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Abstract

We present a new algorithm for anomaly detection called Anomaly Awareness. The al-
gorithm learns about normal events while being made aware of the anomalies through a
modification of the cost function. We show how this method works in different Particle
Physics situations and in standard Computer Vision tasks. For example, we apply the
method to images from a Fat Jet topology generated by Standard Model Top and QCD
events, and test it against an array of new physics scenarios, including Higgs production
with EFT effects and resonances decaying into two, three or four subjets. We find that
the algorithm is effective identifying anomalies not seen before, and becomes robust as
we make it aware of a varied-enough set of anomalies.

Copyright C. K. Khosa and V. Sanz.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 04-10-2021
Accepted 01-06-2023
Published 08-08-2023

Check for
updates

doi:10.21468/SciPostPhys.15.2.053

Contents

1 Introduction 2

2 Anomaly detection 2

3 Algorithm description 3

4 Anomaly Awareness for Boosted hadronic phenomena 4
4.1 The input information 5
4.2 The prior run 7
4.3 Adding Anomaly Awareness 8
4.4 Generalization to more than two categories 10
4.5 Anomaly detection 12

5 Conclusions 16

A Choice of λAA 17

B Higgs physics with photons and jets 18

C Anomaly Awareness for non-physics datasets 20

References 22

1

https://scipost.org
https://scipost.org/SciPostPhys.15.2.053
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.15.2.053&amp;domain=pdf&amp;date_stamp=2023-08-08
https://doi.org/10.21468/SciPostPhys.15.2.053


SciPost Phys. 15, 053 (2023)

1 Introduction

Although the Standard Model (SM) has passed many tests with flying colours, we know is not
a complete theoretical framework. For example, physics beyond the Standard Model (BSM) is
needed to explain the Universe as we see it, where around 95% is made of unknown sources
for Dark Energy and Dark Matter.

Many experiments are looking for ways to find evidence for BSM phenomena, yet so far
these have been unfruitful. In particular, at the Large Hadron Collider (LHC) searches for BSM
have reached maturity with an impressive coverage of signatures and the testing power of the
full Run 2 dataset.1

In the pursuit of new phenomena, we need to make sure we are covering enough BSM
possibilities. As the majority of the LHC searches are designed for a specific type of BSM
scenario, it could be that the absence of a BSM discovery is due to incorrect prior assumptions.
Motivated by this, there is a move towards model-independent searches at the LHC, often
labelled as anomaly detection.

In this paper, we suggest a novel anomaly detection method, which we name Anomaly
Awareness, based on Machine Learning (ML) methods. We apply this algorithm to two dif-
ferent scenarios at the LHC as well as to the ML Computer Vision benchmark involving the
hand-written digits MNIST dataset.

In the case of the LHC, we show how Anomaly Awareness can help making these searches
more robust, less dependent on the specific scenario one could have in mind.

This paper is one more contribution in the growing area of finding novel approaches to
analyse data using Machine Learning as a tool in High Energy Physics. A handful of recent
studies [1–17] proposing ML algorithms to perform model independent searches are showing
impressive reach for the considered toy examples. Other than the model independent searches
(in a unsupervised fashion) recent studies also proposed the use of ML methods for specific
tasks to extract maximum information from Particle Physics experiments data, see e.g. [18]).

This paper is organised as follows. After briefly discussing the problem of anomaly detec-
tion in Sec. 2 in Sec. 3 we describe the general algorithm of Anomaly Awareness. We show
how we use it in a Particle Physics application in Sec. 4 and then conclude in Sec. 5. In Ap-
pendix A, we explore the impact of the AA parameter λAA. In Appendix B, we show how to
apply the method to a different LHC scenario, Higgs physics with photons and jets, now using
kinematic features as input as opposed to images. In Appendix C, we also show the impact of
the algorithm in identifying anomalies from the MNIST database.

2 Anomaly detection

Algorithms that detect anomalies have to learn normal behaviour to be able to identify anoma-
lous behaviour. Sometimes we do know what types of anomalies we need to search for, and
then use supervised Machine Learning methods to find them. Often anomalies are rarer than
normal events, and these supervised techniques need to be adapted to unbalanced datasets
and be made robust against fluctuations in the dominant normal or in-distribution dataset.

Oftentimes we do not know the whole set of possible anomalies we could encounter in
data, or we cannot obtain a dataset with enough examples of anomalies. Supervised methods
may perform well with known anomalies, but when applied to new ones they would typically
not identify them. To design procedures to detect unknown anomalies, we then resort to un-

1See for example the list of public results from the ATLAS and CMS collaborations, exploring a huge ar-
ray of new physics topologies in https://twiki.cern.ch/twiki/bin/view/AtlasPublic and https://cms.cern/news/
physics-results.
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supervised learning, trying to identify anomalies in a dataset as a function of e.g. of some
form of distance within the dataset. This procedure is quite heuristic, often starting with a
visualization of the data and some form of dimensional reduction, followed by some intuitive
understanding of the problem. This is a hit-and-miss method, and in general the unsuper-
vised strategies are substantially less powerful than a possible supervised method of detecting
anomalies, see Ref. [19] for a review on novelty detection.

Here we present a different strategy, somewhat mid-way between supervised and unsuper-
vised. We use the framework of a classification task (supervised learning) on a dataset with
normal events, to introduce a concept of awareness of possible anomalies. We then use the
output of the classification task to define a region where anomalies would concentrate.

We will show that this algorithm, after being made aware of enough variety of anomalies,
becomes effective at identifying more generic anomalies, even those the algorithm has not been
previously made aware of. In other words, this anomaly awareness procedure becomes robust,
i.e. more independent of the origin of the anomaly. In this sense our Anomaly Awareness
algorithm is a hybrid method of learning, neither fully supervised nor unsupervised.

3 Algorithm description

We now explain in detail the Anomaly Awareness algorithm, represented in the Algorithm
Description 13. The starting point of the algorithm is a classification task which in its simplest
form is a binary classification task.

In this initial run (prior run), the algorithm learns to classify only normal classes, and is
not yet aware of the presence of anomalies. The end result of this run would be a trained
algorithm with some choice of optimal hyper-parameters, which will be used to initialize the
next run, the anomaly awareness run. By performing binary classification in the prior run, the
model learns which events to assign probability ‘0’ or ‘1’. We will discuss how knowledge is
needed to later assign a 0.5 probability to anomalies.

In the second run, the algorithm will now see some anomalies. The new loss function
contains the same term as in the prior run, e.g. cross-entropy for a binary classification task,
but has a new term (Anomaly Awareness) which distributes the anomalous samples uniformly
across the classes, e.g. assigning 50% probability of belonging to each class in a binary task,
or 1/n probability in a n-class baseline classification task. Now we explain how this anomaly
loss term (l2) looks like in the case of binary classification. We start with the cross-entropy
loss function which is written as −

∑C
i yi log pi . Here sum is over the number of classes, yi is

the true label, pi is the predicted label. Then we use softmax probabilities for the predicted
labels. In case of binary classification, anomaly loss term (l2) has the following form for each
data point

l2 = −
�

y1 log
ep1

ep1 + ep2
+ y2 log

ep2

ep1 + ep2

�

, (1)

where p1 and p2 are the predicted probabilities by the (normal) binary classifier. Further using
50% probability of belonging to each class, i.e. y1 = y2 =

1
2 , we get

l2 = −
� p1 + p2

2
− log (ep1 + ep2)

�

. (2)

The Anomaly Awareness term is modulated by a parameter λAA, which sets the relative
importance of anomalous examples with respect to the normal samples in the loss function.

3

https://scipost.org
https://scipost.org/SciPostPhys.15.2.053


SciPost Phys. 15, 053 (2023)

So far this algorithm is similar to the Outlier Exposure proposal [20]. But in our case, the
AA term will contain an array of different anomalies which, as we will show later, is crucial to
allow the algorithm to detect unknown anomalies. Another component of Anomaly Awareness,
not present in Outlier Exposure, is the use of the classifier output p to obtain an optimal
window [pmin

An , pmax
An ] to detect anomalies over a large background of normal events.

Algorithm 1 Anomaly Awareness (AA). Important parameters are λAA, pmin
An , pmax

An .
Prior Run

Initialize test:train splitting of Normal (N) dataset
Initialize hyper parameters
Initialize Model (CNN architecture)
for Training over the epochs do

Cross entropy loss
Update model parameters.

end for
Get accuracy for Dtest and Dt rain
This run sets the hyper-parameters for the AA run

Anomaly Detection Run
Load the Anomaly (An) dataset
Initialize amount of data w.r.t. the Normal dataset
Initialize λAA
for Training over the epochs do

l1 = Cross entropy loss (Normal dataset)
l2 = Cross entropy loss (Anomaly dataset with Uniform Distribution)
Loss = l1 +λAAl2
Update model parameters.

end for
Get softmax probabilities for all the datasets,
pi , i = N , An
Select datapoints in a range [pmin

An , pmax
An ],

range optimized to select anomaly over normal events.

In the application to LHC searches of Sec. 4 the input to this analysis will be in the form
of 2D images of jet spatial structure, hence the neural network architecture is made of a few
convolutional layers and a final classification layer, see Fig. 1 for the specific choice we made.
We implemented this architecture using Pytorch [21] with SGD optimizer.

4 Anomaly Awareness for Boosted hadronic phenomena

In this section, we demonstrate how AA works considering the example of boosted jets
at the LHC. The SM interactions do produce these jets, for example in the form of quarks
and gluons which then hadronise in the detector. We will denote these normal events as two
classes: Top and QCD, and later add a third SM class, W-jet.

Searches are focused on finding some anomaly in the behaviour of these jets which would
indicate the presence of a new set of laws at play. We simulate anomalies produced by new
particles, which we denote as resonances leading to jets with 2-, 3- or 4-prongs (R2,3,4), or
new effective interactions which we denote as EFT. The EFT interactions correspond to Higgs
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Conv2D 30, 3X3, 
Stride=1

Conv2D 40, 3X3, 
Stride=1, padding=1

Conv2D 30, 3X3, 
Stride=1 

Maxpooling 2

Conv2D 40, 3X3, 
Stride=1, padding=1 

Maxpooling 2 
Dropouts=0.3 

Linear Layer 300

Predictions  
(Nc)

Input 25x25

Figure 1: CNN Architecture used in this study. Input images are passed through a
set of convolutional layers and end in a linear layer providing predictions for the
classification problem.

production in association with a Z-boson as described in Ref. [22] and switching on a coefficient
cHW as defined in Ref. [23] within the limits obtained in Ref. [24].

The R2,3,4 examples were generated with a Randall-Sundrum [25] model, where a heavy
graviton G of mass 3 TeV undergoes the following boosted decays [26–28],

R2 : G→ Z Z , Z → 2 j ,

R3 : G→ t t̄ , t → 3 j ,

R4 : G→ hh , h→W W ∗→ 4 j .

For the EFT benchmark, we considered the process

p p→ H Z , H → b b̄ , (3)

where we do not tag on the b-jet and a value of CHW = 0.3 was considered.

4.1 The input information

To study anomalies in these events we will represent them as follows: all the information on
directionality, timing and energy deposition of the event is reduced to gathering the largest
amount of energy collected around a cluster (leading fat jet) in the hadronic calorimeter of the
detector. We then represent the angular distribution (η, φ) of the energy depositions inside
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Figure 2: Average jet images for SM processes. From top to bottom and left to right:
Top, QCD and W-jet.

the fat jet with a color coding that encodes relative amounts of energy (in GeV). The typical
distributions for these events are shown in Figures 2 and 3, where we see the differences
among the sources of SM fat jets and possible new phenomena. These images are an aver-
age of all the events we have simulated (∼ 50K events per scenario) and one should note
there is substantial variability among events from the same source. These images have been
produced by running Monte Carlo simulations of 13 TeV LHC collisions at parton-level with
aMC@NLO [29,30] and then showering and hadronizing with Pythia [31,32]. We then used
Pythia 8 SlowJet program for clustering. The main cuts applied to the events were finding a
leading anti-kT jet of R= 1, pT > 750 GeV and mJ ∈ [50,300] GeV .
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Figure 3: Average jet images for New Physics processes. From top to bottom and left
to right: EFT, resonance into boosted Z Z , resonance into boosted tops, and resonance
into boosted pairs of Higgs bosons.

4.2 The prior run

Using these images as input, we run an initial classification task of two classes in the normal
distribution (Top vs QCD) using the convolutional architecture in Figure 1 with batch size 100,
100 epochs and ReLU as activation function in all the layers.2

Once trained over examples of Top and QCD events, the algorithm would give a prediction
event-by-event of the probability of belonging to the class Top or class QCD. If we output the
predictions for true Top and QCD events, e.g. in terms of Top probability, a good algorithm
should distribute Top events near 1 and QCD events near 0, leading to two sharp peaks of the
probability distribution function (PDF).

2Note that CNNs have been used for the Top vs QCD jet classification problem in Refs. [33,34]. Also note that
some works are using ML techniques to improve on the task of top tagging, e.g. Refs. [35, 36], which could be
incorporated to the initial AA run.
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Figure 4: Output of the binary classifier (Top vs QCD) on events from different sources
(Top, QCD, W-jet, EFT and Resonances).

But what about any other types of events? We can also run the algorithm over anomalous
examples and see where these are distributed in the Top probability axis. This is shown in
Figure 4, where we observe that other scenarios would typically be misclassified as Top or
QCD. In other words, the classification task specializes on Top and QCD events characteristics,
and any new type of scenario, which could exhibit other event characteristics, is mostly placed
into one of the two classes. These anomalies are mis-identified as normal classes, QCD or Top.

4.3 Adding Anomaly Awareness

Now let us introduce Anomaly Awareness and, for the moment, just introduce awareness to
a single new type of events, W-jets. In terms of the classification results, the effect of adding
an AA term is not substantial, see Fig. 5 where we see how the ROC curves with and without
AA terms are essentially identical. We checked that this result does not change when adding
more AA terms.

However the effect on the anomalies, all of them, is substantial. As the algorithm becomes
aware of possible anomalies, even when exposed to only one type, it does also become better
at separating QCD/Top from other types. This is shown in Fig. 6, where now the probability
distribution of anomalies gathers towards the centre of the distribution, i.e. they are classified
neither as Top nor as QCD.

As one sees in Fig. 6, events with P(Top) close to 1 are mostly coming from a Top distribu-
tion and those whose P(Top) is close to 0 are mostly from the QCD events. One could think of
using this behaviour to assign an anomaly character to events which would be well separated
from the Top and QCD, e.g. whose P(Top) would lay near 0.5. But as we will see later in
Sec. 4.5, this definition would be too naïve for Particle Physics purposes. Indeed, in reality in
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Figure 5: ROC classification curve for the prior run, and for a run including AA of
W-jet. Similar curves are obtained when adding more AA types.

a sample of LHC events there would be a variable number of QCD and Top events depending
where on the ROC curve we are setting our analysis. Moving towards the right on Figure 6
corresponds to different choices of working points in the acceptance of Top and QCD events,
an efficiency to collect or reject these events. Looking at a rough window around P(Top)≃ 0.5
does not take into account the overall amount of QCD and Top events remaining after setting
the threshold. We will discuss this issue in the last part of this Section.

As we introduce awareness to more types of anomalies, this behaviour continues to hold
and improves up to a point. This can be seen in the Figures in 7. In the top panel we observe
the effect of adding an additional example in the awareness term, adding to W-jet additional
awareness of R4, a resonance leading to a high energy jet with 4-prongs. The improvement
from Figure 6 is clear, signalling that the awareness procedure improves with more variety of
examples. We checked that the improvement is roughly independent of the choice of examples
of anomalies, which indicates the procedure is robust.

Nevertheless, this improvement does not imply that awareness can be arbitrarily enhanced
by just adding more examples. Indeed, we find that the power of the procedure saturates.
This can be seen in the bottom panels of Fig. 7, where going from awareness of four different
anomalies to extending to five does not change the overall picture.

This saturation is to be expected: the amount of information in the images we created is
limited intrinsically and by design, as we are selecting just the leading jet in the event and
plotting only angular distributions of energy depositions. Some additional information could
be added to the analysis, as even in that leading jet one could add more information, like
the probability of the presence of a b-jet. And beyond the leading jet, important correlations
with the other parts of the event could be added in this analysis. Hence we would expect a
more detailed analysis to lead to better performance, although this is not the main focus of
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Figure 6: Output of the Anomaly Awareness binary classifier (Top vs QCD) on events
from different sources (Top, QCD, W-jet, EFT and Resonances). An Anomaly Aware-
ness term has been included with only W-jets.

this work, which is presenting the idea of Anomaly Awareness and how it would qualitatively
work in an LHC set-up.

Let us finish discussing the effect of the modulation term λAA. This term sets the relative
importance of normal examples shown to the algorithm, in the cross-entropy function, versus
the number of anomalous examples subject to a uniform distribution. We can think on two
limiting cases. On one hand, a very small value of λAA would lead to the same result as the
prior run, and would not bring the anomalies to the centre of the classification output. On
the other hand, a large value of this parameter would degrade the prior classification task,
broadening the PDFs for Top and QCD, the backgrounds we are fighting against. Somewhere
in between, with a moderate amount of awareness, the optimal performance lies. In this work
we have used a near-optimal value (λAA = 0.5). In the Appendix A we discuss the comparison
with other choices of λAA.

4.4 Generalization to more than two categories

So far we have shown results based on a binary classification problem (Top vs QCD), but
Anomaly Awareness could be generalized to classification problems with more than two
classes. The only difference in the algorithm 13 would be in the AA term, where the Uni-
form Distribution would be along all the classes. To illustrate this procedure, we repeat the
analysis, now with three SM classes: Top, QCD and W-jet.

After training with a normal dataset with equal amounts of Top, QCD and W-jet, the al-
gorithm can provide for each new event a probability of belonging to each class. In Figure 8
we represent the PDF of events within these three categories (P(Top Jet), P(QCD), P(W-jet)).
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Figure 7: Output of the binary classification (Top vs QCD) on events from different
sources (Top, QCD, W-jet, EFT and Resonances). Different Anomaly Awareness terms
have been included: W-jet and R4, a resonance leading to a high energy jet with 4
prongs (top figure), plus EFT and R3, a resonance leading to a jet with 3 prongs
(bottom-left figure) and finally adding to the former R2, a resonance leading to a jet
with 2 prongs (bottom-right figure).

True top events (in red) are mostly gathered around values of one for P(Top Jet) and zero
for P(W-jet) and P(QCD). Similarly true W-jet events (green) gather around values of one for
P(W-jet) and zero for the others. This plot is 2D, but if we had plotted P(QCD), we would
observe a similar behaviour: most true QCD events would be correctly classified.

As in the two-class case discussed before, the prior classification algorithm, when faced
by new types of events, would likely misclassify them as one of the known categories. For
example, EFT anomalies would be mainly misclassified as W-jets. This is shown in Fig. 9,
where the black distribution represents the PDF of EFT events previous to introducing AA.

If we then run the model with Anomaly Awareness of all the anomalies discussed before
(except EFT), the EFT events move towards the center of the PDF plane, represented by the
pink blob in Fig. 9. In other words, despite not being aware of EFT-type anomalies, exposure
to other anomalies does help separating EFT fat jets from SM sources. We checked that adding
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Figure 8: Probability distributions for the normal classes in the three-class example:
Top (red), QCD (blue) and W (green). The axes are the probability of an event to
belong to class Top Jet (x-axis) or W Jet (y-axis).

EFT to the AA term on top of the other cases does not change this picture qualitatively, again
indicating a saturation of the amount of information in these events which seems to be already
covered by the diversity of R2, R3 and R4.

4.5 Anomaly detection

So far we have discussed the effect of AA in the classification task. We noted that AA
preserves the performance of the classification task respect to the prior run, which is to identify
correctly normal classes. This can be seen from the comparison of ROC curves in Fig. 5, where
the overall effect of adding AA terms is negligible. But the effect on the anomalous events
is substantial, bringing the distribution of predictions for anomalous events farther from the
region of the normal classes, which gather around 0 and 1, see Figs. 6 and 7.

Now we want to discuss how this separation could be used in practice in an LHC search for
anomalies. Note, though, that the following quantitative discussion is intended for illustration
and not to be taken as a full-blown analysis of anomalies in high-pT fat jets at the LHC. As
mentioned before, the LHC environment is complex, and modelling the behaviour of hadronic
final states requires sophisticated machinery which we are just approximating with simple
theoretical simulation tools. Moreover, we have only considered information on the leading
jet, missing then important correlations with other hadronic activity or correlated channels.

With all these caveats in mind, we describe a procedure one could follow to use AA in
order to increase detection of anomalies.
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Figure 9: Probability distribution of EFT events after the prior run (black), and the
effect of Anomaly Awareness on the distribution of EFT events (pink), when the al-
gorithm is made aware of all the anomaly classes except EFT. Axes are the same as
in Fig. 8.

To claim anomaly detection we need a statistical criteria to determine how many anoma-
lous events (NAn) over SM events NSM are required. A typical criteria used is:

S = NAn/
p

NSM , (4)

where S indicates statistical significance and one can choose a value, NAn/
p

NSM = 5, as a
benchmark to claim the significance of the anomalies is above statistical fluctuations in the SM
background with a 5-σ confidence level. This criteria is commonly used in Particle Physics,
see e.g. Ref. [37] for a typical use of this criteria to claim discovery or exclusion of new
phenomena. Also, it is worth noticing that the criteria cited in Eq. 4 is an asymptotic limit of a
more robust statistical treatment for a large number of events, see Ref. [38] for more details.

The number of events NAn, SM depends on how often these types of events are produced
in LHC collisions, i.e. the cross-sections σAn, SM .It also depends on the thresholds we choose
when applying the algorithm, i.e. how many of these events we reject and collect.

In Figures 6 and 7, one could choose such criteria as a window in the output probability
of the classifier

p ∈ [ pmin, pmax] , (5)

and scan different windows to obtain the maximum efficiency to collect anomalies and reject
SM events.

The effect of this scan is shown in Fig. 10, where we plot the following quantity

R=
p
σB

εAn
p

σQC D εQC D +σt t̄ εt t̄
. (6)
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Figure 10: Value of R defined in Eq. 6 as a function of the EFT output classifier P(Top
Jet) of an AA run with awareness of all the anomalies except EFT. The three curves
(blue, red, green) correspond to window widths δ = 0.1, 0.08 and 0.12. Black curve
is obtained by considering the events below the threshold.

In this equation εAn, εQC D and εt denotes the area of the PDF curve in Figures 6 and 7 for the
anomaly, QCD and top events on a given window. The total background cross-section, sum of
top and QCD cross-sections, is denoted by σB.

Note how in R the QCD and Top cross-sections are weighted in. Right after the high-pT
selection cuts, the QCD total cross section is much larger than the Top. But one can use the
output of the classifier to impose a threshold on P(Top Jet), and drastically reduce the amount
of QCD events, closer to the amount of Top events.

In anomaly detection, the task of identifying anomalies means fighting against QCD and/or
Top, depending on where in the output classifier region our window lies. Towards the left,
P(Top Jet)≪ 1, QCD is the dominant contribution to the denominator in R, and at the other
end, Top is dominant. Somewhere in between these two extremes we should find the best
window for anomaly detection. In Fig. 10 we see exactly that behaviour. R is very small on
both ends of the plot, where the QCD and Top backgrounds are overwhelming. As we move our
window [ pmin, pmax] towards the center, both QCD and Top drop. Therefore, at the maximum
of R, Rmax , the statistical criteria 4. The parameter δ in this plot corresponds to the width of
the window, δ = pmax − pmin and one can see the value of Rmax does not depend strongly on
the choice of δ as long as it is ≈ 0.1.

After determining Rmax , one can turn the criteria for discovery NAn/
p

NSM = 5 into a
minimum value of the anomaly cross section one would be able to detect. This value would
depend on the amount of data collected at the LHC (i.e. luminosity, L), hence on the time it
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Figure 11: Value of σmin
An (in fb) as a function of LHC luminosity (in fb−1). The value

of 3000 fb−1 corresponds to the expected luminosity of the HL-LHC run.

runs. Indeed, note that
NAn
p

NSM
= R

σAnp
σB

p
L , (7)

hence
σmin

An =
5

Rmax
p

L/σB
, (8)

which is shown in Fig. 11 for the EFT case (where AA is to all anomalies but EFT). We repeated
the same analysis for other anomalies, R2, R3 and R4, with similar results, as expected from a
procedure which aims to achieve robustness and model-independence.

As a reference, the QCD cross section after the selection cuts is of the order of 50×103

fb, and Fig. 11 shows that at High-Luminosity LHC (L =3000 fb−1) we would be able to
detect cross sections for anomalies of the order of 10 fb, a 1:5000 ratio of anomaly over in-
distribution. If we just naively calculate the signal cross-section as 5

p
σBp
L

, we get 20.2 fb with

a luminosity of 3000 fb−1 which is higher than what we get with this procedure (12.3 fb).
Moreover, we have compared the AA procedure with a simple binary classification where

one class would be the QCD+Top SM background and the other the EFT anomaly. We find
that, compared with the AA case, with a supervised anomaly detection classifier we would
be sensitive to roughly a factor two smaller cross section σmin

EF T . This result is expected: if the
nature of the anomaly is known, a supervised task will be more sensitive than a semi-supervised
procedure like AA.
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We do not want to finish this section without stressing once more that the results shown
in Figs. 10 and 11 should be taken as a qualitative illustration on how to use AA for anomaly
detection. A better simulation and analysis, including more information on the events and
more types of anomalies, would likely lead to substantially better results than those shown
here.

5 Conclusions

In this paper we have described a new method of anomaly detection, based on a classifi-
cation task within a multiclass in-distribution, and the effect of adding to the task some level
of anomaly awareness. This is a semi-supervised method of anomaly detection, where the al-
gorithm is exposed to a variety of anomalies to render it less dependent on specific anomalies.

Using information of LHC events we have studied how Anomaly Awareness can help to
establish a more model-independent strategy to search for new phenomena at high energies.
We observe that Anomaly Awareness does not substantially interfere with the underlying clas-
sification task, see Fig. 5, but brings the anomalies to a region where a separation is possible,
see e.g. Figs. 4 and 6. We illustrated the use of this separation in Sec. 4.5.

We found that awareness of any anomaly helped on detecting others, and that adding more
anomalies to the AA term did improve detection of new, unknown situations. We did notice,
though, that this procedure levels off after awareness to a few examples, likely to indicate that
the feature extraction ability of the algorithm has saturated.

Although we constructed jet images as input for the algorithm, Anomaly Awareness could
be used with any type of input. For example, for the LHC application we could have used
instead images of the leading and subleading jets simply pasted together, as proposed in
Ref. [39], event information in terms of a set of kinematic variables, mixed input, or even
lower-level event information (closer to the raw output of the detector). To illustrate the
use of AA in other situations, in the Appendices we show the application of this method to a
semi-hadronic LHC final state, and to a non-physics dataset.

Finally, our discussion on LHC anomaly detection should be understood as a proof-of-
concept on the use of Anomaly Awareness, and not as a dedicated study. In particular, a realistic
feasibility study should go further than our estimation of the background shown in Sec. 4.5
for the fat jet case. We nevertheless find promising results, despite using just a part of the
information available in the LHC events. And although we showed results with the EFT as the
unseen anomaly, we found similar results for the other anomaly examples. Compared with
supervised ML methods for EFTs [22], we find that our estimative limit of the anomalous cross
section, Fig. 11, is of the same order of magnitude and motivates a more systematic study.
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Figure 12: Output of the binary classification (Top vs QCD) on events from different
sources (Top, QCD, W-jet, EFT and Resonances) with AA (All except EFT) for different
λAA values.

A Choice of λAA

In this appendix we show the impact choice of the hyper-parameter λAA made in the Anomaly
Awareness run with the LHC fat jets example, although similar results are obtained for the
other two examples shown in this paper. In Fig. 12 we see how, as explained in the main text,
increasing the value of λAA does produce a larger density of anomalies in the central region,
but at the cost of degrading the baseline task. In the second part of the algorithm we choose a
window in the central region where the amount of normal versus anomaly is as low as possible,
hence our choice of λAA=0.5 is a compromise to achieve a good ratio between anomaly and
normal events in the central region.
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Figure 13: Input kinematical variables of di-jet and di-photon final state considered
for the second experiment.

B Higgs physics with photons and jets

In this section we use AA in a different final state where new physics is often searched
for, the two forward jets and a central diphoton state. Instead of images of fat jets, we apply
the AA method to a different input: a dataset made of events characterised by a list of values
for kinematical variables in the j jγγ final state. For the normal datasets we consider two
dominant production processes for the Higgs boson in the Standard Model i.e. gluon fusion
and vector-boson fusion, where the Higgs decays to two photons. As anomaly examples, we
consider three cases. These three processes are generated using the Higgs Effective Theory
Feynrule model3 at

p
s = 13 TeV. We simulate these events at parton-level where we do not

3https://feynrules.irmp.ucl.ac.be/wiki/HiggsEffectiveTheory
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Figure 14: Neural network architecture used for the second experiment.

consider next order effects from multi-parton interactions and hadronization etc.. First, a ZH
case, which is another production mode of the Higgs and where the Z decays to j j. The other
two sources of anomaly are from compelling theories Beyond the Standard Model where an
axion is produced with gauge bosons [40, 41] and a graviton, which is is a heavy spin-two
state predicted in many extensions of the Standard Model. For the axion production with a
gauge boson, we get two photons from the axion and two jets from the gauge boson. For
the graviton production process we consider its decay to two photons and Higgs decay to the
dominant channel of two b-jets.

We consider the following features:

1. pT ( j1): transverse momentum of the leading jet.

2. pT ( j2): transverse momentum of the sub-leading jet.

3. η j1: pseudo-rapidity of leading jet.

4. pT (leading γ): transverse momentum of the leading photon.

5. η j j: pseudo-rapidity difference between leading and sub-leading jet.

6. η jγ: pseudo-rapidity difference between leading jet and leading photon.

The distributions of these kinematic observables are shown in Fig. 13.
First we discuss these features for the normal data sets. We see that pT distributions of

jets and photon are not very different for ggF and VBF processes. However pseudo-rapidity
distributions for the considered combinations are comparatively different. Among the anomaly
data sets, leading jet and photon pT distributions for axion and graviton benchmarks are quite
different from ggF, VBF and the ZH case.

As the input for the AA algorithm is not a jet image, the architecture is now adapted to this
situation. This is shown in Fig. 14.

The classifier output for the normal and anomaly data sets is shown in Fig.15. We see
that a baseline binary classifier tends to align anomalies towards one of the classes as already
observed in the example in the main text. Then, we perform an anomaly awareness run with
λ= 0.5 for different types of anomalies included. In the upper most figure in Fig. 16 one type of
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Figure 15: Output of the neural network binary classifier for the ggF versus VBF
classification.

anomaly is added i.e. ZH and one sees already a displacement of the anomalies output. Further
addition of the axion makes it comparatively more robust, and further improves with the three
types of anomalies included in the AA run. As in the previous example of boosted phenomena,
this experiment shows that Anomaly Awareness is effective at collecting anomalous events,
and we could use the PDF distribution and follow the process described in the section 4.5 to
quantify anomaly detection.

C Anomaly Awareness for non-physics datasets

In this appendix we apply the AA algorithm to well-known non-physics benchmarks pro-
posed in the Outlier Exposure paper [20], using as baseline tasks two digits in the MNIST
dataset [42], and as anomalies CIFAR 10 [43], fMNIST [44] and nMNIST.

We see that for these non-physics datasets the behaviour is similar to the observed for fat
jets, see Fig. 17. CIFAR-10 data set is a ten class data set of color images. Fashion-MNIST
(fMNIST) is also a 10-class data set of grayscale images. The negative MNIST (nMNIST) is
generated from the MNIST data set by reversing the brightness of the images.
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Figure 16: Output of binary classifier after the anomaly awareness run in presence
of one type, two types and three types of anomalies.
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Figure 17: AA for non particle physics data sets. We used 2 types of digits from the
MNIST data set as normal examples. CIFAR 10, fMNIST and nMNIST data sets are
considered as anomalies.
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