin chain case, in a non-negative height
superposition involving a color violation, by reducing the height of unmatched color pairs may
be pushed closer until the violation can be detected by local terms.

Let us now check that we can get to the lowest height configuration from any positive height
configuration. Given any six-vertex configuration, there must be a plaquette of maximal height
¢, which may not necessarily be unique. Their nearest neighbor have height ¢;; — 1, but
the next-nearest neighbors could either have height ¢, or ¢;; —2. In the former case, we say
the maximal height forms a plateau, while in the latter case, it either lies on the boundary of a
plateau, or is isolated. We note that a local maximal height plaquette will have color matched
pairs of edges, because of the color rule Eq. (14), therefore it can be removable by one the four
moves in (16). Similarly, plaquettes that are on the the boundaries of plateaux are removable
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if they are at the corner of boundaries (along a straight line of boundary, both sides in the
direction of the boundary are not in the right configuration to allow one of the correlated
swapping moves), since the next-nearest neighbors are both of the same height. Thus, given
any boundary of a plateau, we can always reduce the volume of a surface by first removing
the height cubes on the (convex) corners of plateaux boundaries, after which new corners will
appear, so that the procedure keeps going. The only scenario such a procedure terminates
is when the boundary forms a straight line with the plateau extending to the boundary of
the lattice. In that case, both sides of the straight line have the same constant height as the
boundary, meaning we have arrived at the lowest height configuration.
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