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Abstract

We perform a thorough and complete analysis of the Anderson localization transition on
several models of random graphs with regular and random connectivity. The unprece-
dented precision and abundance of our exact diagonalization data (both spectra and
eigenstates), together with new finite size scaling and statistical analysis of the graph
ensembles, unveils a universal behavior which is described by two simple, integer, scal-
ing exponents. A by-product of such analysis is a reconciliation of the tension between
the results of perturbation theory coming from strong disorder and earlier numerical
works, which seemed to suggest that there should be a non-ergodic region above a given
value of disorder WE which is strictly less than the Anderson localization critical disor-
der WC , and that of other works which suggest that there is no such region. We find
that, although no separate WE exists from WC , the length scale at which fully developed
ergodicity is found diverges like |W−WC |−1, while the critical length over which delocal-
ization develops is∼ |W−WC |−1/2. The separation of these two scales at the critical point
allows for a true non-ergodic, delocalized region. In addition, by looking at eigenstates
and studying leading and sub-leading terms in system size-dependence of participation
entropies, we show that the former contain information about the non-ergodicity volume
which becomes non-trivial already deep in the delocalized regime. We also discuss the
quantitative similarities between the Anderson transition on random graphs and many-
body localization transition.
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1 Introduction

Anderson localization [1–3] is a fundamental quantum phenomenon in which charge trans-
port, in models of non-interacting particles, is hindered by a sufficiently large amount of disor-
der. It occurs due to the destructive interference of partial waves and was observed for quan-
tum particles [4–8], as well as for acoustic [9] and electromagnetic waves [10, 11]. Despite
the amount of attention that the subject attracted starting in the seventies, and the subsequent
theoretical and experimental work, a coherent, simple picture of the localization transition,
at the same level of what has been done on thermodynamic phase transitions is lacking. No
exact solution of a non-trivial model comparable, say, to the 2D Ising model [12] exists, and
even the solution of a mean field model did not provide a suitable proxy for the infinite di-
mensional d →∞ limit [13,14]. In such a geometry, an example of which is provided by the
Bethe lattice, i.e. a tree with constant connectivity, the absence of loops [15, 16] allows one
to make analytical progress by writing a self-consistent theory of localization [13]. The Bethe
lattice arises as the infinite volume limit of a random regular graph (RRG) of N vertices [17]
and it sometimes provides a good starting point around which to compute the 1/N correc-
tions [18–20]. The Anderson model on RRG has been a subject of intense studies [21–30]
aimed at understanding features of the transition between delocalized and localized phases
of the model. The Anderson localization transition on RRG occurs when the disorder strength
exceeds a critical disorder strength WC which can be accurately calculated in the thermody-
namic limit [31, 32]. However, there is quite some confusion in the literature regarding the
implications of the thermodynamic limit results for the finite-N results. In this paper we try to
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clear this confusion, by combining the largest scale numerical analysis so-far of the Anderson
model on RRG, a precise solution of the integral equation governing the thermodynamic limit
to locate the transition, and a simple finite-size scaling analysis which gives rise to two critical
lengths in the delocalized phase.

The interest in the Anderson model on RRG is additionally driven by the connection [33]
(see also [34]) to the problem of localization in interacting quantum many-body systems [35],
it is, to the phenomenon of many body localization (MBL) [36–38]. The dynamical phe-
nomenon of MBL prevents quantum many-body systems to thermalize [39,40], and, similarly
to the Anderson localization, inhibits transport [41–46]. MBL can be understood in terms
of emergent integrability that arises at sufficiently strong disorder [47–52] that results in a
slow spreading of the entanglement [53–55]. The parallels between Anderson localization on
RRG and MBL extend from the perturbative arguments of [33], through apparent similarities
in the crossover between delocalized and localized regimes [23], to analogies between the
regimes of slow dynamics in disordered many-body systems [44,56,57] and on RRG [58–61].
Recent investigations of MBL [62–67] have highlighted the significance of finite size effects
at the MBL crossover, which prevent one for an unambiguous extrapolation of the numeri-
cal results for disordered many-body systems to the thermodynamic limit. Consequently, the
position and, by some, even the existence of the MBL transition is currently debated and it
is not fully clear whether the crossover between the ergodic and MBL regimes is stable the
thermodynamic limit, as suggested by analytical [68, 69] and numerical [70–75] arguments,
or whether the ergodicity is restored at any disorder strength in the limit of infinite time and
system size [76,77].

The controversies around MBL transition motivate us to revisit the problem of Anderson
localization on RRG and to compare the crossover between delocalized and localized regimes
on RRG, whose fate in the thermodynamic limit is well understood, with the MBL crossover.
To that end, we analyze the Anderson model on RRG with system size dependent disorder
strengths that capture finite size effects in disordered many-body systems [75,78,79], unrav-
eling quantitative similarities between MBL and Anderson model on RRG. Besides RRG, in
order to better understand the interplay between the finite-size effects at Anderson transition
and the geometry of the underlying graph, we consider also two distinct ensembles of random
graphs with varying connectivity: small world networks examined earlier in [80, 81], as well
as an ensemble of uniformly distributed random graphs with average connectivity 〈K〉 ∈ [1, 2].
We generalize the approach of [31, 32] to pin-point the critical disorder strength for the An-
derson transition on URG and SWN.

2 Outline of the work and main results

The organization of the article is as follows.

• In Sec. 3 we describe several models of random graph ensembles and analyze their
properties significant from the point of view of Anderson localization. We consider RRG,
small world networks (SWN) obtained by adding random shortcuts to a ring graph, as
well as an ensemble of uniformly distributed random graphs (URG) with a fixed vertex
degree sequence. We calculate, for each ensemble of graphs, the number vertices visited
during a forward propagation on the graph showing that all considered graphs posses a
local tree-like structure and that a typical loop size is diverging in the thermodynamic
limit. We emphasize the difference between average vertex degree 〈D〉 and connectivity
〈K〉 of the tree structure. We find simple expressions for the latter in terms of parameters
characterizing a given ensemble of graphs.
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• Sec. 4 is devoted to numerical studies of the Anderson transition on random graphs.

1. In 4.2 we investigate the finite size drifts at the delocalization/localization
crossover introducing two system-size disorder strengths W T

r (L) and W ∗r (L). This
allows for a quantitative analysis of the Anderson localization transition on ran-
dom graphs without resorting to any model of the transition. Moreover, the be-
havior of W T

r (L) and W ∗r (L) can be directly compared with for a direct com-
parison with similar disorder strengths computed at the many-body localization
crossover [75,79,82].

2. In 4.3 we propose a scaling theory of the Anderson transition on random graphs that
is consistent with the observed finite size drifts at the delocalization/localization
crossover. The finite size scaling implies an existence of two length scales:
ξ1 = (WC −W )−1/2 beyond which, at W < WC , first signatures of a departure
from localization can be observed, and ξ2 = (WC −W )−1 beyond which the system
develops a full-scale ergodicity.

3. In 4.4, we analyze the structure of eigenstates of Anderson model on random
graphs examining system size dependence of participation entropies. This allows
us to uncover a non-trivial behavior of the non-ergodicity volume deep in the de-
localized phase when the system size L belongs to the regime ξ1 < L < ξ2 which
explains the apparent stability of the non-ergodic, delocalised region in the earlier
numerical studies.

• In Sec. 5 we employ the fact that the considered random graphs become loop-less, tree-
like structures in the thermodynamic limit to precisely locate the positions of the An-
derson localization transition for the considered ensembles of RRG, URG and SWN. To
that end, we generalize the cavity method [13,14] to the case of random graphs, reduc-
ing the problem for a tree like structure with connectivity K < 2 to a tree with a fixed
connectivity K = 2 but with dressed cavity propagators.

3 Anderson model on random graphs

We consider Anderson model on a graph with the Hamiltonian

H =
∑

i

εi |i〉 〈i|+
∑

〈i, j〉

(|i〉 〈 j|+ | j〉 〈i|) , (1)

where i labels the vertices of the graph, the second sum is over nearest neighboring ver-
tices, and εi are identically distributed independent random variables with distribution
γ(ε). We mostly focus on uniform distribution (γ(ε) = 1/W for ε ∈ [−W/2, W/2] and
γ(ε) = 0 otherwise) with disorder strength W , but we also consider a Gaussian distribution
γ(ε) = e−ε

2/(2W 2)/
p

2πW 2. We will be interested in numerical computation of the eigenstates
of the (1) in order to investigate features of the Anderson localization transition on various
types of random graphs. In all of the cases, we consider graphs with N = 2L vertices and refer
to L as to the system (graph) size. We start by introducing the ensembles of random graphs,
on which we consider the model (1).

3.1 Models of random graphs

Random graphs [83] find broad applications in analysis of the real-world complex networks,
such as the Internet or biological networks. Here, we concentrate on the ensembles of all
unidirected graphs that have a given degree sequence [84], and consider two simple instances:
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Figure 1: Examples of random graphs considered in this work. Panel (a) shows a
random regular graph (RRG) with N = 100 vertices of degree D = 3. Panel (b)
presents an example of a graph from an ensemble of uniformly distributed random
graphs (URG) with (1− f )N vertices of degree 2 and f N vertices of degree 3, where
N = 100 and f = 0.2. Panel (c) shows an exemplary graph from an ensemble of
small world networks (SWN), with N = 100 vertices, and ⌊pN ⌋ (p = 0.1) shortcuts
between the sites of the circle.

• we obtain RRG with N vertices by sampling uniformly from an ensemble of all graphs
with a constant vertex degree D (in our calculations we shall consider D = 3,4, 11)

• we obtain URG with N vertices by sampling uniformly from an ensemble of all graphs
with f N vertices of degree 3 and (1− f )N vertices of degree 2, where f ∈ [0,1] is a
parameter of the ensemble.

In order to sample the graphs uniformly from the ensembles defined above, we employ the
numerical algorithm put forward in [85], which is based on ideas presented in [86]. Examples
of a RRG and a URG are shown in Fig. 1 (a), (b).

We also consider SWN, introduced in the context of Anderson localization in Ref. [80] and
named after the ensemble of random graphs considered in [87].1 To construct a SWN graph,
we take a 1D lattice of N sites with periodic boundary conditions. Each site is connected to
its nearest neighbors and ⌊pN⌋ shortcut links are added, where p ∈ [0, 1] is a parameter of
the ensemble of graphs. An exemplary SWN in shown in Fig. 1 (c). By construction, a SWN
graph contains a Hamiltonian cycle (i.e. a cycle that visits each vertex exactly once), whereas
it is easy to find a URG that does not possess this property (for instance, the URG presented in
Fig. 1 (b) does not have a Hamiltonian cycle).

3.2 Random graphs with fixed vertex degree sequence

In this section we investigate properties of graphs from RRG and URG ensembles. To study the
local structure of the graphs (which plays the most significant role in the Anderson localization)
we consider the number N(l) of vertices visited after l steps of a forward propagation on a
given graph. The adjacency matrix T of a graph coincides with the off-diagonal part of the
Anderson Hamiltonian (1), i.e. T ≡

∑

〈i, j〉 (|i〉 〈 j|+ | j〉 〈i|). In order to calculate N(l), we
consider an initial vector |ψ0〉 = |i〉 〈i| which is non-zero at a random site i and vanishing
otherwise. We calculate |ψl〉 = T l |ψ0〉 and introduce an auxiliary vector V which stores the
information about sites that are visited in the propagation. Initially, all entries of V are set to 0.
After each calculation of |ψl〉, all of the elements of V that correspond to non-zero entries of
|ψl〉 are set to 1, marking the corresponding vertices of the graph as visited. This is repeated
for l = 0,1, . . . , lmax, where the step lmax is determined as the step for which all of the entries of

1We note that small world networks in Ref. [87] are obtained in a random rewiring process, whereas SWN
considered by us, obtained by adding shortcuts, form a distinct ensemble of random graphs.
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Figure 2: Properties of the ensemble of URG of size N = 2L with f N vertices of
order 3 and (1 − f )N vertices of order 2. For f = 1, the URG becomes an RRG
with connectivity K = 2. The average number N(l) of vertices visited in l-th step of
forward propagation of URG is shown for f = 1 in (a) and for f = 1

8 in (b). The
position l0 of the maximum of N(l) is shown in (c) as function of the system size L
for various f . The average connectivity 〈K〉 and the average vertex degree are shown
as a function of f in (d).

V are set to 1, i.e. when all of the vertices of the graph are visited. The number of N(l) vertices
visited at step l is equal to the difference of the number of non-zero entries of V calculated for
|ψl〉 and |ψl+1〉. In our numerical calculations, we average N(l) over at least 100 propagations
for a given graph and over at least 1000 graphs from a considered ensemble.

For a tree-like structure with average connectivity 〈K〉, each vertex has on average 〈K〉
leaves, hence one expects N(l) ∝ 〈K〉l . Moreover, by the definition of N(l), we have
N(0) = 〈D〉, where 〈D〉 is the average vertex degree. This leads to the formula

N(l) = 〈D〉 〈K〉l , (2)

which very accurately approximates the behavior of N(l) at sufficiently small l for RRG with
vertex degree D = 3 (which implies fixed connectivity K = 2), as shown in Fig. 2 (a). This
demonstrates that RRG has a local tree-like structure. The deviations from the (2) scaling
occur at l which increases linearly with the system size L and are due to loops: they arise
when some of the N(l)K leaves of the vertices visited in the current step of the propagation
were already visited earlier in the propagation. Finally, at even larger distances l, the number
N(l) is vanishing once the all vertices of the graph are visited. The results for URG with f = 1

8
are qualitatively similar and the formula (2) describes the propagation at sufficiently low l for
given system size L. Importantly, however, a correct value of the average connectivity 〈K〉 for
URG needs to be used in (2).

For URG with f N vertices of degree 3 and (1 − f )N vertices of degree 2, the average
vertex degree is simply 〈D〉 = 2+ f . Naively, one could expect that the average connectivity,
i.e. the average number of leaves of a vertex is simply equal to the average vertex degree 〈D〉
minus 1. While this is indeed the case for all RRG, and in particular for f = 1, this is not true
for f ∈ (0,1). To calculate the average connectivity 〈K〉 for URG, we employ the configuration
model of random graphs (see e.g. [88]). To construct URG with the configurational model,
one considers a set of N vertices, f N with 3 stubs and (1− f )N with 2 stubs. The free stubs
are then randomly connected into pairs which become edges of the constructed graph. If the
process of pairing is sucessful, i.e. we obtain a connected graph without self-loops and multiple
edges, we obtain a graph from the URG ensemble. Otherwise, we repeat the process of pairing.
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Figure 3: Comparison of URG with the ensemble of SWN graphs. The average num-
ber N(l) of vertices visited in the l-th step of forward propagation in SWN with
L = 12/18 and p = 0.053 is compared to the result for URG with f = 1

8 in (a).
The ratio K(l) = N(l+1)/N(l) for SWN with p = 0.053 is shown in (b) and for URG
with f = 1

8 in (c), the red lines show our analytical predictions for the thermody-
namic limit L→∞. The average diameter D of URG and SWN graphs is shown as a
function of L in (d). The average connectivity 〈K〉 and the average degree order 〈D〉
for SWN are shown as a function of p in (e).

In practice, the algorithm of Ref. [85] allows to calculate URG much more efficiently, but the
configurational model described above allows for a simple insights into properties of URG. In
particular, it allows to easily calculate the average connectivity 〈K〉. We assume that N ≫ 1
and consider a randomly selected vertex as a root of a tree. The probability that we select a
vertex with 2 (3) stubs that will be attached to the root is p2 =

2(1− f )
2+ f

�

p3 =
3 f

2+ f

�

. Thus, the
average connectivity (the number of leaves of the attached vertex) is given as

〈K〉= p2 + 2p3 =
1+ 2 f
1+ f /2

. (3)

Using this value of 〈K〉 in (2) reproduces the behavior of N(l) at short distances as shown in
Fig. 2 (b). Moreover, the formula (3) reproduces accurately the connectivity of URG calculated
numerically for various f as presented in Fig. 2 (d).

Finally, we consider the maximum of N(l) that occurs at the distance l0 which is a measure
of propagation length after which the loops significantly affect the increase the number of
visited vertices. In other words, l0 is a quantity proportional to a typical loop size. Calculating
l0 for various sizes of the graph, we find that

l0 ∼
L

log2 〈K〉
, (4)

as shown in Fig. 2 (c) which demonstrates that the typical loop size for both URG and RRG
scales as proportionally to the graph size L, i.e. proportionally to the logarithm of the number
of the vertices N .

3.3 Small world network graphs

We now proceed to the analysis of SWN. The number of visited vertices N(l) for SWN is shown
as a function of the propagation length l in Fig. 3 (a). We observe an exponential growth of
N(l), which slows down at l which increases linearly with system size, similarly to URG. In
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contrast to URG, N(l) decays over a longer distance at large l. This is reflected in the larger
diameter D (which is the maximum of lmax taken over propagations starting from each vertex
of a graph) of SWN as compared to URG with a similar connectivity, see Fig. 3 (d).

In order to probe the local structure of SWN more accurately, we calculate the ratio
N(l + 1)/N(l), which, for a tree-like graph with a given average connectivity should be in-
dependent of L. This is not the case for SWN, as shown in Fig. 3 (b): the ratio N(l + 1)/N(l)
fluctuates for small l and saturates to a constant only for larger l (after which it starts to de-
crease due to the finite graph size). In contrast, for URG, we find that N(l + 1)/N(l) = 〈K〉
independently of l. Both behaviors can be simply understood as we show in the following.

Consider first the URG case and that a propagation starts from a certain site of the graph,
which has degree D = 2 (resp. D = 3) with probability f (resp. 1− f ). The average numbers of
visited vertices at subsequent steps of the propagation are related by a linear transformation.
Writing the initial state as X0 = [1− f , f ]T , where the first (resp. the second) entry corresponds
to the average number of visited vertices with degree 2 (resp. 3), we have

X1 = A0 · X0 , X i+1 = A · X i , for i ≥ 1 , (5)

where

A0 =

�

2 1− f
1+ f /2 3 1− f

1+ f /2

2 3/2p
1+ f /2 3 3/2p

1+ f /2

�

, and A=

� 1− f
1+ f /2 2 1− f

1+ f /2
3/2 f

1+ f /2 2 3/2 f
1+ f /2 .

�

. (6)

The easiest way to construct the matrices A0, A is to consider a situation in which there is either
a single visited site with D = 2, corresponding to X = [1, 0]T or a single visited site with D = 3
corresponding to X = [0, 1]T . For the initial step of the propagation the sums of terms in the
columns of A0 are equal respectively to 2 and 3 since in the next step of the propagation all
D vertices are visited. In contrast, for the subsequent steps, those sums are equal respectively
to 1 and 2 since one of the neighboring vertices of the given vertex was necessarily already
visited in the propagation. The average number of visited vertices N(l) is simply equal to the
sum of the entries of X l−1. The eigenvalues of the matrix A are λ1 =

1+2 f
1+ f /2 , λ2 = 0 which

means that the vector X i is immediately projected on the eigenvector of A corresponding to
eigenvalue λ1 and that the average number of visited vertices increases by a factor of λ1, equal
to the average connectivity 〈K〉 of the graph, in each step of the propagation, as denoted by
the red line in Fig. 3(c).

The line of reasoning for SWN is similar. Initially, the state is X0 = [1−2p, 2p]T , determined
by the probabilities 1− 2p and 2p that a randomly selected vertex is respectively of order 2
or 3. However, to describe the state of the propagation at later steps, we need to distinguish
two classes of the vertices with degree 3: i) visited through an edge at the side of the circle
and ii) visited through a short-cut (see Fig. 1 (c)). The two classes have different distributions
of leaves. Indeed, if we arrive at a vertex with D = 3 neighbors through a short-cut (number
of such visited vertices corresponds to the third entry in the vector X i), the probability of
propagating further to a vertex with D = 3 through a short-cut is vanishing, the probability
of propagating further to a vertex with D = 3 via a link on the side of the circle is 2p and
probability of propagating to a vertex with D = 2 is equal to 1 − 2p. This is different from
a situation when we arrive at a vertex with D = 3 neighbors via an edge on the side of the
circle. Then, the probability of propagating further to a vertex with D = 3 through a short-cut
is equal to 1

2 , the probability of propagating further to a vertex with D = 3 via a link on the side
of the circle is p and probability of propagating to a vertex with D = 2 is equal to (1− 2p)/2.
The above probabilities, multiplied by 2 (since each visited vertex with D = 3 has 2 leaves),
constitute the second and the third column of the matrix A′. The first column of A′ has entries
1 − 2p, 2p and 0 which respectively correspond to a propagation from a vertex with D = 2
neighbors to an another D = 2 vertex and to a vertex with D = 3 (necessarily through a link on
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the side of the circle). This yields the matrix A′, which together with matrix A′0 that describes
the initial step of the propagation on SWN, determine the average number of visited vertices
by means of (5) (with A0, A replaced by A′0, A′). The explicit forms of the matrices read:

A′0 =





2(1− 2p) 2(1− 2p)
4p 4p
0 1



 , and A′ =





1− 2p 1− 2p 2(1− 2p)
2p 2p 4p
0 1 0



 . (7)

In contrast to the case of URG, the matrix A′ possesses two non-zero eigenvalues:
λ1,2 = (1±
p

16p+ 1)/2. The application of the matrix A′ to the vector X1 projects it onto the
two-dimensional subspace spanned by the eigenvectors corresponding to those eigenvalues,
and subsequent multiplications of A′ lead to a the oscillations of the number of visited vertices
N(l), calculated as sum of the entries of X l−1), as shown by the red line in Fig. 3 (b). After
the few oscillations, the vector X i aligns itself with the eigenvector of A′ to the largest eigen-
value λ1 = (1
p

16p+ 1)/2, which determines the average connectivity of the local tree-like
structure in SWN:

〈K〉=
1+
p

16p+ 1

2
, (8)

which is different that the value 1+ 2p given in [80, 81]. The number 2+ 2p corresponds to
the average vertex degree 〈D〉 in SWN, as shown in Fig. 3(e).

Concluding, in this section we investigated properties of the graphs from RRG, URG and
SWN ensembles. By analyzing the number of visited vertices N(l) as the function of propa-
gation we have shown that all three ensembles correspond to a tree-like structure with the
exponential increase N(l)∼ 〈K〉L determined by the average connectivity 〈K〉 (sometimes re-
ferred to as the average branching ratio). We have noted a linear with system size L increase of
the distance scale l0 at which loops appear and the graphs cease to have a tree-like structure.
In particular, we have argued that once the graph is not regular, the average vertex degree and
the connectivity are not related by 〈D〉= 〈K〉+1. The exact values of the connectivity of URG,
(3), and SWN (8) constitute important input parameters for calculation of the critical disorder
strength for Anderson transition on those graphs, performed in Sec. 5. We have shown that
the tree-like structure of SWN is slightly more complicated that for URG, however we do not
expect it to play an important role in the physics of Anderson transitions since the oscillations
in N(l) around the overall exponential increase have an amplitude of about few percent of the
ratio N(l + 1)/N(l) and are quickly damped with increasing l. Also, we have uncovered that
SWN and URG differ in certain global characteristics - such as the diameter of graph or the
presence of the Hamiltonian cycle - which, however, also should be of minor importance for
Anderson localization on those graphs.

4 Numerical analysis of the delocalized-localized crossover

In this section we present results of our numerical investigations of the Anderson transition
on random graphs. To find eigenstates of the Hamiltonian (1), we perform a full exact diago-
nalization of its matrix for L ≤ 11, and employ POLFED algorithm [82] to calculate 200−500
eigenvectors close to energy E = 0 for larger system sizes, up to L = 18. For graphs with con-
nectivity close to unity, we find that the shift-invert approach [25] is significantly faster than
POLFED allowing us to reach L = 20 for URG with f = 1

64). The small average connectivity of
those graphs strongly reduces the fill-in phenomenon that constitutes the main bottle-neck of
the shift-invert approach. However, for the other investigated cases with larger connectivity:
URG with f = 1

8 , SWN with p = 0.06, RRG with K = 2, 3,10, the fill-in gets more severe
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Figure 4: Crossover between delocalized and localized phases on random graphs.
The average gap ratio r as function of disorder strength W for various system sizes
L, for RRG with vertex degree D = 3, (a), and for URG with average vertex de-
gree 〈D〉 = 2 1

64 (b). The dashed lines denote predictions for delocalized phase
r = rGOE ≈ 0.531 and localized phase r = rP ≈ 0.386.

and our shift-invert code based on PETSc/SLEPc packages [89, 90] with MUMPS solver [91]
is similarly or less efficient than our POLFED code. All of the reported results are averaged
over no less than 105 (2 ·103) realizations of disorder and random graph for L ≤ 14 (L > 14),
and, in the vicinity of the crossing points (see below), the number of realizations is increased
at least 5 times.

We start by investigating the delocalized-localized crossover in Anderson model on random
graphs from the perspective of level statistics, proceed to discuss models of the transition
consistent with our data and finish by directly examining localization of eigenstates by means
of their participation entropies.

4.1 Average gap ratio

In this section we investigate the crossover between delocalized and localized phases of An-
derson model on random graphs using the average gap ratio [38]

r = 〈min{gi , gi+1}/max{gi , gi+1}〉 , (9)

where gi = Ei+1 − Ei , Ei are the eigenvalues of the Hamiltonian (1), the average 〈.〉 is per-
formed over the realizations of the system and less than 5% of eigenvalues closest to the energy
E = 0. The average gap ratio r reflects properties of level statistics of the system changing
between rGOE ≈ 0.53, the value characteristic for Gaussian Orthogonal Ensemble (GOE) of
random matrices in the delocalized phase, and rP ≈ 0.386 for a localized system with Poisso-
nian spectrum [92]. Fig. 4 shows the average gap ratio for Anderson model on random graphs,
demonstrating that it crossovers between r = rGOE , for small disorder strengths W , and r = rP
in the strong disorder limit, consistenly with the earlier observations for RRG [21,23]. Impor-
tantly, the crossover shares similarities with the crossover observed in disordered quantum
many-body systems with a putative MBL transition (see e.g. [93]). In particular, the crossing
point of the curves r(W ) is shifting towards larger disorder strengths with increasing system
size L.

4.2 Analysis of the crossover between delocalized and localized regimes

In order to analyze the crossover between delocalized and localized regimes, we consider,
following [75, 79, 82], two system-size dependent disorder strengths: i) W T

r (L) – the disor-
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der strength for which, at a given system size L, the average gap ratio r deviates by a small
parameter pr from the value rGOE characteristic for delocalized system; ii) W ∗r (L) – the disor-
der strength at which the curves r(W ) cross for the system sizes L −∆L and L +∆L, where
∆L ≪ L. The disorder strengths W T

r (L) and W ∗r (L) enable one to analyze the crossover be-
tween delocalized and localized regimes in a quantitative fashion without resorting to any
model of the transition. Since, at a given system size L, the gap ratio is very close to the rGOE
for W <W T

r (L), the disorder strenth W T
r (L) may be viewed as a boundary of the delocalized

regime. In turn, W ∗r (L) provides an estimate, for a given system size L, of the critical disorder
strength WC . For instance, in Anderson model on 3D cubic lattice, the crossing point W ∗r (L)
is nearly system size independent already for L ≥ 16 [94, 95], and accurately estimates the
critical disorder strength for the Anderson localization transition. Moreover, for 3D Anderson
model, a finite size scaling of the data for the average gap ratio r reproduces the correct value
of the critical exponent ν [3, 96]. For the Anderson model in dimension 4 − 6, the shift of
the crossing point W ∗r (L) becomes non-negligible for even for the largest system sizes acces-
sible in present day exact diagonalization studies. Nevertheless, the behavior of the crossing
point W ∗r (L) in 4− 6 dimensional Anderson models accurately estimates the critical disorder
strength that can be obtained either by a finite-size scaling of the gap ratio data, or, with bet-
ter accuracy, with a transfer matrix method [94]. In passing, we note that r captures also
the localization properties of wave-functions on random fractal lattices without disorder in
dimension D < 2 [97].

The analysis of the crossover between delocalized and localized phases is considerably
more complicated for disordered interacting quantum many-body systems which recently has
lead to controversies around the MBL transition [62–67,70–74]. For that reason, the analysis
of the MBL crossover with unbiased quantities such as with the disorder strengths W T

r (L) ,
W ∗r (L) (as opposed to finite size collapses which assume a certain model of the MBL transition)
is especially interesting. So far, such an analysis was performed for three types of systems:

• disordered XXZ model, which is particularly widely studied in the context of MBL tran-
sition [78,93,98–129], for which W T

r (L) as well as W ∗r (L) increase monotonously with
system size, as observed in [82]. The boundary of the ergodic (delocalized) regime shifts
approximately linearly with system size W T

r (L)∼ L, whereas the crossing point behaves
as W ∗r (L) ∼ WC − const/L. The two scalings are incompatible with each other in the
thermodynamic limit L →∞, since, by construction, W T

r (L) < W ∗r (L). This suggests
two possible scenarios for disordered XXZ model: either the scaling of W ∗r (L) prevails
in the large system size limit and the MBL transition occurs at WC ≈ 5.4 (consistent e.g.
with [104, 109]) or the scaling of W T

r (L) does not break down for large L and there
is no MBL transition at any finite disorder strength. The scalings of W T

X (r) and W ∗r (L)
become incompatible when W T

r (L) exceeds W ∗r (L) which yields a characteristic length
scale LXXZ

0 ≈ 50 that was also found in [72, 121]. Investigation of W T
X (r), W ∗r (L) at

system sizes close to LXXZ
0 would show which of the two scalings breaks down, pointing

in favor of one of the two scenarios for MBL transition in that model. Unfortunately,
investigation of such system sizes in XXZ model is way beyond capabilities of present
day supercomputers.

• constrained spin chains, for which exact diagonalization calculations at much larger sys-
tem sizes (e.g. L ≈ 100) are possible due to reduction of the Hilbert space dimension
by the presence of constraints. It was found [79] that W T

r (L)∼ L, W ∗r (L)∼ L, suggest-
ing that the constrained spin chains remain ergodic in the L →∞ limit at all disorder
strengths despite hosting a broad non-ergodic regime at finite system sizes [130].

11

https://scipost.org
https://scipost.org/SciPostPhys.15.2.045


SciPost Phys. 15, 045 (2023)

• kicked Ising model, a recent work [75] demonstrated that W T
r (L) ∼ L for L ≤ 14, but,

in contrast to XXZ spin chain, a clear slow down of the increase of W T
r (L) was observed

for L ≥ 15. The system size dependence of the crossing point W ∗r (L)∼WC −const/L for
the average gap ratio, together with a number of other obseverables, consistently point
towards MBL transition at disorder strength W = WC ≈ 4 in the kicked Ising model.
Moreover, for this model the system size at which the linear scaling of W T

r (L) (which
occurs for L ≥ 15) and the 1/L dependence of W ∗r (L) become incompatible is LKIM

0 ≈ 28,
which is a considerably smaller length scale than LXXZ

0 in the XXZ model. This suggests
that the numerically accessible system sizes of L ≈ 20 in the kicked Ising model are
closer to the asymptotic scaling regime than the largest numerically accessible system
sizes for the XXZ model.

The Anderson model on random graphs provides a good reference point with which to com-
pare, for the above described results. On one hand, the phenomenology of the crossover be-
tween delocalized and localized regimes on random graphs is similar to the ETH-MBL crossover
in many-body systems, as discussed in the preceding Section. On the other hand, in contrast to
the many-body case, the critical disorder strength for Anderson model on random graphs can
be precisely calculated as we show in Sec. 5. Importantly, despite the analogies, the ETH-MBL
crossover and the Anderson transition on random graphs are vastly different phenomena. The
former depends crucially on the interparticle interactions, whereas the latter is a single parti-
cle problem on a random graph with uncorrelated on-site potentials. Nevertheless, a careful
analysis of finite size effects at the Anderson transition on random graphs which we perform
in this work may provide useful intuitions for the ETH-MBL crossover.

To calculate W ∗r (L) and W T
r (L) for Anderson model on random graphs we use ∆L=1

2 ,
∆L=1 and set pr = 0.01. The results for RRG are shown in Fig. 5. Both for D = 3 and for
D = 4, we find a linear with system size scaling of W T

r (L) for L ∈ [6,14], and a clear deviation
from this linear scaling at L ≥ 15. This deviation is the first premise showing that the delocal-
ized regime W <W T

r (L) does not grow indefinitely to larger and larger disorder strengths with
increasing L (as suggested by W T

r (L) ∼ L) but rather that W T
r (L) is always smaller than the

critical disorder strength WC . The position of the crossing point W ∗r (L) shifts significantly be-
tween the smallest and the largest investigated system sizes. However, the increase of W ∗r (L)
considerably slows down with L. Fig. 5(b), (d) presents the data as function of 1/L which
allows to visualize an extrapolation of the behavior of W ∗r (L) to the thermodynamic limit. The
curvature of data on that scale indicates that the increase of W ∗r (L) with system size is, in fact,
slower than 1

L . Consequently, the extrapolation of the fits W ∗r (L) ∼
1
L (based on 10 values

of W ∗r (L) for the largest system sizes available) yields an upper bound W (−1)
∞ on the critical

disorder strength WC both for RRG with D = 3 and with D = 4. The fits with a first order
polynomial in 1

L2 , upon extrapolation to L→∞, yield W (−2)
∞ which underestimates the value

of WC by less than 6%. Finally, fits of a power-law behavior W ∗r (L) = W (α)
∞ + aL−α (with the

exponent α > 0) yield an estimate of the position of the critical point with accuracy better than
2%, whereas the fitted exponents lie between −1 and −2. Details of the performed fits are
summarized in Tab. 1. We note that the length scale at which the extrapolated linear scaling
of W T

r (L) crosses the extrapolations of W ∗r (L), is L0 ≈ 23 and L0 ≈ 25 respectively for RRG
with D = 3 and D = 4. Those length scales are considerably smaller than the characteristic
length LXXZ

0 for XXZ spin chain, and are similar to LKIM
0 found in kicked Ising model. This may

suggest a similar degree of numerical control of the MBL transition in kicked Ising model and
of the Anderson transition on RRG.

We have also performed calculations of the average gap ratio for Anderson model on RRG
with D = 11 (data not shown). We found a linear scaling of W T

r (L) ∼ L up to the largest
investigated system size L = 17, a strong increase of the crossing point W ∗r (L) with system
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Figure 5: System size dependence of the crossover between delocalized and local-
ized regimes for Anderson model on RRG. Disorder strengths W T

r (L) and W ∗r (L) are
shown as functions of the system size L for RRG with D = 3 (a) and D = 4 (c). The
magenta symbol denotes the length scale L0 at which the linear scaling of W T

r (L)
and extrapolation of W ∗r (L) cross. Black dashed lines indicate the linear behavior

W T
r (L) ∼ L, colored dashed lines indicate scalings W T,∗

r (L) ∼ 1/L, 1/L2 and solid
blue line corresponds to power-law dependence W ∗r (L) = a + bL−α. Panels (c) and
(d) show the same data but with 1/L on horizontal scale, allowing to visualize the
extrapolation to the thermodynamic limit L →∞. The red cross denotes the posi-
tion of the critical disorder strength WC . The orange points in (c) denote disorder
strength W T

r=0.47(L), obtained for pr = 0.06; upon extrapolation of W T
r=0.47(L) with

a first order polynomial 1/L we get 17.95 which is close to W T
∞ as well as to the

critical disorder strength WC .

size, and the length scale L0 to be larger than for RRG with D = 3, 4. This suggests that finite
size effects at Anderson localization transition become stronger for models on random graphs
with larger connectivity.

The finite system size drifts at the delocalization-localization crossover in the Anderson
model on URG are similar to RRG with D = 2,3, as shown in Fig. 6. We observe an interval of
system sizes for which W T

r (L) scales linearly with L, as well as a crossover to a slower system
size dependence at larger L. When we performed extrapolations of the W ∗r (L) to L →∞ in
the same manner as for RRG, we found that the extrapolations of the first order polynomials in
1/L and 1/L2 overestimate the position of the critical disorder strength by 10−20% whereas
a power-law extrapolation (plus a constant) underestimates the position of the crossing point
by roughly 10%. In contrast, the extrapolations performed in variable L = L+log2 f , shown in
Fig. 6 (b), (d), allow for a much more accurate estimation the position of the critical disorder
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Figure 6: System size dependence of the crossover between delocalized and localized
regimes for Anderson model on URG. Denotations the same as in Fig. 5. Panels (c)
and (d) show the data as function of 1/L where L = L + log2 f .

strength. Details of those fits are displayed in Tab. 1. A graph from the URG ensemble can be
represented as its sub-graph containing only the vertices with D = 3 neighbors with vertices of
the sub-graph connected by branches of vertices with 2 neighbors. The branches of the vertices
with 2 neighbors can be eliminated (this is done in an exact way in Green function calculations
in Sec. 5.3) yielding an effective hopping between the vertices with D = 3 neighbors. The
number of those vertices is exactly 2L = f 2L . For this reason, it may be expected that in order
to obtain results as accurate as for RRG with D = 3, 4, the extrapolations should be performed
in the variable L. Another way of expressing this observation is that the finite size effects are
controlled by the number of branchings of the local tree-like structure in a loop rather than by
the size of the loop on a graph (which significantly increases when f decreases from 1 to 0).
The distinction between L and L does not play a role in thermodynamic limit, but is important
for finite system size data analyzed here.

Finally, we note that the finite system size behavior at the delocalization-localization
crossover in the Anderson model on SWN is fully analogous to URG, as shown in Fig. 7 for
p = 0.06 (this choice of p allows for a direct comparison of our results with [80,81,131]). Also
for Anderson model on SWN, the extrapolations of the position of the crossing point W ∗r (L)
yield a precise estimate of the critical disorder strength, see Tab. 1. While there are some
details that distinguish the graphs of the SWN ensemble from the URG and RRG, as described
in Sec. 3.3, those details do not seem to play any significant role in the physics of Anderson
transition as shown by our numerical results for the crossover in the level statistics analyzed
in this section as well as in the structure of eigenstates studied in Sec. 4.4.
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Table 1: Details of the fits to system size dependencies of disorder strengths W ∗r (L)
and W T

r (L) for Anderson model on random graphs. The critical disorder strengths
WC are calculated in Sec. 5, the fits are shown in Fig. 5 (for RRG), Fig. 6 (for URG) and
Fig. 7 (for SWN). The crossing point was fitted with functions: W ∗r (L) =W (−1)

∞ +a/L,

and W ∗r (L) =W (−2)
∞ +b/L2 as well as with a power-law (plus a constant) dependence

W ∗r (L) =W (α)
∞ + bL−α. We also present W T

∞ obtained from a fit W T
r (L) =W T

∞+ a/L
to W T

r (L) for 5 largest system sizes available (with the exception of RRG, D = 4, for
which we used 3 largest system sizes due to the apparent curvature of the data).

WC W (−1)
∞ W (−2)

∞ W (α)
∞ α W T

∞

RRG, D = 3 18.17(1) 19.7 17.6 18.1 1.6 17.9

RRG, D = 4 34.95(2) 37.5 33.1 35.4 1.3 33.7

URG, f = 1
8 5.295(5) 5.60 5.15 5.14 2.03 5.30

URG, f = 1
64 1.841(3) 1.99 1.80 1.79 2.05 1.87

SWN, p = 0.06 1.820(3) 1.93 1.76 1.81 1.61 1.75

Concluding this section, we would like to emphasize that the features of the crossover be-
tween delocalized and localized regimes in the Anderson model on random graphs, described
in an unbiased way by disorder strengths W T

r (L), W ∗r (L), are similar to the features of the
ergodic-MBL crossover in disordered many-body quantum system. This conclusion applies
both for the XXZ spin chain [82] as well as for the kicked Ising model [75]. Notably, the de-
viation from the linear scaling of W T

r (L) observed in the latter but not in the former model,
was also found by us for the Anderson model on random graphs in which the presence as well
as the position of the transition to localized phase is well established. This forms the basis
of one of the premises suggesting the stability of the MBL crossover observed for kicked Ising
model in [75]. Moreover, the extrapolations of the drift of the crossing point W ∗(L) allow us
to determine the critical disorder strength WC with precision of up to few percent, suggesting
that similar could hold for models of MBL. This indirectly supports the prediction WC ≈ 5.4 for
XXZ spin chain [82], as well as suggests validity of the claim that finite size drifts numerically
observed for kicked Ising model can be used to determine the critical disorder strength in that
model as WC ≈ 4 [75]. Conversely, our results quantitatively demonstrate close parallelisms
between finite size drifts at Anderson transition on random graphs and at MBL transition,
supporting further the thesis about close connections between those phenomena.

4.3 Finite size-scaling and subleading corrections

Our results, at largest system sizes we can reach in the numerical computations, indicate two
different scaling behaviors: W T

r ∼ L−1 and W ∗r ∼ L−α. This behavior, as we said, when
extrapolated, is the best one compatible with the critical disorder strength value WC given by
the integral equation method discussed in Sec. 5 which works directly in the thermodynamic
limit. How can one describe this in the framework of scaling analysis of critical points? In
particular, is there a scaling function analysis of the whole function r(W, L)? We will show in
this section that the only way these two different behaviors can be accommodated is via the
presence of a correction-to-scaling exponent ω, see [132] (and, in the context of Anderson
localization [3,94,133]).
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Figure 7: Delocalization-localization crossover in Anderson model on SWN. The aver-
age gap ratio r is shown in panel (a) as a function of disorder strength W for various
system sizes L and SWN with p = 0.06. Disorder strengths W T

r (L) and W ∗r (L) as func-
tion of 1/L (where, for a SWN graph, L = L + log2(2p)), along with fits (performed
in the same manner as in Fig. 5) are shown in panel (b). The red cross denotes the
critical disorder strength WC .

Let us consider the dimensionless observable r(W, L)written keeping only the lowest order
corrections to scaling:

r(W, L) = rP + f ((W −WC)L
1/ν) + L−ω f1((W −WC)L

1/ν) , (10)

where f (x) is the scaling function. It satisfies f (x > 0) = 0 since it is expected that r = rP in
the thermodynamic limit for W > WC . For f (x < 0) we may take a smooth function, which
approaches to 0 as x → 0−, and tends to rGOE− rP ≈ 0.144 for x →−∞, we choose to model
the function f (x < 0) as a2 x2+a0 in a neighborhood of x = 0. In that way, the derivative f ′(x)
is continuous at x = 0. Obtained data collapses will a posteriori confirm our assumptions about
the scaling function f . The sub-leading term contains another function f1(x) which plays a
significant role on the localized side of the crossover (where f = 0). The minimal assumption
we can have is that f1(x)≃ A+ A1 x +O(x2) when x ≪ 1 (while f1(x)∼ e−cx for x ≫ 1) and
we will consider only the first non-zero term f1(x) = A in our discussions. Exponents ν, ω as
well as coefficients ai , A are free parameters of the scaling ansatz (10). Below, we show that
the observed scalings of W T

r and W ∗r , together with our assumptions on the form of f , fix the
values of ν,ω leaving A (in view of the exactly known value of WC) as the only free parameter
of the following scaling analysis.

If we want to find the scaling of the boundary of the ergodic region, W T
r , consistent with

the ansatz (10), we must solve:

rGOE − pr = r(W T
r , L) = rP + f ((W T

r −WC)L
1/ν) + AL−ω , (11)

which yields
WC −W T

r ≃ cL−1/ν , (12)

for some c > 0. The values of W T
∞ in Tab. 1 approximate the value of critical disorder strength

WC with accuracy better than 4% for all considered types of random graph, supporting the
scaling WC−W T

r ∼ L−1 (the same applies also to other choices of pr ; see, for instance, W T
r=0.47

in Fig. 5 (c)). This suggests that the value of the exponent ν is equal to 1.
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Figure 8: Finite size scaling of data at Anderson transition on RRG with D = 3,4,
panels ((a), (b), for URG with f = 1

8 , panel (c), and for SWN, panel (d). In all cases
we set ν = 1, ω = 2 (see text) and the critical disorder strength WC evaluated in
thermodynamic limit, see Tab. 1; the single free parameter of the presented finite size
collapses of the data is the coefficient A in the term AL−ω. The scaling function f
is fitted as f (x) = a2 x2 + a0 (only for URG f = 1

8 we add a small term a3 x3 with
a3 ≈ a2/10 to give a better account for the curvature of the data). The insets show
the value of average gap ratio r at W = WC , solid magenta lines denote fits of the
form r = r0+ b/L2 which yield r0 ≈ rP , consistently with the assumedω= 2 and the
expectation that the critical point for Anderson model on random graphs is localized.

Instead, if we want to find the crossing point between the data at system size L and L+∆L,
we need to solve

r(W ∗r , L +∆L) = r(W ∗r , L) , (13)

which, using our assumptions on the form of the scaling function f (x), gives

a2(W
∗ −WC)

2 L2/ν + AL−ω = a2(W
∗ −WC)

2(L +∆L)2/ν + A(L +∆L)−ω , (14)

which, for ∆L≪ L, yields
WC −W ∗ ≃ C1 L−ω/2−1/ν . (15)

The values of W (α)
∞ in Tab. 1 approximate the value of critical disorder strength with very good

accuracy. This implies that
ω/2+ 1/ν= α . (16)

The value of α can be taken from the fits summarized in the Table 1. The simplest as-
sumption, yielding only integer exponents would be to take α = 2. This corresponds to the
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finite system size drift of the crossing point W ∗r (L) =W (−2)
∞ + b/L2. Upon extrapolation, such

a system size dependence of the crossing allows to predict the position of the transition with
accuracy better than 6% (cf. Tab. 1), justifying our choice of the right-hand side of (16). This
choice of α, together with the value ν= 1 given from the numerics, yields ω= 2. Apart from
the simplicity of the resulting exponents, the value of the exponentω= 2 is further supported
by the behavior of the average gap ratio r at W =WC , which yields the expected r = rP in the
L →∞ limit as shown in the insets in Fig. 8. Another possibility is to use α ≃ 1.6 for RRG
with D = 3 which is a uniformly good fit of the data. Keeping ν = 1, this would give a value
of ω ≃ 1.2. While this value is not consistent with the global scaling of the r(L, W ) values, it
brings to the light an enticing possibility, connected to the results in [134]. In this paper (see
Eq. (5.54) there), the scaling exponent for the density-density correlation function at critical-
ity is 3/2. If we use this as a proxy for ω, we find that ω = 3/2,ν = 1 implies α = 7/4. The
latter values of the exponents cannot be ruled out using our numerical data, and exploring
this possibility is left for future work. For the moment, however, we take here an assumption
that the right-hand side of (16) is equal to 2. Using those values of the critical exponents, and
fixing the critical disorder strength WC to be equal to the exact value in the thermodynamic
limit (shown in Tab. 1), we find the collapses of the data shown in Fig. 8 (a)-(d) for Anderson
model on various types of random graphs. The coefficient A in the correction AL−ω to scaling
is the only free parameter adjusted to obtain the collapses of the data. After the data were
collapsed, the scaling function f (x) was fitted to it, and we find that our assumptions on the
form of f (x) are indeed satisfied.

On the basis of this finite size scaling analysis, one can identify two different scaling lengths
by inverting the relationships for W ∗r (L) and W T

r (L). The first critical length, ξ1 is the smallest
system size that, at W <WC , gives rise to resonances and a departure from Poisson statistics.
Since the critical point localized, with Poissonian level statistics, the only way to define this
length scale is by the crossing between data belonging to different system sizes. This definition
mixes the exponents ν and ω into a new exponent. Indeed, inverting W ∗r (L), (15), we get

ξ1∝ (WC −W )−2ν/(2+νω) = (WC −W )−1/2 , (17)

where we have used α = 2, as discussed above.2 The second length scale, ξ2, is the smallest
system size necessary to develop full-scale ergodicity. Using (12), we find

ξ2∝ (WC −W )−ν = (WC −W )−1 . (18)

Notice that, given the scaling form (10), in the definition of ξ2 it is immaterial what threshold
value of rT we use (as long as rGOE > rT > rP).

In various previous works on the Anderson model on the Bethe lattice either one or both
of these length-scales has been identified, but given different meanings. They also appear
in a recent treatment of the effective Rosenzweig-Porter model associated to a RRG [135].
In [23,32,136] ξ1 is identified as the only critical length for transition and no mention of ξ2
is made; in [30] the scaling length ∼ ξ1 has been identified by looking at the crossing points
of several quantities coming from analyzing eigenstates and spectral statistics (the exponent
is never written exactly as 1/2 but as consistent with 1/2, the numerical value provided being
0.6, together with WC between 17.7 and 18.4). In [81], two critical lengths were identified in
an ensemble of SWN graphs, very similar to ours. However, the authors of [81] take a differ-
ent approach than ours to the scaling. In particular, they study (r(W, L)− rP)/(r(WC , L)− rP)
where WC is the critical disorder strength, and find that an exponent ν⊥ ≃ 1/2 dominates

2Note that other choices of α > 1 (for instance α compatible with Tab. 1) yield ξ1∝ (WC −W )−κ with κ < 1,
which is still distinct from the lengthscale ξ2. For instance, α = 7/4 obtained from ω = 3/2 suggested by [134]
yields ξ1 ∼ |W −Wc |−4/7.
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the scaling behavior close to the critical point. We have analyzed our data using their proce-
dure (we thank Gabriel Lemarié for discussions regarding this) and we found that a similar
phenomenology could be adopted to scale data for RRG with D = 3 (resp. D = 4) but with
a different exponent ν′⊥ = 0.64 (resp. ν′⊥ = 0.67), instead of 1/2 as dictated by data for
SWN [81]. In turn, adopting the collapse with ν′⊥ = 1/2, we find significant deviations from
scaling for all r(W, L) ≳ 0.4, both for RRG with D = 3 and D = 4. The authors of [81] would
attribute this behavior to large corrections to scaling in the ergodic region. Their suggested
corrections are necessary to recover the behavior for WT ∼ 1/L1 rather than 1/L1/ν⊥ = 1/L2

observed in Fig.5. One could say that the tension between our two works consists in that,
while our scaling is tailored to the delocalized region, the localized region being taken care
of by the term L−2 f1(|W −Wc|L), theirs is tailored to the localized region, and the deviations
observed in the ergodic region are considered as a failure of the scaling limit. However, the
statement that the lengthscale ξ2 ∼ |W −Wc|−1 determines the region of ergodic behavior,
namely r(W, L)− rP > ε, for any fixed ε is independent of the scaling form chosen to fit the
data close to the transition. We feel that our assumption, which does not separate the behavior
at the critical point from that in the delocalized region is preferable, but we leave the reader
to form their own opinion. To that end, we provide an additional analysis of the finite-size
scaling at the Anderson transition on random graphs in Appendix. B.

It is interesting to notice that ξ2 arises whenever perturbation theory is analyzed, in par-
ticular the locator expansion, in the form of the forward scattering approximation [33, 137],
shows how this length is the typical distance between resonances. An idea presented in [22]
and subsequently expanded in [26], argues that this network of resonances gives rise to eigen-
states which do not span a finite fraction of the total number of sites N , but only a power-law
N α, α < 1, therefore giving rise to a phase of delocalized but non-ergodic states. This was
contested in several later works (see for example [23]) which maintain that in the entire delo-
calized phase the eigenstates span a finite fraction of N , and that the discrepancy is due to the
divergence of the only critical length ξ1. Finite size scaling analysis proposed by us, which, we
believe, is the simplest approach that accounts for finite size drifts observed in numerical data,
and, at the same time, remains consistent with the critical disorder strength known exactly in
the thermodynamic limit, implies the following correction to both works: while it is true that
eigenstates at any W < WC are fully ergodic (namely their dimension D1 = 1, and the levels
repel like GOE), this occurs not on the scale ξ1, where one exits the localized phase, but on
the scale ξ2. Since ξ2 ≫ ξ1, there is a very large region (which can be made arbitrarily large
by approaching WC) where eigenstates are delocalized but not ergodic. The ratio of these two
lengths ξ2/ξ1 diverges when W → Wc , so scaling things appropriately one can have a fully
non-ergodic delocalized region in a random graph ensemble.

It is now important to compare our situation with that of cubic lattices in d dimensions:
where only one critical length is identified which controls the other critical exponents [3,
94, 138], ξ1 = |W −WC |−ν, with ν → 1

2 when d → ∞, and the crossing point converging
so extremely fast with L, that one usually does not study its dependence on L. From [94]
considering that in their notation ω = y one finds WC −W ∗ ∝ L−y−1/ν, and, using their
results, this ranges from L−1.7 to L−2.6 for d = 3, ..., 6. So, thus defined, using those data to
extrapolate to d →∞ one would not recover ω= 2. The tension is dissipated by considering
that, while for any finite d the crossing point occurs where the function f has a non-zero
derivative and therefore can be approximated by f (x) ≃ rC + a1 x + ..., for the Bethe lattice
the crossing occurs at the minimum of f (x) and therefore the expansion must start with a
quadratic term f (x) ≃ rP + a2 x2 + .... This changes abruptly the relation between the flow
of W ∗ and that of WT , and therefore the critical exponents, but also their interpretation. If
rC > rP then it is the scale ξ1 which determines the exit from the localized phase, while if
rC = rP then it is the scale ξ2, as we have shown before. Moreover, unlike the case of finite
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dimensions, the respective volumes Λ1,2 = Kξ1,2 , are not related by a power-law equation:
they are truly different scales. We suspect that this is also what happens in models of MBL
where the slower scaling of WT has been mistaken for non-existence of the MBL phase and we
plan to embark on a similar analysis of the MBL transition in the a coming work.

4.4 Participation entropies and non-ergodicity volume

In this section we investigate the structure of eigenstates of the Anderson model on random
graphs by means of participation entropy

Sq =
1

1− q
log2

2L
∑

i=1

|ψ(i)|2q , (19)

where q > 0, and ψ(i) is the wavefunction amplitude at site i of the graph. Participation
entropy is directly connected to the concepts of inverse participation ratio (for q = 2) and,
calculated as a function of q allows for a multifractal analysis of the wavefunction [139].
Participation entropy scales differently with system size for delocalized and for localized wave-
functions thereby playing a critical role in the analysis of Anderson localization transition [3,
140–142] and as well as of the MBL transitions [107, 112, 118, 143–146]. Interestingly, the
participation entropies can be also used to characterize quantum phase transitions [147–156]
and recently have been used to construct order parameter for measurement-induced phase
transitions [157]. We average the participation entropy over system realizations and over the
eigenstates close to the energy E = 0 (in the same energy range as for the calculation of the
average gap ratio r). Subsequently, following [157], we parameterize the dependence of the
averaged participation entropy Sq on the system size L as

Sq = Dq L + cq , (20)

where Dq is a fractal dimension and cq is a sub-leading term. The coefficients Dq(L), cq(L) are
extracted from (20) for L and L + 1 (where the numerically calculated average participation
entropies Sq are the input data). If an eigenstate is localized and the localization length ξ
is considerably smaller than the system size, the increase of L does not affect the value of
participation entropy. Hence, the fractal dimension Dq is vanishing for localized states. For
Dq = 0, the sub-leading term cq is related to the logarithm of the number of sites on which the
eigenstate is extended, i.e. it is a measure of the localization length ξ. Conversely, if a state is
ergodic, i.e. extended over the entire system, one obtains that Dq = 1. A non-zero sub-leading
term cq determines non-ergodicity volume Λ∝ 2−cq [112].

The results for Anderson model on random graphs are shown in Fig. 9. In the following
discussion we mainly focus on RRG with D = 3, i.e. Fig. 9(a), (b). Fully analogous obser-
vations are valid for Anderson model on SWN, as shown in Fig. 9(b), (d) as well as for URG
(data not shown). In the limit of small disorder, W ≪ WC , we find that the eigenstates are
ergodic and D1 = 1. Importantly, for W ≪WC , the sub-leading term c1, as well as the coeffi-
cients cq for other values of q (we have checked q = 2,3, data not shown), are given by the
prediction cq = log2 (2

qΓ (q+ 1/2))/(1 − q) for GOE matrices [158]. Hence, in this regime,
the eigenstates are fully ergodic, matching the random matrix theory prediction.

As visible in Fig. 9(b), (d), already at W ≈ 5 for RRG with D = 3 and W ≈ 0.5 for
SWN with p = 0.06, the sub-leading term c1 gets smaller than the random matrix theory
prediction and becomes a decreasing function of the disorder strength W . While for each
fixed system size L the sub-leading term c1 has a minimum at disorder strength W min, the
curves c1(W ) saturate with system size at disorder strengths below W min to a limiting curve
c∞1 (W ). The curve c∞1 (W ) determines the non-ergodicity volume Λ(W ) ∝ 2−c∞1 (W ) which
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Figure 9: Fractal dimension D1 and the sub-leading term c1 (proportional, if c1 < 0,
to − logΛ, where Λ is the non-ergodicity volume) for Anderson model on RRG with
D = 3, panels (a), (b) and on SWN with p = 0.06, panels (c), (d). Data shown
for a varying system size L as a function of disorder strength W . The red dashed
lines denote the behavior of D1, c1 for GOE; the black dashed lines in (a), (c) denote
the expected D1 = 0 for localized functions, whereas the grey dash-dotted lines in
(b), (d) correspond to extrapolation of c1(W ) to L →∞ by means of a first order
polynomial in 1/L and show the expected jump of c1 at W =WC . The insets in (b),
(d) show −cmin

1 where cmin
1 is the minimal value of the sub-leading term c1(W ) for

system size L.

rapidly increases with increasing disorder strength W suggesting a divergence of Λ(W ) for
W →WC . However, the values of c1(W ) are saturated only far from the transition point, below
W <W min. This prevents us from finding the asymptotic form of the divergence of c∞1 (W ) at
W →WC , which determines the value of the critical exponent ν [32]. Nevertheless, extraction
of the leading as well as the sub-leading term in the system size scaling of the participation
entropy, (20), allows to uncover a non-trivial change in the structure of eigenstates, i.e. the
appearance of the non-ergodicity volume already deeply in the delocalized phase. This occurs
for disorder strengths W < W min, for which the functions are fully extended, Dq = 1. This
non-trivial behavior results in significantly underestimated value of the fractal dimension, if it
is extracted as D′1 = S1/L. Indeed, for L = 16, we have D1 = 1 for Anderson model on RRG
with D = 3 (see Fig. 9(a), whereas D′1 ≈ 0.7 at W = 10, see [28]. The fractal exponents Dq
and D′q differ, to a good approximation, by a term cq/L which vanishes in the thermodynamic

limit. This behavior, together with the fact that c1(W = W min) ≡ cmin
1 ∝ L (see the insets

in Fig. 9(b), (d)), could be misinterpreted in numerical investigations for finite system sizes
as indicating an existence of a regime of non-ergodic extended states for Anderson model on

21

https://scipost.org
https://scipost.org/SciPostPhys.15.2.045


SciPost Phys. 15, 045 (2023)

Figure 10: Comparison of disorder strengths at the delocalized-localized crossover
in Anderson model on random graphs: W ∗r , W T

r describe the behavior of the average
gap ratio r, whereas W ∗D1

, W min characterize system size dependence of the fractal
dimension D1. Panel (a) shows data for RRG with D = 3, whereas panel (b) for SWN
with p = 0.06. Dashed lines denote the fits W T

r ∝ L and W ∗r ∝
1
L2 .

RRG for W <WC [21, 22, 26, 59] which was later argued to be absent in the thermodynamic
limit [27, 80, 159] (which is not the case for certain random matrix models [135, 160–164]).
The scaling analysis from the preceding section suggests an opening of a regime of system sizes
ξ1 < L < ξ2, at disorder strength W below WC , in which the eigenstates are neither localized
nor fully ergodic.

Our data comply with this scenario. The fractal dimension D1 as function of disorder
strength W seems to approach a step function at W = WC and the ergodicity seems to be
restored at any W < WC once L > ξ2. The behavior of D1 is similar to the behavior average
gap ratio r. This is explicitly demonstrated in Fig. 10 which compares the disorder strengths
W ∗r (L), W T

r (L) with the minimum W min(L) of the c1(W ) curve for given system size L as
well as with the crossing point W ∗D1

(L) of the D1(W ) curves (calculated for curves for system
size L and L + 1). We observe a quantitative agreement between W ∗r (L) and W ∗D1

(L) in the
interval of the system sizes in which both quantities are available. In turn, the position of the
minimum W min(L) is close to the boundary of the delocalized regime W T

r (L) and seems to have
a similar dependence on the system size L. This suggests that W min(L)→WC as L→∞ and
that the regime W min < W < WC , in which the sub-leading term c1(W ) is increasing shrinks
down to a point at WC , at which c1(W ) jumps from −∞ (due to diverging non-ergodicity
volume) to a certain finite value (due to a finite typical localization length for W above WC)
in thermodynamic limit. At disorder strengths larger than WC , we observe that D1 approaches
0. This shows that the states are indeed localized, whereas c1(W ) saturates to a system size
independent envelope, denoted by dash-dotted line in Fig. 9(b), (d), which is determined by
the localization length at for Anderson model on a given ensemble of random graphs.

5 Evaluation of the critical disorder strength

We start this section by briefly reviewing a cavity method approach that allows to calculate
critical disorder strength WC for Anderson localization on random graphs with a local tree-like
structure. We proceed by detailing our calculation of WC for RRG with connectivity K = 2 and
K = 3. Subsequently, we discuss how to modify the discussed approach to evaluate the critical
disorder strength for ensembles of URG and SWN with average connectivity 〈K〉 ∈ [1, 2].
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5.1 Cavity method and the criterion for localization on random graphs

In the considered random graph ensembles (RRG, URG and SWN), the size of a typical loop is
proportional to the system size, l0 ∼ log L (see Eq.(4)). Thus, the typical loop size is diverging
in the thermodynamic limit, and any finite portion of the considered random graph models
becomes a loopless, tree-like structure when L→∞. Due to the absence of the short loops in
the lattice [15,165], one may investigate properties of the localization on such graphs directly
in the thermodynamic limit, by writing a mean field theory in terms of recursion equations
for the so called cavity Green functions Gi(E) (known also as cavity propagators) [13, 14].
For an infinite tree-like lattice with connectivity K , cavity Green functions fulfill the following
recursion relation

Gi(E) =
1

E − εi −
∑K

k=1 Gk(E)
. (21)

The cavity propagators G j(E) are independent, identically distributed random variables and
correspond to the Hamiltonian restricted to a sub-tree rooted at a certain site of the random
graph but with one of the links to its neighbors removed. The recursion relation (21) allows
to determine the probability distribution of the cavity Green functions, which, in turn, can be
used to calculate the diagonal part of the resolvent as

Gii(E) = 〈i|
1

E −H
|i〉=

1

E − εi −
∑K+1

k=1 Gk(E)
. (22)

The latter approximate equation is expected to become exact in the thermodynamic limit [13].
The usual route to analyze the equation (21) is to introduce a small imaginary part E→ E+ iη
and then to consider the limit η→ 0 after the thermodynamic limit is taken. Here, we adopt
the real energies approach [24, 26, 166] and set η = 0. In the extended phase the self con-
sistency equation (21) admits then a solution with real Green functions that is unstable upon
introduction of non-zero η [31].

In order to accurately determine the critical disorder strength WC for Anderson model for
various types of random graphs, we follow the procedure described in [13, 14, 31, 32]. We
are interested in the properties of the system in the middle of the spectrum, hence we set
E = 0 and denote Gi(E = 0) = Gi . To obtain the distribution of cavity Green functions, we use
the population dynamics algorithm [16]. We consider a population of n = 224 random vari-
ables initially drawn from a uniform distribution. In each step of the algorithm, K variables
Gk chosen randomly from the population are used to calculate Gi according to the recursion
relation (21) with the on-site energy εi drawn from an appropriate disorder distribution γ(ε).
The cavity Green function Gi replaces then one, randomly chosen, element of the population.
After nt steps of the algorithm, needed to achieve the convergence (here we use t = 100),
we start sampling the population: each nt/10 steps of the algorithm, we sample the popula-
tion n times, determining with better and better accuracy the distribution P(G) of the cavity
propagators. In total we perform at least 20nt steps of the population dynamics algorithm.

In the real energies approach, the criterion for localization transition can be obtained by
investigation of the stability of a given population with respect to changes of the on-site energy.
Below, we give the main points of the reasoning that yields the criterion for the localization
transition, details can be found in [31]. In the localized phase, the change of εi should not
affect the value of cavity propagator at site j if the distance d(i, j) between sites i and j is
much larger than the localization length ξ. To quantify the influence of the perturbation of εi

on a cavity propagator G j , one considers the susceptibility χ(d) ≡ ∂ G j

∂ εi
and evaluates its s-th

moment as

〈|χ(d)|s〉=
��

�

�

�

∂ G j

∂ εi

�

�

�

�

s�

=

*

�

�

�

�

∂ Gp(1)

∂ εp(0)

�

�

�

�

s d(i, j)−1
∏

k=1

�

�

�

�

∂ Gp(k+1)

∂ Gp(k)

�

�

�

�

s
+

=

*

d(i, j)
∏

k=1

|Gp(k)|2s

+

, (23)
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where p(k) enumerates the sites along a path from site i to site j, i.e. p(0) = i, p(1) = i+1,. . .,
p(d(i, j)) = j, the recursion relation (21) was used to calculate the derivatives and the av-
erage 〈.〉 is taken over paths connecting sites i, j, and over pairs of i, j with fixed d(i, j).
Parametrizing the dependence of the susceptibility on the distance d as

〈χ s(d)〉 ≡ Cdλ
d(s) , (24)

where the leading exponential dependence on d (in the limit of large distances d) is contained
in the term λd(s) and the term Cd describes the sub-leading d dependence, one arrives at the
transition criterion

Kλ(s = 1/2) = 1 , (25)

which is the same as the resonance condition derived in [167]. Thus, the critical disorder
strength WC can be determined as a point at which the average product of cavity propaga-
tors (Eq. (23) for s = 1/2) decreases as 1/Kd with the distance d along the path p(i). One
way to tackle this calculation would be to evaluate such products along paths p(i) of length
d performing the average directly over the ensemble of cavity propagators from the popula-
tion dynamics algorithm. However, the susceptibility χd is a wildly fluctuating number which
prevents one from obtaining an accurate estimation of the average 〈χ s(d)〉 at d ≫ 1 in that
way.

Alternatively, one may link λ(s) to an eigenvalue of an integral kernel [13], by noting that
the recursion relation (21) implies that the propagators along the path p(i) fulfill

Gp(k+1) = −
1

εp(k) + Gp(k) + ζ
, (26)

where ζ=
∑K−1

j=1 G j and G j are i.i.d. random variables with distribution P(G). The conditional
probability

PK(Gp(k+1)|Gp(k)) =

∫ ∞

−∞
dε

∫ ∞

−∞
dζγ(ε)Pζ(ζ)δ

�

Gp(k+1) +
1

ε+ Gp(k) + ζ

�

, (27)

where Pζ(.) denotes the distribution of the variable ζ, defines an integral operator with ker-
nel IK(y, x) = PK(y|x). The integral operator can be used to calculate the s-th moment of
susceptibility as

〈|χ(d)|s〉=

*

d(i, j)
∏

k=1

|Gp(k)|2s

+

(28)

=

∫ d(i, j)
∏

k=1

dGp(k)|Gp(d)|2s K(Gp(d), Gp(d−1)) |Gp(d−1)|2s . . . K(Gp(2), Gp(1)) |Gp(1)|2s P(Gp(1) .

The right hand side of the latter equation corresponds to multiple actions of an integral oper-
ator with kernel IK ,s(y, x) = IK(y, x)|x |2s, hence the large d behavior of 〈|χ(d)|s〉, encoded in
λ(s) (c.f. (24)), is determined by the largest eigenvalue of that integral operator, ÎK , i.e. by
the largest solution of the equation

λ(s)φs(y) =

∫ ∞

−∞
dx IK ,s(y, x)φs(x)≡ ( ÎKφs)(x) . (29)

The above reasoning applies, in a strict sense, to RRG with fixed connectivity K . In the
following section we outline the details of calculation of WC for RRG with K = 2 and K = 3,
whereas in the subsequent section we proceed to analyze the Anderson localization on the
ensembles of URG and SWN with the average connectivity 〈K〉< 2.
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5.2 Critical disorder strength for random regular graphs

Using (27) one finds the kernel of the integral operator ÎK [13,31] as

IK ,s(y, x)≡
|x |2s

y2
QK

�

x +
1
y

�

, (30)

where we have introduced

QK (z) =

∫ ∞

−∞
dεγ(ε)Pζ (ε+ z) . (31)

For a symmetric disorder distribution, γ(ε) = γ(−ε), the distribution P(G) determined by
(21) is also a symmetric function. This implies that QK(z) = QK(−z), which means that the
operator Î preserves the symmetry of the function φs(x). For s = 0, the maximal eigenvalue
of K̂ is λ(0) = 1 and the corresponding eigenvector is φ0(x) = P(x), which is a symmetric
function. For s > 0, the maximal eigenvalue is smoothly connected to the s = 0 case, hence
we restrict our considerations to the subspace of symmetric functions φs(x) which simplifies
the numerical analysis of the eigenproblem (29). In the subspace of symmetric functions, the
analysis of (29) can be restricted to x , y > 0:

λ(s)φs(y) =

∫ ∞

0

dx
|x |2s

y2

�

QK

�

x +
1
y

�

+QK

�

−x +
1
y

��

φs(x) . (32)

We introduce a discrete basis of functions in which we approximate φs(x) as

φs(x) =
ng
∑

i=1

1

∆
1/2
i

δi(x)ci +
1

x3/2
M

θ (x − xM )
x2

c0 , (33)

where ci are the coefficients of the expansion, δi(x) = 1 for x i−∆i/2< x < x i−∆i/2 (other-
wise δi(x) = 0), θ (x) is the Heaviside theta function, and ng ≫ 1, 0 = x0 < x i < x i+1 < xM ,
∆i = (x i+1 − 2x i + x i−1)/2 (with x0 = 0 and xng+1 = xM ), xM ≫ 1. The introduced basis is

orthonormal with respect to the L2 scalar product on the positive real axis. The Lorentzian tail
at x > xM , assumed in the expansion (33), matches the asymptotic behavior of the solutions
of (32). Indeed, when y ≫ 1 in (32), the 1

y factors in QK

�

±x + 1
y

�

may be set to 0, implying

the Lorentzian tailφs(y)∼
1
y2 . In turn, for y ≪ 1, the function QK

�

−x + 1
y

�

is concentrated at
x ≫ 1 since the disorder distribution is localized around ε= 0. This shows that the Lorentzian
tail of φs(y) dictates the behavior of the eigenfunction at y ≈ 0.

To numerically solve the equation (32), we approximate the integral operator by a
(ng+1)×(ng+1)matrix using the basis defined in (33), set xM = 20, and consider x1, . . . , xng/2
to be evenly distributed in interval (0, 1) and xng/2+1, . . . , xng

to be evenly distributed in in-
terval [1, xM ). We employ the population dynamics to determine the distribution Pζ(z), in-
terpolate it with qubic spline, and use it to numerically evaluate Q(z) (31), paying atten-
tion to correctly take into account the Lorentzian tail of Pζ(z). Subsequently, we set up the
(ng +1)× (ng +1)matrices for s = 0 and s = 1/2 and perform their full exact diagonalization,
finding their largest eigenvalues λ(s) and corresponding eigenvectors φs(x).

Exemplary eigenfunctions φs(x) are shown in Fig. 11(a) for RRG with D = 4. The eigen-
function φs=0(x) coincides, in the whole domain x > 0, with the distribution P(G) of cavity
Green functions calculated with the population dynamics algorithm. This constitutes a cross-
check of our approach as well as forms a test of our discretization method (33) – the results
shown were obtained for ng = 8000 and overlap to a very good accuracy with results for
ng > 1000 (note that the distribution Pζ(z) at the input for D = 4 is distinct from P(G)). We
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Figure 11: Evaluation of the critical disorder strength WC for RRG. The eigenfunc-
tions φs(x) of (32) for s = 0,1/2 are shown in (a) together with the distribution
P(G) of cavity propagators, the inset shows the same but in lin-lin scale. The eigen-
values λ(s = 1/2) are shown as functions of disorder strength for RRG with D = 3
and D = 4 respectively in panels (b) and (c). The results for bases containing
ng = 1000, 8000 functions practically overlap showing that the error associated with
discretization of the integral equation (32) is negligible. At critical disorder strenght
λ(s = 1/2) = 1/K = 1/(D− 1).

also verify that the the eigenfunction φs=0(x) possess the expected Lorentzian tail at x ≫ 1
and that it tends to a constant for x → 0. The eigenfunction φs=1/2(x) also has a 1

x2 at large x .
Importantly, it diverges as 1

x for x → 0. Thus, in order to obtain the eigenvalue λ(s = 1/2)
without systematic errors, one needs to take a special care about the Lorentzian tail in (33),
which is interlinked with the behavior ofφs=1/2(x) at x → 0. In order to determine the position
of the transition, we calculate the eigenvalue λ(s = 1/2) as function of disorder strength W .
The results shown in Fig. 11(b), (c) practically overlap for ng = 1000 and ng = 8000 showing
that the effects of discretization of the integral equation are negligible for this values of ng .
Localizing the point at which λ(s = 1/2) = 1

K (c.f. (25)), we find that WC = 18.17± 0.01 for
D = 3 and WC = 34.95 ± 0.02 for D = 4. Our result for D = 3 is consistent with [32], and
slightly larger than WC = 18.11±0.02 reported in [31] - we verified that this small discrepancy
is due to inaccuracies in φs=1/2(x) at x → 0 that arise from discretization assumed in [31].

5.3 Random graphs

The method of calculation of the critical WC disorder strength used in the preceding section
relies on the criterion (25) that applies, strictly speaking [167], to graphs with a fixed con-
nectivity K . In contrast, the ensembles of URG and SWN, consist of graphs that have a local
tree-like structure. When traversing the tree from its root, one encounters a vertex with two
leaves with probability k and a vertex with a single leaf with probability (1− k), see Fig. 12.
This yields a tree with connectivity 〈K〉 ≡ k + 1 < 2. The relations between the vertices
translate directly into relations of the cavity Green functions (21). This suggests two possible
approaches to tackle the problem of evaluation of critical disorder strength WC of Anderson
localization on URG and SWN.

The first approach is to consider the localization problem on a tree with connectivity
〈K〉 < 2. In this approach, one modifies the step of the population dynamics algorithm to
properly account for the propagation along the tree structure: a new member of the popula-

26

https://scipost.org
https://scipost.org/SciPostPhys.15.2.045


SciPost Phys. 15, 045 (2023)

Figure 12: Reduction of the problem of finding cavity propagators on random graph
with 〈K〉 = k < 2, such as the considered URG and SWN, to a problem with dressed
propagators (shown in the bottom panel) on a RRG with K = 2.

tion Gi is calculated according to (21) with K = 2 with probability k and with K = 1 with
probability (1− k). Such a population dynamics algorithm yields a distribution of cavity prop-
agators PT (G) which becomes then an input to a generalization of the eigenvalue equation
(29). The kernel of such an integral equation describes a propagation of Green function along
the tree, and is simply given by

Is(y, x) = kP2(y|x)|x |2s + (1− k)P1(y|x)|x |2s , (34)

with P1,2(y|x) defined in (27). Finding the largest eigenvalue λ(s = 1/2) of this operator, we
may try to propose a putative criterion for the transition

〈K〉λ(s = 1/2) = 1 , (35)

which a straightforward generalization of (25). The factor K in the criterion (25) describes the
number of paths of length d which increases exponentially as Kd on RRG. The average connec-
tivity 〈K〉 describes the exponential increase average number of paths on random graph from
URG ensemble, intuitively confirming the criterion (35). This criterion yields WC = 5.52±0.01
for URG with f = 1

8 . To our surprise, this result is inconsistent with the results of the approach
described below. Therefore, we believe that the criterion (35) is incorrect and the fluctuations
of the number of paths of length d have to be taken into account in such a way that 〈K〉 is
replaced by some renormalized Kren < 〈K〉 in (35).

The second approach is to reduce the problem on a tree with connectivity 〈K〉 < 2 to an
equivalent problem on a tree with connectivity K = 2, for which the criterion (25) may be
directly applied. To that end, the propagation along a branch of vertices with a single leaf is
replaced by effective propagators that link the vertices with 2 leaves, as schematically shown
in Fig. 12. The integral operator that describes the propagation along such a branch of vertices
is given by

Îbranch =
∞
∑

n=1

(1− k)n−1 k În
1 , (36)

where Î1 is defined by (29). This is the “dressed propagator” depicted in Fig. 12: the term
with n = 1 corresponds to a situation, that occurs with probability k, when two vertices with
2 leaves (denoted by red dashed lines in Fig. 12) are directly connected; the term with n = 2
corresponds to a single intermediate vertex along the branch connecting the two vertices,
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Figure 13: Evaluation of the critical disorder strength WC for random graphs with
average connectivity 〈K〉 < 2. The eigenfunctions φs(x) of (32) for s = 0, 1/2 are
shown in (a) together with the distribution P(G) of cavity propagators. Panels (b)
and (c) show the eigenvalue λ(s = 1/2) of the operator ÎURG as a function disorder
strength for URG respectively with f = 1

8 and f = 1
64 . Panel (d) shows λ(s = 1/2)

for SWN with p = 0.06 (corresponding to 〈K〉 = 1.2). Due to the reduction of the
problem with 〈K〉 < 2 to a problem with fixed connectivity K = 2, at the critical
disorder strength λ(s = 1/2) = 1

2 .

which occurs with probability (1− k)k, etc. The operator which governs the transfer of Green
functions between the vertices with 2 leaves is given by

ÎURG = Î2

∞
∑

n=1

(1− k)n−1 k În
1 , (37)

where Î2 is an integral operator with kernel

I2(y, x) =
|x |2s

y2

∫ ∞

−∞
dεγ(ε)Pprop

ζ

�

ε+ x +
1
y

�

, (38)

where Pprop
ζ

is distribution of cavity Green functions for the reduced K = 2 problem propagated

by a branch with single leaf vertices. The distribution Pprop
ζ

is obtained from the population
dynamics algorithm outlined in Sec. 5.1 with step modified in the following manner: two
Green functions G1, G2 are chosen randomly from the population, to each of them the recursion
(21) with K = 1 is applied n times with probability k(1−k)n−1 yielding Gprop

1 , Gprop
2 , which are

then used as the input for the recursion (21) with K = 2 to get a new element of the population
Gi . After initial nt steps (the parameters the same as in Sec. 5.1), the distribution of Gprop

1,2 is
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sampled to obtain Pprop
ζ

. Once Pprop
ζ

is obtained, we solve the eigenproblem of the operator

ÎURG for s = 0,1/2 finding the maximal eigenvalues. We note that the susceptibility (28) for
〈K〉 < 2 contains products of Green functions for vertices with single and two leaves along
a given path on the graph. Those products are accounted for, with appropriate probability
weights, by (37). Firstly, as a test of the consistency of our method and benchmark of the
assumed discretization (33) we verify that the eigenvector of ÎURG for s = 0 corresponds to
the distribution P(Gi) of Greens functions obtained from the population dynamics algorithm.
Fig. 13 (a) shows that is indeed the case as well as demonstrates that the eigenfunction of ÎURG
for s = 1/2 has the same asymptotic behavior as for the RRG, c.f. Fig. 11. Finally, we calculate
the eigenvalues λ(s = 1/2) of ÎURG for various values of disorder strength W and use the
criterion (25) to extract the critical disorder strength WC . For URG we find WC = 5.295±0.005
and WC = 1.841±0.003 respectively for f = 1

8 and f = 1
64 . We note that the latter case requires

larger ng to obtain converged results as the erratic behavior ofλ(s = 1/2) for ng = 1000 shows.
Nevertheless, the results for ng ≥ 2000 practically overlap. Finally, for SWN, we approximate
the slightly fluctuating connectivity with its long-distance form 〈K〉 = (

p

16p+ 1+ 1)/2 and
obtain WC = 1.820± 0.003, close to the result of [80] obtained using a less accurate method.

6 Conclusions

In this work we have considered the problem of Anderson localization transition on random
graphs. Besides the usually investigated RRG, we have considered also two classes of random
graphs with average connectivity 〈K〉 ∈ [1, 2], i.e. the ensembles of SWN and URG. The URG
ensemble consists of uniformly distributed random graphs with a fixed numbers of vertices of
degree 2 and 3, whereas SWN arise when a number of short-cut links are added between sites
of a circular graph. For all considered types of graphs, the typical loop size is increasing linearly
with size L of the graphs (the number of vertices is N = 2L). This leads to local, loop-less,
tree-like structure of those graphs whose volume increases with L and which determines the
properties of Anderson localization. We have shown that the relation 〈D〉 = 〈K〉+ 1 between
the average vertex degree 〈D〉 and the connectivity of the tree-like structure 〈K〉, valid for
a regular graph (for which 〈K〉, 〈D〉 are simply equal to the fixed connectivity K and vertex
degree D) no longer holds for graphs from SWN and URG ensembles. We have calculated the
average connectivity 〈K〉 for SWN and URG. Moreover, comparing SWN and URG we have
found both global differences in their characteristics, such as the diameter of the graph, as
well as local differences: while URG are locally described solely by the average connectivity
〈K〉, the connectivity of SWN, due to their construction, fluctuates at small distances around
the average value. The differences between SWN and URG are however minor and do not
play a significant role in Anderson localization on those graphs. Hence, both SWN and URG
are ensembles of graphs that on one hand realize the limit of infinite dimension of the system
(as the graph diameter grows proportionally to the logarithm of the number of sites N ), and
on the other hand have the average connectivity 〈K〉 ≤ 2.

We have investigated the crossover between delocalized and localized regimes of Ander-
son model on the considered random graph ensembles using exact diagonalization algorithms
tailored for sparse matrices. The crossover in the average gap ratio was characterized by sys-
tem size dependent disorder strengths: W T

r (L), which marks the boundary of the delocalized
regime and W ∗r (L), determined by the crossing point that estimates the position of the tran-
sition at given system size L. The drifts of W T

r (L) and W ∗r (L) in Anderson model on random
graphs have been shown to be quantitatively similar to drifts observed in many-body systems
at the ergodic-MBL crossover [75, 79, 82]. In particular, we have observed a regime of linear
with L scaling of W T

r (L), consistent with the observation for disordered XXZ spin chain [82],
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as well as deviations from the linear scaling of W T
r (L) that are consistent with the occurrence

the localization transition in Anderson models on random graphs and were observed for dis-
ordered kicked Ising model [75]. Moreover, we have demonstrated that simple extrapolations
of the system size scaling of W ∗r (L) yield accurate estimates of the critical disorder strength
WC for Anderson model on the considered ensembles of random graphs. This might suggest
the relevance of the extrapolations of the crossing point position performed for disorder XXZ
spin chain (in [82], yielding WC ≈ 5.4), and for kicked Ising model (in [75], yielding WC ≈ 4).
Subsequently, we have analyzed the relation between the disorder strengths W T

r (L), W ∗r (L)
and power-law diverging length scales at the Anderson transition. We have argued that our
results may indicate presence of two different length scales ξ1, ξ2 whose ratio ξ2/ξ1 diverges
at the transition: the critical length at which the localization is lost is ξ1 ∼ |W −Wc|−1/2,
whereas the length scale ξ2 at which ergodicity is found diverges like |W −Wc|−1. Finally,
we have investigated system size dependence of the participation entropy Sq of eigenstates of
Anderson model on random graphs parameterizing it as Sq = Dq L + cq. We have shown that
the leading term, i.e. the fractal dimension Dq exhibits quantitatively very similar behavior to
the average gap ratio r, apparently approaching a step function with Dq = 1 on the delocalized
side and Dq = 0 at the localized side. Interestingly, we have shown that the sub-leading term
cq, which encodes the non-ergodicity volume Λ∝ 2−cq , exhibits a non-trivial behavior already
deep in the delocalized phase saturating with system size at sufficiently small W to a curve
that depends on the random graph type and which decreases monotonously as W gets closer
to WC (apparently diverging cq→−∞ in the thermodynamic limit).

Finally, we have employed the fact that the random graphs for the investigated ensembles
admit the tree-like structure in the thermodynamic limit to write recursion relations for Cavity
propagators [13] and solve eigenproblem of integral operator that describes propagation of
the Green function along a branch of the tree. This enables us to calculate the critical disorder
strength of the Anderson transition on RRG with D = 3 [31,32], RRG with D = 4. We gener-
alized this technique to tree-like structure with non-constant connectivity and determined the
critical disorder strengths for selected examples of URG and SWN. The obtained critical disor-
der strengths as well as the results of the extrapolations of W T

r (L), W ∗r (L) were summarized
in Tab. 1.
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A Appendix A

In this Appendix we show the average gap ratio r at the delocalization/localization crossover
on RRG with D = 4, see Fig. 14(a), and on URG with f = 1

8 , see Fig. 14(b). The crossover is
qualitatively similar to the results for random graphs shown in Fig. 4 and Fig. 7 in the main
text. An analysis of data presented here results in disorder strengths W ∗r (L), W T

r (L) shown in
Fig. 5 and Fig. 6.

Figure 14: Crossover between delocalized and localized phases on random graphs.
The average gap ratio r as function of disorder strength W for various system sizes
L, for RRG with vertex degree D = 3, (a), and for URG with average vertex de-
gree 〈D〉 = 21

8 (b). The dashed lines denote predictions for delocalized phase
r = rGOE ≈ 0.531 and localized phase r = rP ≈ 0.386.

B Appendix B

Below, we discuss differences between our approach to Anderson localization on random
graphs proposed in Sec. 4.3 and the approach considered in [80,81,131]. The two approaches
differ by the value of the critical exponent: our findings indicate ν= 1, whereas the latter ap-
proach claims that ν= 1/2.
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Figure 15: Disorder strength W T (L) as function of 1/L where L is the system size is
for RRG with D = 3, 4 respectively in panels (a) and (b). For better visibility, the data
for W T

r=0.47 are shifted upwards by 1 (2) for D = 3 (D = 4). The red dashed lines
show the fits with of (B.1) and the green dashed lines correspond to the fits of (B.2).

B.1 Scaling form of W T
r (L)

The extrapolation of the behavior W T
r ∼ 1/L observed at the largest system sizes available in

our study implies ν = 1, cf. (12). However, an analysis of W T
r (L) with more involved, two-

parameter scaling forms shows that the numerical results for W T
r (L) are consistent with both

ν= 1 as well as ν= 1/2.
We compare a scaling compatible with ν= 1/2, suggested by G. Lemarié,

W T
r =WC −
�

b1

L + b0

�2

, (B.1)

where b0, b1 are fitting parameters with the following formula

W T
r =WC + a0/L + a1/L3 , (B.2)

with the fitting parameters a0 and a1. The latter formula arises when we include also the first
sub-leading term in (12). Both formulas have the two free fitting parameters, and we constrain
WC to be equal to the value calculated in Sec. 5.

To quantitatively compare the hypotheses (B.1) and (B.2), we calculate

χ2 =
∑

i

�

W T
r (li)− f (li)
�2

, (B.3)

where the sum extends over system sizes li ≥ 9 for D = 3 and li ≥ 8 for D = 4. Moreover,
to check the robustness of the results, we consider two values of pr and study both W T

r=0.52
and W T

r=0.47. The values of χ2 displayed in Fig. 15 show that both functions (B.1) and (B.2)
reproduce the behavior of W T

r with comparable accuracy. Furthermore, the crossover to the
asymptotic∼ 1/L behavior of (B.2) which correctly reproduces the value of WC occurs already
for system sizes L ≈ 12. In contrast, the coefficient b0 in (B.1) is of the order of the largest
system size available (the value of b0 is given in Fig. 15), which implies that the crossover to
the asymptotic behavior W T

r ∼ 1/L2 consistent with (B.1) occurs only at system sizes L≫ b0,
beyond the reach of present numerical methods.

However, we would like to note, that a certain progress can be made with data for more
realistic system sizes (say up to Lm = 20 − 24 for RRG with D = 3). Such data could be
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Figure 16: The value of r − rP at the critical point W = WC for Anderson models
on random graphs. The plot is in log-log scale. For RRG with D = 3,4 we have
L = L; for URG we have L = L+ log2(2p); for SWN, L = L+ log2 f (consistently with

the manuscript). The solid and dashed lines correspond to L
−3/2

and L
−2

behaviors.
Errorbars in this figure are smaller than the data points.

used to check whether the value of W T
∞ starts to overestimate the value of WC as we increase

Lm beyond Lm = 17. Such a behavior would indicate that there is another change of the
curvature (on 1/L scale) of W T

r data at even larger system sizes, which would suggest that
1/L behavior is not the asymptotic one. The distinction between the two types of behavior of
W T

r is a challenge for further large-scale numerical studies of Anderson localization on RRG.

B.2 The exponent ω

The value of the exponent ω is an important ingredient of our scaling analysis, cf. (10). Our
results for r(WC)− rP suggest universal behavior valid for different types of random graphs, as
shown in the insets of Fig. 8. To further illustrate this point, we plot r(WC)− rP as function of
system size L on a log-log scale, as shown in Fig. 16. To calculate r(WC) interpolate r(W )with
a cubic spline and evaluate it exactly at W = WC . Importantly, the curvature of r(WC) − rP
for URG and SWN is visible on the log-log scale when the results are plotted as a function of
L, which we believe is the relevant variable that describes the size of the system. The data
at intermediate system sizes are described by L−α dependence with 1 < α < 2. However, the
power α increases with increasing system size and is close to 2 for the largest system sizes
available, which is especially well pronounced for RRG with D = 3.

B.3 Collapses with ν= 1 and ν= 1/2

We perform a comparison of the finite-size scaling analysis of Sec. 4.3 with a generalization of
the finite-size scaling procedure of [80,81,131]. The latter procedure assumes that

r − rP = L−ωF(L1/νw) , (B.4)

where we use a second order polynomial w = (W −WC)/WC + A2(W −WC)2/W 2
C . There are

two fitting parameters in this procedure, ω and A2, while ν is kept as 1/2. In contrast, our
scaling ansatz, (10), relies on a single fitting parameter A, while ω = 2 and ν = 1 are fixed.
The values of χ2, calculated according to (B.3) (where f is a polynomial of third order) are
comparable in all the considered cases showing similar quality of the collapses with (10) and
(B.4). Importantly, for the same range of system sizes, i.e. considering only L ≥ 11 we obtain
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Figure 17: Comparison of the scaling analysis (10), (a) and (c), with finite size
scaling (B.4). The values of the obtained and assumed parameters are shown in the
plot.

χ2 = 1.62e − 05 for RRG with D = 3 and 1.06e − 05 for RRG with D = 4 using the scaling
(10)).

We observe that, the scaling procedure (B.4) works better in a larger interval of system
sizes. In contrast, our scaling procedure leads to systematic deviations when data for L ≤ 10
are included. This is already apparent from the behavior of r − rP shown in Fig. 16. While
we could remedy this by including a sub-leading term in our analysis (leading to two pa-
rameter scaling), we opt not to do that as the data at system sizes L ≤ 10 do not follow
the same trends as data at larger L available to us. The values of the term A2, in the scal-
ing approach (B.4), are of the order or larger than unity. If the A2 term was dominating,
we would get w ≈ A2(W −WC)2/W 2

C which means that the horizontal axis variable becomes
(W −WC)2/W 2

C L1/ν which is equivalent to a collapse in terms of (W −WC)/WC L1/(2ν). There-
fore, in the limit of large A2, ν = 1/2 assumed in (B.4) is the same as ν = 1 assumed in our
scaling assumption (10). Clearly, the values of A2 obtained here are of the order of unity, and
both the linear and the quadratic term in w play a role. The combined effect of the two terms,
is similar to assuming taking only the linear term w= (W −WC)/WC and obtaining ν between
1/2 and 1.

The above analysis suggests that the alternative scaling form (B.4) does not present a
significant advantage over our assumption (10) that would sufficient to clearly demonstrate
that ν = 1/2. To the contrary, both considered scaling procedures work similarly well in the
relevant regime of large system sizes.

The detailed analysis presented above indicates that the data for Anderson localization
transition are well described by both the approaches, preventing us for unambiguously decid-
ing which of the critical exponents ν = 1/2 or ν = 1 is valid. However, we must point out
that the difference between our two results backs-up two completely different analytic under-
standing of the transition. In our case, ν= 1 is the exponent of the transition coming from the
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localized region which is undoubtedly correct, from iterative calculations dating back to [13]
(a line of research which one could call the Bethe lattice works since they write a recursion
equation which does not take into account the presence of loops, an approximation which is
most probably correct in the localized region). We are further advancing that ν= 1 describes
the transition also from the delocalized region, providing a good collapse for the data coming
from that region as well, as long as one irrelevant scaling function is added. The alternative
scaling with the exponent ν = 1/2 is supposed to work well to describe the transition also
in the localized region, therefore contradicting the Bethe lattice works, or assuming that the
exponent ν= 1 is not relevant for the bulk physical observables, as suggested by [81].
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