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Abstract

We compute the integrands of five-, six-, and seven-point correlation functions of twenty-
prime operators with general polarizations at the two-loop order in N = 4 super Yang–
Mills theory. In addition, we compute the integrand of the five-point function at three-
loop order. Using the operator product expansion, we extract the two-loop four-point
function of one Konishi operator and three twenty-prime operators. Two methods were
used for computing the integrands. The first method is based on constructing an ansatz,
and then numerically fitting for the coefficients using the twistor-space reformulation of
N = 4 super Yang–Mills theory. The second method is based on the OPE decomposition.
Only very few correlator integrands for more than four points were known before. Our
results can be used to test conjectures, and to make progresses on the integrability-based
hexagonalization approach for correlation functions.
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1 Introduction

Correlation functions of locals operators are among the most interesting physical observables
in a conformal gauge theory. In four-dimensional N = 4 supersymmetric Yang–Mills theory
(SYM), they are even more relevant, due to a rich structure of dualities between correlation
functions, scattering amplitudes, and null polygon Wilson loops [1–6].

A particularly important class of operators in N = 4 SYM are scalar single-trace half-BPS
operators. Their scaling dimensions and three-point functions are protected from quantum
corrections due to supersymmetry [7]. They appear to be the simplest operators in the the-
ory, yet their higher-point correlation functions encode a wealth of information about more
complex operators and observables via the operator product expansion, null limits etc. Cor-
relation functions of these operators have served as an essential laboratory for holography
and the development of computational methods since the early days of the AdS/CFT dual-
ity (see [8] for a recent review). Their all-loop integrands are conjectured to take part in a
hidden ten-dimensional symmetry that extends the correlator/amplitude duality to Coulomb-
branch amplitudes [9, 10]. Correlation functions of single-trace half-BPS operators are also
most amenable to the integrability-based hexagonalization approach [11–15], especially at
higher points and higher genus [16–20].

Despite their essential role, correlators of half-BPS operators beyond one-loop order have
only been computed for four points, with few exceptions [19–22]. For the further exploration
of new techniques, symmetries, and dualities, more perturbative data is highly needed. The
goal of this paper is to produce exactly such higher-point and higher-loop data. For half-BPS
operators of lowest charge (called 20′ operators), it is possible to write a compact formula for
correlation functions for any number of operator insertions at tree and one-loop level. These
results are reviewed in Appendix A. The main result of this paper is the computation of the
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integrand for the five-, six-, and seven-point function of 20′ operators at two loops, as well as
the five-point function at three loops. In all cases, we are assuming general polarizations for
the external operators.

Perturbative computations are, in general, notoriously hard in quantum field theory. The
number of diagrams that have to be dealt with using standard methods grows factorially with
the loop order. Another issue is that symmetries of a given theory might not be manifest
within conventional approaches. Fortunately, there is a more efficient alternative in N = 4
SYM that exploits the underlying symmetries of the theory. The paradigmatic example is the
computation of astoundingly high loop order integrands for four-point functions of half-BPS
operators [23,24]. This method takes advantage of the so-called Lagrangian insertion proce-
dure to relate the integrand of an ℓ-loop correlation function of n operators with the tree-level
correlator of n+ ℓ operators, where the additional ℓ operators are Lagrangian insertions. The
structure of these tree-level correlators is highly constrained; they are given just by rational
functions of the positions, which in turn makes it possible to construct an ansatz for this ob-
ject.1 Then the problem boils down to fixing the coefficients in the ansatz.

For four-point correlation functions of half-BPS operators, it was possible to use consistency
conditions (i.e. a bootstrap approach) to completely determine the coefficients in the ansatz
up to high loop orders [26]. For five or more operators, this strategy is in general more compli-
cated (however it is simple at one-loop order, as we show below). We attempt such a bootstrap
approach, with success for five points at two-loop order, see Section 5. One reason for the in-
creased difficulty at higher points lies in our lack of understanding of the consequences of
superconformal Ward identities for more than four points. Notice that these identities can be
written in a very compact notation using superconformal invariants as in [27, 28].2 Solving
these superconformal Ward identities would also be very helpful in the strong-coupling limit,
as emphasized in [22].

Given this state of affairs, we take a different approach to compute the undetermined
coefficients in the ansatz, taking advantage of the reformulation ofN = 4 SYM in twistor space.
The chiral part of correlation functions of stress-tensor multiplets can be computed using a
perturbative prescription based on twistor methods [29].3 This prescription allows a numerical
treatment firstly applied in [34] to compute the four-loop non-planar integrand of four 20′

operators. Notice that the integrand was known before (by using symmetries and dynamical
constraints) only up to four unknown coefficients multiplying four polynomials [23]. The same
numerical method is used in this work for computing several new correlators. In fact, it can
be used in many more cases, and the main difficulty at the moment is the construction of an
ansatz (basis of integrals) with not too many undetermined coefficients.

For computing correlation functions using the twistor methods of [29], it is necessary to
introduce an auxiliary twistor that breaks some of the symmetries at intermediate stages of the
computation. Nevertheless, the resulting correlators are independent of the auxiliary twistor,
and this happens only after summing all Feynman diagrams. A different method of computa-
tion that maintains all the symmetries manifests at all steps was proposed in [27] (again, see
also the review [8]). Namely, the chiral correlators transform covariantly under the N = 4 su-
perconformal transformations, see Section 3. Thus, it is possible to construct superconformal
invariants and multiply them by all possible polynomials, imposing Sn permutation symmetry.
The result is a basis for the integrand, and many of the coefficients can be fixed by imposing

1In [2, 25], the Lagrangian insertion procedure together with super-Feynman rules was used to obtain the
integrand for five- and six-point functions of 20′ operators at two loops, in the limit where consecutive points are
light-like separated and in a special polarization.

2A complete analysis of G6,1, i.e. six-points at Grassmann degree 4, was performed in [27].
3It is not known in general how to reconstruct the full super-correlator from the knowledge of its chiral part

alone. For four-point functions, the procedure is described in [30]. For half-BPS operators of charge k, one can
use the composite operators of [31–33].
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physical constraints. For example, the six-point tree-level correlator could be computed by
this procedure [27]. In this particular case, the correlator could be completely fixed by Ward
identities and the light-like limit. In this work, we only write explicitly results which would
correspond to particular fermionic components in such a basis of invariants. Nevertheless, it
would be great to understand the interplay between our results and the invariants further and
to look for simplifications, for example from Ward identities.4

In our computation, we restrict ourselves to the parity-even part of the integrand. The
action of N = 4 SYM theory will also generate parity-odd terms. However, these parity-odd
terms will integrate to zero, since the only parity-odd term in the Lagrangian is the topological
term iFF̃ , which is a total derivative.5 For this reason, we exclude parity-odd terms from the
very beginning, by not including them in our ansatz. This is easily done, since all parity-odd
terms will involve the four-dimensional totally symmetric epsilon tensor, which we simply
disregard. The twistor computation produces the parity-even as well as the parity-odd terms.
Since we work in Lorentzian signature, the parity-odd terms numerically appear as imaginary
parts and are easily dropped. That being said, it would in principle be possible to reconstruct
also the parity-odd part by matching the imaginary terms against a suitable ansatz. We refrain
from doing so in this paper.

The paper is organized as follows. Section 2 contains the ansatz for the basis of integrals
used for the numerical fitting. In Section 3, the twistor reformulation of N = 4 SYM is re-
viewed, in particular the perturbative prescription and the twistor-space Feynman rules. Our
results for the five-, six- and seven-points two-loop correlators as well as the five-point three-
loop correlator are given in Section 4. In Section 5, we describe a bootstrap approach, and
we fix the two-loop five-point function using it. We also analyze the OPE of the integrated
correlator, and extract the two-loop four-point function of one Konishi operator and three 20′

operators from our data. We end the paper with a discussion in Section 6. Additional details,
some definitions and a review of some results in the literature appear in several Appendices.

2 Ansatz

Correlation Functions. We are interested in correlation functions

Gn = 〈O1O2 . . .On〉=
∞
∑

ℓ=0

g2ℓG(ℓ)n , with g2 =
g2

YM
Nc

4π2
, (1)

of local single-trace scalar half-BPS operators

Oi = tr[(Yi ·Φ(x i))
ki ] , Φ= (φ1, . . . ,φ6) , Yi · Yi = 0 , (2)

where Nc is the rank of the gauge group SU(Nc),6 gYM is the Yang–Mills coupling constant,
φi are the six scalar fields of N = 4 SYM, and Yi are six-dimensional null polarization vec-
tors. Let us comment on the dependence on the number of colors Nc: By absorbing a factor
of Nc in the coupling g, we are anticipating the ’t Hooft planar large-Nc limit, in which all
dependence on Nc is contained in g. In the full finite-Nc theory, the coefficients G(ℓ)n still have
a non-homogeneous dependence on Nc, with subleading terms in 1/Nc signifying non-planar
corrections. In all our computations, we make no assumption on planarity. However, we still

4A conjecture about the role of the 10d symmetry of [10] for higher-point functions written in terms of invariants
was put forward in [8].

5For a discussion of parity and the fate of parity-odd terms in the N = 2 superspace approach, see Appendix A
of [2].

6Whether the gauge group is U(Nc) or SU(Nc) does not make a difference for the correlators we consider in this
work. This is generally true when all external operators are half-BPS operators of charge two (20′ operators) [34].
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find that all terms G(ℓ)n computed in this paper are homogeneous in Nc, i.e. are free of non-
planar corrections and only consist of the planar contribution. At one- and two-loop order,
this is understood, since we focus on correlators of lowest-charge operators (20′ operators)
whose dependence on Nc is particularly simple, and because there are no non-planar Feynman
integrals at one- and two-loop order. At three loops, non-planar terms may start contributing,
but we find that they are absent in our results (see also Section 4.5 below).

One way to compute loop corrections to correlation functions in perturbation theory is via
the Lagrangian insertion method. Here, the ℓ-loop contribution is given by an integral over
the spacetime positions of ℓ insertions of the Lagrangian operator [35]

g2ℓG(ℓ)n =

∫

�
∏ℓ

i=1
d4 xn+i

�

G(ℓ)n ,

G(ℓ)n = 〈O1 . . .OnLn+1 . . .Ln+ℓ〉tree , Li = L(x i) , (3)

where G(ℓ)n is the (n + ℓ)-point correlator with ℓ insertions of the chiral on-shell Lagrangian
operator L, evaluated at leading order in perturbation theory.7 For supersymmetric theories,
the Lagrangian insertion method was first introduced in [7]. It has played a key role in the
study of N = 4 SYM correlation functions, especially in constructing the four-point integrand
to high loop orders [3,23,24,26,29,34,35,37–41].

The correlators G(ℓ)n are functions of both the operator positions x i and the polarization
vectors Yi . Due to the internal SO(6) invariance, G(ℓ)n (as well as G(ℓ)n ) are polynomials in the
basic invariants Yi · Yj . From the operator definition (2), it follows that the correlators are
homogeneous in each Yi with weight ki . Writing the invariants Yi · Yj in terms of propagator
factors

di j =
Yi · Yj

x2
i j

, x2
i j = (x i − x j)

2 , (4)

the tree-level (n+ ℓ)-point function can be unambiguously decomposed into a finite sum8

G(ℓ)n = Ck1...kn
g2ℓ
∑

a

�
∏

1≤i< j≤n
d

ai j

i j

�

f (ℓ)a

�

x2
i j

�

, a= {ai j |1≤ i < j ≤ n} . (5)

Here, we have pulled out an overall constant prefactor Ck1...kn
that depends on Nc and the

charges ki . The explicit factor g2ℓ arises from the Lagrangian insertions and is required for
consistency. The sum over a is a finite sum over polarization structures

∏

i j d
ai j

i j that absorbs

all dependence on the polarization vectors Yi , such that the coefficient functions f (ℓ)a only
depend on the coordinates x i .

9 The polarization structures that can occur in the sum over a
are constrained by the charges of the operators:

For all i = 1, . . . , n : ki =
n
∑

i ̸= j=1

ai j (ai j ≡ a ji) . (6)

7This formula naively follows from differentiating the path integral expression forGn with respect to the coupling
constant. The effect of the differentiation on the coupling-dependent operators is canceled by contact terms. The
chiral on-shell Lagrangian is obtained from the full Lagrangian by applying equations of motion. See e.g. [36] for
a careful treatment.

8A similar decomposition for the loop correlators G(ℓ)n directly follows.
9The functions f (ℓ)a in general may also carry a non-trivial dependence on Nc. However, all examples computed

in this paper are free of subleading terms in 1/Nc, and therefore all dependence on Nc can be absorbed in the
overall factor Ck1 ...kn

.
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Coefficient Functions. Each polarization structure is multiplied by a rational function f (ℓ)a

of the n+ℓ positions x i . Due to Lorentz invariance, the functions f (ℓ)a only depend on squared
distances x2

i j .
10 We can further constrain their form by considering their singularity structure,

which is constrained by the operator product expansions (OPEs) among the external half-BPS
operators Oi as well as the internal Lagrangian operators L. Since the functions f (ℓ)a constitute
components of a tree-level correlation function (5), we only need to consider the tree-level
OPEs. Let us first consider the case of two external operators Oi and O j . In their tree-level
OPE, all inverse powers of x2

i j originate in Wick contractions of the constituent fields Yi ·Φ(x i),
and hence only occur in the combination di j = Yi · Yj/x2

i j . The OPE therefore takes the form11

Oi ×O j ∼
∑

0≤k

dk
i j × (regular) , (7)

where (regular) stands for terms of order O
�

x0
i j

�

. This shows that all inverse powers of x i j in
the OPE are accompanied by numerators Yi ·Yj . But all dependence of the correlation function

Gn on the polarizations Yi is absorbed in the propagator products
∏

d
ai j

i j , hence the coefficient

functions f (ℓ)a must be regular:

f (ℓ)a

x i→x j
−−−−→O
�

x0
i j

�

, 1≤ i, j ≤ n . (8)

Next, consider the OPE between one external operator Oi and one internal Lagrangian oper-
ator L j . A basic analysis shows that it has the form12

Oi ×L j ∼
COLO

x4
i j

Oi +O
�

x−2
i j

�

. (9)

However, the coefficient of the leading singularity is proportional to the three-point function
COLO ∼ 〈OiLŌi〉, which vanishes since the two-point function 〈OiŌi〉 is protected. Hence
only the subleading term contributes: Oi ×L j ∼O

�

x−2
i j

�

. Finally the OPE of two Lagrangian

operators reads13

Li ×L j ∼ δ4(x i j)(...) +O
�

x−2
i j

�

. (10)

The dominant contributions are contact terms proportional to δ4(x i j). We only consider the
tree-level correlation function (5) for Lagrangians at distinct points, hence we can ignore these
terms and are only left with the subleading O

�

x−2
i j

�

term.14 The two relations (9) and (10)
imply that

f (ℓ)a

x i→x j
−−−−→O
�

x−2
i j

�

, 1≤ i ≤ n+ ℓ , n< j ≤ n+ ℓ . (11)

10The positions could also appear in invariant contractions ϵµνστxµi xνj xσk xτ
ℓ

with the totally antisymmetric tensor
ϵµνστ. However, because of parity symmetry, our results do not contain such terms. Nevertheless, the twistor action
is chiral, and therefore generates such terms at the integrand level, but they are always total derivatives because
they follow from a topological term in the action. See Section 3 for more details.

11See [41] for a more detailed discussion of this OPE.
12If there was a lower-dimension operator in the OPE, it would involve three or four contractions between Oi

and L. The relevant term in the Lagrangian is tr([φn,φm][φn,φm]), hence such contractions evaluate to zero.
13A simple explanation for the form of this OPE is as follows: The chiral Lagrangian L ≃ Q4O(2) is a superde-

scendant of the chiral primary O(2). The fact that QL = 0 without total derivatives implies that the contact term
proportional to δ4(x i j) is also proportional to the chiral Lagrangian [36]. Moreover the three-point functions
〈LLŌ〉 are invariant under a U(1)Y “bonus symmetry” [7, 42], under which Q has charge +1. Thus Ō must be
of the form Q̄8P for a chiral primary P , that is it must be part of a long multiplet. The lowest-dimension long
multiplet is the Konishi multiplet, in which case Ō has dimension 2 + 8/2 = 6. Therefore all operators in the
regular part of the L×L OPE have dimension at least six, which means the divergence is at most 1/x2

i j . We thank
Paul Heslop for clarifying this point.

14These contact terms however play an important role for the consistency of the Lagrangian insertion method [36,
37,39].
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Combining the two constraints (8) and (11), the rational functions fa, when written as single
fractions, take the form

f (ℓ)a =
P(ℓ)a
∏

(i, j)∈I x2
i j

, I = {(i, j) | 1≤ i ≤ n+ ℓ, n< j ≤ n+ ℓ, i < j} , (12)

where the numerators P(ℓ)a are polynomials in the squared distances x2
i j . The degree of these

polynomials in the various x i is fixed by the conformal weights of the respective operators: The
external BPS operators Oi have conformal weights ki , and the Lagrangian L has conformal
weight 4. Hence also the correlator Gn has these weights in the respective points x i . The
squared distances x2

i j have conformal weights −1 at points x i and x j , the products
∏

d
ai j

i j have
weights ki at all external points, and the denominator factor in (12) has weights ℓ at external
points, and weights n+ℓ−1 at internal points. It follows that P(ℓ)a must have conformal weights
−ℓ at all external points, and conformal weights 5− n− ℓ at all internal points. Hence for all
external points i, the total degree in all x2

i j , j ̸= i must be ℓ, whereas for all internal points i,
the total degree in all x2

i j , j ̸= i must be (n+ ℓ− 5).

Correlators of 20′ Operators. For 20′ operators, the charge is k = 2. In this case, there are
only few possible terms (Y -structures) in the sum over a in equation (5). Up to permutations
of the external points, the only possibilities for the five-point function are

a12 = 2 , a34 = a45 = a15 = 1 , all other ai j = 0 , (13)

which we call the 2× 3 component, and

a12 = a23 = a34 = a45 = a15 = 1 , all other ai j = 0 , (14)

which we call the 5 component. We will label the functions fa multiplying the respective
propagator products as f2×3 ≡ f23 and f5. All other possible configurations a are obtained
from (13, 14) by permutations of the five external points. By invariance of G(ℓ)n under such
permutations, the component functions f23 and f5 uniquely determine all other component
functions fa. In other words, the five-point correlator of 20′ operators can be written as

G(ℓ)5 = C22222 g2ℓ
¬

d2
12 d34d45d53 f (ℓ)23 (x

2
i j) + d12d23d34d45d51 f (ℓ)5 (x

2
i j)
¶

S5
, (15)

where 〈·〉S5
denotes averaging over permutations of the five external points. Similarly, the

six-point and seven-point functions can be written as

G(ℓ)6 = C2...2 g2ℓ
¬

d2
12 d2

34 d2
56 f (ℓ)222(x

2
i j) + d2

12 d34d45d56d63 f (ℓ)24 (x
2
i j) (16)

+ d12d23d31 d45d56d64 f (ℓ)33 (x
2
i j) + d12d23d34d45d56d61 f (ℓ)6 (x

2
i j)
¶

S6
,

G(ℓ)7 = C2...2 g2ℓ
¬

d2
12 d2

34 d56d67d75 f (ℓ)223(x
2
i j) + d2

12 d34d45d56d67d73 f (ℓ)25 (x
2
i j)

+ d12d23d31 d45d56d67d74 f (ℓ)34 (x
2
i j) + d12d23d34d45d56d67d71 f (ℓ)7 (x

2
i j)
¶

S7
.

For the correlators computed in this paper, we find

C2...2 =
N2

c − 1

(2π)2n+2ℓ
. (17)

Some words on the notation: For a correlator of a general number n of 20′ operators, all
possible polarization structures

∏

d
ai j

i j take the form of a set of polygons, where each vertex

7
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Table 1: Numbers of independent coefficients in various ansatz polynomials P(ℓ)a that
enter the correlator (5) via (12). (The double occurrence of 2435 is not a typo.) See
also Table 5 for further reduced ansatz sizes.

ℓ= 2 ℓ= 3

P(ℓ)23 64 3286
P(ℓ)5 66 3576

P(ℓ)222 235 46873
P(ℓ)24 572 137596
P(ℓ)33 173 32701
P(ℓ)6 657 174074

ℓ= 2

P(ℓ)223 2435
P(ℓ)25 4637
P(ℓ)34 2435
P(ℓ)7 6143

ℓ= 2

P(ℓ)2222 4170
P(ℓ)224 21709
P(ℓ)233 10808
P(ℓ)26 48419
P(ℓ)35 21153
P(ℓ)44 11264
P(ℓ)8 68453

ℓ= 2

P(ℓ)2223 68255
P(ℓ)225 205851
P(ℓ)234 197580
P(ℓ)27 547435
P(ℓ)333 17474
P(ℓ)36 232772
P(ℓ)45 205851
P(ℓ)9 818180

represents one 20′ operator, and each edge represents a propagator di j . A polarization is
therefore uniquely specified by a monotonically increasing set of integers

(r1, r2, . . . , rs) , ri ≤ ri+1 ,
s
∑

i=1

ri = n , (18)

where s is the number of polygons, and ri is the size of the i’th polygon. As can be seen
in (16), we label the corresponding coefficient functions fa ≡ fr1...rs

by these sequences. By
convention, the first r1 operators populate the first polygon, the next r2 operators populate
the second polygon, and so on.

Graph Counting. To complete the construction of the ansatz, it remains to find the most
general polynomials P(ℓ)a in (12) for the various Y-structures a. By mapping each factor x2

i j to

an edge between vertices i and j, we can identify each monomial in x2
i j with a multi-graph

(i.e. a graph that admits “parallel” edges between the same vertices i and j). Finding the
most general polynomials hence amounts to listing all multi-graphs with n external vertices
with valency ℓ, and ℓ internal valencies with valency n + ℓ − 5, and taking a general linear
combination of the corresponding monomials.

Here, we can make use of permutation symmetry: Each propagator structure
∏

i j d
ai j

i j
typically is invariant under a residual group Ka ⊂ Sn of permutations of the external points
{1, . . . , n}. By the total Sn permutation symmetry of the full correlator G(ℓ)n , the respective
component polynomial Pa must also respect that residual permutation symmetry. Moreover,
all polynomials Pa must be fully symmetric under Sℓ permutations of the Lagrangian insertion
points {n+ 1, . . . , n+ ℓ}. We can thus impose these symmetries on the ansatz polynomials
from the beginning, which significantly reduces the numbers of undetermined coefficients.

For the correlators of 20′ operators, we list the numbers of independent terms for the var-
ious polynomials in Table 1. For more details on the construction of these ansatz polynomials,
see Appendix B.

Gram Identities. An n-point correlation function in a four-dimensional Lorentz-invariant
theory has 4n − 10 kinematic degrees of freedom. On the other hand, there are n(n − 1)/2
different squared distances x2

i j . Hence the x2
i j must satisfy some non-trivial relations. One way

to construct such relations is as follows.
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Table 2: Statistics of Gram determinant relations at various stages. First row: Num-
bers of 7 × 7 minors of X, up to permutations of integration labels. Second row:
Numbers of relations that remain after canonicalizing each relation over Ka permu-
tations. Third row: Numbers of relations after saturating the weights by multiplying
with all possible monomials and canonicalizing each term over Ka permutations. Last
row: Final numbers of linearly independent relations that can be used to reduce the
manifestly Ka-symmetric ansätze for the polynomials P(ℓ)a .

P(2)23 P(2)5 P(2)222 P(2)24 P(2)33 P(2)6 P(2)223 P(2)25 P(2)34 P(2)7 P(3)23 P(3)5

1 1 29 29 29 29 463 463 463 463 22 22
1 1 6 10 6 7 55 59 55 49 9 6
1 1 7 13 7 9 199 241 199 259 177 154
1 1 5 9 5 7 81 102 81 115 103 91

Points xµ in Minkowski space R1,3 can be identified with null rays X ∈ R2,4, X 2 = 0,
tX ∼= X [43], for example via

X =
�1

2(1+ x2) , xµ , 1
2(1− x2)
�

. (19)

The fundamental two-point Lorentz invariants can then be written as x2
i j ∝ X i · X j . Now

consider the matrix

X =
�

X i j

�n+ℓ
i, j=1 , X i j =

¨

0 , i = j ,

x2
i j , i ̸= j .

(20)

Then X i j ∝ X i · X j . In six dimensions, at most six vectors X i can be linearly independent,
hence all 7 × 7 minors of X must be zero. This introduces non-linear relations among the
fundamental invariants x2

i j called Gram determinant relations. These relations are obviously
polynomial. However, by multiplying each Gram determinant relation with suitable mono-
mials,15 we obtain non-trivial linear relations among the various terms in the ansätze for the
polynomials P(ℓ)a . These relations can be used to reduce the number of undetermined coeffi-
cients in the ansätze for P(ℓ)a .

Concretely, we construct the independent Gram relations as follows: First, we list all 7×7
minors of the matrix X. There are p(p + 1)/2 such minors, where p = Binomial(n + ℓ, 7).
Next, we canonicalize each of these minors over Sℓ permutations of xn+1, . . . , xn+ℓ, thereby
identifying expressions that only differ by permutations of the ℓ integration labels. The num-
bers of minors that remain for (n,ℓ) = (5,2), (6,2), (7,2), (5,3) are (1, 29,463, 22), as shown
in the first row of Table 2. Each of these expressions is a non-trivial polynomial in x2

i j that

evaluates to zero, by construction. To compare to our ansatz polynomials for P(ℓ)a , we still
need to symmetrize over the respective permutations Ka of external points, and we need to
saturate the weights of the relations. We do this in three steps. First, we canonicalize each
relation over the permutation group Ka. This reduces the numbers of relations to the second
row in Table 2. Next, we saturate the weights to ℓ for the external points and to (n+ℓ−5) for
the integration points by multiplying each relation with all possible monomials that yield the
desired weights.16 Finally, we expand the weight-completed relations and canonicalize each
term over the permutations Ka of external points. Some relations become manifestly zero, oth-
ers become identical to each other. The resulting numbers of relations are listed in the third

15Finding all suitable monomials for a given polynomial relation is another exercise in graph enumeration.
16For some relations, this is not possible. For example, one Gram determinant relation at (n,ℓ) = (6,2) has

weight deficits −1 in x7 and −3 in x8. Obviously, there is no monomial in x2
i j with such weights. We drop relations

whose weights cannot be saturated by monomials.
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row of Table 2. Not all of these relations are linearly independent. To find the ambiguity in
our ansatz polynomials, we need to pick a linearly independent set. The sizes of the maximal
linearly independent sets are listed in the last row of Table 2.

The sizes of these ambiguities might not seem big compared to the numbers of terms in
the ansätze listed in Table 1. However, when matching these ansätze to data by comparison at
many numerical points x i , any ambiguity easily leads to very “unnatural” solutions, with arbi-
trary numerical coefficients. Having a good handle on the ambiguities is essential to resolve,
or even better avoid, such “arbitrary” solutions.

Ancillary File. We provide the complete ansatz expressions for the polynomials P(ℓ)a as well
as lists with all Gram relations for (n,ℓ) ∈ {(5,2), (6,2), (7,2), (5,3)} in the attached MATHE-
MATICA file ansatzAndGram.m.

3 Twistors

In this section, we briefly review the reformulation of N = 4 SYM in supertwistor space and
the procedure for computing the correlation functions of the chiral stress-tensor supermultiplet
using this formalism. In addition, we explain the numerical methods used for the computa-
tions. The Feynman rules in twistor space depend on the choice of an auxiliary supertwistor,
however the final results for the correlators are independent of the choice of this auxiliary
supertwistor and they can be expressed in terms of N = 4 superconformal invariants. These
invariants are discussed in [27,28] and we also briefly review them here.

3.1 Computing correlation functions using twistors

The relevant superspace for studying N = 4 SYM has sixteen odd variables θ aα, θ̄ α̇a , with
a = 1, . . . , 4 and α, α̇= 1,2. The stress-tensor supermultiplet is a short half-BPS supermultiplet
and it depends on only eight of the odd variables, four chiral and four anti-chiral variables [44].
In what follows, we are mostly interested in its chiral part, i.e. all the anti-chiral variables θ̄ α̇a
are going to be set to zero. In order to describe this supermultiplet, it is convenient to introduce
the so called harmonic variables

ub
a ≡ (u

+b
a , u−b

′

a ) , parametrizing
SU(4)

SU(2)× SU(2)′ ×U(1)
, (21)

with b,b′ = 1,2 being fundamental representation indices of the SU(2), SU(2)′ respectively
and the ± indicates the charge under the U(1) factor. The harmonic variables obey several
constraints due to the fact that they belong to SU(4), see [29] for example. Using these vari-
ables and their complex conjugates ū, we can decompose the odd variables as follows

θ a
α = θ

+b
α ūa

+b + θ
−b′
α ūa

−b′ , (22)

where
θ+bα = θ

a
α u+ba , θ−b

′

α = θ a
α u−b

′

a , (23)

and similarly for θ̄ α̇a . The odd variables defined above are useful for writing down an expan-
sion of the stress-tensor supermultiplet ÒT (x ,θ , θ̄ , u) keeping the SU(4) symmetry manifest.
The bottom state of the supermultiplet is the operator O20′(x , u), which is annihilated by the
following eight supersymmetries (and also by all the superconformal generators)

Qα−a′ ·O20′(x , u) = (Q̄+)α̇a ·O20′(x , u) = 0 , with Qα−a′ = ūa
−a′Q

α
a , (Q̄+)α̇a = u+aa Q̄α̇ a . (24)
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Then the supermultiplet is given by

ÒT (x ,θ , θ̄ , u) = exp
�

θ+bα Qα+b + θ̄
α̇
−a′Q̄

−a′
α̇

�

·O20′(x , u) . (25)

In particular, its chiral part T (x ,θ+, u) only depends on the four θ+bα variables of (23). We
have schematically

T (x ,θ+, u)≡ ÒT (x ,θ , 0, u) =O++++(x) + . . .+ (θ+)4L(x) , (26)

and in the expansion above only the relevant terms for this work were written down. The top
operator L(x) is the chiral on-shell Lagrangian and the bottom one is the 20′ operator given
by

O++++(x) = Tr(φ++φ++) , with φ++ = φabu+ba u+cb εbc , (27)

with εbc the usual antisymmetric tensor with ε12 = 1 and φab = −φba are combinations of
the six real scalar fields ΦI of N = 4 SYM, i.e. φab = (σI)abΦI with (σI)ab the SO(6) Pauli
matrices. Usually, the length-two half-BPS operator is written in terms of 6d null polarization
vectors YI in the form (2),

Oi = tr[(Yi ·Φ(x i))
2] , Yi · Yi = 0 , (28)

and the scalar propagator was given in (4). The connection between the two descriptions is
made easily by choosing a convenient parametrization for the harmonic variables and their
complex conjugates as the one in [29]

u+ab = (δ
a
b, ya

b′) , u−a
′

b = (0,δa
′

b′) , ūb
+a = (δ

b
a , 0) , ūb

−a′ = (−yb
a′ , 0) . (29)

We have for the propagator in the representation (27)

〈φ++1 φ++2 〉 ∝
1

x2
12

εabcd(u1)
+a
a (u1)

+b
b εab(u2)

+c
c (u2)

+d
d εcd∝

1

x2
12

(y12)
b
a′(y12)

a′

b ∝
y2

12

x2
12

, (30)

where we have used

y2
12 = −(y12)

b
a′(y12)

a′

b /2 , (y12)
b
a′ = (y1)

b
a′ − (y2)

b
a′ , ya′

b = ya
b′ε

b′a′εab . (31)

Notice that in this notation the null condition (28) is automatic. In this work, we are interested
in computing both the components θ+i = 0 and (θ+j )

4 of the correlation functions

Gn = 〈T (1) . . .T (n)〉 , with T (i) = T (x i ,θ
+
i , ui) , (32)

for several values of n. Notice that for θ+i = 0 for all i, we have

Gn

�

�

�

θ+i =0
= Gn = 〈O1O2 . . .On〉 . (33)

Despite the fact that we are interested in correlation functions of twenty prime opera-
tors Oi , the components with (θ+j )

4 of Gn are useful for computing loop corrections via the
Lagrangian insertion method (see the previous section for a complete discussion; in this section
we have an additional θ+ integration when compared with similar formulas of (3))

1
m!
∂ mGn

∂ g2m
YM

=

∫ m
∏

i=1

d4 xn+i d4θ+n+i Gn+m . (34)
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The correlation function Gn in (32) admits an expansion in θαb+i of the form

Gn = Gn + Gn;1 + . . .+ Gn;n , (35)

where by definition Gn;k has Grassmann degree 4k and the other orders in θ are zero by
symmetry. Moreover, the correlators transform covariantly under the N = 4 superconformal
transformations. Consider the following combination of sixteen generators

(ε ·Q) = εa
αQαa , (ξ̄ · S̄) = ξ̄α̇a S̄α̇a . (36)

Note that the generators above form an anti-commuting subalgebra

{Q, S̄}= {Q,Q}= {S̄, S̄}= 0 . (37)

It is possible to show that the variables transform as [44]

δx ∝ θ̄ , δu+ ∝ θ̄ , δθ̄ ∝ θ̄2 , (38)

and
θαb+i → θ̂αb+i = θαb+i + (εαa + xαα̇i ξ

a
α̇)u

+b
ia = e(ε·Q)+(ξ̄·S̄)θαb+i . (39)

Inspecting the transformations above, we see that the value θ̄ = 0 is left unchanged and
only the θαb+i transforms. Therefore the sixteen transformation parameters {εa

α, ξ̄α̇a} can be
used to set for example (for any α and b)

θαb+n−3 = θ
αb+
n−2 = θ

αb+
n−1 = θ

αb+
n = 0 . (40)

Thus, the expansion (35) in fact truncates for this choice:

Gn = Gn + Gn;1 + . . .+ Gn;n−4 . (41)

A special case is n= 4, which implies that all the θ+i ’s can be set to zero in this case.
Because the set of fermionic generators considered above commute among themselves and

are nilpotent, it is possible to define the following set of invariants In;k, see [8,27,28]

In;k(x , y,θ+) =Q8S̄8Jn,k+4(x , y,θ+) =

∫

dε dξJn,k+4

�

x , y, θ̂+
�

, (42)

with Jn,k(x , y,θ+) completely unconstrained, θ̂+ was defined in (39) and εαa,ξa
α̇ are the

fermionic parameters of the transformations appearing in that formula. As before the sec-
ond index k indicates that the object has Grassmann degree 4k and the fermionic generators
remove sixteen θ+i ’s in all possible ways (not necessary the ones in (40), but that particular
case is among the resulting terms). Notice that the fermionic generators annihilates x and y
because of (38).

The components of the correlation functions can then be expanded as follows

Gn,k(x , y,θ+) =
∑

i

�

In;k

�

i (x , y,θ+) fn;k;i(x) . (43)

It is non-trivial that the functions fn;k;i(x) do not depend on the polarizations y ’s. How-
ever, this follows from considering the behavior of the correlators under inversion. All the
dependency on the y ’s will come from the invariants which also depend on the positions x .
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The sum over i goes through all the independent invariants. It is not easy to count this num-
ber precisely apart from extremal cases. In addition under an arbitrary permutation σ of the
points (x i , yi ,θ

+
i )→ (xσ·i , yσ·i ,θ

+
σ·i), the functions satisfy17

fn;k;i(x1, . . . , xn) = fn;k;σ·i(xσ·1, . . . , xσ·n) . (44)

As mentioned in the Introduction, it will be nice to write our results in the form (43).
In [29], a procedure for computing Gn using supertwistor techniques was described, and we
are going to perform the calculations using the numerical version of it firstly used in [34].
The procedure uses the twistor N = 4 SYM action given in [45, 46]. Supertwistors ZA live
in the complex projective superspace CP3|4, and they are parametrized as (χa are fermionic
coordinates)

ZA = (Z I ,χa) , with Z I = (λα,µα̇) , (45)

and Z I are bosonic twistors. A spacetime point x α̇β corresponds to a line in bosonic twistor
space, more precisely, the relation of these twistor variables with the N = 4 superspace vari-
ables when all the θ̄ α̇a ’s are zero is given by the following incidence relations18

µα̇ = i x α̇βλβ , χa = θ aαλα . (46)

For computing correlation functions perturbatively, we need both an expression for the
superfield T (x ,θ+, u) and the Feynman rules in twistor space. We only summarize the formu-
las here and we refer the reader to [29] for details and derivations. The chiral stress-tensor
supermultiplet T (x ,θ+, u) in this language is given by

T (x ,θ+, u) =

∫

d4θ− Lint(x ,θ ) , (47)

where Lint(x ,θ ) is the interaction Lagrangian in twistor space. This follows as a consequence
of the Lagrangian insertion procedure. The interaction term Lint(x ,θ ) in a particular gauge is
a sum of infinitely many terms containing the one-form superfield A(Z1,2)

A(Z1,2) = a(Z1,2) +χ
aψa(Z1,2) +

1
2
χaχ bφab(Z1,2)

+
1
3!
εabcdχ

aχ bχ cψ′d(Z1,2) +
1
4!
εabcdχ

aχ bχ cχd a′(Z1,2) .
(48)

In the formula above, the fields a(Z1,2) and a′(Z1,2) are the two helicity gluons, ψa(Z1,2) and
ψ′d(Z1,2) are the gluinos andφab(Z1,2) are the six scalars. The bosonic twistors Z1,2 = {Z1, Z2}
are two independent twistors parametrizing a line given by the spacetime point where the fields
are defined. Since Lint(x ,θ ) has terms with arbitrary many superfields A(Z1,2), a general
order perturbative calculation of the correlation functions can have in principle vertices with
arbitrary valences. Given a set of operators T (i) at space-time positions xµi determining lines
in twistor space parametrized by two independent twistors Zi,1, Zi,2, the Feynman rules in the
so called axial gauge are summarized below. This gauge choice is defined by the vanishing
of the superfield A(Z1,2) of (48) in the direction of an auxiliary twistor Z⋄. It is possible to
take the fermionic part of Z⋄ to zero without losing generality. The bosonic part of it will
be denoted by Z⋄. Of course, any correlation function result is expected to be independent
of the Z⋄ choice. Notice that the individual diagrams depend on the value of Z⋄, and this
breaks the manifest N = 4 superconformal invariance at intermediate steps, however there
are cancellations among the graphs, see [29].

17We are using a very compact notation here. The index i labels the invariants, but can also depend on the
operator labels. This is the reason why the index transforms under an arbitrary permutation σ.

18The relations are more complicated when θ̄ α̇a ̸= 0. They can be found for example in [47,48].
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The Feynman rules are the following. If the lines i and j are connected by a propagator,
the graph is multiplied by the factor (y2

i j/x2
i j)δ

ai a j where the delta function is a color delta
function. The m-valence vertex connecting the line i to the lines j1, . . . , jm is given by

V i
j1,..., jm

= Ri
j1,..., jm

Tr(T a1 . . . T am) , (49)

where T a are U(Nc) generators19 and

Ri
j1 j2... jk

= −
∫

d4θ−i
(2π)2

δ2
�

〈σi j1θ
−
i 〉+ Ai j1

�

δ2
�

〈σi j2θ
−
i 〉+ Ai j2

�

. . .δ2
�

〈σi jkθ
−
i 〉+ Ai jk

�

〈σi j1σi j2〉〈σi j2σi j3〉 . . . 〈σi jkσi j1〉
, (50)

with

σαi j = ε
αβ
〈Zi,β Z⋄Z j,1Z j,2〉
〈Zi,1Zi,2Z j,1Z j,2〉

, and 〈σiσ j〉= εαβσαi σ
β
j . (51)

Finally, each diagram is multiplied by an explicit factor

�

g2
YM

4π2

�p

, (52)

where p = P − V , with P the total number of propagators and V the total number of vertices
of the diagram.20

In the formulas above,

Aa′

i j =
�

〈σ jiθ
+b
j 〉+ 〈σi jθ

+b
i 〉
��

y−1
i j

�a′

b
. (53)

The matrix (yi j)ba′ was defined in (31). Its inverse appearing above satisfies (y−1
i j )

c′

b (yi j)ba′ = δ
c′

a′

and (yi j)ca′(y
−1
i j )

a′

b = δ
c
a. The four bracket is defined as

〈Z1Z2Z3Z4〉= εI JK L Z I
1Z J

2 ZK
3 Z L

4 . (54)

In particular, using the parametrization of a bosonic twistor given in (45), one has

〈Zi,1Zi,2Z j,1Z j,2〉= (εαβλi,αλi,β)(ε
γδλ j,γλ j,δ) x2

i j . (55)

In this work, we are going to perform the twistor calculations using a Lorentzian signature
metric. As long as the external points span the full four-dimensional space, terms of the form
εµνρσxµi xνj xρk xσl can be nonzero. In the twistor reformulation of N = 4 SYM, the action has

the total derivative term iFF̃ where Fµν is the field strength and F̃µν its dual. The term iFF̃
can potentially generate such ε terms to the integrands, however the integrated correlator is
insensitive to these contributions because they are produced by a total derivative term. Using a
Lorentzian metric, the ε terms appear as imaginary contributions to the correlation functions,
and therefore can easily be isolated numerically.21 It is also possible to numerically bootstrap
the ε terms by writing a basis of integrals and performing a numerical fitting, see [34] for an
example. In this work, we are going to consider only the real part of the numerical results for
the correlation functions obtained by the twistor method.

19In this paper we are going to consider only planar correlation functions and for this case the U(Nc) and SU(Nc)
groups give the same results. This is also true in general when all the half-BPS external operators have length
two [34].

20From the definition of R (50), one can see that, with this definition of p, the diagram is of order θ 4p.
21These terms also change sign when some of the (x i)µ → −(x i)µ. So even using Euclidean signature it is

possible to isolate these kind of contributions by taking special combinations of points.
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Table 3: There are in total 76 six-point two-loop skeleton graphs (some of them are
disconnected). At this loop order, there must be 8 vertices (length of the sequence of
numbers) and 10 propagators (half the sum of the numbers). The command in Sage
is graphs(8, degree_sequence = (...)), with (...) replaced by an entry of
the table. The graphs can be transformed to a list of adjacency matrices and saved
in a file.

degree_sequence # Graphs

[2,2,2,2,2,2,2,6] 1
[2,2,2,2,2,2,3,5] 7
[2,2,2,2,2,2,4,4] 9
[2,2,2,2,2,3,3,4] 31
[2,2,2,2,3,3,3,3] 28

In order to compute loop corrections for the n-point functions Gn of 20′ operators, we are
going to use the formula (34). At ℓ loops, we need to compute Gn+ℓ at order 4ℓ on the θ+i ’s
for i > n. The diagrams contributing for this case contain n+ℓ vertices (lines in twistor space)
and n+2ℓ propagators. This follows from the Feynman rules described above, as the n-valence
vertex with n > 2 contributes with 2(n− 2) θ ’s, see (50). It then follows that the diagram is
of order θ4ℓ. The correlator Gn+ℓ of n 20′ operators and ℓ Lagrangian insertions is extracted
by setting θ+i = 0 for i ≤ n, which projects to the

∏n+ℓ
i=n+1(θ

+
i )

4 component, whose coefficient
is the desired correlator. Collecting powers of 2π and gYM, and doing the color algebra, one
finds that every diagram contains an overall factor

N2
c − 1

(2π)2n+2ℓ

�

g2
YM

Nc

4π2

�ℓ

=
N2

c − 1

(2π)2n+2ℓ
g2ℓ = C2...2 g2ℓ . (56)

This is exactly the overall prefactor (17).
For the connected part of the correlator, only connected diagrams are important, because

it is possible to show that disconnected twistor diagrams contribute only to lower-point cor-
relators. Notice that (50) implies that two operators can at most be connected by a single
propagator, otherwise the factor Ri

j1 j2... jk
vanishes as it is antisymmetric. Moreover, all the ver-

tices must have valence at least two. It is possible to generate all the necessary skeleton graphs
very efficiently using SAGEMATH [49]. For example, all the six-point two-loop skeleton graphs
can be generated by using the code of Table 3.

Using the skeleton graphs and the Feynman rules, it is possible to generate all the graphs.
The total number increases fast with the number of points n and loops ℓ, and it is hard even
for the simplest cases to do any analytical simplification. Thus we have evaluated all the
graphs numerically. A great simplification is that even numerically it is possible to select a
particular polarization from the beginning, which projects out many permutations and graphs.
The vertices Ri

j1 j2... jk
contain the factors of (y−1

i j )
a′

b inside the Aa′

i j , see (53), and in principle these

factors can change the factors of y2
i j coming from the propagators. However, the factors (y−1

i j )
a′

b

multiply a θ+i or a θ+j and because we are only interested in the contributions with θ+i = 0 for
i ≤ n the R-charge coming from the external propagators are never canceled.

For example, in the case of five- and six-point functions, it is possible to select the oper-
ator polarizations in such way that only the cyclic contribution (y2

12 y2
23 . . . y2

i1), or any other
disconnected contribution, is non vanishing. This is not true for n > 6 points. The operators
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for the cyclic case are given in [50] and they read for five points

O1 = Tr(X X ) , O2 = Tr(X̄ Ȳ ) , O3 = Tr(Z̄Y ) , O4 = Tr(Z Z) , O5 = Tr(Z̄ X̄ ) , (57)

where the bar means complex conjugation, and the fields {X , Y, Z} are defined in terms of the
real scalars ΦI as

X =
1
p

2

�

Φ1 + iΦ2
�

, Y =
1
p

2

�

Φ3 + iΦ4
�

, Z =
1
p

2

�

Φ5 + iΦ6
�

. (58)

For the six-point case, one has,

O′1 = Tr(X X ) , O′2 = Tr(X̄ Ȳ ) , O′3 = Tr(Y Y ) ,

O′4 = Tr(Z̄ Ȳ ) , O′5 = Tr(Z Z) , O′6 = Tr(Z̄ X̄ ) .
(59)

These polarizations can be reproduced by selecting particular values for the matrices (yi)ab′
appearing in the definitions of the harmonic variables in (29). We define the function

y ′(a, b, c, d) = a e11 + b e12 + c e21 + d e22 , (60)

where ei j is a 2 × 2 matrix with a single nonzero component at position {i, j} with value 1.
The cyclic six-point polarization, for example, can be taken to be

(y1)
a
b′ = y ′(1,0, 0,0) , (y2)

a
b′ = y ′(0, 0,1, 1) , (y3)

a
b′ = y ′(0, 1,0, 0) , (61)

(y4)
a
b′ = y ′(0,0, 1,0) , (y5)

a
b′ = y ′(1, 0,−1, 1) , (y6)

a
b′ = y ′(0, 1,1, 1/2) . (62)

The explicit polarizations that we used in our computation are given in Section 4.1 below.
Finally, the numerical results for the correlators obtained with the twistors were fitted

against the ansatz of integrals described in Section 2. The positions of the operators were
generated randomly, and the number of equations were always greater than the number of
unknowns coefficients in the basis.

4 Results

4.1 Method

Strategy. We fix the free coefficients in the ansatz polynomials P(ℓ)a constructed in Section 2
by matching the ansatz correlators (15, 16) against the (n+ ℓ)-point tree correlator computed
from twistors (Section 3) on many numerical points (x i , yi). The numerical data points provide
a linear system for the free coefficients in the ansatz that we solve numerically. The solution
is not unique due to non-trivial Gram determinant relations among the various terms in the
ansatz. However, at least at two loops, we notice that once we restrict the ansätze for the
component functions f (2)a to a certain set of conformal integrals, all ambiguity is removed,
and the solution becomes unique.

Computational Aspects. In the computation of the data points and finding the solution for
the ansatz parameters, there are two main bottlenecks:

• The symbolic algebra of Grassmann-odd variables θi in the twistor computation, espe-
cially when the number of contributing twistor diagrams becomes large,

• Solving large and dense numerical linear systems.
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Table 4: The numbers of twistor graphs that contribute to the two- and three-loop
correlators for the various choices of polarizations.

Y23 Y5 Y6 Y7,1.1 Y7,1.2 Y7,2 Y7,3

ℓ= 2 557 1790 221910 21154 21154 24502 18688
ℓ= 3 73380 167430

For the first point, we could boost the performance by representing homogeneous polynomi-
als in a finite number of Grassmann-odd variables as component vectors. Multiplication of
two or more homogeneous polynomials can then be implemented by precomputed numerical
tensors, such that the computation becomes completely numerical. With this and some other
optimizations as well as parallelization, we could compute a few thousand data points per day
on a 48-core machine.

The second point is somewhat more essential: Our method inevitably produces large and
completely dense linear systems, whose coefficients are either high-precision floats, or large ra-
tionals. Solving such systems is a hard computational problem. Using MATHEMATICA’s Nsolve,
we could solve such systems up to size ∼10000, but would run out of memory beyond that,
even on a machine with 256 GB memory.

Polarizations. In order to contain the sizes of the linear systems, as well as the numbers
of graphs that contribute to the twistor computation, we identify a few numerical choices for
the polarizations Yi , 1 ≤ i ≤ n+ ℓ that set all but a few of the polarization structures

∏

d
ai j

i j
to zero. For each polarization choice, we then evaluate the ansatz and compute the twistor
correlator for many numerical values of the coordinates x i , 1 ≤ i ≤ n+ ℓ. At five points, we
use the following two polarizations:

Y23 =











−1 0 1 i 0 −i
1 0 1 i 0 −i
0 −1 1 0 −i −i
0 −1 1 0 i −i
0 −1/3 2 2i −i/3 0











, Y5 =











−1 0 1 i 0 −i
1 0 1 i 0 −i
1 −1 3 3i i i
0 −1 2 2i −i 0
2 −3 2 4i −i 0











, (63)

where we collected the external Yi , 1 ≤ i ≤ 5 into a vector Y . In all cases, the polarizations
of the integration points Yi , i > n is set to arbitrary fixed values, such that all di j , i ≤ n, j > n,
are non-zero. For the choice Y23, the only non-zero polarization structure is

d2
12d34d45d53 =

128

3x4
12 x2

34 x2
45 x2

35

, (64)

hence we can use this polarization to determine the f23 component function. For the choice
Y5, the only non-zero polarization structure is

d12d23d34d45d51 =
−64

x2
12 x2

23 x2
34 x2

45 x2
15

, (65)

hence we can use this polarization to determine the f5 component function. We list the num-
bers of twistor graphs that contribute to the two- and three-loop correlators for the various
choices of polarizations in Table 4. At six points, we use the relatively random polarization
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Y6 =

















622
7 −274

13
1101
91

624
7 i −272

13 i 919
91 i

0 −2 1 2i 0 −i
2 −4 6 6i 2i 4i
−4 −1171

78
333
26 8i −1169

78 i 281
26 i

−15 −12 −30 7i −14i −32i
111

2 80 −127 −113
2 i −76i −129i

















. (66)

With this polarization, all di j are non-zero, so all component functions contribute. At two
loops, the total number of unknowns in the ansatz then is (see Table 1)
235 + 572 + 173 + 657 = 1637. A linear system of this size is still easily solvable. At seven
points, we use four different polarizations:

Y7,1.1 =



















−1 0 1 i 0 −i
1 −1 1 i i −i
0 −1 1 0 −i −i
0 −1 1 0 i −i
0 −1 2 2i i 0
1 −2 0 i 0 −2i
1 0 1 i 0 −i



















, Y7,1.2 =



















−1 0 1 i 0 −i
1 −1 1 i i −i
0 −1 1 0 −i −i
0 −1 1 0 i −i
0 2 2 2i −2i 0
−1 −2 0 −i 0 −2i
1 0 1 i 0 −i



















, (67)

Y7,2 =



















−1 0 1 i 0 −i
1 −1 1 i i −i
0 −1 1 0 −i −i
0 −1 1 0 i −i
−1

2 −
3
2

1
2

1
2 i −1

2 i −3
2 i

−1 −2 0 −i 0 −2i
1 1 3 3i i i



















, Y7,3 =



















−1 0 1 i 0 −i
1 −1 1 i i −i
0 −1 1 0 −i −i
1 −1 1 i i −i
3 10 8 11i −4i 6i
16
99 −

265
198

17
9

160
99 i 329

198 i −1
9 i

12 11 13 12i 13i 11i



















.

For the first polarization Y7,1.1, the only non-zero polarization structures are

d2
23d2

45d16d67d71 =
−256

x4
23 x4

45 x2
16 x2

67 x2
71

, d2
12d2

67d34d45d53 =
256

x4
12 x4

67 x2
34 x2

45 x2
53

, (68)

hence we can use this polarization to determine the 2435 coefficients of the f223 component
function. For the next polarization Y7,1.2, the only non-zero polarization structures are

d2
12d2

67d34d45d53 =
−128

x4
12 x4

67 x2
34 x2

45 x2
53

, d12d23d34d45d56d67d71 =
128

x2
12 x2

23 x2
34 x2

45 x2
56 x2

67 x2
71

.

(69)
Plugging in the known answer for the f223 component function, we can therefore use this
polarization to determine the 6143 coefficients of the f7 component function. For the polar-
ization Y7,2, the only contributing components are one f223 function, one f7 function, and
two f25 functions. With the final polarization Y7,3, the contributing components are two f223
functions and one f34 function. We can thus use these polarizations to independently deter-
mine the remaining components f25 and f34. Recall that the polarizations are expressed using
two-dimensional indices in Section 3. It is possible to solve for all the (yi)ba′ in (31) allowing
complex solutions and imposing that all the y2

i j ∼ Yi · Yj obtained here are reproduced.

4.2 Two-loop integrals

Up to two loops and seven points, we find that the correlators of 20′ operators can be expressed
in terms of the following conformally invariant integrals (see Figure 1):
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1

2 3
B123

1

2

3

4

1

2

3

4

F1234
1 F1234

2

1

2

34

5
1

2

3

4

5

1 2

3

4 5
B1,23,45 Π1,25,34 ∆12,345

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

B123,456 Π1,23,456 ∆14,23,56

1

2

34

5

6

7 1

2

3

4

5

6

7
Π123,4567 ∆1,234,567

Figure 1: The complete set of conformal integrals that appear in the correlation
functions of 20′ operators for up to seven points and two loops, see (70). Black:
Propagators 1/x2

i j . Red dashed: Numerator factors x2
i j . Further two-loop conformal

integrals are shown in Figure 2.
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F1243
1 ≡ x2

13 x2
24

∫

d4 x5

x2
15 x2

25 x2
35 x2

45

,

B123 ≡ x2
12 x2

13 x2
23

∫

d4 x4 d4 x5

(x2
14 x2

24 x2
34)x

2
45(x

2
15 x2

25 x2
35)
= B123,231 ,

F1243
2 ≡ x2

13 x2
24 x2

14

∫

d4 x5 d4 x6

(x2
15 x2

25 x2
45)x

2
56(x

2
46 x2

36 x2
16)
= B124,341 ,

B1,23,45 ≡ x2
12 x2

15 x2
34

∫

d4 x6 d4 x7

(x2
46 x2

56 x2
16)x

2
67(x

2
17 x2

27 x2
37)
= B132,541 ,

Π1,25,34 ≡ x4
25 x2

34

∫

x2
16 d4 x6 d4 x7

(x2
26 x2

36 x2
46 x2

56)x
2
67(x

2
57 x2

17 x2
27)
=Π125,3245 ,

∆12,345 ≡ x2
34 x2

35 x2
45

∫

x2
17 x2

26 d4 x6 d4 x7

(x2
16 x2

36 x2
46 x2

56)x
2
67(x

2
37 x2

47 x2
57 x2

27)
=∆3,254,145 ,

B123,456 ≡ x2
13 x2

46 x2
25

∫

d4 x7 d4 x8

(x2
17 x2

27 x2
37)x

2
78(x

2
48 x2

58 x2
68)

,

Π1,23,456 ≡ x2
46 x2

13 x2
15

∫

x2
28 d4 x7 d4 x8

(x2
27 x2

37 x2
17)x

2
78(x

2
18 x2

48 x2
58 x2

68)
=Π231,4561 ,

∆14,23,56 ≡ x2
13 x2

14 x2
46

∫

x2
28 x2

57 d4 x7 d4 x8

(x2
17 x2

27 x2
37 x2

47)x
2
78(x

2
48 x2

58 x2
68 x2

18)
= x2

14 x2
46

�

∆1,234,567

x2
16 x2

47

�

7→4

,

Π123,4567 ≡ x2
27 x2

35 x2
46

∫

x2
19 d4 x8 d4 x9

(x2
18 x2

28 x2
38)x

2
89(x

2
49 x2

59 x2
69 x2

79)
,

∆1,234,567 ≡ x2
13 x2

16 x2
47

∫

x2
29 x2

58 d4 x8 d4 x9

(x2
18 x2

28 x2
38 x2

48)x
2
89(x

2
19 x2

59 x2
69 x2

79)
. (70)

Here, F1 and F2 are the one-loop and two-loop ladder integrals, B are double-box integrals, Π
are penta-box (pentaladder) integrals, and∆ are double-penta integrals. Additional conformal
integrals that do appear in the ansätze, but whose coefficients are set to zero in the actual
functions f (2)a are shown in Figure 2. The integrals that do contribute to the functions f (2)a
can be characterized as follows: Either they are products of one-loop box integrals F1, or they
have one loop-loop propagator factor 1/x2

n+1,n+2 and at most one numerator factor x2
i j per

integration point j ∈ {n+ 1, n+ 2}. Conversely, the integrals in Figure 2 that do not contribute
fall into three classes:

• Two-loop integrals with two or more numerator factors connecting to the same integra-
tion point (first row),

• Products of one-loop integrals that include numerator factors (second row),

• Two-loop integrals that include loop-loop numerator factors x2
n+1,n+2 (last two rows).

The fact that such integrals do not contribute is an observation for which we do not have a
direct derivation at this point. What we can say is that excluding all these integrals completely
removes all Gram-relation ambiguity. In other words, there is no linear combination of Gram
relations that is free of these excluded integrals. This means that once these integrals are ex-
cluded, the ansatz becomes free of redundant parameters, i.e. all coefficients can be uniquely
fixed by matching to data or any other type of constraints. Moreover, and perhaps even more
importantly for future bootstraps, the sizes of the ansatz polynomials greatly reduce by drop-
ping these integrals, especially at higher points, see Table 5.
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2
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1

2

3
4

5

6

7

1

2

3
4

5

6 1

2

34

5

6 1

2

3
4

5

6

7
1
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7

1

2

3

45
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3

45

6

1
2

3

4

5

6

7

1
2

3

4

5
6

7

1
2

3

4

56

7

1
2

3
4

5

6 1
2

3

4

56

7

1
2

3
45

6

7

Figure 2: Two-loop conformal integrals with up to seven external points that appear
in the ansätze as constructed in Section 2, but do not occur in the final two-loop
correlation functions of 20′ operators. Unlike in Figure 1, numerator factors between
external points are not drawn.

Table 5: Numbers of independent coefficients in the two-loop ansatz polynomials
P(2)a after excluding classes of integrals that do not appear for n = 5,6, 7. As can
be seen by comparing to Table 1, the numbers are greatly reduced, especially for
n= 8,9.

P(2)23 59
P(2)5 60

P(2)222 160
P(2)24 400
P(2)33 117
P(2)6 465

P(2)223 974
P(2)25 1850
P(2)34 974
P(2)7 2457

P(2)2222 724
P(2)224 3666
P(2)233 1886
P(2)26 7781
P(2)35 3500
P(2)44 1919
P(2)8 10793

P(2)2223 3948
P(2)225 10370
P(2)234 11138
P(2)27 25812
P(2)333 1116
P(2)36 11996
P(2)45 10370
P(2)9 37083
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4.3 Two-loop results

Five Points. We can express the final answers for the two-loop component functions f (2)a in
terms of the conformal integrals (70). Pulling out the overall prefactor (56) from the twistor
result, we find

f (2)23 = 12
¬

2
�

1−
u4

u3u5

�

B1,23,45 + 4u1u3

�

B3,14,25 − B3,12,45

�

− B123

+ 2Π3,45,12 − 2u1u4Π3,14,25 +

�

1− 2
1

u1u4

�

Π3,12,45 +∆34,125

+
u1(2+ u1u3 − u2u4)

u2
2u5

F1234
1 F1235

1 + 2F1324
2 +

u1u3

u2

�

6F1234
2 − F3142

2

�¶

23
, (71)

where 〈·〉23 means the average over permutations in the symmetry group K23 ≡ S2 × S3 of the
respective propagator structure. The second (“cyclic”) component function is given by

f (2)5 = 10
¬�

4+
2u2 − 4− 1/u5

u1u3

�

B1,23,45 +
�4− 2u4 − 1/u1

u3u5
− 2
�

B1,24,35

+ 2
�

1
u1
− u3u5

�

B1,25,34 + 2

�

1+
1

u2u4

�

Π1,23,45 + 2
�

u3 − 1− u2u4

�

Π1,24,35

+
2(1− u2u4 − u3)

u3
Π1,25,34 +

1+ u2u4 − u3

u3
Π1,34,25 −∆12,345

+
1
u2

�

u1u4 − 2+ 1/u2

u5
− 2u2 − 2u1u3 + 2

�

F1234
1 F1235

1 +
4(1− u2)

u2
F1234

2

+ (u2 + u1u3 − 1)F1243
2 − 2(u1 + 2u2u5)F

1253
2 − 2u1u4F1254

2 + B123

¶

5
, (72)

where 〈·〉5 means averaging over the symmetry group K5 ≡ D5 of dihedral permutations. In
both expressions, we have used the five-point cross ratios defined in (C.2).

The above expressions are not unique due to the existence of Gram relations among the
terms in the ansätze for the component functions fa. At five points and two loops, there is one
Gram determinant relation (see Table 2). After reducing over permutations of the integration
points {x6, x7}, the relation has 442 terms. Further reducing each term over the permutation
symmetry group K23 (K5), the number of terms in the relation reduces to 64 (66). However,
the relation unavoidably includes a conformal integral that is not in the list (70), namely

∫

d x6 d x7 x2
67

x2
16 x2

26 x2
36 x2

46 x2
56 x2

17 x2
27 x2

37 x2
47 x2

57

, (73)

which is the first integral in the third row of Figure 2. Excluding this integral makes the
expressions above unique.

We find that the two component functions f (2)23 and f (2)5 can alternatively be written in
terms of the following four monomials:

q1
1234567 = x2

16 x2
17 x2

26 x2
27 x2

34 x2
35 x2

45 , q2
1234567 = x2

16 x2
17 x2

25 x2
27 x2

34 x2
36 x2

45 ,

q3
1234567 = x2

15 x2
16 x4

27 x2
34 x2

36 x2
45 , q4

1234567 = x4
17 x4

26 x2
34 x2

35 x2
45 . (74)

This compares with four different polynomials that appear in the three-loop four point function
of 20′ operators [23]. Multiplying with the common denominator as in (12),

P(2)a = x2
16 x2

17 x2
26 x2

27 x2
36 x2

37 x2
46 x2

47 x2
56 x2

57 x2
67 f (2)a , (75)
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we find that the coefficient of the 2× 3 polarization d2
12d34d35d45 is given by

P23 =
�

2q4
1345672 − q3

1345267 − 2q1
1345627 + q2

1346725 + 3q2
1354627 + q2

1356427 − 2q3
1364257

+ 4q2
1364527 + 2q2

1647325 + 2q3
3164572 − 4q1

3412567 + 2q4
3412567 − 8q1

3412756

+ 4q4
3412756 − 2q1

3612547 − 2q3
1436275

�

+ perm , (76)

while the coefficient of the cyclic polarization d12d23d34d45d15 reads

P5 =
�

2q1
1234567 − q2

1234567 + q3
1234567 − q4

1234567 + q1
1234657 − 2q4

1234657 + q3
1234675 + q3

1235467

− 2q2
1243567 − q3

1243567 − 2q2
1243657 + 4q2

1246357 − q2
1263547 + 2q1

1324657 − q4
1324657

+ 2q3
1324675 − q2

1342567 + q2
1345267 − 2q2

1346257 + q3
1362475 − q2

1362547 − q3
1362574 + q4

1423657

− 2q3
1423675 + q2

1634257 + q1
1634527 − q2

1635247 − 2q2
1643257 + q3

2135467 + 2q3
2136457 + q3

2143567

− 2q3
2146357 + 2q1

2314657 − q4
2413657 − 2q2

1236457 − q2
1326457 − 2q1

1423756

�

+ perm . (77)

The permutations in these equations are given by the elements of S7 that leave each polariza-
tion structure fixed.

Six Points. At six points, there are four independent component functions, as can be seen
in (16). The simplest of them reads

f (2)222 = 48

�

u1u3u5

U1
B123,456 +

u2
1u3u5U1

2u2u6U3
F1234

1 F1256
1

�

222

, (78)

where 〈·〉222 means the average over permutations in the symmetry group
K222 = S3⋉(S2 × S2 × S2) that stabilizes the propagator structure, i.e. the pairings (1,2), (3,4),
(5, 6) of external points. The remaining six-point component functions are presented in Ap-
pendix D. We express the functions in terms of the six-point cross ratios (C.4).

Seven Points. At seven points, there are again four independent component functions (16),
the simplest of them being

f (2)223 = 48



2u1234u2456B123,456 + u1256u2643B125,346

+u1243u1256u1562F1234
1 F1256

1 + u1275u3465F1257
1 F3456

1

�

223 . (79)

Here, we use the general cross ratios (C.1). As before, 〈·〉223 means averaging over the permu-
tation group K223 = (S2 ⋉ (S2 × S2)) × S3 that stabilizes the propagator structure
d2

12d2
34d56d67d57 which multiplies the function f223. The remaining three seven-point com-

ponent functions are given in Appendix D.

Any Multiplicity. We present some (very preliminary and yet incomplete) guesses for the
component functions f (2)2,n−2 and f (2)n for any multiplicity n in Appendix D.2.

4.4 Three-loop results

The ansätze for f (3)23 and f (3)5 contain 139 different conformal integrals.22 Each integral appears
with various permutations of the external (and internal) points. We can organize the answers
as follows:

f (3)23 = 9
¬

139
∑

i=1

∑

σ∈π23
i

cσ23,i I (3)i,σ

¶

23
, f (3)5 = 30
¬

139
∑

i=1

∑

σ∈π5
i

cσ5,i I (3)i,σ

¶

5
. (80)

22Strictly speaking, we should not call the individual terms in three-loop ansatz conformal integrals, since we
have not checked their convergence. Of course the full three-loop correlator should be free of divergences.
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Here, I (3)i,σ are three-loop conformal integrals

I (3)i,σ = I (3)i

�

xσ1
, xσ2

, xσ3
, xσ4

, xσ5

�

, (81)

the occurring permutations σ of each integral Ii are collected in the sets π23
i and π5

i , and the
coefficients cσa,i are rational functions of the five conformal cross ratios (C.2). As before, 〈·〉23
and 〈·〉5 denotes averaging over the permutation symmetry groups S2×S3 and D5 respectively.
The sets π23

i and π5
i contain between zero and eleven permutations with non-vanishing cσa,i .

The first 18 integrals {I (3)i | 1≤ i ≤ 18} are products of one-loop and two-loop integrals,23 the

remaining {I (3)i | 19≤ i ≤ 139} are genuine three-loop integrals. For example:

I65,(12345) =

∫

d x6 d x7 d x8

x2
12 x2

13 x2
15 x2

23 x2
47

x2
16 x2

17 x2
18 x2

27 x2
28 x2

37 x2
38 x2

46 x2
57 x2

67 x2
68

, (82)

c12345
23,65 = −

37
2
+

9
2u2u5

+
7u1

2u2u5
, c12345

5,65 =
2

u2u5
−

2u1

u2u5
,

c13452
23,65 =

13
2

, c21345
5,65 = −2u2u5 ,

c31245
23,65 = −

15
2

, c31245
5,65 = 2+

2
u1
−

2u2u5

u1
,

c31452
23,65 =

3
2
+

1
2u2
−

u1u3

2u2
,

with all other cσa,65 = 0. Here, we use the five-point conformal cross ratios defined in (C.2).

All integral expressions I (3)i and rational coefficients cσa,i are provided in the attached file
results.m. The numbers of various terms in the answers (80) are as follows:24

number of: f (3)23 f (3)5

occuring integrals I (3)i (out of the 139) 107 94
non-zero ci,σ (in total) 388 445
terms in expanded expression inside 〈. . .〉... in (80) 1320 1223
terms in fully expanded expression in (80) 13840 11725

(83)

The representation (80) is not unique: Some linear combinations of terms in the ansätze for
f (3)23 and f (3)5 vanish due to Gram determinant relations (see Table 2).25 Hence not all free
coefficients in the ansätze are independent. Indeed, we find that matching against the twistor
data leaves 103 parameters in f (3)23 unfixed. Similarly, 91 parameters in f (3)5 remain unfixed.
We verified that this remaining freedom indeed amounts to adding Gram relations. We use this
freedom to minimize the number of non-zero cσa,i in the answer, and to make their rational
coefficients as simple as possible, by setting the remaining coefficients to particular values
(effectively adding terms that sum to zero).

4.5 Planarity

Our results show that correlation functions of 20′ operators are free of higher-genus correc-
tions at two loops up to seven points, and at three loops up to five points. At what loop order

23Besides the one- and two-loop integrals that appear in the two-loop ansätze (see Figure 1 and Figure 2), these
products include one further two-loop integral, which features an external point that only appears in the numerator,
namely:
∫

d x6 d x7 x2
56/(x

2
16 x2

26 x2
36 x2

46 x2
67 x2

17 x2
27 x2

37).
24Of the 139 integrals in the ansätze, 28 do not occur in either answer.
25There might be further linear relations after integration, which we do not take into account here.
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will the first higher-genus corrections show up? For higher-charge operators, it is clear that
higher-genus terms will appear at lower loop orders. In fact, for sufficiently large charges,
already the tree-level correlator will have higher-genus contributions. Consistently, also the
one-loop corrections contain higher-genus terms [17]. These higher-genus terms at low loop
orders do not arise from non-planar Feynman integrals, which do not exist at one and two
loops. Rather, the higher-genus terms at larger charges originate in non-trivial color factors
from the larger number of propagators that connect to each operator (whereas the color factors
of 20′ operators are only delta functions).

We do not know about a rigorous argument for the absence of non-planar corrections at
three loops at higher points. However, one can argue that for correlators of 20′ operators, the
loop order at which non-planar terms start to appear will be independent of the number of
inserted operators: Since their color structure is so simple, inserting more 20′ operators at a
given loop order cannot increase the genus. In other words, any extra handles in the large
Nc expansion must be formed purely by loop corrections. Since this does not happen at four
points up to three loops,26 we find it reasonable to expect that the same will be true at higher
points, i.e. that the perturbative order at which higher-genus terms appear will be independent
of the number of inserted 20′ operators. This is consistent with the fact that we do not observe
higher-genus terms in the three-loop five-point function, even though there exist non-planar
three-point integrals.

It would be interesting to verify any of these arguments more rigorously.

4.6 Guide to the results file

All our results for the correlators of 20′ operators are collected in the attached MATHEMATICA

file results.m. The file includes comments alongside every definition. In the file, the two-
loop integrals (70) are defined as follows (see the definition of intDef):

F1[1,2,3,4]= F1234
1 , YY[1,2,3]= B123 ,

F2[1,2,3,4]= F1234
2 , LL[1,2,3,4,5]= B1,23,45 ,

BB[1,2,3,4,5,6]= B123,456 ,

PP[1,2,5,3,4]=Π1,25,34 , QQ[1,2,3,4,5]=∆12,345 ,

PB[1,2,3,4,5,6]=Π1,23,456 , DP[1,4,2,3,5,6]=∆14,23,56 ,

PB7[1,2,3,4,5,6,7]=Π123,4567 , DP7[1,2,3,4,5,6,7]=∆1,234,567 , (84)

After loading the file with <<"results.m", the results can be accessed through the following
symbols:

answer52A: The two-loop five-point component functions f (2)a . Here, the component a is
specified by choosing a = A ∈ {23,5}. The answers are written in terms of conformal
integrals (84) and cross ratios (C.1). Each term in the expressions is canonicalized over
the respective permutation group Ka, that is the answers are identical to the expressions
inside 〈·〉 in (71) and (72) (including the numerical prefactors).

answer62A: The same for six points, that is A ∈ {222,24,33,6}. The answers are identical
to the expressions inside 〈·〉 in (78), (D.1), (D.2), and (D.3).

answer72A: The same for seven points, that is A ∈ {223,25,34,7}. The answers are identical
to the expressions inside 〈·〉 in (79), (D.4), (D.5), and (D.6).

26For the four-point function, it was found that the potential genus-one term at three loops is proportional to a
conformal Gram relation and thus vanishes [23].
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integrandN2A: The fully expanded two-loop integrand of the component function f (2)a ,
where all integrands of conformal integrals as well as cross ratios are expanded in terms
of squared distances x2

i j = x[i,j], and the symmetrization (average) over the permuta-
tion group Ka has been carried out. Here, N ∈ {5,6,7}, and A as above. The expressions
are not explicitly symmetrized with respect to permutations of the integration points
{xn+1, xn+2}. Calling

integrandN2A // Map[symmetrizeInt[N,2]]

generates a manifestly symmetric expression (i.e. the correct tree-level correlator com-
ponent of N 20′ operators and two Lagrangian operators).

I3def[6,7,8]: A list of replacement rules that defines the 139 conformal integrals that con-
tribute to the five-point three-loop function.

cIAdef: A list of replacement rules that defines the non-zero coefficients cσa,i that enter the

three-loop component function f (3)a in (80), where a= A ∈ {23,5}. The coefficients are
expressed in terms of the five-point cross ratios (C.2).

answer53A: The expressions inside the brackets 〈·〉 in (80), including the numerical prefac-
tors, where A ∈ {23,5}. The coefficients are expressed in terms of cross ratios (C.2), the
integrals I (3)i,σ are left as abstract symbols.

answer53Ax: The same as answer53A, but with the integrals (or rather their integrands) as
well as the cross ratios expanded in terms of squared distances x2

i j = x[i,j].

integrand53A: The integrands of the component functions f (3)a (80), a= A ∈ {23,5}, com-
pletely expanded in terms of squared distances, and with the symmetrization (average)
over the symmetry group Ka carried out. Not symmetrized over permutations of the
integration points {x6, x7, x8}. As in the two-loop case,

integrand53A // Map[symmetrizeInt[5,3]]

achieves that symmetrization.

All expressions answerN2A, N ∈ {5,6, 7} are written in terms of the general cross ratios (C.1).
To convert all cross ratios in the five- and six-point expressions to the basis cross ratios (C.2)
and (C.4), one can use the following code:

{answer5223, answer525} /. u4Tox /. xToBGV5
{answer62222, answer6224, answer6233, answer626} /. u4Tox /. xToBGV6

5 OPE limit and other constraints

In Section 2 we have described in detail the construction of an ansatz for higher point (n≥ 5)
correlation functions of twenty prime operators at two and three loops. The undetermined
coefficients in the ansatz can be fixed, in principle, in two different ways. One is based on
a twistor reformulation of N = 4 SYM action, following the same strategy that was applied
successfully in [34]. This was the approach of Section 3. The other is based on imposing OPE
and supersymmetry constraints on the ansatz. This is the direct generalization of the four
point bootstrap [23] and it is the approach we shall pursue in this section. The end result
of this analysis is that we are able to fix the two-loop five-point correlator, and we are able
to considerably reduce the number of undetermined coefficients of the six-point correlator at
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two loops. One advantage of this approach is that it can be applied with small differences to
correlators of operators with higher R-charges.

In a second part, we will do an OPE analysis of some of the correlation functions just
obtained, and thus provide new OPE data at two loops. More concretely, we give the two-loop
four-point function involving one Konishi operator in the [0, 2,0] representation and three 20′

operators.

5.1 Fixing the correlator at two loops

In the following we will study the OPE limit of correlation functions involving twenty prime
operators and some Lagrangian insertions

〈O(x1, y1) . . .O(xn, yn)L(xn+1) . . .L(xn+k)〉= Gn,k(x i , yk) . (85)

As mentioned in the previous sections, these correlators control the loop corrections to the
correlation functions of twenty prime operators. As an example, the two-loop correlator Gn,0,
is given by integrating the one-loop part of the correlator Gn,1 over xn+1. The advantage to do
this is that it is easier to analyze the analytic structure of the correlator and interpret it in terms
of OPE data. More concretely, the log u1 divergence (in the x2

12 → 0 limit) of the five-point
correlator, where u1 as in (C.2), is controlled by lower-loop information, and thus can be used
to fix the undetermined coefficients.

The ansatz of G5,1, G5,2, and G6,1 up to one-loop order can be expressed in terms of a
combination of one-loop four-point ladder integrals, as can be seen from the Appendix E.3.
Moreover, these correlators should vanish once we impose the chiral algebra twist [51],27 i.e.
when the positions x1, . . . , xn are placed in a two-dimensional plane, and the polarizations
y1, . . . , yn are set to

y2
i j = (vi − v j)(zi − z j) , (86)

with zi being a two-dimensional complex coordinate for the point x i (more explicitly
x2

i j = (zi − z j)(z̄i − z̄ j)), and vi a generic parameter. This is not the unique polarization for
which the correlator vanishes, another one is the so-called Drukker-Plefka twist [53]

y2
i j = x2

i j . (87)

These last two constraints are powerful enough to completely fix the tree-level correlators G5,1
and G6,1, without imposing any other constraint from the OPE (i.e. it fixes the one-loop cor-
rections to G5,0 and G6,0). This is not the case for the one-loop corrections to these correlators,
as they are not completely fixed by these twists. Nonetheless, the number of undetermined
coefficients in the ansatz spelled out in Section 2 is greatly reduced, as can be seen from these
numbers:28

G(1)5,1 : 64+ 66= 130→ 24 , (88)

27The result of [51] implies that the loop corrections of Gn,0 should vanish. It is possible to argue that up to two
loops the integrand of Gn,0 should also vanish in the chiral algebra twist limit, which is consistent with the twistor
computation. This means that the Born level Gn,k for k ≤ 2 vanishes in this twist limit. The three loop integrand
for five point twenty prime operators does not vanish in the chiral algebra twist limit, however it does vanish once
one integration is performed. For this reason, we expect that the one-loop correlators should vanish. The chiral
algebra twist has been used to bootstrap higher point functions in [22,52].

28We have used, in this section, a slightly improved ansatz compared to the one described in (12). This ansatz
excludes polynomials that contain (x2

ab)
k for k ≥ ℓ (where a and b are integration points). It is possible to show,

using the results of Appendix E.3, that the terms excluded with this rule give products of one-loop four-point
conformal integrals that are already included through other polynomials of the ansatz.
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G(1)6,1 : 235+ 572+ 173+ 657= 1637→ 327 . (89)

Another simple constraint to impose comes from studying the leading term in the
Lorentzian OPE between two 20′ operators. The operators have R-charge, so it is better to
choose wisely the polarizations of the external operators to avoid degeneracies in the OPE.
One possible choice is setting the polarization to

Y1 =
1
p

2
(1, i,α1, iα1, 0, 0) , Y2 =

1
p

2
(1, i,α2,−iα2, 0, 0) , (90)

taking one derivative in each α1 and α2, and subsequently setting both to zero. The corre-
sponding operators then become

O1→ tr(ZX ) , O2→ tr(ZX̄ ) , where Z =
φ1 +φ2p

2
, X =

φ3 +φ4p
2

. (91)

The effect of this is that we are projecting into a channel where operators appearing at leading
order in the OPE will have the form

Tr(Z DJ Z) + . . . , J ≥ 0 , (92)

where the dots represent different ways to distribute the derivatives. For simplicity, we will
focus first on G5,1, and then generalize to higher points. The leading term in the OPE is just
the BPS operator Tr(Z2), and this reduces the number of unfixed coefficients to

G(1)5,1 : 24→ 19 , (93)

since the four-point function of twenty prime operators at two loops is known and should
match the leading term in the OPE limit of the five-point function.

At subleading order in the OPE limit, the operators with J ≥ 2 start to contribute. These op-
erators are unprotected, i.e. their dimension depends non-trivially on the coupling constant,
and one consequence is that they will give rise to log x2

12 terms in the OPE limit. This new
structure will allow to fix more undetermined coefficients in the ansatz. The log terms come
from the one-loop conformal integrals reviewed in Appendix E.3. This is one of the reasons
why we decided to analyze the partially integrated correlators (85), since it allows to extract
the log x2

12 divergences while dealing only with one-loop integrals. More importantly the co-
efficient of log x2

12 is completely determined by lower-loop data and the light-cone conformal
blocks,29 reducing the number of unfixed coefficients further to

G(1)5,1 : 19→ 6 . (95)

The remaining six constants can be fixed by looking at the singlet R-charge channel, i.e.
[0,0, 0], in the (12) OPE. Here we have to be more cautious as there is degeneracy, i.e. more
than one operator with the same spin and dimension contribute to the OPE. But luckily there
is no degeneracy at leading order in this limit, and so we can use the lower-loop data from the

29Here we have used the light-cone conformal blocks obtained in [6] for higher-point functions. The formula
reads

〈O(x1) . . .O(xn)〉=
∑

k

C12k(x12 · ∂z)J

(x2
12)

∆φ−(∆k−J)/2

∫ 1

0

[d t]〈Ok(x2 + t x12, z)O(x3) . . .O(xn)〉+ . . . (94)

where [d t] = Γ (∆+ J)d t (t(1− t))(∆+J)/2−1/Γ 2((∆+ J)/2), Ok(x , z) is a spin J operator with polarization vector
z satisfying z2 = 0 and the . . . represent subleading terms in the light-cone limit x2

12 → 0. The lower-loop data in
this case can be read off directly from the OPE of G(0)5,1 .
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Konishi operator and also the stress tensor. We could have also used the correlator/amplitude
duality to fix some of the above coefficients.

One issue that prevents us to go to higher loops or points is that the number of terms in
the ansatz grows substantially. For this reason, it is important to look at the ansatz and check
if some of the terms could be dropped based on some physical reasoning. This also has the
advantage that it can be applied to correlators with higher R-charge. In the ansatz there are
terms of the form

y2
12 y2

15 y2
23 y2

34 y2
45

x2
34 x2

23 x2
15 x2

12 x2
45

x2
12 x2

45 x2
12 x2

45

x2
16 x2

17 x2
26 x2

27 x2
46 x2

47 x2
56 x2

57

, (96)

with two double propagators in the numerator. We have highlighted in red terms that need
to be generated by the interactions. One possible reason to eliminate these diagrams is that
they are not present in the four-point function, and the interaction only involves four of the
five points. We have also noticed that the result does not contain the following diagram:

y2
12 y2

15 y2
23 y2

34 y2
45

x2
12 x2

15 x2
23 x2

34 x2
45

x2
45 x2

16 x2
24 x2

25 x2
37

x2
17 x2

26 x2
27 x2

36 x2
46 x2

47 x2
56 x2

57 x2
67

. (97)

This term has five factors of x2
i j in the numerator, and one possible reason to eliminate such

terms is that the interactions would not be able to generate so many terms in the numerator.30

Notice that both terms (96) and (97) are not dropped by excluding the integrals in Figure 2,
hence eliminating such terms reduces the ansatz further even if such integrals are excluded
from the beginning.

The same strategy can be applied to the correlator G(1)6,1, or in other words to the two-loop
six-point function of twenty prime operators. This time the ansatz of (12) can produce dia-
grams with six propagators in the numerator, which at this loop order should not be possible
from the interactions. Eliminating these diagrams (as well as the two double propagators
mentioned in the G(1)5,1 analysis), together with OPE constraints (leading log Lorentzian OPE
and leading Euclidean OPE in the [0, 2,0] channel) reduces the number of undetermined co-
efficients (89) significantly:

G(1)6,1 : 327→ 27. (98)

Imposing the constraints coming from other OPE channels like the singlet, did not fix the ansatz
completely in this case.31 One use of this bootstrap exercise is to reduce both efficiently and
substantially the number of undetermined coefficients that enter the approach of the previous
section. This might be useful in the future at higher loops/points, since generating data with
the twistor method becomes harder. Let us also point out that the bootstrap method can also
be applied directly to correlation functions of operators with other R-charges.

5.2 OPE of the integrated correlator

In the previous subsection we have analyzed the OPE of partially integrated correlation func-
tions (where a subset of the Lagrangian insertions is not integrated over). While this has
proved useful to study part of the structure of the correlation function, in particular to fix it, it
does not provide all the information contained in this observable. The goal of this subsection
is to decompose the five-point function at two-loop level in terms of lower-point correlators.

30The only terms that can generate numerators in the action are the ones coming from the field strength and
from interactions with fermions. Such terms however cannot generate five numerators at two-loop order.

31In principle, we could use integrability data [54,55] for the non-log part of the correlator to fix more coefficients
of the ansatz.
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This will give access to new two-loop four-point functions with one non-BPS operator. For
simplicity, we will be working at leading and subleading orders. We are able to extract the
two-loop OPE coefficients with two spinning operators and compare with a result that has
been previously computed [56–58] (see [54] for an integrability-based computation).

We will take the Lorentzian OPE limit as explained in the last subsection, and subsequently
take the two points to approach each other, x2 → x1, keeping only the first three nontrivial
orders. This method has been applied for five-point functions at weak and strong coupling [5,
6,22]. One of the technical difficulties is that the correlation function is expressed in terms of
conformal integrals that have not been computed before. To overcome this problem (at least
partially), we will apply the method of asymptotic expansion [59–62] to these higher-point
integrals. The expansions of the integrals together with the higher-point light-cone conformal
blocks [5,6,22,63] allows us to read off the following OPE data:32

〈Tr(ZX )(x1)Tr(ZX̄ )(x2)O(x3, y3) . . .O(x5, y5)〉= x−2
12 〈Tr(Z2)O(x3, y3) . . .O(x5, y5)〉

+ (descendant) + 〈Tr(D2Z2)O(x3, y3) . . .O(x5, y5)〉+ . . . , (99)

where the . . . represent subleading operators and the correlator involving the Konishi is given
by

〈Tr(D2Z2)O(x3, y3)O(x4, y4)O(x5, y5)〉=

�

x2
34/x2

41

�γK/2

(x2
13)

2+γK/2(x2
45)2

2
∑

ℓ=0

V 2−ℓ
1,34 V ℓ1,35Aℓ(u3, u4) , (100)

where Vi, jk = (zi · x i j x
2
ik − zi · x ik x2

i j)/x jk is a typical tensor structure [64] (where zµi with

z2
i = 0 is a spin polarization vector) that usually appears in spinning correlators, and
γK = 12g2 − 48g4 + . . . is the anomalous dimension of the Konishi operator. In the limit
x2→ x1, the cross ratios u3 and u5 (C.2) become the usual four-point cross ratios. The coeffi-
cients, Aℓ, in this decomposition are finite functions of the cross ratios and have a perturbative
expansion in the coupling g (recall that this information is contained in the two-loop five-point
function):

Aℓ(u3, u4) =
∞
∑

k=0

g2kAℓk(u3, u4) , (101)

A0
2(u3, u4) = I1a1,0 + I2a2,0 + I3a3,0 + b1,0(Φ

(1))2 + b2,0Φ
(1) +

3
∑

i=1

1
∑

j=0

ci, j,0∂u3+ j
Ii + d0 ,

A1
2(u3, u4) = I1a1,1 + I2a2,1 + I3a3,1 + b1,1(Φ

(1))2 + b2,1Φ
(1) +

3
∑

i=1

1
∑

j=0

ci, j,1∂u3+ j
Ii + d1 ,

A2
2(u3, u4) = I1a1,2 + I2a2,2 + I3a3,2 + b1,1(Φ

(1))2 + b2,2Φ
(1) +

3
∑

i=1

1
∑

j=0

ci, j,2∂u3+ j
Ii + d2 ,

where the integrals Ii are just the two loop ladders defined in (E.14),
and Φ(1) = F2354

1 /(x2
24 x2

35) is the one-loop box integral (70). Some of the coefficients ai, j ,
bi,k, ci, j,k, and di are given in Appendix E.2, and the full four-point function is given in the
auxiliary file CorrelatorInLimit.m. We have omitted the terms with k < 2 because they
can be read off from tree-level and one-loop five-point functions.

32Here we are being schematic. The goal of this equation is to show the overall structure and what four-point
functions can be read off. We have suppressed the dependence on the OPE coefficients and some space-time
prefactors multiplying the four-point functions. We also drop the dependence on the polarizations y3 . . . y5 in
(100) since it gives only an overall prefactor that does not depend on the coupling.
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Our two-loop result for the correlator of a Konishi operator with three 20′ operators ex-
tends the earlier one-loop result [65]. Note that the one-loop result can also be obtained from
integrability and the OPE [13].

6 Discussion

We have used numerically the twistor reformulation of N = 4 SYM to completely fix the two-
loop five-, six- and seven-point correlation functions and the three-loop five-point correlator
of twenty prime operators with arbitrary polarizations. It is possible to generate numerical
data for even higher-points and higher loops by isolating sets of polarizations and keeping
a reasonable number of twistor diagrams. However the ansatz as described in Section 2 for
those cases has still too many undetermined coefficients for a fitting.

It is also possible to follow the approach of this paper for correlators of higher-charge
operators. One difficulty is the increasing size of the ansatz, which however could be mitigated
by bootstrap methods similar to the ones we investigated.

We find that all two-loop as well as the five-point three-loop correlator of 20′ operators
are free of non-planar corrections. We argued that this might remain true for any number of
points, which however remains to be verified.

Our results for the two-loop five-, six-, and seven-point correlators of 20′ operators can
be expressed in terms of a restricted set of conformal integrals, see (70) and Figure 1. All
integrals that contribute have a propagator connecting the two integration points, and at most
one numerator factor per integration point. Beyond seven points, there is only one further
integral of this type:33

∆1234,5678 ≡ x2
23 x2

67 x2
48

∫

d xa d xb x2
1b x2

5a

x2
1a x2

2a x2
3a x2

4a x2
ab x2

5b x2
6b x2

7b x2
8b

=

1

2

3

4

5

6

7

8

. (102)

If the pattern of contributing integrals that we observe for n ≤ 7 continues to higher points,
then all two-loop correlation functions of 20′ operators should be expressible in terms of the
integrals in Figure 1 and the above eight-point integral. If true, this puts an extension of our
results to eight points within reach, since it substantially reduces the numbers of undetermined
coefficients in the ansatz (see Table 5). Of course it is also possible that the absence of other
conformal integrals is a low-n artifact and does not continue to higher points. It would be nice
to understand more systematically which kinds of integrals can contribute at higher points
(and at higher loops, where the data is much more limited).

With the fresh new data obtained in this paper, we have made some initial steps towards
bootstrapping the integrand of correlation functions with five or more half-BPS operators. An
obvious next step in this bootstrap game is to explore correlation functions of operators with
different R-charge. This is essentially an uncharted territory and definitely deserves further
analysis, specially because one might wonder if there are hidden structures as there are for
four points [10,15]. The twistor reformulation of N = 4 SYM can also be very useful for this
generalization.

We have also studied the first non-trivial order in the light cone OPE of a five point func-
tion and have obtained two loop four point function involving one Konishi operator in the

33This integral has five numerators, which is not in contradiction with the analysis of the previous section. Note
that this is just a conformal integral, and we decided to add prefactors such that the weight in each point is zero.
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[0,2, 0] and three 20′ operators. It would be interesting to further develop this OPE analysis
to subleading terms in the OPE, higher point functions and higher loops. This would be very
important to probe the recently discovered dualities between three point functions and null
polygon hexagonal Wilson loops [5,6]. The main obstacle to achieve this is the computation of
five and six point conformal integrals (which in this paper we have only computed in a limit).
We hope to make progress on this in the future.

The four point function of 20′-operators was important to analyze many different physical
limits, such as the Regge limit or event shapes [66–68]. It would be very interesting to use our
recent data and extensions of it to study these physical observables with more points.

Another direction is the connection with integrability [11–13]. We have not managed to
find a closed expression for the n-point correlation functions at two-loop in this work. However,
it is possible to organize the results in terms of integrability contributions. At two-loop and for
a particular set of mirror cuts, the only contributions are strings and loops of just one mirror
particles. There are many relations between these objects involving several particles with the
same objects with lower number of particles, such as decoupling and flipping. It is expected
that all the necessary integrability contributions can be fixed. The set of integrals appearing
for the correlation functions of the twenty primes operators forms also a basis of integrals
for the correlators of other length-k half-BPS operators. This follows because increasing the
bridge lengths kill possible diagrams. Thus fitting the basis against the power series produced
by integrability in a line (the integrals are unknown outside the line) should give the integrand
for different correlators such as the dodecagon. The same strings and loops can also be used
to produce non-planar data.

In addition, notice that the twistor method for computing correlation functions was the
motivation for the proposal of the Correlahedron [28], which is a geometric object computing
the integrands of correlation functions of the stress-tensor multiplet. One of the properties
of this object is that it reduces to the “squared” Amplituhedron [69] when the light-like limit
is taken.34 The Correlahedron is a Grassmannian, and the external data are points in chiral
Minkowski space. However, there are still some open questions about the proposal. An im-
portant one is concerning the volume form. The volume form for correlation functions can be
more complicated, having different kinds of singularities. All the known results for correla-
tion function integrands in the literature were shown to have an uplift to the Correlahedron
language. This includes the four-point functions up to ten loops [23, 24], and the six-point
tree-level correlator mentioned above. We hope that our new data can help to test the pro-
posal further.

Acknowledgments

We would like to thank Frank Coronado, Paul Heslop, Raul Pereira, Pedro Vieira for useful
discussions. V.G. would like to thank Maria Nocchi for reading carefully part of Appendix E.

Funding information This work was supported by the Serrapilheira Institute (grant number
Serra - R-2012-38185), and funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 460391856. T.F. would like to thank the warm hospitality of the KITP
Santa Barbara during the program Integrable22 where part of this work was done. This re-
search was supported in part by the National Science Foundation under Grant No. NSF PHY-
1748958. V.G. is supported by Simons Foundation grants #488637 (Simons collaboration on

34The proposed “squared” Amplituhedron is also a Grassmannian, but with fewer constraints [28] than the
original Amplituhedron.

32

https://scipost.org
https://scipost.org/SciPostPhys.15.2.059


SciPost Phys. 15, 059 (2023)

the non-perturbative bootstrap). Centro de Física do Porto is partially funded by Fundação
para a Ciência e Tecnologia (FCT) under the grant UID04650-FCUP.

A Tree-level and one-loop n-point functions

This appendix is a review of the known results in the literature about tree-level and one-loop
n-point functions of length-two half-BPS operators. At tree level and with general polarizations
Yi , one has

Gn

�

�

0 =
�

d12d23 . . . dn−1,ndn1 + non-cyclic permutations
�

+ disconnected , (A.1)

with propagators di j as in (4).
At one-loop order, there are two ways of obtaining the results. The first method is the

perturbative calculation of [21], and the second method uses integrability techniques [19].
The starting point of the integrability calculation is to consider all tree-level diagrams. The
perturbative corrections are obtained by adding the so called mirror particle contributions.
The relevant tree-level diagrams for integrability are the connected ones.35 Considering the
sphere, the cyclic graphs divide it into two faces, where each face forms a polygon with 2n
edges for n operators (each operator has a small size). At one-loop order for length-two half-
BPS operators, the mirror particles in different faces do not interact, and the correlator is the
product of the value of the two polygons. At two-loop order, this factorization breaks down
and there are strings and loops of mirror particles connecting the two faces. From integrability,
one has

polygon(1, . . . , 2n) =
∑

[i,i+1],[ j, j+1]:
non-consecutive edges

m(zi j ,αi j) , (A.2)

where

m(z,α)≡ g2 (z + z̄)− (α+ ᾱ)
2

F (1)(z, z̄) , (A.3)

with the local cross ratios36

zi j z̄i j =
x2

i, j+1 x2
i+1, j

x2
i,i+1 x2

j+1, j

, (1− zi j)(1− z̄i j) =
x2

i, j x
2
i+1, j+1

x2
i,i+1 x2

j+1, j

,

αi jᾱi j =
y2

i, j+1 y2
i+1, j

y2
i,i+1 y2

j+1, j

, (1−αi j)(1− ᾱi j) =
y2

i, j y2
i+1, j+1

y2
i,i+1 y2

j+1, j

, (A.4)

and

F (1)(z, z̄) =
1

z − z̄

�

2Li2(z)− 2Li2(z̄) + log(zz̄) log
�

1− z
1− z̄

��

, (A.5)

which is the box integral (70):

F (1)
�

1
1− z13

,
1

1− z̄13

�

=
1
π2

F1243
1 , F (1)(z13, z̄13) =

1
π2

F1432
1 . (A.6)

35The disconnected diagrams can in principle contribute to the integrability calculation because of the stratifica-
tion procedure (which is a prescription for treating the boundary graphs of the moduli space) in hexagonalization.
However in [19], it was argued that these contributions vanish at one-loop order. At the moment, it is not known
if they contribute to higher-loop correlators.

36Notice that the expression for the polygon is valid for any 4d kinematics. All the local cross ratios zi j and z̄i j

depend only on the n(n−3)/2 cross ratios of the problem (which is also the number of terms in the sum in (A.2)).
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The final result for the one-loop correlators is the sum of two of these polygon factors times
the tree-level propagators of each tree-level graph. The calculation from integrability relies
on the two-mirror-particle contribution obtained in [18] and the flip relations explored in
[19] that enable one to iteratively obtain the contribution of “strings” of any number n of
interacting mirror particles. The result for the general polygon (A.2) also follows from an
inductive argument. In order to compute the correlation functions of operators with length
bigger than two, it is also possible to use the formula for the polygons. Similarly, each tree-
level graph divides the surface into faces or polygons. However, the number of tree-level
graphs grows substantially with the length k of the operators involved. At the moment, as
far as we know there is no closed formula for general k even for the simplest case of five
operators. The function (A.3) depends on the R-charge cross-ratios αi j , and therefore can
change the original polarization structure of a given tree-level graph. In addition, the function
F (1)(z, z̄) of (A.5) satisfies several properties, and many simplifications are expected when all
graphs are summed. Note that it is possible to generate several correlators with different k’s
using the expression for the polygons.

B Ansatz construction

As explained in Section 2, by mapping each factor x2
i j to an edge between vertices i and j, we

can identify each monomial in x2
i j with a multi-graph (i.e. a graph that admits “parallel” edges

between the same vertices i and j). Finding the most general polynomials P(ℓ)a hence amounts
to listing all multi-graphs with n external vertices with valency ℓ, and ℓ internal valencies with
valency n+ ℓ− 5, and taking a general linear combination of the corresponding monomials.

We split the construction of the ansatz for each polynomial Pa into three steps. First, we
construct all admissible unlabeled graphs with n + ℓ vertices.37 Next, for each graph g, we
construct a set of inequivalent labelings of the external vertices. Each such labeling σ will
correspond to one independent term in the ansatz that gets multiplied by an undetermined
coefficient cg,σ. In order to find the minimal set of inequivalent labelings, we make use of

the permutation symmetry Ka of the respective propagator factor
∏

i j d
ai j

i j . Due to the total
Sn permutation symmetry of the correlator, also the polynomial Pa must be invariant under
the permutation group Ka. The set of inequivalent labelings therefore is Ka\Sn/Hg , where
Hg is the automorphism group of the graph g.38 Finally, we symmetrize each labeled graph
over the residual symmetry group Ka×Sℓ, where Sℓ permutes the integration vertices. Putting
everything together, we arrive at

P(ℓ)a =
∑

g∈Γn,ℓ

∑

σ∈Ka\Sn/Hg

cg,σ

∑

π∈Ka×Sℓ

gπ◦σ . (B.1)

Here, Γn,ℓ is the set of all unlabeled multi-graphs with n vertices of valency ℓ, and ℓ vertices
of valency n + ℓ − 5.39 For each graph g ∈ Γn,ℓ, we sum over the labelings (permutations)
σ ∈ Ka\Sn/Hg of the n external points, where Hg is the automorphism group of g, and Ka is

the symmetry group of the respective propagator factor
∏

i j d
ai j

i j . Each such labeling produces

37For n = 5, all vertices have the same valency ℓ, hence we need to explicitly distinguish different partitionings
of the vertex set into external and internal vertices.

38To be precise, we do not care about Sℓ relabelings of the integration points, since we will symmetrize the
ansatz over Sℓ permutations in any case. Hence the relevant group is Hg = Aut(g)/Sℓ|n, where Aut(g) is the
automorphism group of g, and |n means restriction to the points {1, . . . , n}. For n ̸= 5, this step is trivial, since
internal and external vertices have different valencies and thus Aut(g) ⊂ Sn × Sℓ.

39In practice, the graph vertices are always labeled. However, the initial labeling of g ∈ Γn,ℓ is arbitrary and not
relevant.
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one independent term, i.e. comes with one independent coefficient cg,σ. At the end, each
independent term is symmetrized over permutations Ka×Sℓ. To find all the graphs as well as
their inequivalent labelings σ ∈ Ka\Sn/Hg , we use SAGEMATH [49], in particular its interface
to GAP [70].

We find the following numbers of different multi-graphs for various n and ℓ, where we
distinguish internal from external vertices, but otherwise treat all vertices as identical (unla-
beled):

|Γ5,2| |Γ6,2| |Γ7,2| |Γ8,2| |Γ9,2| |Γ10,2| |Γ11,2| |Γ5,3| |Γ6,3|

15 41 85 178 327 607 1051 429 4105
(B.2)

The residual permutation symmetry groups are as follows:

K23 = S2 × S3 , K222 = S3 ⋉ (S2 × S2 × S2) , K223 = (S2 ⋉ (S2 × S2))× S3 ,

K5 = D5 , K24 = S2 ×D4 , K25 = S2 ×D5 ,

K33 = S2 ⋉ (S3 × S3) , K34 = S3 ×D4 ,

K6 = D6 , K7 = D7 , (B.3)

where Dk is the dihedral group on k elements. According to the above procedure, the total
number ℵ(ℓ)a of independent terms (undetermined coefficients) in the ansatz for P(ℓ)a is

ℵ(ℓ)a =
∑

g∈Γn,ℓ

|Ka\Sn/Hg | . (B.4)

These are the numbers shown in Table 1.

C Kinematics

We define the general conformally invariant cross ratios:

ui jkl =
x2

i j x
2
kl

x2
ik x2

jl

, vi jkl =
x2

il x
2
jk

x2
ik x2

jl

. (C.1)

A collection of n points in four dimensions has 4n− 15 conformally invariant degrees of free-
dom, and therefore as many independent cross ratios.

Five Points. At n= 5, there are five independent cross ratios. A convenient choice is

ui = ui,i+1,i+2,i+4 , 1≤ i ≤ 5 , (C.2)

where the point labels are understood modulo 5. These are the same cross ratios used in [6].
One can express any conformally invariant combination of distances x i j in terms of the ui by
comparing expressions in a fixed conformal frame. For example, one can set x5 =∞ and
x2

12 = 1. The relations (C.2) then imply

x2
13 =

1
u1

, x2
14 =

1
u1u4

, x2
23 =

u2u5

u1
, x2

24 =
u5

u1u4
, x2

34 =
u3u5

u1u4
. (C.3)

Six Points. At six points, there are nine independent cross ratios. As a basis, we choose

ui = ui,i+1,i+2,i+4 , 1≤ i ≤ 6 and Ui = ui,i+2,i+3,i+5 , 1≤ i ≤ 3 , (C.4)

where the point labels are understood modulo 6. These are the same cross ratios used in [5]
(see Figure 5 there). Again, one can go to a conformal frame where x6 =∞ and x2

12 = 1,
which fixes all remaining distances x2

i j , 1≤ i, j ≤ 5 in terms of the ui and Ui .
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Seven Points. At seven points, one can pick a basis of 14 multiplicatively independent cross
ratios. They will not be completely functionally independent, because seven points in four
dimensions have only 13 conformally invariant degrees of freedom. The 14 multiplicatively
independent cross ratios reduce to 13 degrees of freedom via a conformal Gram relation.40

Nonetheless, any ratio of x2
i j can be uniquely written as a ratio of 14 multiplicatively indepen-

dent cross ratios. One “nice” basis of 14 cross ratios appears to be:

{u12 j7 | 3≤ j ≤ 6} ∪ {u1i7 j | 2≤ i < j ≤ 6} . (C.5)

Another potentially useful basis is (this is closer to the six-point set (C.4)):

ui = ui,i+1,i+2,i+4 , 1≤ i ≤ 7 and Ui = ui,i+2,i+3,i+6 , 1≤ i ≤ 7 . (C.6)

Again, one can go to a conformal frame where x7 =∞ and x2
12 = 1, which fixes all remaining

distances x2
i j , 1≤ i, j ≤ 6 in terms of either of the two sets.

D Explicit correlator expressions

D.1 Correlator components

Six Points. Besides (78), the remaining six-point two-loop component functions are quoted
in the following. The expressions are also included in the attached file results.m.

f (2)24 = 4



−8B123,456u1234u2456 + B134,256(2u1246 + 6u1243u2365 − 2u1245u2563)

+ 8Π3,45,126u1263 − 8Π3,54,126u1263 +Π1,34,256(−8u1246 + 8u1245u1652)

+∆12,34,65(−2u1245 + 4u1542) +∆12,34,56(2u1246 − 4u1642)

+ F1236
1 F1245

1 (−4u1243u1462 + 4u1253u1462

+ u1234u1263u1356 + 3u1236u1254u1362 − u1246u1253u1462)

+ F1234
1 F3456

1 (−4u1243 + 4u1243u3564 − 4u1243u3456u3564)

− 8B3,12,45u1234 − 8B3,12,46u1234 + 16B3,14,26u1234 + B1,23,45(−8u1354 + 8u1453)

+ 8Π3,45,12 − 8Π3,14,25u1245 +Π3,12,45(4− 8u1425) + 4∆35124

+ F1234
1 F1236

1 (4u1243u1263 + 8u1263u1342 − 4u1246u1362) + 24F1234
2 u1243

− 4F3142
2 u1243 + F1324

2 (4+ 2u1243) + F1325
2 (4− 2u1253)− 4B123

�

24 , (D.1)

f (2)33 = 36



B124,356(4u1245 + 2u1643 − 2u1243u2356 − 2u1645u2356 − 2u1642u2653)

+Π1,42,356(4u1356 + 4u1623 − 4u1653 − 4u1325u1653)

+Π1,24,356(−4u1356 − 4u1643 + 4u1653 + 4u1345u1653)

+∆14,25,63(−2− 2u1354 + 2u1453) +∆14,25,36(−2u1456 + 4u1654)

+ F1246
1 F1345

1 (2u1264 + 2u1452 − 2u1453 + 2u1254u1364 + 2u1364u1452

− 4u1356u1463 − u1364u1436u1452 + u1264u1426u1453 + u1256u1423u1462)

− 8B1,23,45u1354 + B1,24,35(4+ 4u1354 − 4u1423 + 4u1453)

+ B1,24,56(−4u1425 + 4u1524) + 4Π1,23,45 +Π1,24,35(−4+ 4u2543)

− 2F1425
2 u1254 + F1243

2 (−4+ 2u1432) + F1245
2 (−2+ 6u1254 + 2u1452)

�

33 , (D.2)

40The seven-point conformal Gram relation takes the form deti, j(x2
i j) = 0, see the discussion below (20).

36

https://scipost.org
https://scipost.org/SciPostPhys.15.2.059


SciPost Phys. 15, 059 (2023)

f (2)6 = 3



B123,456(−8+ 4u1436 + 16u2456 − 4u1432u2456 − 4u1536u2456)

+ B124,356(−2− 4u1245 − 2u1346 + 2u1643 − 8u1243u2356

+ 4u1645u2356 + 8u2653 + 8u1246u2653 − 4u1345u2653 − 8u1642u2653)

+Π1,23,456(16− 8u1436 − 8u1456 − 16u1654 + 8u1435u1654)

+Π1,25,346(−4+ 8u1346 − 4u1356 − 4u1643 + 8u1653 − 4u1345u1653)

+Π1,32,456(−16+ 8u1426 + 8u1456 + 16u1654 − 8u1425u1654)

+Π1,34,256(−8− 8u1256 + 4u1642 + 4u1652 − 4u1245u1652)

+Π1,36,245(4+ 4u1245 − 8u1265 − 8u1542 + 4u1562 + 4u1246u1562)

+Π1,43,256(8+ 8u1256 − 4u1632 − 4u1652 + 4u1235u1652)

+∆12,36,45(−4+ 4u1265 − 4u1562) +∆12,36,54(4− 4u1264 + 4u1462)

+∆14,23,56(−4+ 4u1436 − 4u1634) +∆14,23,65(−4u1435 + 8u1534)

+∆14,25,36(−2+ 2u1456 − 2u1654) +∆14,25,63(4u1354 − 2u1453)

+ F1234
1 F1456

1 (4+ 4u1263 + 2u1465 − 4u1564

− 8u1264u2435 + 2u1462u2435 + 4u1364u2534 − 2u1463u2534)

+ F1236
1 F1245

1 (−4− 6u1254 + 2u1263 − 4u1264 − 4u1362 + 4u1452

− 4u1264u1352 + 6u1254u1362 + 4u1256u1362 − 2u1263u1452 + 4u1256u1462

+ 4u1352u1462 − 2u1234u1263u1356 − 6u1236u1254u1362 + 2u1246u1253u1462)

+ F1245
1 F1346

1 (−4− 4u1254 + 6u1452 − 4u1453 − 2u1463 + 2u1356u1463

+ 2u1256u1462 + u1364u1436u1452 + u1264u1426u1453 − u1256u1423u1462)

+ B1,23,45(20− 16u1324 − 12u1354 + 8u1423 − 12u1453 + 8u1325u1453)

+ B1,23,46(16+ 16u1364 + 8u1423 − 8u1463 − 8u1326u1463)

+ B1,23,56(−8u1523 − 4u1326u1563)

+ B1,24,36(−12+ 8u1324 − 4u1364 − 4u1423 + 8u1463 − 4u1326u1463)

+ B1,25,34(−4+ 4u1325 + 16u1345 + 4u1523 − 8u1324u1543)

+ B1,25,36(−4+ 4u1365 + 4u1563 − 4u1326u1563)

+ B1,26,34(8u1326 − 8u1346 + 4u1623 − 20u1643 + 4u1324u1643)

+Π1,23,45(8+ 8u2435) +Π1,23,56(12+ 4u2536 − 4u2635)

+Π1,24,35(−8− 8u2345 + 8u2543) +Π1,25,34(−8− 8u2354 + 8u2453)

+Π1,25,36(−4− 12u2356 + 4u2653) +Π1,26,35(−8− 8u2365 + 8u2563)

+Π1,34,25(−4+ 4u2354 + 4u2453)− 4∆13,456

+ F1234
1 F1236

1 (−8− 8u1243 + 8u1342 − 8u1362 + 4u1246u1362 + 4u1342u1362)

+ F1234
2 (−16+ 16u1342) + F1243

2 (−2+ 6u1234 + 2u1432)

+ F1245
2 (−4+ 12u1254 + 4u1452) + F1246

2 (−12+ 6u1462)

+ F1254
2 (−4+ 4u1245 + 4u1542) + F1263

2 (4− 4u1236 − 20u1632)

+ F1264
2 (−4− 4u1246 + 4u1642)− 8F1265

2 u1256 − 16F1364
2 u1643 + 4B123

�

6 . (D.3)

As before, 〈·〉24, 〈·〉33, and 〈·〉6 means averaging over the respective permutation symmetry
group Ka, see (B.3). The results are expressed in terms of the conformal integrals (70) and
general cross ratios (C.1). They can easily be converted to the independent basis (C.4) of
six-point cross ratios by expanding in x2

i j and setting x6 =∞ and x2
12 = 1 (see Section 4.6).
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Seven Points. At seven points, the two-loop component functions besides (79) are as follows.
Again, all expressions are included in the attached file results.m.

f (2)25 = 10



F1237
1 F3456

1 (−4u1273 − 4u1273u3465 + 4u1273u3564)

− 4B123,456u1234u2456 + B134,256(2u1246 + 6u1243u2365 − 2u1245u2563)

− 4B123,457u1237u2754 +Π1,34,256(−4u1246 + 4u1245u1652)

+Π1,34,267(−4u1247 + 4u1246u1762)− 4Π3,56,124u1243 + 4Π3,45,127u1273

− 4Π3,54,127u1273 + 4Π3,56,127u1273 +∆12,34,65(−u1245 + 2u1542)

+∆12,34,56(2u1246 − 4u1642) +∆12,34,76(−u1246 + 2u1642)

+ F1237
1 F1245

1 (−2u1243u1472 + 4u1253u1472 − 2u1257u1472

+ u1234u1273u1357 + 3u1237u1254u1372 − u1247u1253u1472)

+ F1245
1 F3456

1 (−2u1254 + 2u1253u2346 − 2u1256u2643)

− 4B3,12,45u1234 − 4B3,12,47u1234 + 8B3,14,27u1234 + B1,23,45(−4u1354 + 4u1453)

+ 4Π3,45,12 − 4Π3,14,25u1245 +Π3,12,45(2− 4u1425) + 2∆35,124

+ F1234
1 F1237

1 (2u1243u1273 + 4u1273u1342 − 2u1247u1372) + 12F1234
2 u1243

− 2F3142
2 u1243 + F1324

2 (2+ u1243) + F1325
2 (2− u1253)− 2B123

�

25 , (D.4)

f (2)34 = 24



Π145,2367(4− 2u2365 − 4u2764 + 2u2364u3457)

+Π415,2367(−4+ 4u1375 + 4u1672 + 4u2365 − 4u1372u2365 − 4u1675u2365)

+∆1,245,367(−2u1765 + 2u1546u1765)

+∆1,245,637(−4+ 4u1547 + 4u1735 − 4u1534u1745)

+∆1,425,637(2− 4u1527 + 2u1523u1735)

+∆1,425,736(−2+ 4u1526 − 2u1523u1635)

+ F1267
1 F1345

1 (−2+ 2u1672 + 2u2463 + 3u1276u1354

+ u1256u1374 − 4u1374u1652 + 2u1674u2364 − 2u1673u2463

− 2u1453u1675u2365 + 4u1354u1675u2465 − u1275u1354u2564)

+ B124,356(4u1643 + 4u2356 − 4u1243u2356 − 4u1546u2356 + 4u1246u2653 − 4u1642u2653)

+ B145,267(2− u1257 + 2u1752 + 3u1254u2476 − 2u2674 + u1256u2674 − 2u1652u2674)

− 4B124,567u1245u2567 +Π1,24,356(4u1346 − 4u1356 − 4u1643 + 4u1653)

+Π1,42,356(−4u1326 + 4u1356 + 4u1623 − 4u1653) +Π1,45,267(−4+ 4u1762)

+Π4,15,237(4u2374 − 4u2473 + 4u2475 − 4u2453u2574)

+Π4,51,237(−4u1742 − 4u2374 + 4u1342u2374 + 4u2473) + 4Π4,56,127u1274

− 4Π4,65,127u1274 +∆14,25,37(−2u1457 + 4u1754)

+∆14,25,73(−4− 4u1354 + 4u1453) +∆14,52,73(4u1324 − 2u1423)

+ F1245
1 F4567

1 (−2u1254 + 2u1254u4675 − 2u1254u4567u4675)

+ F1247
1 F1345

1 (+4u1274 + 4u1452 − 4u1453 + 4u1254u1374

− 4u1374u1432 + 4u1374u1452 − 4u1357u1473

− 2u1374u1437u1452 + 2u1274u1427u1453 + 2u1257u1423u1472)

− 8B1,23,45u1354 + B1,24,35(6u1354 − 2u1423 + 4u1453)

+ B1,24,36(−2u1364 − 2u1423 + 4u1326u1463) + B1,24,56(−4u1425 + 4u1524)

+ B1,45,67(−2u1675 + 2u1547u1675) + B4,12,35(4u2435 − 4u2534)

− 4B4,12,56u1245 − 4B4,12,57u1245 + B4,15,27(4u1245 − 4u2457 + 4u2754 + 4u1742u2754)
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+ 4Π1,23,45 +Π1,24,35(−4+ 4u2543) +Π4,15,26(−4+ 4u1652) + 4Π4,56,12

+ F1243
2 (−4+ 2u1432) + F1245

2 (−4+ 12u1254 + 4u1452)

− 2F1425
2 u1254 + F1456

2 (−4+ 2u1564)− 2F4152
2 u1254

�

34 , (D.5)

f (2)7 = 7



Π123,4567(4+ 4u2476 − 4u2573 − 8u2674 − 4u3654

− 4u2576u3456 + 4u2675u3456 − 4u2475u3654 + 8u2574u3654 + 4u2673u3654)

+Π125,3467(−2+ 2u2376 + 2u2475 − 2u3465 + 4u3564

+ 2u2374u3465 + 2u2675u3465 − 4u2375u3564 − 2u2476u3564 − 2u2674u3564)

+Π127,3456(4u2365 − 4u2563 − 4u2364u3457 + 4u2463u3457 − 4u2465u3754 + 4u2564u3754)

+Π145,2367(−2u2365 − 2u2764 + 2u2364u3457 + 2u2765u3457 − 2u2465u3754 + 2u2564u3754)

+∆1,234,567(4− 4u1437 − 4u1764 + 4u1436u1764)

+∆1,234,657(−4+ 4u1437 + 4u1754 − 4u1435u1754) +∆1,234,756(4− 2u1436 − 2u1654)

+∆1,256,347(2− 2u1657 − 2u1746 + 2u1645u1756)

+∆1,256,437(−2+ 2u1657 + 2u1736 − 2u1635u1756) +∆1,256,734(2− u1436 − u1654)

+∆1,324,567(−4+ 4u1427 + 4u1764 − 4u1426u1764) +∆1,324,657(4− 2u1427 − 2u1754)

+∆1,347,526(−2+ 2u1627 + 2u1746 − 2u1624u1746) +∆1,347,625(2− u1527 − u1745)

+∆1,423,567(4− 2u1327 − 2u1763) +∆1,437,526(2− u1627 − u1736)

+ F1234
1 F1567

1 (2u1243 + 2u1576 + 4u1273u1546 − 4u1372u1546 + 4u1243u1576

− 4u1342u1576 − 4u1273u1645 + 2u1372u1645 − 4u1243u1675

+ 2u1342u1675 + 2u1245u2536 + 2u1572u2536 − 2u1246u2635 − 2u1573u2635

+ 4u1274u1645u2435 − 4u1274u1546u2436 − 2u1374u1645u2534 + 4u1374u1546u2634)

+ F1256
1 F1347

1 (−3u1265 + u1374 + 2u1275u1364 − 6u1265u1374 − 2u1275u1463

+ 6u1265u1473 − 2u1374u1562 + u1473u1562 − 2u1364u1572 + u1463u1572

+ u1263u2354 + u1372u2354 − u1264u2453 − u1375u2453

− u1463u1576u2356 + 2u1364u1576u2456 + 2u1276u1463u2653 − 2u1276u1364u2654)

+ B123,456(−2− 2u1436 + 2u1634 + 4u2654 + 2u1234u2456

− 2u1635u2456 + 4u1435u2654 − 2u1534u2654 − 2u1632u2654)

+ B124,356(−1− 2u1245 − u1346 + u1643 + 4u2653 − 4u1243u2356

+ 2u1645u2356 + 4u1246u2653 − 2u1345u2653 − 4u1642u2653)

+ B124,567(−8+ 4u1246 + 4u1547 + 4u1642 + 8u2765 + 4u1245u2567

− 4u1247u2765 − 4u1546u2765 − 4u1742u2765)

+ B125,346(2− 2u1452 − 4u2346 + 2u2643 + 4u1352u2346

+ 2u1654u2346 − 6u1256u2643 − 2u1354u2643 − 2u1652u2643)

+ B125,347(−u1357 − u2347 − u1754u2347 − u1257u2743

+ 2u1253u2347 + 2u1457u2347 + 2u1354u2743 − 2u1453u2743)

+Π1,23,457(8− 4u1437 − 4u1457 − 8u1754 + 4u1435u1754)

+Π1,23,567(4− 4u1567 − 4u1765) +Π1,24,567(4− 4u1547 − 4u1765 + 4u1546u1765)

+Π1,25,347(2u1347 − 2u1357 − 2u1743 + 2u1753)

+Π1,26,347(−2+ 2u1347 + 2u1763 − 2u1346u1763)

+Π1,26,457(−2+ 4u1457 − 2u1467 − 2u1754 + 4u1764 − 2u1456u1764)

+Π1,32,457(−8+ 4u1427 + 4u1457 + 8u1754 − 4u1425u1754)
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+Π1,32,567(−4+ 4u1567 + 4u1765) +Π1,34,256(−2− 6u1256 + 2u1652)

+Π1,34,267(−4− 4u1267 + 2u1742 + 2u1762 − 2u1246u1762)

+Π1,34,567(4− 4u1567 − 4u1765)

+Π1,37,245(2+ 2u1245 − 4u1275 − 4u1542 + 2u1572 + 2u1247u1572)

+Π1,37,256(2− 2u1276 − 2u1652 + 2u1257u1672)

+Π1,42,567(−4+ 4u1527 + 4u1765 − 4u1526u1765)

+Π1,43,256(2+ 6u1256 − 2u1652)

+Π1,43,267(4+ 4u1267 − 2u1732 − 2u1762 + 2u1236u1762)

+Π1,43,567(−4+ 4u1567 + 4u1765)

+Π1,45,237(4− 2u1237 − 2u1257 + 4u1732 + 2u1235u1752)

+Π1,45,267(−4− 4u1267 + 2u1752 + 2u1762 − 2u1256u1762)

+Π1,47,256(2u1256 − 2u1276 − 2u1652 + 2u1672)

+∆12,37,45(−2+ 2u1275 − 2u1572) +∆12,37,54(2− 2u1274 + 2u1472)

+∆12,37,56(−2+ 2u1276 − 2u1672) +∆12,37,65(2− 2u1275 + 2u1572)

+∆14,23,57(−4+ 4u1437 − 4u1734) +∆14,23,75(4− 4u1435 + 4u1534)

+∆14,25,37(−1+ u1457 − u1754) +∆14,25,73(2+ 2u1354 − 2u1453)

+∆14,52,73(−1− u1324 + u1423)

+ F1234
1 F1457

1 (2+ 4u1273 − 4u1372 + 2u1475 − 2u1574 − 4u1274u2435

− 2u1375u2435 + 2u1472u2435 + 2u1275u2534 + 4u1374u2534 − 2u1473u2534)

+ F1237
1 F1245

1 (−4− 2u1253 − 6u1254 + 2u1273 − 2u1274 − 4u1372

+ 4u1452 − 2u1274u1352 + 6u1254u1372 + 2u1257u1372 + 2u1243u1452

− 2u1273u1452 + 2u1243u1472 − 2u1253u1472 + 2u1257u1472

+ 4u1352u1472 − 2u1234u1273u1357 − 6u1237u1254u1372 + 2u1247u1253u1472)

+ F1245
1 F1347

1 (−4− 4u1254 + 6u1452 − 2u1453 − 2u1472 − 2u1473

+ u1354u1432 + u1374u1432 + u1257u1472 + u1357u1473

+ u1374u1437u1452 + u1274u1427u1453 − u1257u1423u1472)

+ B1,23,45(10− 8u1324 − 6u1354 + 4u1423 − 6u1453 + 4u1325u1453)

+ B1,23,47(8+ 8u1374 + 4u1423 − 4u1473 − 4u1327u1473)

+ B1,23,56(6− 4u1325 − 6u1365 − 6u1563 + 4u1326u1563)

+ B1,23,57(−4+ 4u1325 + 4u1573 − 4u1327u1573) + B1,23,67(2− 4u1326 − 4u1623)

+ B1,24,37(−6+ 4u1324 − 2u1374 − 2u1423 + 4u1473 − 2u1327u1473)

+ B1,24,56(4− 4u1425 + 4u1524) + B1,24,57(2+ 4u1524 − 2u1427u1574)

+ B1,25,34(2u1325 + 6u1345 − 2u1324u1543)

+ B1,25,37(−2+ 2u1375 + 2u1523 − 2u1327u1573) + B1,25,47(−3+ 2u1574 − u1427u1574)

+ B1,26,34(−2+ 2u1346 + 2u1623 − 2u1324u1643) + B1,26,37(−1+ 2u1673 − u1327u1673)

+ B1,26,45(−2+ 2u1426 + 8u1456 + 2u1624 − 4u1425u1654)

+ B1,27,34(4u1327 − 4u1347 + 2u1723 − 10u1743 + 2u1324u1743)

+ B1,27,45(2− 2u1457 − 6u1754) + B1,34,56(3− 6u1435 + 3u1436u1564)

+Π1,23,45(4+ 4u2435) +Π1,23,56(6+ 2u2536 − 2u2635)

+Π1,23,67(6+ 2u2637 − 2u2736) +Π1,24,35(−4− 4u2345 + 4u2543)

+Π1,25,34(−4− 4u2354 + 4u2453) +Π1,25,36(−2− 6u2356 + 2u2653)
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+Π1,26,35(−4− 4u2365 + 4u2563) +Π1,26,37(−2− 6u2367 + 2u2763)

+Π1,27,36(−4− 4u2376 + 4u2673) +Π1,34,25(−2+ 2u2354 + 2u2453)− 2∆14,567

+ F1234
1 F1237

1 (−4− 4u1243 + 4u1342 − 4u1372 + 2u1247u1372 + 2u1342u1372)

+ F1234
2 (−8+ 8u1342) + F1243

2 (−1+ 3u1234 + u1432)

+ F1245
2 (−4+ 12u1254 + 4u1452) + F1247

2 (−6− 6u1274 + 6u1472)

+ F1254
2 (−1+ 3u1245 + u1542) + F1265

2 (−2+ 2u1256 + 2u1652)

+ F1273
2 (2− 2u1237 − 10u1732) + F1275

2 (−2− 2u1257 + 2u1752)

− 4F1276
2 u1267 − 16F1374

2 u1743 + 2B123

�

7 . (D.6)

Again, 〈·〉25, 〈·〉34, and 〈·〉7 means averaging over the respective permutation symmetry group
Ka, see (B.3). The results are expressed in terms of the conformal integrals (70) and general
cross ratios (C.1). To convert to a multiplicatively independent set of 14 cross ratios, one
can expand all ui jkl in terms of x2

i j , and then pick a conformal frame, for example by setting

x7 =∞ and x2
12 = 1, and solve for the remaining x2

i j in terms of a basis of 14 cross ratios, for
example (C.5) or (C.6).

D.2 Preliminary n-point guesses

Based on our explicit two-loop results for n = 5, 6,7, we have tried to guess general n-point
expressions for two classes of component functions, namely f (2)2,n−2 and f (2)n . These guesses are
very preliminary and yet incomplete. To fully determine these n-point functions will require
more input. Yet, at least a subset of terms is matched nicely by our guesses. The (preliminary
and incomplete) expression for the component functions f (2)2,n−2 is:

f guess (2)
2,n−2 = 4(n− 2)× (D.7)
¬

−B123 + F1324
2 + F1325

2 + 6F1234
2 u1243 +

1
2 F1324

2 u1243 − F3142
2 u1243 −

1
2 F1325

2 u1253

− 2B3,12,45u1234 − 2B3,12,4nu1234 + 4B3,14,2nu1234 + B1,23,45(−2u1354 + 2δn,5 + 2Θn≥6u1453)

+Π3,12,45 + 2Π3,45,12 − 2Π3,14,25u1245 − 2Π3,12,45u1425 +∆35,124

+ F1234
1 F123n

1 (u1243u12n3 + 2u12n3u1342 − u124nu13n2)

+
Θn≥6

4

�

−8B123,456u1234u2456 + 8Π3,45,12nu12n3 − 8Π3,54,12nu12n3

− 8Π1,34,256(u1246 − u1245u1652)− 2∆12,34,65(u1245 − 2u1542)

− 4F12,n−3,n−2
1 F3456

1 u12,n−2,n−3 − 4F123n
1 F1245

1 u1243u14n2

+ cn

�

F123n
1 F1245

1 (u1234u12n3u135n + 3u123nu1254u13n2 + 4u1253u14n2 − u124nu1253u14n2)

+ 2B134,256(u1246 + 3u1243u2365 − u1245u2563) + 2∆12,34,56(u1246 − 2u1642)
��¶

2,n−2
,

where 〈·〉2,n−2 means averaging over the permutation group K2,n−2 = S2×Dn−2 of the external
labels (1, . . . , n), and

cn =

¨

1 , n= 6 ,

2 , n= 7 .
(D.8)

With this expression, we find

f (2)23 = f guess (2)
23 ,

f (2)24 = f guess (2)
24 + 16
¬

F1234
1 F3456

1 u1243u3564(1− u3456)
¶

24
,
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f (2)25 = f guess (2)
25 + 20
¬

−2B123,457u1237u2754 − 2Π3,56,124u1243 + 2Π3,56,127u1273

+Π1,34,267(−2u1247 + 2u1246u1762) +∆12,34,76(−
1
2u1246 + u1642)

− F1237
1 F1245

1 u1257u1472 + F1245
1 F3456

1 (u1253u2346 − u1256u2643)

− 2F1237
1 F3456

1 u1273(1+ u3465 − u3564)
¶

25
. (D.9)

Similarly, our preliminary guess for the component f (2)n is (this still involves a lot of guess-
work):

f guess (2)
n = 2n×
¬

B123 −∆1...n..n .nn +Π12345(2+ 2u2435) +Π13425(−1+ u2354 + u2453)

+
∑n

k=5

�

Π12k3.k(−2− 2u23k .k + 2u2.kk3) +Π12.k3k(−2− 2u23.kk + 2u2k .k3)
�

+
∑n

k=6

�

Π12.k3k(1− u23.kk − u2k .k3) +Π123.kk(3+ u2.k3k − u2k3.k)
�

+ B12345(−4u1324 + 2u1423 +δn5(−4u1354 + 2u1453 + u1325u1453))

+ B1243n(−2− 2u13n4 + 3u14n3 − u132nu14n3)

+ B1234n(4+ 4u13n4 + 2u1423 − 2u14n3 − 2u132nu14n3) + B12n34(2u132n − 2u1n43)

+
∑n−1

k=5
B123.kk(−3u1.kk3 − 3u13k .k + 2u132ku1.kk3) + B123.nn(−2u1.n23) + B12.n3nu1.nn3

+ F1234
2 (−4+ 4u1342) + F12n .n

2 (−2u12.nn) + F12n3
2 (1− u123n − 5u1n32)

+ F12.n..n
2 (−1+ u12..n .n + u1.n..n2) + F12n..n

2 (−1− u12..nn + u1n..n2)

+ F1234
1 F123n

1 (−2− 2u1243 + 2u1342 + u13n2(−2+ u124n + u1342))

+ dc
1

�

F13n4
2 (−4u1n43) + F1245

2 (−1+ 3u1254 + u1452)
�

+Θn≥6

�

F123n
1 F1245

1 (−u12n4(1+ u1352) + u125n(u13n2 + u14n2))

+ F123n
1 F1245

1 dc
2

1
2(−2− 2u13n2 − 3u1254(1+ (−1+ u123n)u13n2)

+ 2u1452 − u12n3(−1+ u1234u135n + u1452) + u124nu1253u14n2 + 2u1352u14n2)

+ F1245
1 F134n

1 (−u1453 +
1
2u125nu14n2 +

1
2u135nu14n3)

+ F1245
1 F134n

1 dc
2(−1− u1254 +

3
2u1452 +

1
4u13n4u143nu1452

+ 1
4u12n4u142nu1453 −

1
4u125nu1423u14n2 −

1
2u14n3)

+ F1234
1 F145n

1 (1− u15n4 − 2u12n4u2435)

+ F1234
1 F145n

1 dc
2(u12n3 +

1
2u14n5 +

1
2u14n2u2435 + u13n4u2534 −

1
2u14n3u2534)

+ 5B12345 + B1243n(−1+ 2u1324 + u13n4 − u1423 − u14n3)

+ B1253n(−1+ u13n5 − u132nu15n3) + B12n34(−2u134n + u1n23 − 3u1n43 + u1324u1n43)

+ B12.n...n..n(−1+ u1...n2.n + 4u1...n..n .n + u1.n2...n − 2u1...n2..nu1.n..n...n) + dc
2B1235n(−u132nu15n3)

+
∑n−2

k=4
F12k .k

2 (−1
2 +

3
2u12.kk +

1
2u1k .k2) + F124n

2 (−3+ 3
2 dc

2u14n2 − 3dc
3u12n4)

+ B124356(−
1
2 − u1245 −

1
2u1346 +

1
2u1643 − 2u1243u2356 + u1645u2356 + 2u2653

+ 2u1246u2653 − u1345u2653 − 2u1642u2653)

+
n
∑

k=6

k−3
∑

j=3

�

Π1 j
.
j2.kk(−1− 3u12.kk + u1k .k2) +Π1

.
j j2.kk(+1+ 3u12.kk − u1k .k2)

�

+
n−2
∑

k=4

�∑k−2

j=2
(Π1 j

.
jk

.
kn −Π1

.
j jk

.
kn)(+2− 2u1k

.
k+n − 2u1n

.
k+k)
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+Π12.kk
.
kn(+2− 2u1k .kn − 2u1n

.
kk + 2u1k .k

.
ku1n

.
kk)

+Π1.k2k
.
kn(−2+ 2u1k2n + 2u1n

.
kk − 2u1k2

.
ku1n

.
kk)

+Π12
.
k .kkn(u1.kkn − u1.k

.
kn − u1nk .k + u1n

.
k .k
)

+Π1.kn2k
.
k(u12k

.
k − u12n

.
k − u1

.
kk2 + u1

.
kn2)

+Π13n2k
.
k(1− u12n

.
k − u1

.
kk2 + u12knu1

.
kn2)

+Π12.n.kkn(−1+ u1.kkn + u1n .n.k − u1.kk .nu1n .nk)

+Π1.kk2.nn(−1+ 1u12.nn + u1nk2 − u12k .nu1n .n2)

+Π1k .k2.nn(+1− 1u12.nn − u1n.k2 + u12.k .nu1n .n2)
�

+
∑n−1

k=5

�

∆123n.kk(−1+ u12nk − u1kn2) +∆123nk .k(1− u12n.k + u1.kn2)
�

+∆14253n
1
2(−1+ u145n − u1n54) +∆14235ndc

2(−1+ u143n − u1n34)

+∆1423n5(2dc
3 − dc

2u1435 + 2u1534) +∆1425n3
1
2(2dc

3 − dc
2u1453 + 2u1354)

�¶

dihedral
,

(D.10)

where 〈·〉n means averaging over the dihedral group Kn ≡ Dn of external points, and we use
the shorthand notation

...n= n− 3 , ..n= n− 2 , .n= n− 1 ,
.
n= n+ 1 etc. (D.11)

as well as

dc
1 =











0 , n= 5 ,

1 , n= 6 ,

2 , n= 7 ,

dc
2 =

¨

1 , n= 6 ,

2 , n= 7 ,
dc

3 =

¨

0 , n≤ 6 ,

1 , n= 7 .
(D.12)

With this expression, we find

f (2)5 = f guess (2)
5 ,

f (2)6 = f guess (2)
6 + 12



B123,456

�

−2+ u1436 + u2456(4− u1432 − u1536)
��

6 ,

f (2)7 = f guess (2)
7 + 14
¬

−1
2∆14,52,73(1+ u1324 − u1423) + (12 five-point terms B...)

+ (4 six-point terms B...) + (3 six-point terms F ...
1 F ...

1 )

+ (12 seven-point terms ∆...) + (4 seven-point terms Π...)

+ (2 seven-point terms F ...
1 F ...

1 )
¶

7
. (D.13)

E Integrals

E.1 Asymptotic expansions

The goal of this appendix is to review and explain the main idea behind the method of asymp-
totic expansions that allows us to obtain the integrals in the correlators as a series expansion in
one cross ratio. This will be a simple extension of the analysis that has been done for four-point
conformal integrals [60–62].
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A generic two-loop finite conformal integral with at most six external points has the fol-
lowing form41

I =

∫

[dd xℓ]

x2
78

∏6
i=1(x

2
i7)

ai (x2
i8)

bi

, (E.1)

with 1 +
∑

i ai = d, 1 +
∑

i bi = d and [dd xℓ] ≡ dd x7 dd x8. Without loss of generality, it is
possible to use conformal symmetry to send one point to infinity, say x6 (if the integral only has
five points, then we send the point x5 to infinity), and one point to zero, say x1. The method
of asymptotic expansions can be used to obtain a series expansion of an integral when one
variable is small, say x2

2 → 0. Within this method, we are instructed to divide each integration
region into two parts, one where the integration variable is of the size of x2

2 and another where
it is much bigger.42 In each region, it is possible to simplify the integrand using the general
expansion

1

(x2
i j)

c
=
∞
∑

n=0

�

−c
n

�(x2
j − 2x i · x j)n

(x2
i )

c+n
, x i ≫ x j ,

�

a
b

�

≡
Γ (a+ 1)

Γ (1+ a− b)Γ (1+ b)
. (E.2)

At two loops, there are four different regions:

region 1 : x7, x8 ≈ x2 ,

region 2 : x7 ≈ x2 , x2≪ x8 ,

region 3 : x8 ≈ x2 , x2≪ x7 ,

region 4 : x2≪ x7, x8 . (E.3)

We will denote the integral (E.1) with the domain of integration restricted to the respective
region by Ik, k = 1, . . . , 4, and can expand:

I1 =
∞
∑

n1,...n6=0

3
∏

i=1

�

−ai+2

ni

��

−bi+2

ni+3

�

∫

[dd xℓ]

x2
78

∏2
i=1(x

2
i7)

ai (x2
i8)

bi

5
∏

j=3

∏1
i=0(x

2
7+i − 2x j · x7+i)

n j−2+3i

(x2
j )

a j+b j+n j−2+n j+1
,

I2 =
∞
∑

ni=0

�

−b2

n4

� 3
∏

i=1

�

−ai+2

ni

�

∫

[dd xℓ](2x7 · x8 − x2
7)

n5(2x2 · x8 − x2
2)

n4

(x2
8)

1+b1+b2+n4+n5
∏2

i=1(x
2
i7)

ai

5
∏

j=3

(x2
7 − 2x j · x7)

n j−2

(x2
8 j)

b j (x2
j )

a j+n j−2
,

I4 =
∞
∑

n1,...n2=0

�

−a2

n1

��

−b2

n2

�

∫

[dd xℓ] (x2
2 − 2x2 · x7)n1(x2

2 − 2x2 · x8)n2

x2
78(x

2
7)

a1+a2+n1(x2
8)

b1+b2+n2
∏5

i=3(x
2
i7)

ai (x2
i8)

bi

, (E.4)

where I3 is obtained from I2 by ai↔ bi . The regions 1 and 4 are expressed in terms of two-
loop integrals, while the regions 2 and 3 are given by products of two one-loop integrals. But
in all of the regions the integrals have at most 4 external points, and thus are simpler. It is
simple to extract the leading (when they go to zero) dependence on x2

2:

I1 ≈ (x2
2)

d−(1+a1+a2+b1+b2), I2 ≈ (x2
2)

d
2−a1−a2 , I4 ≈ (x2

2)
0. (E.5)

The factors in the numerators of the integrals Ik can be written as a combination of integrals
with open indices contracted with some external vectors. As an example, take a two-loop

41Instead of the factor of x2
78 in the denominator, there could be a factor x2n

78 , n ≥ 1 in the numerator (see e.g.
Figure 2), but such integrals do not occur in the correlators discussed in this work, and hence we do not consider
them here. Higher powers of x2

78 in the denominator do not appear in our integrals since they are divergent.
42In the asymptotic expansion method, we are instructed to integrate over all space and shift the dimension

from 4 to d = 4−2ε to regulate possible divergences in each region that should cancel when all contributions are
combined, as we shall see.
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integral depending on two vectors x3, x4 with 2 open indices:43

∫

[dd xℓ]Nµ1µ2

D(x3, x4)
= xµ1

3 xµ2
3 T0 + xµ1

3 xµ2
4 T1 + xµ2

3 xµ1
4 T2 + xµ1

4 xµ2
4 T3 +δ

µ1µ2 T4 , (E.6)

where D is some denominator, and Ti are scalar integrals that can be obtained by contracting
this equation with xµ1

3 xµ2
3 , . . . , xµ1

4 xµ2
4 ,δµ1µ2 and inverting this system of equations.

Example: Five-Point Double Pentaladder

One of the integrals that appear in the two-loop five-point function is the 5-pt double pental-
adder integral

I =
∆23,145

x2
14 x2

15cx2
45

=

∫

[d4 xℓ] x2
27 x2

38

x2
17 x2

18 x2
28 x2

37 x2
47 x2

48 x2
57 x2

58 x2
78

, (E.7)

that is obtained from (E.1) by setting

a1 = b1 = b2 = a3 = a4 = b4 = a5 = b5 = 1, a2 = b3 = −1 .

Recall that we can send one point to infinity, say x5. Let us analyze all four regions for this
integral

I1 =
∞
∑

n1,n2,n3=0

∫

[dd xℓ] x2
27 x2

38(2x3 · x7 − x2
7)

n1(2x4 · x7 − x2
7)

n2(2x4 · x8 − x2
8)

n3

x2
7 x2

8 x2
28(x

2
3)

1+n1(x2
4)

2+n2+n3 x2
78

,

I2 =
∞
∑

ni=0

∫

[dd xℓ] x2
27 x2

38(2x2 · x8 − x2
2)

n1(2x7 · x3 − x2
7)

n2(2x7 · x4 − x2
7)

n3(2x7 · x8 − x2
7)

n4

x2
7(x

2
8)

2+n1+n4(x2
3)

1+n2(x2
4)

1+n3 x2
48

,

I3 =
∞
∑

ni=0

1

(x2
4)

1+n1

∫

[dd xℓ] x2
27 x2

38 (2x8 · x4 − x2
8)

n1(2x8 · x7 − x2
8)

n2

x2
8 x2

28 (x
2
7)

2+n2 x2
37 x2

47

,

I4 =
∞
∑

n1=0

∫

[dd xℓ] x2
27 x2

38 (2x8 · x2 − x2
2)

n1

x2
7(x

2
8)

2+n1 x2
37 x2

47 x2
48 x2

78

. (E.8)

Some comments are in order here: I2 does not contribute since the integral in x7 integrates
to zero (this is a scaleless integral [59]); the leading power of I1 is (x2

2)
1−2ε and thus this

region is subleading compared to I3 and I4; the terms x2
8 in the numerator of I3 and x2

2 in the
numerator of I4 can be dropped to leading order in x2

2 → 0. In the following we will focus on
the last two regions44

I3 =
1

(x2
3)5−d

∞
∑

ni=0

2n1+n2Γ (ε)Γ (1− ε)
(x2

4)
1+n1(x2

2)ε

� x2
3Γ (1− ε+ n1 + n2)

Γ (2− 2ε+ n1 + n2)
−

2x3 · x2Γ (2− ε+ n1 + n2)
Γ (3− 2ε+ n1 + n2)

�

× (x2 · x4)
n1

∫

dd x7 (x2
7 − 2x2 · x7) (x2 · x7)n2

(x2
7)

2+n2 x2
37 x2

47

,

43The generalization to more external vectors and more indices is straightforward. This formula follows just by
the SO(d) symmetry of the system.

44We have used the one loop integral formula with numerators
∫

dd x0 xµ1
0 . . . xµJ

0

(x2
0)α(x

2
02)β

=
Γ (α+ β − d

2 )Γ (
d
2 −α+ J)Γ ( d

2 − β)
Γ (α)Γ (β)Γ (d −α− β + J)

xµ1
2 . . . xµJ

2

(x2
2)
α+β− d

2

+ . . . , (E.9)

where the . . . represent subleading terms in x2
2 .
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I4 =
1

(x2
3)5−d

∞
∑

n1=0

2n1

∫

d4 x7 d4 x8 (x2
7 − 2x2 · x7)x2

38 (x8 · x2)n1

x2
7(x

2
8)

2+n1 x2
37 x2

47 x2
48 x2

78

, (E.10)

where we have scaled all points by xµi → |x3|x
µ
i . In practice we have to truncate upper limit

of the sum, which translates into evaluating the integral as expansion around x2 → 0. The
integrals in each region might have ε divergences which should cancel, for each order in x2,
when all regions are combined. The leading term in x2→ 0 comes from truncating both sums
to the ni = 0 and furthermore neglecting the x2 · x3 and x2 · x7 in the numerators of both
regions

I3→
1

(x2
3)1+2ε

Γ (ε)Γ 2(1− ε)
(x2

4)(x
2
2)ε

1
Γ (2− 2ε)

∫

dd x7

x2
7 x2

37 x2
47

, (E.11)

I4→
1

(x2
3)1+2ε

∫

[dd xℓ] x2
38

(x2
8)2 x2

37 x2
47 x2

48 x2
78

. (E.12)

Notice that each integral is divergent but when we plug the values of the integrals and combine
them, the divergences disappear,45 giving rise to

I =
1
8

�

∆̃
�

4u3∂u3
Ĩ2 − 4∂u3

Ĩ3 − u4∂u4
Ĩ1 + 4u4∂u4

Ĩ2

�

+ 2u3u4∂u3
Ĩ1 + 4u2

3∂u3
Ĩ2 (E.13)

− 4(u4 + 1)u3∂u3
Ĩ2 −+4(1− u3 − u4)∂u3

Ĩ3 + u3u4∂u4
Ĩ1 + (u4 − 1)u2

4∂u4
Ĩ1 + 4u3u4∂u4

Ĩ2

+4(1− u4)u4∂u4
Ĩ2 − 8u4∂u4

Ĩ3 + 8u4Φ
(1)(2− log
�

u1u4

�

) + 48ζ3 + (u3 − u4 + 1+ ∆̃)u4I1

�

,

where ∆̃=
Ç

�

u4 − u3 + 1
�2 − 4u4, we have used the conformal frame with x5→∞, x2

14 = 1,
and Ĩ j = ∆̃I j with

I1 =

∫

d4 x7 d4 x8

x2
17 x2

18 x2
37 x2

38 x2
47 x2

78

, I2 =

∫

d4 x7 d4 x8

x2
18 x2

37 x2
38 x2

47 x2
78

, I3 =

∫

d4 x7 d4 x8

x2
17 x2

18 x2
37 x2

48 x2
78

. (E.14)

E.2 Coefficients of the Konishi Four-Point Function

In the main text, we have written down the expression for the two-loop four-point correlator
involving three 20′ operators and one Konishi operator in terms of a linear combination of
conformal integrals. The coefficients in this linear combination are given by

a1,0 =
c(z − 1)(z̄ − 1)

15z2z̄3
(24z7(z̄ − 1)2z̄2(2z̄ − 1)− z4(z̄ − 1)(z̄(z̄(z̄(2z̄(z̄(48z̄2 − 369z̄ + 169)

+ 1087)− 7)− 1926) + 123) + 180) + z6z̄(z̄(z̄(161− 2z̄(3z̄(248z̄ − 523) + 1028)) + 74)

+ 51)− z5(z̄(z̄(z̄(2z̄(z̄(6z̄(16z̄ − 277) + 3067)− 2126) + 647) + 552)− 417) + 108)

+ z3(z̄(z̄(z̄(z̄(z̄(5019− 2z̄(z̄(24z̄ + 665)− 458))− 10252) + 5208)− 1268) + 483) + 72)

+ z2(z̄(z̄(z̄(z̄(z̄(z̄(z̄(276z̄ + 335)− 1223) + 1919) + 2370)− 4940) + 4983)− 1776)− 144)

− zz̄(z̄(z̄(z̄(z̄(4z̄(z̄(33z̄ − 53) + 138) + 1473)− 2068) + 75) + 2280)− 1152)

+ 3z̄2(z̄(z̄(z̄(z̄(17z̄ + 93)− 77)− 81) + 176)− 48)) , (E.15)

a1,1 =
2c

15z2z̄3
(z − 1)(z̄ − 1)(48z7(z̄ − 1)2z̄3 − 2z6(z̄ − 1)z̄(z̄(z̄(744z̄2 − 657z̄ + 29) + 19)

− 3)− z5(z̄(z̄(2z̄(z̄(z̄(96z̄2 − 966z̄ + 1459)− 462) + 15) + 313)− 333) + 36)

45We have used integration by parts identities (IBPS) to reduce each three point integral to a sum of master
integrals that we have computed with the MAPLE package HYPERINT [71].
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+ z4(z̄(z̄(2z̄(z̄(z̄(z̄(−48z̄2 + 321z̄ + 98)− 998) + 1145) + 1041)− 1627)− 159) + 108)

+ 2z2z̄(z̄(z̄(z̄(z̄(z̄(6z̄2 + 82z̄ − 3) + 1116) + 470)− 1047) + 876)− 180)

+ 2z3(z̄(z̄(z̄(z̄(z̄(z̄(5z̄(12z̄ − 79)− 114) + 1067)− 3251) + 1631)− 618) + 276)− 36)

+ zz̄2(z̄(z̄(900− z̄(z̄(4z̄(9z̄ − 8) + 469) + 1351)) + 24)− 360)

+ 3z̄3(z̄(z̄(z̄(8z̄ + 81)− 37) + 52)− 24)) ,

a1,2 =
c

15z2z̄2
(z − 1)(z̄ − 1)(−2z5(z̄(z̄(z̄(z̄(96z̄2 − 630z̄ + 517) + 73) + 200) + 137)− 183)

+ 24z7(z̄ − 1)2z̄(2z̄ + 1)− 2z6(z̄ − 1)(z̄(z̄(3z̄(248z̄ − 91)− 55) + 23)− 15)

+ z4(z̄(z̄(z̄(2z̄(z̄(3z̄(51− 16z̄) + 284)− 883) + 1557) + 2635)− 1062)− 552)

+ z3(z̄(z̄(z̄(z̄(2z̄(z̄(72z̄ − 107)− 109) + 1047)− 5514) + 2385)− 456) + 576)

− z2z̄(z̄(z̄(z̄(z̄(6z̄(6z̄ + 5) + 145)− 2872) + 243) + 720) + 288) + zz̄2(z̄(264− z̄(z̄(z̄(12z̄

− 25) + 496) + 687)) + 576) + 3(z̄ − 1)z̄4(5z̄ + 88)) ,

b1,0 = −
4c

15zz̄
(z − 1)(z̄ − 1)(z7z̄(6z̄(z̄(z̄(3z̄ − 10) + 12)− 6) + 1) + z6(3z̄(z̄(9− z̄(z̄(4z̄(5z̄

− 9) + 15) + 3)) + 1) + 1) + 3z5(z̄(z̄(z̄(z̄(2z̄(3z̄(z̄ + 6)− 17)− 57) + 42)− 5) + 9)− 12)

− z4(z̄(z̄(z̄(z̄(3z̄(5z̄(4z̄ + 3) + 57)− 916) + 804)− 126) + 9)− 72)

+ z3(z̄(z̄(z̄(3z̄(3z̄(z̄(8z̄ − 1) + 14)− 268) + 916)− 171)− 45)− 60)

− 3z2(z̄(z̄(z̄(z̄(z̄(3z̄(4z̄ − 3) + 5)− 42) + 57) + 34)− 36)− 6)

+ zz̄(z̄(z̄(z̄(z̄(z̄(z̄ + 3) + 27)− 9)− 45) + 108)− 60) + z̄2(z̄(z̄((z̄ − 36)z̄ + 72)− 60) + 18)) ,

b1,1 = −
4c

15zz̄
(z − 1)(z̄ − 1)(36z7(z̄ − 1)3z̄2 + z6(2− 3(1− 2z̄)2z̄(5z̄2(2z̄ − 1)− 1))

+ z3(z̄2(z̄(3z̄(9z̄(4z̄2 + z̄ + 8)− 268) + 608) + 57)− 12) + 3z5(z̄(z̄(z̄(z̄(4z̄(3z̄(z̄ + 5)

+ 1)− 133) + 72)− 5) + 22)− 12)− 3z4(z̄(z̄(z̄(z̄(z̄(6z̄(6z̄ + 5) + 133)− 408) + 268)− 12)

+ 15)− 12)− 3z2z̄(z̄(z̄(z̄(z̄(4z̄(3z̄ + 1) + 5)− 12)− 19) + 72)− 12) + 3zz̄2((z̄(z̄ + 22)

− 15)z̄2 + 12) + 2z̄3(z̄((z̄ − 18)z̄ + 18)− 6)) ,

b1,2 =
−2c
15zz̄

(z − 1)(z̄ − 1)(z7(z̄ − 1)(12z̄3(3z̄ − 5)− 1)− 3z2z̄2(z̄(z̄(3(z̄ − 2)z̄ + 41)− 36)

+ 48) + z6(1− z̄(3z̄(2z̄(z̄(4z̄(5z̄ − 6) + 5)− 2) + 3) + 8)) + 3z5z̄(z̄(z̄(4z̄(z̄(3z̄(z̄ + 4) + 7)

− 29) + 19) + 6) + 23)− z4(z̄(z̄(z̄(2z̄(3z̄(z̄(16z̄ + 5) + 58)− 433) + 347) + 123) + 60)

+ 12) + z3z̄(z̄(z̄(z̄(3z̄(4z̄(5z̄ + 1) + 19)− 347) + 250) + 108) + 60)− zz̄3((z̄ − 1)z̄(z̄(z̄ + 9)

− 60)− 60) + z̄7 + z̄6 − 12z̄4) ,

where u4 = zz̄, u3u5 = (1−z)(1− z̄), and c = N2
c

�

N2
c − 1
�

/(z − z̄)4. The other coefficients can
be extracted from the ancillary MATHEMATICA file CorrelatorInLimit.m.

The procedure to obtain these coefficients is the following: Start by choosing the polar-
izations of points x1 and x2 according to (90), then insert the expressions of the conformal
integrals, expanded as explained in the previous subsection,46 take the limit x2→ x1 and keep
terms only to sub-subleading order (since the integrals were computed up to sub-subleading
order in x2 → x1, one is able to extract information about two primaries), use the light-cone
conformal blocks (or alternatively the conformal Casimir equations), subtract the contribu-
tion of the twenty prime operator, and finally read off the coefficients by translating powers
of u5 − 1 and u2 − 1 to the corresponding structures of a spinning four-point function. The
resulting coefficients are listed in the file.

46We provide these expanded conformal integrals in the ancillary file ListFivePtIntegrals.wl.
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E.3 Simple One-Loop Integrals

In the main text, we have expressed the one-loop correlator involving half-BPS operators and
the Lagrangian in terms of the following one-loop conformal integrals:

∫

d4 x0 x2
06

x2
10 x2

20 x2
30 x2

40 x2
50

= t12345,6 , (E.16)

∫

d4 x0 (x2
07)

2

x2
10 x2

20 x2
30 x2

40 x2
50 x2

60

= t123456,7 . (E.17)

The first can be expressed in terms of linear combinations of one-loop box integrals while the
second can be expressed in terms of the first, once we notice that x2

07 =
∑6

i=1 ai x
2
i0

t12345,6 =
1

det x2
i j

5
∑

i=1

ai Ii , (E.18)

where Ii are one-loop box integrals where the position i is absent and ai are polynomials in
x2

kl with degree

degree 1 in 6 and i and 2 for the other points (E.19)

for ai . These coefficients are highly constrained by symmetry (permutation of the points) and
the fact that the integral should reduce to the usual ladder in the limit x6→ x i with x i being
any of the external points in the denominator of the integral. For example, we have

a5 = (x
2
56 det x2

i j)− 2
4
∑

i=1

x2
i5 x2

i6 det′i x2
lk +

5
∑

i ̸= j=1

x2
i5 x2

j6Vi j , (E.20)

where V12 = x2
34(x

2
14 x2

23+ x2
13 x2

24− x2
12 x2

34) and the prime in the determinant means that point
x i has been removed.
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