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Abstract

Given a loop or more generally 1-cycle r of size L on a closed two-dimensional manifold
or surface, represented by a triangulated mesh, a question in computational topology
asks whether or not it is homologous to zero. We frame and tackle this problem in the
quantum setting. Given an oracle that one can use to query the inclusion of edges on
a closed curve, we design a quantum algorithm for such a homology detection with a
constant running time, with respect to the size or the number of edges on the loop r ,
requiring only a single usage of oracle. In contrast, classical algorithm requires Ω(L)
oracle usage, followed by a linear time processing and can be improved to logarithmic
by using a parallel algorithm. Our quantum algorithm can be extended to check whether
two closed loops belong to the same homology class. Furthermore, it can be applied to
a specific problem in the homotopy detection, namely, checking whether two curves are
not homotopically equivalent on a closed two-dimensional manifold.
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1 Introduction

Topology and geometry are among the most classic and fundamental areas in pure mathe-
matics. Despite being abstract and sometimes counter-intuitive, their role in both science and
engineering has been impactful. In physics, ideas from topology have provided a framework
that explains phases of matter beyond Landau’s symmetry-breaking theory [1], such as the so-
called topological phase of matter, and offered the prospect of fault tolerance with schemes of
topological quantum computation [2]. In engineering and applied sciences, for example, topo-
logical data analysis [3,4] employs techniques from topology to analyze and identify patterns
or shapes of high-dimensional data. The foundation of computational conformal geometry has
also been laid out [5–7], providing valuable tools for applications, such as mechanical designs,
medical imaging, computer vision, and so on.

At the same time, the notion of quantum computers [8–11] has generated an entirely new
frontier in computational science. By harnessing the enigmatic properties of quantum me-
chanics, such as entanglement and superposition, quantum computers possess the potential to
handle specific challenging computational problems that are not thought to be efficient within
reach of classical computers. Some famous classic problems including factorization [9], un-
structured search [10], and linear system solvers [12], etc. The use of quantum computers has
also been extended to the modern context, such as machine learning and data science [13–23].
In Ref. [24], quantum computational techniques were applied to topological data analysis;
specifically, a quantum algorithm was constructed to estimate Betti numbers of a given simpli-
cial complex, which yields an exponential speedup compared to classical algorithms.

Inspired by the development in both quantum computation and computational topology
and geometry, here, we attempt to apply quantum approaches to advancing tools and solving
problems in topology and geometry. As a small step, we consider the problem of detecting
the homology class of closed curves or 1-cycles. As explained below, the ability to detect
homologically trivial curves provides a means to a related problem in the homotopy detection.
The precise statement of our main problem is as follows: given a closed surface, represented
as a triangular mesh, and a closed curve (or loop) on the surface, we want to know whether or
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Figure 1: Illustration of chains and the boundary operation. The subscript of each
boundary operator ∂ indicates which chain space it acts on (from the higher to lower
order).

not the curve is homologous to zero, i.e., trivial homologically. Remarkably, given a sufficient
number of qubits and the oracle that queries the curve, our algorithm can detect a given
closed curve’s homology class of with certainty at a constant time complexity. We remark
that reducing efficient classical solutions to even more efficient quantum algorithms is also of
interest from the complexity perspective. One such example is the 2D hidden linear function
problem [25].

The structure of this paper is as follows. First in Sec. 2, we introduce and clarify some
terms/terminologies that are relevant to our subsequent construction. We mention some as-
sumptions that our algorithm relies on in Sec. 3. In Sec. 4, we explicitly construct the quantum
algorithm for detecting the homology class of closed curves. We conclude with some discus-
sions and an outlook in Sec. 5. Along the way, we have also developed an efficient algorithm
that creates a uniform superposition of computational basis states that are in a consecutive
sequence; see the Appendix.

2 Preliminaries

2.1 Overview of essential concepts in homology and cohomology

Here, we give a quick overview of homology and cohomology concepts. In the language of
algebraic topology, see, e.g., Ref. [26], we can treat a (discrete) surface as a simplicial complex,
consisting of different dimensional simplices. The linear combinations of simplices, in which
the coefficients belong to some ring R, form chains. Two common rings that are usually used
are Z2 and Z. A curve is then a 1-chain in the discrete setting. The set of k-chains forms a
linear vector space called the chain space, denoted by Ck. There is a map between two chain
spaces Ck and Ck−1 called the boundary map ∂k : Ck → Ck−1, which maps a k-chain to its
boundaries, as illustrated in Fig. 1.

A k-chain σk is called closed if ∂kσk = 0, and it is also referred to as a k-cycle. A loop is
such an example. A k-chain σk is called exact if there exists a (k+1)-chain σk+1 such that

σk = ∂k+1σk+1 .

We note that exact chains are closed by virtue of an important property of boundary map [6]:
δ◦δ = 0. Two closed k-chains are equivalent if they differ by an exact k-chain. The equivalence
relation divides k-chains into the so-called homology classes, denoted as Hk(M ,Z) (where we
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assume the ring is Z, for simplicity). Homology theory reflects the algebraic structure (note
that connectivity between points is the key) of a given simplicial complex via the corresponding
homology classes, or more precisely, homology groups.

On the other hand, cohomology is dual to homology. Given a k-chain σ, a k-cochain w
maps it to a real number w(σ) ∈ R. We can think of cohomology as the association of elements
in homology with a real number. Due to the linearity of their vector spaces, it is convenient
to use a basis in homology and the dual basis in cohomology groups. For a closed surface
of genus g, the dimension of homology/cohomology basis is 2g. Given a homology basis
〈h1, h2, . . . , h2g〉, the corresponding cohomology basis, denoted by as 〈Ω1,Ω2, . . . ,Ω2g〉, can be
constructed, such that

∫

hi

Ω j = δi j .

An arbitrary closed curve γ is homologous to zero if and only if
∫

γ

Ωα = 0, ∀α ∈ {1,2, . . . , 2g} . (1)

More concretely, if the closed curves γ has L oriented edges labeled by e⃗ j , such that

∂1

 

L
∑

j=1

β j e⃗ j

!

=
L
∑

j=1

β j(∂1 e⃗ j) = 0 ,

where β j ∈ Z. Then the above condition of being homologically zero means that for every α,
we have:

Ωα(γ) =
L
∑

j=1

Ωα(β j e⃗ j) =
L
∑

j=1

β jΩα(e⃗ j) = 0 . (2)

This formulation is more suitable for constructing of our quantum algorithm, presented later.
The run time for a naive classical algorithms isO(2g ·L) [5], where L is the number of edges

(1-chains) on the closed curve r, and, therefore, the larger the loop is, the more computational
time is required [6,7,27]. This seems reasonable, as whether a loop is homologically zero is
a global and topological property. We remark that the key step is to perform the summation
along the curve r (see equation 2), so the running time can be improved to logarithmics by
using parallel algorithm (for example, we can divide the edges into groups and sum them
individually, then summing over). However, this parallel algorithm increases the memory
usage by O(L) (naive approach takes constant memory). Regarding oracle usage, those above
two classical approaches require Ω(L) usages, as classical algorithm is supposed to query all
the edges to completely specify the loop. However, we will provide a quantum algorithm below
and show that it can determine the homology property of a given closed curve (specified by
some oracle Or that only checks local properties) with running time O(2g), where g is the
genus of the surface, and a single usage of oracle. Thus, as we will show, if there are sufficient
ancillary qubits in the phase estimation step in our algorithm, then the homology class of the
given closed curve could be determined in constant time, with respect to the size L of the curve.

2.2 Mesh data structure

Despite the fact that surfaces are continuous, in real applications, such as digital geometry pro-
cessing, they are usually represented as a triangulated polyhedron surface, namely a triangular
mesh; see, e.g. Fig. 2 for illustration. A mesh M = (V, E, F) consists of sets of vertices V , edges
E, and faces F . We can think of it as a graph with vertices and edges that connect vertices. In
terms of the algebraic topology, it is precisely a two-dimensional simplicial complex.
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(a)

(b)

Figure 2: Examples of genus-1 and genus-2 oriented surface, represented as a trian-
gular mesh, with the corresponding homology basis. (a) Top figure: two 1-chains
(red and blue) are homology basis. (b) Bottom figure: four 1-chains (red, blue, yel-
low, purple) are homology basis.

We denote the set of vertices as V = {v0, v1, ..., vM}. For a given edge ei that connects two
vertices v j , vk, for instance, a half-edge is an oriented edge e⃗i = [v j , vk], which implies the ori-
entation v j → vk. We simply denote−e⃗i = [vk, v j] for the reverse order of the edge and vertices
and use the vector notation e⃗i just to emphasize the orientation. The importance of half-edges
is apparent for the purpose of computation with cohomology. Suppose w is a 1-cochain, then
for a given 1-chain (edge) ei connecting v j and vk, we have w([v j , vk]) = −w([vk, v j]), i.e.,
w(−e⃗i) = −w(e⃗i). An exact 1-cochain can be constructed from some 0-cochains f by taking
the coboundary map d:

d f ([v j , vk]) = f (vk)− f (v j) .

Using this, we explain in Appendix A how the cohomology basis (which is exact) can be con-
structed simply by subtracting some carefully initialized 0-form.

3 Setup for the quantum approach

Here we describe several assumptions for the input of our quantum algorithm to be described
in the next section.
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Preprocessing Mesh: We remark that we do not consider the problem of generating triangu-
lated mesh here. We assume that such a step is done classically.

Homology and Cohomology Basis: Similar to classical algorithms, we assume that the ho-
mology basis has been pre-computed classically, and the cohomology basis has also been con-
structed accordingly. In other words, we have predefined values for each edge (with orienta-
tion) of the mesh. In fact, for most such half-edges, these values are 0, except for a few that
connect those neighboring points on and off the homology basis, which can have values 1 or
-1, dependent on the orientation of the half-edge; see also Appendix A. For each cohomology
basisΩα, denote the number of those non-zero values as cα. We further assume that two curves
in the homology basis only intersects at no more than one vertex, which means that the two
cohomology basis elements have nonzero value at no more than one common edge. Those
conditions can always be satisfied, using a result of [28]. Moreover, we assume the number
edge E is known and that the value of cα (number of edges on which Ωα has a nonzero value)
is known for all α via classical pre-processing.

Encoding of Cohomology Basis in a Quantum State: As described above, we can think of
cohomology as the association of each half-edge (1-simplex) with a real number. Therefore, in
principle, we could map these values to some quantum state with corresponding entries using
∼ O(log2(E)) qubits, where E is the total number of edges on the mesh. We remark that the
values on most edges are zero, except for those edges that connect points on the homology
basis to their neighboring points that are not on the basis [7]; see also Appendix A. We first
need to map such a cohomology basis to the quantum state. A vector corresponding to a basis
Ωα (with α= 1, . . . , 2g) has the form

Ω⃗α = [ω
(α)
1 ,ω(α)2 , . . . ]T = [±1,0, ...,±1, ...0]T ,

where the component in the vector represents the value Ωa(e⃗ j) = ω
(α)
j on each edge. By

choosing the orientations of the edges appropriately and using Ωα(−e⃗ j) = −Ωα(e⃗ j), we can
make the nonzero entries be uniformly +1. We can also re-arrange the edge labeling so that
Ω⃗1 = [1,1, . . . , 1, 0, . . . , 0]T and Ω⃗2 = [0, . . . , 1, 1 . . . , 1, 0, . . . , 0]T , etc., where if Ω⃗2 overlaps
with Ω⃗1 on an edge, we will arrange such that the particular overlapped edge corresponds to
the last nonzero entry in Ω⃗1 and the first nonzero entry in Ω⃗2; otherwise, the first nonzero
entry of Ω⃗2 will be the next entry to the last nonzero one in Ω⃗1.

Thus, for simplicity, we shall fix the orientation of edges such that all the nonzero entries
are +1. That is those oriented edges e⃗i are regarded as the ‘positive’ half-edges, Ωα(e⃗i) = +1.
For any edge ei , we can label it by some computational basis state, which we also denote as
|ei〉 (e.g. |0101 . . . 〉) and its orientation will be flagged by another ancillary qubit,

|e⃗i〉 ≡ |0〉 |ei〉 , (3)

|−e⃗i〉 ≡ |1〉 |ei〉 . (4)

One can easily see that the quantum state corresponds to each of the vector Ω⃗α (normalized
to 1) is just a uniform superposition of some basis states that encode the edges that are labelled
in a consecutive way, and this superposition can be prepared with a very low cost, as we
elaborate further in Appendix C. In the simplest scenario, for example, the number of non-
zero values is a power of 2, and all those entries lie in “perfect” locations that could give
us a simple, convenient way to prepare the corresponding quantum cohomology basi, using
Hadamard gates H⊗n only. For example, we consider the following vector of represent their
cohomology basis values on four edges:

x⃗ = [1, 1,0, 0]T ,
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whose corresponding quantum state |x〉 is simply |0〉 |+〉, which can be prepared simply by
applying I ⊗H to |0〉 |1〉.

However, we may not have those nice conditions in a general mesh. One certainly has the
freedom to relabel edges. Still, one may need to locally modify the mesh so that the number
of edges (with a nonzero value) in each cohomology basis is a power of two. Even if this is
the case, the nonzero entries may not necessarily range from (in the binary representation)
|0000....0ab..c〉 to |0011..1ab..c〉, and their superposition cannot be obtained simply by ap-
plying Hadamard gates. But even if it were the case, how could one prepare a corresponding
superposition? One could use a two-step procedure of (1) Hadamard gates to create a uniform
superposition from |00...000..0〉 to |0011..100..0〉 and then (2) a quantum adder [29] to add
the appropriate shift |00...0ab..c〉, which is efficient.

In Appendix C, we show that even without modifying the mesh structure, by choosing the
appropriate labeling of edges (as described above), we can efficiently prepare all the cohomol-
ogy basis states, as stated below.

Claim 1 A quantum state associated |Ωα〉 =
∑

jω
(α)
j |e j〉/

p
cα with the cohomology basis with

cα non-zero amplitudes can be prepared using a circuit of depth O(log(cα)) .

As we will point out later, given a mesh with M points, then the number of edges used for
each cohomological basis is small, i.e., cα ≪ M . The cost to prepare the cohomology basis
state is negligible and is of O(log(cα)), as detailed in Appendix C ,and thus it does not incur
substantial computational time.

Quantum oracle for loop specification: We remark that in this problem, we are interested in
the homology property of a given closed curve r. The orientation of the curve is also important.
We have assumed that certain orientation for each edge is fixed, so that all the cohomology
bases have a uniform sign in their nonzero components, as discussed earlier. Classically, we
can specify the loop r by listing all its half-edges. Naively, on quantum computers, we would
like to have a single quantum state in a superposition of basis states that encode the edges
on r. But this requirement is too strong. Instead we would like to have a quantum oracle
that we can use to probe the relation of an edge e to the loop r. More precisely, it should
be a half-edge e⃗ (where the arrow indicates a certain orientation, chosen for convenience as
positive). Its representation by a quantum state is illustrated in Eq. (3) and the corresponding
half-edge with the negative orientation −e⃗ is represented in Eq. (4). The unitary Or , or oracle,
associated with a given closed curve r, is designed so that, when queried with an input of an
edge |e⃗i〉 and an ancillary qubit,

Or |e⃗i〉 |0〉=

¨

|e⃗i〉 |1〉 , if half-edge e⃗i ∈ r ,

|e⃗i〉 |0〉 , if half-edge e⃗i /∈ r .
(5)

Essentially, the function of the oracle is to check whether a given half-edge e⃗i is on the curve r.
However, the above functioning of the oracle did not take into account the possibly multiple
appearances of some edges on the loop. If the above oracle is given, then we can only deal
with the case where the coefficients of chain space belong to Z2. If we have access to the oracle
that performs the following operation instead:

Or |e⃗i〉 |00..0〉=

¨

|e⃗i〉 |a〉 , if half-edge e⃗i ∈ r andappears a times,

|e⃗i〉 |00..0〉 , if half-edge e⃗i /∈ r ,
(6)

where the binary string a = ans−1...a1a0 denotes the number of times the given half-edge e⃗i
appears on r. (In fact, in the above, the top line already includes the bottom line as a special
case with a = 0.) Then we can deal with Z2ns coefficients. Note that if a = 0 or 1, then we
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recover the (Z2) oracle given by Eqn. 5. We do not expect our algorithm can work in the
case where an edge appears infinite times (for example, a loop winding around infinitely).
Therefore, a reasonable assumption is that each half-edge only appears a bounded number of
times less than 2ns = K (with K being a constant) or, alternatively, the oracle only checks the
number of times modulo K .

4 Quantum algorithm

In this section, we present our main result: a quantum algorithm for the homology detection
of a loop. We will employ a Hadamard test procedure and combine it with quantum phase
estimation to evaluate whether the sum described in Eq. (2) for each cohomology basis on the
curve r is zero or not.

4.1 A Hadamard test procedure for estimating phases

Our primary method is built upon the techniques in Refs. [10], [30] and [31], which were
recently employed in the setting of quantum neural networks, e.g., see Ref. [32]. We quickly
review the routine as it will be generalized to form the main ideas of our quantum algorithm.

Suppose we have some unitary U that generates the following (n+1)-qubits state by |0〉⊗n+1:

U |0〉⊗n+1 = |φ〉=
1
p

2
(|+〉 |x〉+ |−〉 |y〉) , (7)

where |x〉 , |y〉 are some n-qubits states. We can then use it to construct the Grover-like unitary
G = US0U†(Z⊗I⊗n) [10,30,32], where S0 = I⊗n+1−2(|0〉 〈0|)⊗n+1, such that |φ〉 can be written
as a linear combination below,

|φ〉=
−ieiθ

p
2
|w+〉+

ie−iθ

p
2
|w−〉 , (8)

in which |w±〉 ∼ |0〉 (|x〉+ |y〉)/∥ |x〉+ |y〉 ∥)± i |1〉 (|x〉−|y〉)/(∥ |x〉−|y〉 ∥) are two eigenstates
of G,

G |w±〉= e±i2θ |w±〉 , (9)

and the angle θ satisfies the relation

sin(θ ) =

p

1+ℜ〈x |y〉
p

2
, (10)

or equivalently cos(2θ ) = −ℜ〈x |y〉. This relation suggests that the real part of the overlap
〈x |y〉 is encoded in the phase θ , which is related to the two eigenvalues. We also note that
e−i2θ = ei(2π−2θ ), and therefore, in principle, the phase estimation algorithm [31] allows us
to estimate the value of 2θ . Furthermore, we do not need to prepare an eigenstate of G, as
the phase estimation will give either 2θ or −2θ randomly. Estimation of either of the values
suffices. We will show shortly that the trivial closeness of a given curve r on the triangulated
mesh is encoded in the corresponding phase, and therefore could be revealed by looking at
the outcome of the quantum phase estimation algorithm.

4.2 Algorithm for detecting homology class of a closed curve r

We have described our quantum preliminaries in Sec. 3. In our algorithm, all qubits will be
divided into five different quantum registers: (1) a single qubit anchor register (denoted by
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subscript a), which plays the same role as the first qubit of Eqn. (7); (2) an orientation flag
(denoted by subscript o), which is used to indicate the orientation of the edge: |0〉o|e〉e = |e⃗〉
and |1〉o|e〉e = |− e⃗〉; (3) the edge data register (denoted by subscript e), such as |e〉e which we
have just illustrated in (2); (4) the status register (denoted by subscript s), which is used to
store the status from querying the oracle about a half-edge; and (5) the extra qubit (labelled by
subscript t) to implementation rotation corresponding to the status register. We remind that
that for each cohomology basis there is an efficient unitary Uα to create the cohomlogy basis
state |Ωα〉= Uα |0⊗ log2(E)〉e =

∑

jω
(α)
j |e j〉e/

p
cα in the edge (e) register without the orientation

label (see Claim. 1 and Appendix C). Moreover, it is also easy to create a superposition of all
edges, |E〉 ≡ 1p

E

∑E
i=1 |ei〉e = UE |0 . . . 0〉e = H⊗ log2(E)|0 . . . 0〉e, and we have assumed that the

total number of edges (without counting the orientation) is a power of two. (If this is not the
case, one can always add ‘fictitious’ edges to pad the total number to be a power of 2.) The
goal is to construct a unitary process U that takes |0 . . . 0〉 to (|+〉|x〉+ |−〉|y〉)/

p
2.

We are now ready to describe the procedure of our algorithm:

1. [Initialization] First, we construct the following state:

|ϕ〉=
1
p

2

�

|0〉a|−〉o|Ωα〉e + |1〉a|+〉o|E〉e
�

, (11)

which can be created from |0〉a|0〉o|0 . . . 0〉e by first applying H ⊗ H to |0〉a|0〉o →
(|0〉a + |1〉a)|+〉o/

p
2, followed by a controlled operation |0〉a〈0| ⊗ Zo ⊗Uα+ |1〉a〈1| ⊗ Io ⊗UE .

We will keep the first qubit (a) in the |0/1〉 basis until the end, where we will turn it into
|+ /−〉. Equivalently, |ϕ〉 can be rewritten as

|ϕ〉=
1
p

2

�

|0〉
1
p

2

∑

i

ωi(|e⃗i〉 − | − e⃗i〉) + |1〉
1
p

2E

E
∑

i=1

(|e⃗i〉+ | − e⃗i〉)
�

. (12)

2. [Applying oracle]. Next we append the status ancillas |00..0〉s and apply the black-box
oracle Or to the e register (the log2(E)-qubit system) plus status register, we obtain:

|ϕ1〉 ≡Or |ϕ〉 |00..0〉s =
1
p

2

�

|0〉a
1

p

2cα

∑

i

ωi

�

|e⃗i〉|st(e⃗i)〉s

− |− e⃗i〉|st(−e⃗i)〉s
�

+ |1〉a
1
p

2E

∑

i

�

|e⃗i〉|st(e⃗i)〉s

+ |− e⃗i〉|st(−e⃗i

�

〉s)
�

, (13)

where st(±e⃗i) is used to denote the status value after the query.

3. [Conditional rotation]. Append an ancilla |0〉t (noting the subscript t) to |ϕ1〉 and apply
a rotation on qubit t, conditioned on the anchor qubit a being |0〉a and the degree of rotation
on the status qubit |st(±e⃗i)〉s, so that: |0〉t → |Rot(e⃗)〉t ≡

st
K |0〉t +

p

1− st2/K2|1〉t .
This operation only affects the part entangled with |0〉a, which becomes

1
p

2cα

∑

i

ωi

�

|e⃗i〉|st(e⃗i)〉s |Rot(e⃗i)〉t − |− e⃗i〉|st(−e⃗i)〉s |Rot(−e⃗i)〉t
�

. (14)

The other part entangled with |1〉a remains unaffected.
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4. [Oracle unquery] After the conditional rotation, we uncompute or unquery the status
register by applying Or one more time, assuming that its operation is addition bitwise. We
then arrive at a state of the form |ϕ2〉= (|0〉a|x〉+ |1〉a|y〉)/

p
2. The first part then becomes

|x〉 ≡
1

p

2cα

∑

i

ωi

�

|e⃗i〉 |Rot(e⃗i)〉t − |− e⃗i〉 |Rot(−e⃗i)〉t
�

⊗ |0 . . . 0〉s , (15)

where we have factorized out the status register at the end. The second part becomes

|y〉 ≡
1
p

2E

∑

i

(|e⃗i〉+ |− e⃗i〉)⊗ |0〉t ⊗ |0 . . . 0〉s . (16)

Here we can evaluate the inner product of |x〉 and |y〉, and we obtain

〈x |y〉=
1

p

4cαE

∑

i

ωi

�

〈Rot(e⃗i)|0〉t − 〈Rot(−e⃗i)|0〉t
�

=
1

p

4cαE K

∑

i

ωi

�

st(e⃗i)− st(−e⃗i)
�

=
1

p

4cαE K
Ωα(r) . (17)

Note that st(±e⃗i) is counting the number of times a half-edge ±e⃗i appears on the curve r.
K = 2 reduces to the case where the coefficients in half-edges are in Z2.

5. [Hadamard test state] Apply the Hadamard gate to the anchor qubit a, and we have the
final state,

|ϕ3〉=
1
p

2

�

|+〉a |x〉+ |−〉a |y〉
�

,

which will be used for the Hadamard test. We denote the whole procedure from step 1 to
step 5 as a unitary gate U , i.e., |ϕ3〉= U |0〉a|0〉o|0 . . . 0〉e|0 . . . 0〉s|0〉t . What we have achieved
here is to translate our problem directly into the Hadamard test formalism described earlier,
including the construction of the operator G = US0U†(Z ⊗ I⊗N ), where N = 2+ ns + log2(E)
with ns being the number of qubits in the status register.

If the curve r is closed trivially, which means that the sum Ωα(r) along the curve vanishes
identically (see Eqn. 1), i.e., cos(2 · θ ′) = 0, implying that 2 · θ ′ = π/2 ⇒ θ ′ = π/4. If we
write θ ′ = 2πw′ ⇒ w′ = 1/8, which can be represented by finite bits (more precisely, 3 bits
as 1/8 = 0.001 in binary fraction). Therefore, ideally, it means that the phase estimation al-
gorithm can output such a value with certainty, which again, can be used to verify whether or
not Ωα(r) = 0. Moreover, in the case that the curve r is not homologically trivial, the value
Ωα(r) can still be obtained from quantum phase estimation, given sufficient ancillas to encode
the phase.

6. [Phase estimation] We run the phase estimation algorithm for the operator G. As re-
marked earlier, it does not require us to prepare an eigenstate of G and the phase estimation
procedure will allow us to estimate ±2θ , which is sufficient for extracting Ωα(r). We then
repeat the whole procedure for different cohomology basis state |Ωα′〉. A curve that is homo-
logically trivial will have all Ωα(r)|

2g
1 = 0. Furthermore, complete information for all Ωα(r)|

2g
1

determines the homology class of the curve r. However, whether we can determine nonzero
values of Ωα(r)|

2g
1 with sufficient accuracy remains to be checked.

Analysis of accuracy. In the homologously trivial case, the phase can be represented exactly
with finite bits and our algorithm can return an exact result with certainty. However, we need
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to distinguish this case from the nontrivial cases and there is indeed a finite gap in the phase
between the two cases as we show below. Therefore, O(1)-time running of quantum phase
estimation can already determine whether or not the curve is homologous to zero. More
specifically, the analysis of [30] shows that generally, the phase register returns two closest
values to our true phase value with high probability (> 4/π2). In particular, the success
probability of measuring best approximated phase value could be amplified to arbitrarily closed
to 1 using additional qubits in phase registers [33]. Therefore, in principle, O(2g) (since
we need to repeat the procedure for all cohomology basis {Ωi}) repetitions are enough to
determine if the curve r, which is specified by Ur , is closed.

Let us further analyze the precision, as in the case of homologously non-trivial curve,
the value of angle θ ′ might be very closed to π/4, which means that the outcome of phase
estimation circuit with low number of precision bits might not suffice to determine the
phase and hence the value Ωα(r). If the curve r is homologous to zero, we definitely have
〈x |y〉 = 0. Since the value of wi is either -1, 0, or 1 (taking the orientation into account),
if the curve is not homologously zero, then the minimum absolute value of such overlap is
| 〈x |y〉 |= 1/(2 ·

p

cα · E · K). More specifically, let:

| cos(2 · θ0)|= 0 ,

| cos(2 · θm)|= 1/(2 ·
p

cα · E · K) ,

where θ0 refers to the case if the curve is homologically trivial, and θm refers to the smallest
angle in the non-trivial case. We apply the following inequality

|x − y| ≥ | cos(x)− cos(y)| , (18)

and obtain that |2(θ0 − θm)| ≥ 1/(2 ·
p

cα · E · K). This means that there is a gap ∆ between
the trivial phase value and non-trivial phase value. To distinguish between those phases, we
require our phase estimation algorithm to have the error δ ≤ ∆ (the smaller the better).
Therefore, the number of qubits p in the phase register required to have the desired accuracy
is Ω(log(1/δ)) = Ω(log(

p

cα · E · K)). We can simply choose p = ⌊log(
p

cα · E · K)⌋+ k, where
k is some integer. We recall that cα is the number of edges with non-zero values for a given
cohomology basis element Ωα. This number is usually much smaller than E, which is the total
number of edges on the mesh. We also have the condition that K is bounded above. Assume
that the mesh has M vertices, then E is O(M), which means that log(

p

cα · E ·K) is O
�

log(M)
�

.
Therefore, in our algorithm, as long as we can have enough qubits ∼O(log(M)) in the phase
estimation algorithm, then the accuracy ∆ is always guaranteed.

We summarize our main result with the following theorem.

Theorem 1 (Homology detection) Given a closed triangular mesh M of genus g, cohomology
basis 〈Ω1,Ω2, ...,Ω2g〉, and quantum oracle Ur that specifies a given closed curve r. There exists
a quantum algorithm that determines the homology class of r in O(2g) time.

In comparison, the naive classical running time is O(2g · L) (which can be improved to
O(log(L)) by parallelization) where L is the ‘size’ of the curve r, i.e., the number of edges on
it, as one needs to sum up all the values ωi on the all edges e⃗ of r for all cohomology basis
elements Ωα=1...2g . Our quantum algorithm substantially improve the time complexity from
linear (in L) to constant. We note that our algorithm works even if the given curve has a
self-crossing, which can be regarded as a sum of 1-cochains that are loops.

If two closed curves corresponding to two chains σ1 and σ2 are homologous, i.e., in the
same equivalence class, then they differ by an exact 2-chain. This means for any 1-cochain ω,
we have ω(σ1) = ω(σ2). If we decompose the 1-cochain ω into the basis {Ωi}

2g
i=1 then for
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each basis element we need to have Ωi(σ1) = Ωi(σ2). We can compute Ωi(σ1) and Ωi(σ2)
directly and separately using our quantum algorithm (given the respective oracles) to compute
Ωi(σ1/2) and check if they equate each other for all i = 1, . . . , 2g.

4.3 Potential applications

4.3.1 Homotopy detection

Given the ability to efficiently determine the homology class of a closed curve, it is natural to
seek applications of the quantum algorithm. Here we point out an instance that also arises in
the computational conformal geometry and topology context [5, 7], i.e. the so-called homo-
topy detection. The statement of the problem is the following.

Problem 1 (Homotopy Detection) Given a closed triangular mesh M, two loops γ1 and γ2
through a base point p. Verify whether or not γ1 is homotopic to γ2, γ1 ∼ γ2.

Such a problem also has a linear time classical solution [34]. While homology groups are com-
mutative, homotopy groups are usually non-commutative; therefore, homotopy can generally
be harder to deal with than homology, such as computing its groups. There are also hard
problems related to homotopy. For example, the shortest word problem [35] for a given ho-
motopy class is NP-hard [36]. While we do not know whether we could completely solve the
homotopy detection problem with a constant time algorithm, we observe an essential property
that, two loops are homotopic to each other implying that they are homologous (the reverse may
not be true). In particular, in the homotopy detection problem, if γ1 ∼ γ2, then γ = γ1 · γ−1

2
is homotopic to e, i.e, the loop is trivial (constant loop). Thus, if γ ∼ e, then γ is necessar-
ily homologous to 0 as well. As we can only check whether the curve is homologous to 0,
we can apply our algorithm to check the converse, i.e., we can ascertain the case when two
curves (on a closed surface) are not homotopic to each other by verifying that the loop γ is not
homologous to zero.

In Ref. [6], an alternative classical solution to the homotopy detection problem was de-
scribed. The key idea is that, we first compute a finite portion of the universal covering space
M̃ of M . We then lift γ1 · γ−1

2 to M̃ , and denote the lifted path as γ. If γ is a loop, then
γ1 ∼ γ2. However, converting the above solution into an efficient quantum algorithm is an
open problem.

4.3.2 Winding number estimation

It is pretty interesting that aside from the homology detection problem, the algorithm that we
use in this paper (integration of cohomology basis) can be employed to estimate the numbers
of times that a loop winds around the torus.

In Fig. 3, denote the homology and cohomology basis as (h1, h2) and (Ω1,Ω2) (see Fig. 2a).
W.O.L.G., let h1 be the red curve, and h2 be the blue curve. The integration of cohomology
basis along the winding loop is:

∫

r
Ω1 = 1 ,

∫

r
Ω2 = m , (19)

where m is the number of times that the given loop r winds around the torus. Given an oracle,
the algorithm developed in Sec. 4.2 can estimates the above integral (more precisely, a discrete
summation). Therefore, our algorithm can estimate the winding numbers of the given loop r.
In this case, as shown in Fig. 3, no half-edge appears twice, therefore, the simpler Z2-version
of the oracle (i.e., K = 2) is sufficient.
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Figure 3: A loop r winds around the torus 5 times.

5 Discussion and conclusion

Topology and geometry are very rich and deep area of mathematics and their applications to
science and engineering have been increasingly broadened due to the connection from the pro-
found mathematical foundation to classical computational geometry algorithms. This, in turn,
yields powerful tools to solve many practical problems. Quantum computer is also undergoing
a second wave of fast development, and concurrently, the potential power and applicability of
quantum computers have always been an important question to address. Our work has added
to the few existing works and extended the application of quantum computation to computa-
tional topology, in particular, the problem of homology detection. Our quantum method relies
on important observation: cohomology assigns real values to half-edges of a mesh, which
could be stored efficiently using a logarithmic number of qubits. The summation along a loop
(which is specified by an oracle) is done using the orthogonal relation of basis states |ei〉. Key
tools include the Hadamard test, amplitude amplification, and quantum phase estimation.

Even though the particular problem we have considered is not a hard one from classical
complexity’s perspective (e.g., with a running time O(log(L)) in the number L of edges on
the curve), our quantum algorithm achieves a constant time complexity, yielding a substantial
speedup. We note that there are other problems where classical solutions are efficient, but the
quantum algorithms are even more efficient, such as the 2D hidden linear function problem,
where the classical solution requires at least a logarithmic depth whereas the quantum solution
requires a shallow depth [25]. This problem was further generalized to yield an exponential
separation between the classical fan-out circuits and shallow-depth quantum circuits [37].

We have also pointed out the potential application of our quantum algorithm in the ho-
motopy detection problem. As described above, the homotopic relation implies homology
relation, therefore, we could check the homology condition as a mean to rule out the non-
homotopic relation. We have also suggested an open problem regarding how to construct a
quantum algorithm that elevates the (classical) universal-covering-space approach provided
in [6].

We now discuss an important open point of our work, which appears in most oracle-based
quantum algorithms, including Grover’s search, namely, the construction of the oracle itself.
We have assumed that the oracle Or could efficiently query the half-edge, but left aside the
detail of such an oracle. How to implement the oracle explicitly (and efficiently) is an open
question. We remark that a mesh is mathematically a graph, therefore, and we could in prin-
ciple use the graph Laplacian to encode the necessary information of the mesh (i.e., connec-
tivity), for example, in a QRAM [38], then the connectivity (plus proper orientation) could be
accessed coherently. If an explicit construction for the oracle Or were known, then we could
deal with an arbitrary curve on the graph, which in turn might provide more flexibility for
applications.
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Homology and homotopy detection are critical for a broad range of applications. In medical
imaging, for example, virtual colon cancer detection, the colon surface is reconstructed from
CT-images. Due to the segmentation error, there are many fake handles and tunnels on the
reconstructed surfaces. It is crucial to detect these spurious topological noises and remove
them by topological surgery using homological method [39, 40]. In wireless sensor network
field, homology is applied for coverage and hole detection in sensor networks [41] and location
tracking [42]. It is interesting to see potential applications of quantum algorithms on these
practical problems. As a final remark, our work mainly deals with the first homology group
H1 and it is natural to ask how to extend our algorithm to deal with arbitrary homology group
Hk (k > 1), which is left for future exploration.
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A More on homology/cohomology basis

Here we elaborate further on the concept of cohomology basis and its computation. For more
details, we refer the readers to [6, 7, 27]. For illustration, we denote the red and blue curves
in Fig. 2(a) as γ1 and γ2, respectively. We remark that the cohomology group contains the
equivalence classes of closed cochain, which could be constructed from homology basis as
follows. We slice the whole mesh along, for example, γ1 and obtain an open mesh with two
boundaries γ+1 and γ−1 . We then initialize 0-form fi that satisfies: fi(v j) = 1 for v j ∈ γ+1 and
0 otherwise. With this initialization, d fi is then closed but non-exact on the original mesh,
hence forms the first cohomology basis. The same process yields the remaining cohomology
basis. From such construction we easily notice that with a given cohomology basis d fi , d fi(e j)
is then 0 everywhere except those ‘half-edges’ e j that connect a point vi ∈ γi and a neighboring
vk /∈ γi . We note that the two half-edges of an edge correspond to its two ‘sides’ with opposite
orientations; but we do not need to invoke half-edges in the main text of this paper.

A.1 Encoding of cohomology basis in a quantum state

We remark that cohomology assigns each edge (with specified orientation) a real number,
therefore, the set of those numbers on given mesh M can be stored in a quantum state (more
precisely, a vector). Suppose we are given some 1-cochain w, and can define a corresponding
quantum 1-cochain:

|w〉=
E
∑

i=1

wi |ei〉/
√

√

∑

i

w2
i , (A.1)

where wi = w(e⃗i) (note the orientation) and E is the total number of edges. In general, it is
nontrivial to create such a quantum state. However, for the cohomology basis states |Ωα〉s,
many of the coefficients wi ’s are zero and those nonzero ones can be chosen to be unity and
there is an efficient circuit to construct these states, see Appendix C.
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B Elaboration of the main method

We remind that the main tool used for detecting closed curves was based on the integral (or
summation in our discrete case) of each cohomology basis {Ωα} along such a curve r, and
we require all of them to be 0, if r is homologically trivial. Here we explain further why we
require such a condition.

A k-chain σk is said to be exact if it is the image of some (k+1)-chain under the boundary
map ∂k+1

∂k+1σk+1 = σk . (B.1)

As a dual relation between homology and cohomology, for each boundary operator ∂k,
there is a co-boundary operator dk that maps a k-cochain to a (k + 1)-cochain. Let ω′ be a
(k− 1)-cochain, σk be a k-chain, we have the following property:

dk−1ω′(σk) =ω
′ · (∂kσk) . (B.2)

Now we apply (closed) k-cochain ωk on both sides of Eqn. B.1:

ωk(∂k+1σk+1) =ω
kσk . (B.3)

Employing the property in B2, we have:

ωk(∂k+1σk+1) = dkωkσk+1 . (B.4)

Since ωk is closed, dkωk = 0, therefore, it means that ωkσk = 0. Set ωk ≡ω for brevity.
Now we use an important property of the cochain space: it is a linear vector space, and

therefore, a given cochain ω can be decomposed into a set of bases. Denote the set of basis as
{ωi}ki=1. We then have: ω =

∑

i aiωi , where each ai is generally a complex component. We
now obtain the following:

∑

i

aiωi(σk) = 0 . (B.5)

We remark that as the basis {ωi}ki=1 is linearly independent, therefore, in order for the above
sum to be 0, we need every term to be 0, and since {ai}’s generally are not zero, this implies
that, for each i,

ωi · (σk) = 0 . (B.6)

In our problem, we are interested in 1-chains, i.e. k = 1. The summation along the curve is
simply the summation along all the (half-)edges on the boundary.

C Details on cohomology basis state preparation

Here we elaborate further the claim 1, which is probably the most crucial part of the algorithm.
Uniform superposition of data is useful in quantum computation, or more specifically, in quan-
tum machine learning, where s amplitude encoding is one of the most popular approaches to
load classical data into a quantum state [18,43,44].

We remind that the geometrical object is represented as a triangular mesh in the discrete
setting. Therefore, there is naturally a hardware structure equipped with the object. In our
case specifically, it is the (ordered) set of vertices, edges and faces. In general, cohomology
theory deals with a linear vector space. The key idea of our quantum algorithm is to map
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cochains to quantum states, so as to leverage the quantum resources. A subtle point in the
construction of cohomology basis state as in Claim 1 is the order of those edges that we impose
on via classical processing (we have remarked that the mesh generation process is done classi-
cally). For each cohomology basis Ω⃗α (or we can write |Ωα〉 in quantum setting), there are cα
non-zero entries, and these entries have consecutive order. As we mentioned, the cohomology
basis vector has the following form:

Ω⃗α = [0, ...,±1,±1, ...0]T ,

with cα non-zero entries. The corresponding quantum state is simply

|Ωα〉= Ω⃗α/
p

cα .

The reason why we want to order those edges (the order of those non-zero entries) in
consecutive order is to achieve a low-cost way to prepare such a state, which we describe now.

An efficient algorithm for uniform superposition. First, we argue that we can always label
edges in the cohomology basis states such that they are consecutive in number. We argue that
two different cohomology basis states can have only one overlapping edge and that it can be
arranged so that for any one cohomology basis state, there is at most one other cohomology
basis state that has an overlapping edge. Therefore, all the edges in involved in all cohomology
basis states can be labeled consecutively. If there is an overlap, then the last edge of the
cohomology basis state is the first edge of the next one that has an overlap.

Once the labelling is settled, then we need to show that we can create an equal
superposition of basis states that are binary representation of consecutive numbers, i.e.,
|ψ〉 =

∑a2
j=a1
| j〉/

p

a2 − a1 + 1 can be created efficiently. We then argue that this reduces

to creating |ψ0〉=
∑a2−a1

j=0 | j〉/
p

a2 − a1 + 1, as there is an efficient adder (of log(|a2− a1+ 1)
depth); see e.g., Ref. [29]. Namely by adding |ψ0〉 to |a1〉.
An example. Next, we will focus on creating |ψ0〉 and describe an efficient way to create some
superposition of |0...0〉 to |an, an−1, ..., a0〉. Let us first illustrate this by an example. Suppose
we want to make a superposition from 0000 to 1011 (and we will take the last configuration
1011 as a reference, so we can apply gates conditioned on some of the digits).

First, we start with |0000〉 and, recognizing the most significant digit of ‘1011’ is
one, we create a superposition c0|0000〉 + d0|1000〉 (denoting this operation by UIII), fol-
lowed by a product of Hadamard gates conditioned on the first quantum bit being 0:
|0〉〈0| ⊗ H2 ⊗ H1 ⊗ H0 + |1〉〈1| ⊗ I ⊗ I ⊗ I , with the operation denoted by 0HHH. Thus, we
obtain a state d0|1000〉+ c0|0+++〉.

Then, we move down the bit string in ‘1011’ and it is ‘0’, so we do nothing in this step.
(If it were ‘1’ we would split 1000 to c|1000〉 + d|1100〉.) We move down the bit string
again to reach ‘1’, and we split (conditioned on the significant qubit being in |1〉) 1000 to
c2|1000〉+ d2|1010〉 (i.e. an operation labeled as 10UI), followed by a controlled gate 100H
(i.e., a Hadamard gate conditioned on the first three qubits being in |100〉 state), where the
first two bits ‘10’ are from the string ‘1011’ and the ‘0’ before H is fixed. And we arrive at
c0|0+++〉+ d0(c2|100+〉+ d2|1010〉). Finally, we reach the last digit of ‘1011’, which is ‘1’.
If it were zero, we would do nothing. But given this is ‘1’, we perform an operation con-
trolled on the first three qubits being 101 (denoting this operation as 101U) to take |1010〉 to
c3|1010〉+ d3|1011〉, so the final state is c0|0+++〉+ d0(c2|100+〉+ d2(c3|1010〉+ d3|1011〉)).
We can check the number of computational-basis terms is 23+21+20+1= 12 and it contains
the all the desired components. If we adjust the coefficients appropriately, we can obtain a
uniform superposition from |0000〉 to |1011〉. In summary, the operations are: {(UIII, 0HHH),
(10UI, 100H), (101U)} acting on the initial |0000〉 state.
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General case. So the algorithm for creating a superposition of components from |0 . . . 0〉
to |an, an−1, . . . , a0〉 is as follows. Start with the |0 . . . 0〉 state (if there are more qubits
than n + 1, then pad the remaining qubits to |0〉 and the following procedure applies to
the relevant part of the qubits). One reads the bit string anan−1 . . . a0. Begin with k = n.
If ak = 0, then one moves on to the next bit. If ak = 1, split |an, an−1, . . . , 0k, . . . , 0〉
into a superposition of |an, an−1, . . . , 1k, . . . , 0〉 and |an, an−1, . . . , 0k, . . . , 0〉 (via operation
an, an−1, . . . Uk I . . . I) followed by the operation an, an−1, . . . 0kH . . . H. Iterate this (decrease
the index k by one) until we read a0. If a0 = 0, nothing needs to be done. If a0 = 1, then
we split the state |an, an−1, . . . , a1, 0〉 via operation (an, an−1, . . . , a1, U) into a superposition
of |an, an−1, . . . , a1, 0〉〉 and |an, an−1, . . . , a1, 1〉. We note the coefficients (that determine the
superposition by U ’s) can be computed beforehand so the final output state is a uniform su-
perposition.

The time complexity is proportional to the number of qubits nontrivially involved in the
superposition, the procedure of applying gates follows checking the bits sequentially, i.e., the
complexity is roughly log2(|a2 − a1 + 1|) = log2(n). Generalizing this to arbitrary bit strings,
we have an efficient algorithm for creating uniform superposition.

An alternative approach. We claim that one can always modify the mesh and triangulation
so that the number of nontrivial edges in every cohomology basis state is a power of 2. Then
we only need to use Hadamard gates and additionally the quantum addition gate.
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