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Abstract

The hunt for exotic quantum phase transitions described by emergent fractionalized de-
grees of freedom coupled to gauge fields requires a precise determination of the fixed
point structure from the field theoretical side, and an extreme sensitivity to weak first-
order transitions from the numerical side. Addressing the latter, we revive the classic
definition of the order parameter in the limit of a vanishing external field at the transi-
tion. We demonstrate that this widely understood, yet so far unused approach provides
a diagnostic test for first-order versus continuous behavior that is distinctly more sensi-
tive than current methods. We first apply it to the family of Q-state Potts models, where
the nature of the transition is continuous for Q ≤ 4 and turns (weakly) first order for
Q > 4, using an infinite system matrix product state implementation. We then employ
this new approach to address the unsettled question of deconfined quantum criticality
in the S = 1/2 Néel to valence bond solid transition in two dimensions, focusing on the
square lattice J-Q model. Our quantum Monte Carlo simulations reveal that both order
parameters remain finite at the transition, directly confirming a first-order scenario with
wide reaching implications in condensed matter and quantum field theory.
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1 Introduction

The theory of phase transitions is an integral component in the understanding of many body
phenomena, playing a significant role in fields ranging from statistical mechanics to condensed
matter and high energy physics. The most recent advancements in this area have focused on
phase transitions beyond the Landau-Ginzburg-Wilson (LGW) paradigm, where models have
been proposed and studied extensively both analytically and numerically. In these scenarios
the field theory describing the transition is not given in terms of the order parameters, as in the
LGW paradigm, but instead is formulated in terms of fractionalized degrees of freedom. This
leads to the possibility of a generic, continuous phase transition between two ordered phases
whose symmetry groups and broken symmetries are not mutually compatible.

Prominent candidate examples for such exotic transitions are the ‘deconfined quantum
critical points’ (DQCP) between Néel ordered antiferromagnetic and valence bond solid phases
in quantum spin systems [1,2]. The model believed to epitomize this scenario is the so called
J -Q model [3] (to be discussed in detail below), which to date has been the most well studied
in this context. Indeed, an impressive body of numerical work has been devoted to the analysis
of the nature and the critical exponents of this and related models [3–17]. While most of the
numerical data for the S = 1/2 J -Q model has been interpreted as evidence for a continuous
quantum phase transition, albeit with significant corrections to scaling, some authors have
however interpreted their data as evidence for a weakly first order transition. The current
consensus opinion in the community is that the true nature of the J -Q transition remains to
be settled definitively.

On the analytical side, several connections between the original (NCCP1) DQCP the-
ory [1, 2] and other field theories of current interest such as the Abelian Higgs model (scalar
QED3) [18], the SO(5) nonlinear sigma model with a Wess-Zumino term [19] or fermionic
QED3 [20] have been put forward [21]. It was first believed that the NCCP1 theory is contin-
uous, but Refs. [22–25] put forward and discussed scenarios of colliding fixed points in the-
ory space, where the annihilation of two real fixed points provides a possible mechanism for
pseudo-universal weakly first order behavior through the appearance of complex fixed points.
In general, it is an important open question to determine the critical number Nc of (bosonic or
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fermionic) matter field flavors coupled to gauge fields, separating a regime of conformal field
theories in the infrared (i.e. continuous transition behaviour) from a regime of pseudo-critical
(weakly) first order regime in the infrared. This scenario also applies to the classical Q-state
Potts model in two dimensions where the conformal window resides below Q ≤ 4, resulting
in (in)famously weak first order transitions near Q > 4 [26–28]. Additionally, similar ideas
might also apply regarding the conformal window of non-abelian gauge theories [23], with
possible implications for the hierarchy problem in particle physics.

It is therefore of great interest to refine numerical simulations so that conformal win-
dows can be clearly resolved, which means developing highly sensitive methods for detecting
weak first order transitions. However, pseudo-critical behavior implies a finite—but huge—
correlation length at the transition. As a result, a conclusive diagnosis seemingly becomes im-
possible since the general wisdom is that system sizes with a linear extent at least as large as
the correlation length are required to resolve the first order nature of the phase transition [29].

In this work we revive the textbook definition of the order parameter from the classical
theory of phase transitions, which has all but fallen out of use in the numerical community.
We find that applying these ideas in a modern context has the power to resolve weakly first
order transitions with exquisite detail. After introducing the basic idea behind our approach
in Sec. 2, we demonstrate the power of our method in the Hamiltonian formulation of the
well-understood Q-state Potts model in Sec. 3 using an infinite matrix product state (iMPS)
implementation, where we find distinct signatures for first order behavior manifesting at cor-
relation lengths of a few lattice spacings, despite the correlation length at the transition itself
reaching on the order of a thousand lattice spacings for Q = 5. We then move to two dimen-
sional quantum critical phenomena using a Quantum Monte Carlo implementation, first in
Sec. 4, where we show that this method corroborates the established continuous nature of the
O(3) Wilson-Fisher CFT quantum critical behavior of a family of explicitly dimerized S = 1/2
quantum magnets. Finally in Sec. 5, we address the Néel to valence bond solid phase transi-
tion in the square (and rectangular) lattice S = 1/2 J -Q model and provide direct evidence
for a first order scenario, thus resolving a long standing debate in the field, with implications
in many directions both in condensed matter and in quantum field theory.

2 Outline of the method

In an ordinary symmetry breaking phase transition there are two complementary conceptual
approaches to track the order parameter O as a function of a control parameter g (temperature
T or a Hamiltonian parameter). We assume that g > gc is the symmetry broken phase, g < gc
the paramagnetic phase with gc the transition point.

• In a symmetry preserving setup one measures the square of the order parameter 〈|O|2〉g
or functions thereof (such as Binder cumulants or order parameter susceptibilities) for
finite systems and then extrapolates to infinite system size using finite-size scaling tech-
niques.

• On the other hand, it has long been known that one can directly measure the order
parameter by coupling it to a uniform external field via adding a term λ

∫

dd x O(x)
to the Hamiltonian (d denotes the space dimension). One then extrapolates 〈O〉g,λ to
infinite size at fixed coupling λ, then takes the limit as λ → 0+, yielding the order
parameter 〈O〉g in the thermodynamic limit.

In the symmetric setup if the transition occurring at gc is continuous then we expect the
standard power law behaviour

〈O〉g ∼ (g − gc)
β , g → g+c ,
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with β an appropriate critical exponent, while in an external field at the critical point gc:

〈O〉gc ,λ ∼ λ
1/δ , λ→ 0+ ,

with 1/δ a critical exponent which is controlled by the universality class of the transition at
gc .

1

If however the transition at gc is first order then there is a coexistence of the paramagnetic
and the symmetry broken phase at gc . The applied field λ then prefers the symmetry broken
phase, leading to a finite 〈O〉gc

≡ mc , the (unique) value of the order parameter discontinuity
at the transition.

The central quantity of interest in our work is the following logarithmic derivative at the
critical coupling gc:

[1/δ](λ) :=
∂ log〈O〉gc ,λ

∂ logλ
. (1)

We also refer to this quantity as the “running exponent 1/δ”, since we will study this quantity
as a function of λ. According to the discussion above we expect [1/δ](λ) to approach 1/δ for
λ→ 0+ in the continuous case, while the finite value value mc of the order parameter at gc in
the first order case drives the logarithmic derivative to zero.

While not of central interest for the present work, one can also track the behavior of
[1/δ](λ) for other values of g. In the symmetry broken regime g > gc we expect the run-
ning exponent to scale to zero, as in the first order case at gc . The paramagnetic phase g < gc
requires some more care. For a unique, gapped ground state in the paramagnetic phase we
expect a standard linear response regime, resulting in a running exponent [1/δ](λ) = 1 for
small fields λ. This is actually also the expected behaviour for all g in a generic finite size
system at very small λ. We will witness this phenomenon for the finite size quantum Monte
Carlo simulations presented in Secs. 4 and 5.

While in the early days of Monte Carlo investigations of phase transitions approaches with
and without a coupling to the order parameter were pursued [30], the tediousness of the dou-
ble limit with an external field put this method at a disadvantage compared to symmetric setups
that could locate critical points and measure exponents with fewer simulations. Subsequently
with the development of powerful cluster algorithms that are tailor made for symmetric mod-
els [31,32], the order parameter coupling approach has seemingly fallen into complete disuse
in modern numerical simulations of phase transitions. A notable exception is the pinning field
method used in Ref. [33] to resolve the nature of the semimetal to Mott insulator transition in
the honeycomb Hubbard model. In that work the applied field was confined to a single site,
whereas we use a spatially extended coupling to the order parameter in our work.

In our present work we demonstrate that the order parameter coupling approach is a pow-
erful tool for diagnosing weak first order transitions, performing well beyond the abilities of
the currently used symmetric approaches. For our purposes we find its apparent drawbacks to
be inconsequential in practical simulations, allowing it to be seamlessly integrated into state
of the art numerical algorithms, here using infinite matrix product state (iMPS) and finite size
quantum Monte Carlo (QMC) algorithms. In fact the presence of an order parameter coupling
allows us to devise statistically exact QMC estimators for the running exponents as a function
of the external field, eliminating finite-difference errors and facilitating the diagnosis of first
order transitions. In the next section we demonstrate for the Q-state Potts model family that
the difference in behavior of Eq. (1) between continuous and weakly first order transitions is
surprisingly stark, and occurs at rather large values of the order parameter coupling λ and
correspondingly short correlation lengths.

1The exponent 1/δ can be obtained for a conformal field theory from the order parameter scaling dimension
∆O and the space-time dimension D as 1/δ =∆O/(D−∆O).
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Figure 1: Quantum Q-state Potts Chain: infinite system MPS simulations for the
quantum critical point with an applied symmetry breaking field λ. The left (right)
column displays the exactly known continuous (weakly first order) transitions for
Q = 2, 3,4 (Q = 5,6). The top row shows the order parameter Om as a function
of the perturbing field λ on log-log axes. The inflection points in the right panel
are highlighted with circles. The middle row presents the logarithmic derivative
[1/δ](λ), i.e. the running exponent defined in Eq. (1), of the first row, highlighting
the convergence towards the expected exponents in the left panel, and the existence
of distinct maximum in the weakly first order cases in the right panel. In the bottom
row we plot the extracted MPS correlation length, showing that the inflection point
and the corresponding maximum in the running exponent for the weakly first order
instances occur at correlation lengths of only a few lattice spacings.

3 The Q-state Potts model

We start discussing our method by an application on a challenging problem, the Q-state Potts
model in the 1+1D Hamiltonian formulation [28, 34, 35], which basically corresponds to a
spatially anisotropic version of the widely known 2D classical Potts model. We consider the
Hamiltonian already fine tuned to the exact value of the quantum phase transition between
the ordered and paramagnetic phase (i.e. working at gc), and add a symmetry breaking field
λ favoring one of the Q ferromagnetically ordered states, here chosen as q = 0:

HλPotts = −
∑

i

Q−1
∑

q=0

Q |qi qi+1〉〈qi qi+1| −
∑

i

M x
i −λ
∑

i

|0〉〈0|i , (2)

where i runs over the sites of the chain and q over the Q distinct local states q ∈ {0, ...,Q−1}.
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The operator M x
i has unity matrix elements between any two local spin states on site i.

In zero external (“longitudinal”) field (λ= 0) this model sits exactly at a continuous quan-
tum phase transition for Q = 2,3, 4 that becomes discontinuous for (integer) Q > 4 [26]. Just
above this threshold Q > 4 the first-order discontinuity is exceptionally weak and it is, in fact,
notoriously difficult for Monte Carlo simulations to correctly identify the nature of the tran-
sition, because of so called pseudo-critical behaviour associated to large remnant correlation
lengths at the first order transitions [27, 28]. This pseudo-critical behaviour is attributed to
a fixed point collision in theory space, with complex fixed points arising for Q > 4. We now
show that by introducing the external field λ at the transition, a striking qualitative difference
can be observed between the continuous and first-order cases at rather large couplings λ and
correspondingly short correlation lengths.

In the top row of Fig. 1 we display the zeroth-component magnetization
Om = 〈|0〉〈0|i−1/Q〉λ as a function of the external field λ that are obtained directly in the ther-
modynamic limit using an infinite system Matrix Product State (iMPS) DMRG algorithm, see
App. A for details on the technical aspects. In the left column we display results for the known
continuous cases Q = 2,3, 4, while in the right column results for the weakly first-order cases
Q = 5,6 are shown. The Q = 2, 3,4 data in the top row exhibits rather clean power law scaling
of Om as the coupling λ goes to zero, while in the Q = 5,6 cases a saturation of Om to a non-
zero residual magnetization is observed in the same limit. These limiting values are in very
good agreement with the exact results obtained by Baxter [36]. In the middle row we calcu-
late numerical finite-difference derivatives of logOm with respect to logλ in order to highlight
possible power law behavior Om ∝ λ1/δ. Indeed at small λ the derivatives for Q = 2,3, 4
approach the expected values for the known CFTs governing the fixed points: 1/δ = 1/15 for
Q = 2,4 and 1/δ = 1/14 for Q = 3. Note for Q = 4 there is a known logarithmic correction
to the power law behavior: m∝ (λ/ logλ)1/15 [27], leading to a tiny non-monotonicity for
Q = 4. In the weakly first order cases Q = 5,6 in contrast we observe a pronounced maximum
in the derivatives, which has its origin in the inflection point in the original data, c.f. top panel.
For our model and Q > 4 there is a saturation in Om both for small and large2 values of λ lead-
ing necessarily to (at least) one inflection point at an intermediate value of the external field,
which we denote by λ⋆(Q). In order to assess at what length scales the pronounced feature of
a maximum and the downward drift to zero at smaller λ occurs, we present in the bottom row
of Fig. 1 the correlation lengths ξQ(λ) obtained from the transfer operator of the iMPS wave
function for the different values of Q. In the continuous cases Q = 2,3, 4 we observe again
power-law behavior as expected. The most notable observation for the weakly first order cases
Q = 5,6 is that the correlation length ξQ

peak measured at the coupling λ⋆(Q) is actually quite
small, i.e. about 4 resp. 2 lattice spacings for Q = 5 and Q = 6 respectively. These correlation
lengths ξQ

peak are two to three orders of magnitude smaller compared to the huge, albeit finite,
correlation lengths at the first order phase transition itself [37,38].

We believe that the pronounced maximum feature of [1/δ](λ) at intermediate values of
the coupling λ and the subsequent drift towards zero as λ→ 0+ is a robust phenomenon for
weakly first order transitions more generally, and it might have its origin in the colliding fixed
point scenario advocated for the Q > 4 Potts models. It is notable that the very weak first
order transition for Q = 5 has a broader maximum and a relatively slow approach to zero
compared to the case Q = 6. It is however striking how different Q = 5 behaves in contrast
to the continuous transition at Q = 4, despite the presence of a logarithmic correction in the
latter case, usually spoiling a clean analysis.

These remarkable observations now pave the way to study many open problems in various
fields where weakly-first order transitions are hard to discriminate from continuous phase
transition with the methods available so far. As an important open question we will address

2at large values of λ the observables saturate at 1− 1/Q for all Q.

6

https://scipost.org
https://scipost.org/SciPostPhys.15.2.061


SciPost Phys. 15, 061 (2023)

10−3 10−1 101

λm

0.00

0.05

0.10

0.15

0.20

0.25

0.30
∂

ln
(O

m
)/
∂

ln
(λ

m
) 1/δ O(3) CFT

bilayer (a)

10−4 10−1λm

0.1

0.4

O
m

10−3 10−1 101

λm

columnar dimer (b)

L = 16

L = 32

L = 64

L = 128

10−3 10−1 101

λm

staggered dimer (c)

10−3 10−2

0.204

0.206

0.208

0.21

Figure 2: The order parameter (staggered magnetization) exponent [1/δ](λm),
i.e. the running exponent defined in Eq. (1), for three lattice models realizing the
O(3) quantum phase transition: the Heisenberg bilayer, the columnar dimer model,
and the staggered dimer model. In the left inset we provide the order parameter as
a function of the external Néel field on log-log axes, showing clean power law scal-
ing at low fields, where the expected power law 1/δ = 0.2091(1) [39] is shown for
reference with the dashed line. The measured running exponents in all three cases
monotonically approach the expected value, behaving analogously with the continu-
ous Q = 2, 3,4 Potts model. We note that the staggered dimer model seems to show
an initial fast approach to the O(3) exponent, followed by a slower approach at low
fields (right inset). Here we have faded points that we roughly judge by eye to be in
the finite size regime.

the nature of the phase transition in the J -Q model, which is a candidate for a DQCP. Before
tackling this problem, however, let us first validate our approach for a family of 2+1D quantum
many body systems with an undisputed continuous quantum phase transition, which we now
study using a finite size quantum Monte Carlo method.

4 Quantum models for the O(3) transition

We consider three models that host a quantum critical point in the 3D O(3) universality class.
The first is the well studied square lattice S = 1/2 Heisenberg bilayer system, whose Hamilto-
nian is given by

Hm
bi = J1

∑

〈i j〉

∑

a=1,2

S⃗ia · S⃗ ja + J2

∑

i

S⃗i1 · S⃗i2 +λm

∑

i,a

(−1)r
x
i +r y

i +aSz
ia . (3)

Here J1 couples nearest neighbor spins within each square lattice, and J2 is the coupling
between the layers. We have also added an external field λm that couples to a component of
the order parameter, in this case the staggered Sz magnetization.

With J1, J2 > 0 this model undergoes a transition from a Néel ordered antiferromagnet
for J2/J1 < gc to a dimer singlet phase on the interlayer bonds when J2/J1 > gc , with
gc = 2.52181(3) [40]. In order to probe the critical scaling at the transition, we compute
the order parameter Om = 〈Sz

11〉L,λm
on finite size systems of side length L using the stochastic
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series expansion (SSE) algorithm [41] with directed loops [42]. We furthermore have devel-
oped a statistically exact Monte Carlo estimator to directly measure the logarithmic derivative
∂ logOm/∂ logλm that eliminates finite difference errors (see Appendix B), cleanly extracting
the running exponent (1/δ) as a function of the field λm.

In order to paint a more comprehensive picture we also study two other models that host
the same O(3) transition but with significant finite-size corrections to critical scaling [43] in
one of them. Both models are taken on the square lattice (single layer), where again two
different bond strengths (J2 > J1) are used. Following the nomenclature of [43], we study the
columnar dimer model (CDM), consisting of columns of x-oriented strong bonds with a Fourier
component (π,0), as well as the staggered dimer model (SDM), consisting of alternating x-
oriented strong bonds with a Fourier component (π,π). For the CDM and SDM we use the
critical coupling ratios J2/J1 = 1.90951 and J2/J1 = 2.51943, respectively [43].

In Fig. 2 we show all three of the running Néel exponents [1/δ](λm) (and the bilayer Néel
order parameter in the left inset) at the critical point for the three different models. In the
bilayer model we have used J2/J1 = 2.5223, where the difference with the gc quoted above
is inconsequential for this plot but shows better agreement with the O(3) exponent in finite
size data collapses (see Appendix G). We have used β = 2L for the bilayer model and β = L/2
for the CDM and SDM as in [43], all in units with J1 = 1 (see Appendix F showing negligible
temperature effects).

The bilayer order parameter (left inset) as well as the CDM and SDM order parameters
(not shown) all display clean power law scaling at low fields, where the dashed line shows the
expected power law for reference 1/δ = 0.2091(1) [39]. The measured running exponents
(main panels) provide a more fine-grained view of the approach to the expected power law as
the field is lowered, where the O(3) exponent is again plotted as a dashed line. In the finite
size setup we are using, there is an L-dependent crossover scale for λm, below which one
ultimately observes Om∝ λm, a generic result for any finite-size system in the limit λm→ 0.
This phenomenon explains why the derivative curves for a given L start to bend upwards at
small λm. As the system size increases, this finite size regime is pushed to smaller values of λm
and a consistent picture representative for finite λm at L→∞ emerges. The infinite size (and
zero temperature) converged data reveals a monotonic increase of the running exponents,
which approaches the 1/δ value expected for a 3D O(3)Wilson-Fisher universality class [39].

Remarkably, even in the SDM, where sizeable corrections to scaling and non-monotonicity
of finite-size effective exponents have previously been reported [43, 44], we observe a clean
monotonic approach to the expected exponent. We note that within our numerical resolution
the SDM running exponent seems to contain a regime of fast approach at higher fields, giving
way to a much slower approach at lower fields. Although a more careful scaling analysis of
the SDM would be desired in this context, we can clearly see the broad picture that is captured
by all three of these critical models. While the comparatively slow convergence of [1/δ](λm)
towards the expected 1/δ value renders our approach less useful to accurately determine
1/δ, we emphasize that the important result here is the absence of a pronounced maximum in
[1/δ](λm) and the subsequent lack of a drift towards zero as λm→ 0+.

This demonstrates that implementing our method using a finite-size QMC method for a well
understood continuous 2+1D quantum phase transition leads to behavior in clear analogy to
the continuous phase transitions in the Q = 2, 3,4 Potts cases studied in 1+1D with iMPS.

5 The J −Q models

Finally we turn to a main objective of this work, which is to shed light on the nature of the
quantum phase transition between Néel order and valence bond solid (VBS) order in two di-
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Figure 3: The Néel and VBS order parameter running exponents for the square
and rectangular lattice J -Q models tuned at the transitions J/Q = 0.0447 and
Jx/Q x = 0.205, respectively. For the square lattice we use β = L/2 (Q = 1) and
for the rectangular lattice β = Lx/2 (Q x = 1). The running exponents show a local
maximum and persistent drift at low fields, behaving as the Q = 5, 6 Potts model. We
observe a striking similarity between the known first-order rectangular case and the
square lattice case, providing compelling evidence that the transition remains weakly
first-order in the square lattice case as well.

mensional S = 1/2 spin systems, thought to be described by the deconfined criticality scenario.
An important difference to the previously discussed cases is that the deconfined criticality sce-
nario describes the transition between two ordered phases, therefore we have to track the
behaviour of two separate order parameters at the transition point. At a continuous phase
transition we expect both running exponents to approach their corresponding values dictated
by the universality class in question. In contrast, at a first order phase transition the two order
parameters are both expected to be finite, as the two ordered phases coexist at the transition
point.

The most well studied model in this context is referred to as the J -Q model [3], written as

HJQ = J
∑

〈i j〉

(S⃗i · S⃗ j −
1
4)−Q
∑

〈i jkl〉

(S⃗i · S⃗ j −
1
4)(S⃗k · S⃗l −

1
4) . (4)

Here J > 0 is the antiferromagnetic coupling between nearest neighbors S = 1/2 spins on a
square lattice, and Q > 0 is a product of two adjacent J terms acting on an elementary square of
four spins in both the x and y orientations. When Q = 0 we are left with the Heisenberg model
which has Néel order, and conversely when J = 0 the spins form a columnar VBS phase [3].
At a small value of the coupling ratio J/Q ≈ 0.04, the transition between these seemingly
unrelated orders takes place. Currently, the true nature of the transition in the J -Q model is
still under debate. While Refs. [3–5,7–9] and [6,16] interpret their data as being in favour of
a continuous quantum phase transition, it appeared that the extracted critical exponents show
pronounced drifts as a function of the maximal system size. However in these simulations no
direct evidence for first order behaviour has ever been seen, such as a negative Binder cumulant
or multiple peaks in histograms of the energy or order parameters. There are however some
papers claiming to observe first order behaviour using the flowgram method [10–12].

To probe the nature of this transition we perform two separate studies: one in which a
staggered magnetic field coupling to the Néel order parameter is added, and another with a
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field coupling to the VBS order parameter. As with the O(3) models before, the J -Q model
with the Néel field is written

HJQ +λm

∑

i

(−1)r
x
i +r y

i +1Sz
i ,

with the observable Om = 〈Sz
1〉L,λm

. We write the model with the VBS field as

HJQ +λVBS

∑

〈i, j〉∈ x̂−even

(S⃗i · S⃗ j −
1
4) ,

which preferentially selects one of the four columnar VBS patterns. The VBS order parameter
is computed as the expectation value of the difference between even and odd x-bonds

OVBS = 〈S⃗2 · S⃗3 − S⃗1 · S⃗2〉L,λVBS
.

Again, we have developed statistically exact QMC estimators for the logarithmic derivatives in
both models (see Appendix B).

We furthermore compare the behavior of the J -Q model to a known first-order Néel-VBS
transition that is realized by introducing rectangular lattice anisotropy, as was previously stud-
ied in [16]. Following this methodology, we take spatially anisotropic couplings Jy/Jx = 0.8
and Q y/Q x = 0.8 on rectangular lattices with Lx = 4L y/3. In this model we do not have a
prior estimate of the transition, so it was located by scanning the binder ratio of the staggered
magnetization (in zero field) for several system sizes (see Appendix E). Here we find a rough
estimate of the transition, in this case Jx/Q x ≈ 0.205, is more than enough precision for the
results we present here. Just as in the square lattice J -Q model, we sit at the transition and
introduce separate Néel and VBS fields while measuring the running exponents.

In Fig. 3, we show the running Néel and VBS exponents as in Eq. (1) for both the square
lattice and rectangular lattice J -Q models tuned to their respective transitions. For the square
lattice J -Q model we have used the transition value J/Q = 0.0447 [7]. The left panel presents
data for each model coupled to the Néel order parameter field, while the right panel similarly
presents data for both models coupled to the VBS order parameter field. We clearly observe
strong deviations from critical power law scaling for both models with both effective exponents
drifting toward zero at small field values, suggesting coexisting Néel and VBS order at the
transitions. While our available system sizes do not allow us to track the running exponents
all the way to zero, they nevertheless approach closely (surpassing, in the rectangular case)
the unitarity bound for scalar operators in a 2+1D CFT∆φ ≥ 1/2 [45], yielding a lower bound
1/δ ≥ 1/5. The downward drift of the running exponents is substantial and the contrast to the
behavior observed in the continuous O(3) models shown in Fig. 2 on the same vertical scale
is striking. We further emphasize the similarity of the running exponents between the known
first-order rectangular case and the square lattice case, as well as point out the resemblance
to the behavior observed in the Q = 5, 6 Potts model, painting a compelling picture that the
square lattice J -Q model is weakly first order.

6 Discussion and outlook

Working tangentially to the current symmetry-preserving studies of quantum phase transitions
by reintroducing the classic definition of the order parameter in a modern context, we have
pushed the sensitivity to diagnose weakly first-order transitions to an unprecedented level. As
an important application we have shown that the SU(2) J -Q model on the square lattice does
not host a genuine DQCP, but instead a weakly first order transition with coexisting Néel and
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VBS order at the quantum phase transition. This important result also corroborates recent
field theoretical arguments claiming an absence of a genuine DQCP with SO(5) symmetry in
2+1D [24,25,46] and validates early numerical simulations claiming first order behavior based
on a flowgram analysis [10–12]. Furthermore it puts the J -Q model on the same footing as
a 3D classical loop model studied in [22], which shows also indications for a weak first order
transition, and is expected to realize yet another lattice version of the same NCCP1 field theory
as the J -Q model studied here [1,2].

In view of these results, it is clear that many previously studied models using similar
methods need to be revisited [13, 16]. As an important next step, one can determine where
the critical window as a function of N begins in the SU(N) J -Q models on the square lat-
tice [4, 6, 15, 16]. Our results might also have implications for phase transitions out of Dirac
spin liquids by virtue of a conjectured duality [21].

Since our approach effectively allows for a controlled study as a function of the correlation
length at the transition, it should naturally find applications in 2D tensor networks with applied
perturbations (see [47,48] for studies of the 2+1D Ising model and a coupled Heisenberg spin
ladder at criticality) to probe the existence of DQCP in frustrated quantum magnets [49,50],
where QMC is not applicable due to the sign problem. A closely related important study now
within reach is to probe the existence of SU(N) Dirac Spin Liquids which are conjectured to ex-
ist in many frustrated spin models [51–55], and whose field theoretical description is fermionic
QED3 with N f = 2N massless fermion flavors. In the SU(2) Dirac spin liquid context natural
perturbations are related to fermion bilinears and monopole operators recently characterized
for various lattices in Ref. [56].

The fact that in our approach moderate lattice sizes are typically sufficient to detect weak
first order behaviour suggests an immediate applicability for fermionic determinantal QMC
methods which typically operate at smaller system sizes compared to the QMC methods used
in this work. Exotic quantum phase transitions related to those discussed in the present work
have been reported for interacting fermion systems and might warrant an independent confir-
mation using our technology.

On a more speculative note it will be worthwhile to explore the possibility to transport the
ideas developed and demonstrated in this work to lattice field theory simulations of QED, QCD
or related theories of importance to high energy physics.

The DMRG and QMC source code as well as the data and plotting scripts for the main
figures (Figure 1 to 3) are freely available online [57].
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A iMPS for Potts model

In this appendix we present complementary information regarding the iMPS study of the one-
dimensional Q-state quantum Potts model presented in Sec. 3.

We define the Q-state Potts model on a spin chain of N sites and Q spin states per site
denoted as |qi〉 with qi ∈ {0,1, . . . ,Q − 1}. Writing the Hamiltonian in the eigenbasis of the
interaction term we get

HPotts = −
N
∑

i=1

Q−1
∑

k=1

�

Kk
i KQ−k

i+1 + (1+ g)T k
i

�

+λ |0〉〈0|i , (A.1)

where Ki is a diagonal matrix with its eigenvalues being the Q-th roots of unity,
Ki |qi〉 = ei2πqi/Q |qi〉, and T being the spin-flip operator: T k

i |qi〉 = |(qi + k) mod Q〉. The
perturbation strength λ couples to the sum over the projectors onto a single local state, here
the |0〉-state. It is customary to also add a perturbation with a transversal field with coupling
strength g to the Potts Hamiltonian, for g = 0 the Hamiltonian (A.1) minus an energy density
of 3 is equal to the Hamiltonian given in (2). At λ = 0 the Hamiltonian is invariant under
the global action of the symmetric group SQ and it exhibits two phases. For g < 0 the system
is ordered and the ground state space is Q-fold degenerate with the ground state breaking
the SQ symmetry. When g > 0 the system is disordered and the non-degenerate groundstate
preserves the symmetry. These phases are separated by a phase transition at λ= 0 and g = 0
which is of second order for Q ≤ 4. For Q = 2 the Potts Hamiltonian reduces to the transverse
field Ising model. In the following section we assume that g = 0.

To calculate the properties of its ground state for arbitrary Q and λ in the thermodynamic
limit we employ the generalization of the Density Matrix Renormalization Group algorithm to
infinite spin chains (iDMRG) [58]. It works by decomposing the state into a finite number of
rank 3 tensors which are repeated infinitely along the chain and thus form the unit cell. In the
present paper only unit cells of size two are used. This set of tensors is called an infinite Matrix
Product State (iMPS) which allows us to approximate the state of the system by introducing a
cutoff of the tensors’ bond dimension χ. The approximation limits the amount of entanglement
contained in the state with the entanglement entropy being capped at S = ln(χ). For systems
at a quantum critical point the entanglement entropy of the ground state diverges, however
since we are perturbing the critical systems with a relevant field the Hamiltonian is gapped, and
for large enough bond dimension our iMPS representation is basically numerically exact. The
computational difficulty increases with increasing correlation length, i.e. with smaller values
of λ.

A necessary requirement for the iDMRG is an efficient Matrix Product Operator (MPO) rep-
resentation of the Hamiltonian which is easy to achieve for models with only nearest-neighbour
interactions. The energy expectation value of an MPS is then expressed as a tensor contraction
of MPS and MPO. The algorithm variationally minimizes the energy by sweeping through the
system, optimizing the tensors of 2 neighboring sites at a time, until the energy and entan-
glement entropy converge. In every sweep the eigenvalue problem is projected into these 2
sites and solved using the Lanczos algorithm which is based on calculating the action of the
projected Hamiltonian on a wavefunction many times.

In order to speed up the tensor contractions we make use of the Hamiltonian’s symmetry. At
λ= 0 the Q-state Potts model is invariant under the global action of the non-abelian symmetric
group SQ, for λ ̸= 0 this symmetry is reduced to its subgroup SQ−1. It is technically much easier
to deal with abelian groups thus we only consider the ZQ and ZQ−1 subgroups respectively. In
order to exploit the Hamiltonian’s symmetry it needs to be decomposed in the right way. To
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achieve this we apply a global on-site unitary transformation: |ñi〉= U (Q) |ni〉, with

U (Q) =

�

1 0
0 Ũ (Q−1)

�

, (A.2)

where the (Q−1)× (Q−1) matrix Ũ (Q−1) is defined by 〈m′|Ũ (Q−1)|m〉= (Q−1)−1/2 ei 2π
Q−1 m m′ .

Note that the zeroth-component is unchanged: |0̃〉= |0〉. In the ZQ case, which is not relevant
in our paper, one should make the transformation |ñi〉 = Ũ (Q) |ni〉 instead. In this basis the
Hamiltonian can be written as

H̃Potts = −
N
∑

i=1

�Q−2
∑

k=1

Q
Q− 1

T̃ k
i T̃Q−k

i+1

�

+ Ri +λPi +
Q

Q− 1
Di Di+1 +QPi Pi+1 −1i , (A.3)

where the projectors are defined as Pi = |0〉〈0|i and Di = 1i − Pi . The spin-flip operator is
modified to T̃ k

i |ñi〉= (1−δñi ,0) |1+ (ñi − 1+ k) mod (Q− 1)〉 and Ri in this basis is given as

Ri =

















0
p

Q− 1
p

Q− 1 Q− 2
−1
−1
−1

...

















. (A.4)

We are using TeNPy’s implementation of the iDMRG algorithms as well as its methods for
optimizing tensor contractions exploiting abelian symmetries [59].

Finally we are calculating the ground state of the Potts model for multiple values of the
perturbation strength λ going as close to criticality as numerically feasible. To decrease the
compute time we calculate each groundstate for a specific λ by using the previously obtained
result of the next higher perturbation strength as initial state to the iDMRG, starting at the
product state at λ→∞.

For each value of λ the expectation value of the projector 〈|0〉〈0|i〉λ is evaluated. At λ= 0
the ZQ symmetry of the unperturbed Hamiltonian implies an equal expectation value for all
Q components, 〈|0〉〈0|i〉λ→0 = 1/Q, thus the order parameter for the Potts model is defined
as Om := 〈|0〉〈0|i − 1/Q〉λ. By numerically computing the logarithmic derivative we get the
exponent

1
δ
=
∂ logOm

∂ logλ
. (A.5)

This is done for all values of Q which are of interest and multiple bond dimensions χ as long
as it is numerically feasible, our most sophisticated calculations use χ = 2048 and require up
to 3000 sweeps. The results shown in Fig. 1 are converged in χ and have a negligible error
in the numerical derivative.

The iMPS description of a state also allows us to easily obtain the correlation length by
analyzing the eigenvalue spectrum of the transfer matrix. The correlation lengths shown in
Fig. 1 were extrapolated to infinite bond dimension by the method outlined in Ref. [60].

B QMC simulations and exponent estimators

We begin by restating the Hamiltonian in the absence of external fields:

HJQ = J
∑

〈i j〉

(S⃗i · S⃗ j −
1
4) − Q
∑

〈i jkl〉

(S⃗i · S⃗ j −
1
4)(S⃗k · S⃗l −

1
4) . (B.1)
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The two separate perturbed models are defined by

Hm
JQ = HJQ + h
∑

i

(−1)r
x
i +r y

i +1Sz
i , (B.2)

and
Hvbs

JQ = HJQ + d
∑

〈i, j〉∈ x̂−even

(S⃗i · S⃗ j −
1
4) . (B.3)

Here, in order to keep our formulae as simple as possible, we have opted for the notation
h≡ λm and d ≡ λvbs.

Beginning with Hm
JQ, the h−field introduces no sign problem since the perturbation is di-

agonal. However, the field does prohibit the mapping to a deterministic loop model. We
therefore simulate the model using the stochastic series expansion (SSE) algorithm [41] with
directed loops [42]. On a technical level, we find it convenient to absorb the staggered field
into the Heisenberg bond operator, while leaving the Q−term in tact. As a result, loop updates
on the Q interactions remain deterministic and non-deterministic decisions only need to be
made when updating the bond operators.

Directly measuring the Néel order parameter (staggered magnetization) is straightforward
in the presence of the external staggered field, since it aquires a nonzero value. More remark-
ably, the presence of the field allows us to devise a QMC estimator for the effective critical
exponent. To define this, we first need to be more explicit about the form of the Hamiltonian,
referring the reader to [41] for more general information about the SSE framwork.

First note that the external field only effects diagonal matrix elements of the bond oper-
ator, which are given by diag(0, J

2 + hB, J
2 − hB, 0) in the basis {↑↑,↑↓,↓↑,↓↓}, and hB is equal

to h divided by the coordination number of the lattice. We have also pulled out an over-
all minus sign. We now shift the bond operators by hB + ε, so the diagonal part becomes
diag(hB +ε,

J
2 +2hB +ε,

J
2 +ε, hB +ε). Here ε has been introduced to lower the bounce prob-

abilities obtained from solving the directed loop equations, and we have used ε = 4h in our
simulations.

Now that we know the matrix elements, we can see that the weights of the QMC configu-
rations are proportional to

W (c)∝
�

Q
4

�NQ
�

J
2

�NJ
�

J
2
+ ε
�ND0
�

hB + ε
�ND1
�

J
2
+ 2hB + ε
�ND2

, (B.4)

where NQ is the number of Q matrix elements, NJ is the number of off-diagonal J matrix
elements and NDi

are the numbers of different diagonal J matrix elements. Differentiating
this weight with respect to hB gives

∂W (c)
∂ hB

=

�

ND1

hB + ε
+

2ND2

J
2 + 2hB + ε

�

W (c) . (B.5)

We can now compute ∂Om/∂ hB, which is the main ingredient for the exponent estimator:

∂Om

∂ hB
=
∂

∂ hB

�
∑

c m(c)W (c)
∑

c W (c)

�

=
〈mND1

〉C
hB + ε

+
2〈mND2

〉C
J
2 + 2hB + ε

, (B.6)

where 〈mNDi
〉C ≡ 〈mNDi

〉 − 〈m〉〈NDi
〉 is the “connected” average and m is the staggered Sz

magnetization per site. Finally we can write the exponent estimator all together as:

∂ log(Om)
∂ log(h)

=
hB

〈m〉

�

〈mND1
〉C

hB + ε
+

2〈mND2
〉C

J
2 + 2hB + ε

�

. (B.7)
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To make our measurements as precise as possible, we can average over the entire imag-
inary time history when computing the staggered magnetization. This is facilitated by only
considering matrix elements that change the staggered magnetization as one moves through
the operator sequence.

We also note that simulations and measurements are nearly identical in the Heisenberg
bilayer model, where in that case again the field is incorporated into the nearest-neighbor J1
term, and updates on J2 matrix elements are deterministic.

We now describe the measurement of the VBS effective exponent in the Hvbs
JQ model, which

is slightly more complicated but conceptually similar. The Hamiltonian is given by

Hvbs
JQ = HJQ + d

∑

〈i, j〉∈ x̂−even

(S⃗i · S⃗ j −
1
4) . (B.8)

So the even columns of x-bonds have matrix elements J
2 +

d
2 , whereas the odd columns of

x-bonds and all y-bonds have matrix elements J
2 as normal. This clearly favors one of the

four columnar VBS patterns. The associated order parameter is Ovbs = 〈P1,2〉 − 〈P2,3〉, where
Pi, j = (

1
4 − S⃗i · S⃗ j) is the singlet projector on sites i, j. Ovbs is then just the difference in the

expectation value of an even x-bond and an odd x-bond.
First note that these expectation values can be measured within the SSE framework as

〈P1,2〉=
〈NJxe
〉

1
2 Nsiteβ(J + d)

, 〈P2,3〉=
〈NJxo
〉

1
2 NsiteβJ

, (B.9)

where NJxe
(NJxo

) are the number of even (odd) x-bonds in the operator string, which is why
we have divided by Nsite/2 to get the value on a single bond. It is also necessary to divide
by (J + d) and J , since the number operators give averages of the operators appearing in the
Hamiltonian, which are multiplied by those factors. We refer the reader to [61] for useful
derivations and formulas for bond operator measurements in the SSE.

As before, we now want to compute the derivative with respect to d. We will show how
this is done starting with 〈P1,2〉:

∂ 〈P1,2〉
∂ d

=
1

1
2 Nsiteβ

¨

∂
∂ d 〈NJxe

〉
J + d

−
〈NJxe
〉

(J + d)2

«

. (B.10)

The derivative of 〈P2,3〉 is given by:

∂ 〈P2,3〉
∂ d

=
∂
∂ d 〈NJxo

〉
NsiteβJ

. (B.11)

Now in order to compute the derivatives ∂
∂ d 〈NJxe

〉 and ∂
∂ d 〈NJxo

〉, we express the QMC weights
as previously. This time the configuration weights are proportional to

W (c)∝
�

Q
4

�NQ
�

J
2

�NJy+NJxo
�

J
2
+

d
2

�NJxe

, (B.12)

where NQ is the number of Q-operators, NJy
is the number of y-oriented J operators, and

NJxe
(NJxo

) is the number of x-oriented J operators at even (odd) locations from before. The
derivative with respect to d is

∂W (c)
∂ d

=
� NJxe

J + d

�

W (c) . (B.13)

We then have
∂ 〈NJxα

〉
∂ d

=
∂

∂ d

�

∑

c NJxα
(c)W (c)
∑

c W (c)

�

=
­

NJxα

� NJxe

J + d

�·

C
, (B.14)
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Figure 4: Value of the running exponent 1/δ (colorbar) as function of λ and g.
Shown are two models with continuous transition (Q = 2,3 at χ = 64) and two
models with a first order transition (Q = 5, 6 at χ = 256). To improve readability
the colorbar is adjusted for each model by relating it to values at the phase transition
(g = 0), where we used the exactly known running exponent and the peak indicated
in Fig. 1 for Q = 2,3 and Q = 5, 6 respectively.

where α= e, o and again the subscript C means the “connected” part. We can now express

∂

∂ d

�

〈P1,2〉 − 〈P2,3〉
�

=
1

1
2 Nsiteβ

�

〈NJxe
NJxe
〉C − 〈NJxe

〉
(J + d)2

−
〈NJxo

NJxe
〉C

J(J + d)

�

. (B.15)

Finally the full expression for the exponent estimator is given by

∂ log(Ovbs)
∂ log(d)

=
d
¬NJxe

J+d −
NJxo

J

¶

�




NJxe
NJxe

�

C −



NJxe

�

(J + d)2
−




NJxo
NJxe

�

C

J(J + d)

�

. (B.16)

In the end, it is just necessary to make measurements of 〈NJxe
〉, 〈NJxo

〉, 〈NJxe
NJxe
〉, and

〈NJxe
NJxo
〉. One can then compute the effective exponent using Eq. (B.16) and the statisti-

cal error can be computed by bootstrapping the binned data.

C Detuning from phase transition

While the running exponent directly at the phase transition (i.e. at gc) of the Potts model has
been discussed in detail in Sec. 3 it is interesting to investigate what happens if the system
is detuned away from the phase transition, for example because gc is not known precisely
enough. By perturbing the Potts model with a transverse field with coupling strength g as
introduced in Eq. (A.1) the system is taken away from criticality, which serves to illustrate the
range over which we observe critical scaling as λ→ 0, here shown in Fig. 4. We find that, as
expected, in the continuous cases when Q = 2,3 and when g < 0 (favoring the ordered phase),
our running exponents drift toward zero as λ→ 0. One may worry that if this were the case
studying a generic model, one might erroneously conclude a first order transition. However
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Figure 5: A comparison of the QMC exponent estimators in the J -Q model compared
with exact results on an L = 4 system. We have set Q = 1 and J = 0.0451 in both
cases. The insets show the difference between the QMC data and the exact values.

we see that further increasing g there is a wide swath - akin to a critical fan - where the expo-
nent saturates to a consistent finite value before eventually reaching the linear regime of the
disordered phase. This is to be contrasted with the case of Q = 5, 6, where the corresponding
fan is absent as λ→ 0. We conclude that when applying our methodology to generic models,
it may be necessary to study several transition point estimates to conclude first order behavior.
We note that in the case of the J -Q model, this subtlety does not appear since we separately
study both order parameters at the same transition point.

D QMC versus exact diagonalization

In order to confirm the validity of our QMC simulations and exponent estimators, we compare
with exact results obtained on small system sizes. Here we focus on the J -Q model on an L = 4
square lattice. Fig. 5 shows both of the exponent estimators compared to exact diagonaliza-
tion, where finite differences have been used to compute the logarithmic derivatives. For both
the staggered magnetization exponent (left panel) and the VBS exponent (right panel) we
have used J = 0.0451 and Q = 1. In both cases we observe agreement within the QMC error
bars, which can be seen in the insets where the difference between the QMC and ED values
are plotted.

E J −Q model with rectangular lattice anisotropy

A simple way of producing a first-order Néel to VBS phase transition is to introduce rectangular
lattice anisotropy into the J -Q model, as was previously studied for general SU(N) spin sym-
metry in [16]. Adopting this same setup, we take spatially anisotropic couplings Jy/Jx = 0.8
and Q y/Q x = 0.8 on rectangular lattices with Lx = 4L y/3. The rectangular lattice anisotropy
induces a two-fold degenerate pattern in the VBS phase. We then can estimate the value of the
transition based on the binder cumulant of the staggered magnetization, as measured in the
pure model without yet introducing the external order parameter fields. The binder cumulant
is defined as

Rm =
5
2

�

1−
1
3

〈m4
z 〉

〈m2
z 〉2

�

. (E.1)

In Fig. 6 we measure the binder cumulant for different system sizes as function of Jx/Q x ,
taking β = Lx/2 in units where Q x = 1. The step in the binder cumulate is an estimate

17

https://scipost.org
https://scipost.org/SciPostPhys.15.2.061


SciPost Phys. 15, 061 (2023)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Jx/Qx

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
m

Lx, Ly = 16, 12
Lx, Ly = 32, 24
Lx, Ly = 64, 48
Lx, Ly = 128, 96

0.0025 0.0050 0.0075 0.0100

m2

P
(m

2
)

Lx = 64
Jx/Qx = 0.2017

Lx = 32
Jx/Qx = 0.1852

Figure 6: Locating the Néel to two-fold VBS transition in the J -Q model with rect-
angular lattice anisotropy. Here we focus on the magnetic signal of the transition by
measuring the binder cumulant of the staggered magnetization. A rough estimate of
the transition at Jx/Q x ≈ 0.205 is more than enough precision for the system sizes
used in the main text. We further demonstrate the conventional signs of a first-order
transition in this model by showing histograms of our staggered magnetization mea-
surements. A clear double peaked structure emerges with increasing system size near
the transition, indicating distinct free energy minima.

for the transition point, which we roughly estimate to be Jx/Q x ≈ 0.205. This is more than
enough accuracy than is needed for the system sizes used in the main text (Lx ≤ 64). We
note that the first-order nature of the transition is strong enough for us to detect conventional
symptoms such as double peaked histograms of our binned staggered magnetization measure-
ments, which are shown in the inset. Comparing histograms near the transition shows the
peaks becoming more pronounced with increasing system size, indicating a thermodynamic
free energy with distinct local minima.

F Zero temperature convergence

We would briefly like to demonstrate the absence of finite temperature effects in the size-
independent portion of our QMC data for the running exponents. In all cases we have chosen
β ∼ L, with a prefactor larger than the inverse velocity of spin excitations. This ensures that the
imaginary time direction grows sufficiently large as a function of L such that only the ground
state contributes in the thermodynamic limit. Once the data from different system sizes begins
to overlap, we can then be confident that this portion of the the curve is also converged to zero
temperature. We demonstrate this for the square lattice J -Q model in Fig. 7, where we have
taken J = 0.447 (Q = 1) and two values of the inverse temperature (β = L/2 and β = L).
Here we see that the two data sets only differ in the finite-size regions of the curve, whereas
the size independent regions are unaffected.
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Figure 7: Absence of finite temperature effects in the size-independent region of
the running exponents. Here we show data from the square lattice J -Q model as a
function of the Néel field taken with J = 0.0447 (Q = 1) at two different inverse tem-
peratures. We note that the data only significantly differs in the finite-size region of
the curves (too low field values for a fixed system size), whereas the size independent
portion is unaffected.
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Figure 8: Here we demonstrate critical finite-size scaling of the staggered magneti-
zation as a function of system size and external staggered field with J2/J1 = 2.5223.
Exactly at the critical point, the scaling ansatz is m = L yh−D f (hL yh), which makes
the quantity hLDm only a function of hL yh . Here yh = D/(1/δ+1). The inset shows
the best estimate for yh based on pair collapses of system sizes (L, 2L) plotted as a
function of 1/L. This procedure was done for both J2/J1 = 2.52205 and 2.5223,
where the latter shows better agreement with the exponent estimate from the liter-
ature [39], and is shown in the main panel collapse. We note that these field values
are significantly lower than the ones used in the main text.
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G Additional bilayer data

Here we present supplementary data for the Heisenberg bilayer near the transition. As can be
seen in the main paper, plotting the raw effective exponent as a function of the external field
does not provide a high precision determination of the order parameter exponent. In an effort
to observe fine-grained resolution of the exponent and to further demonstrate unambiguous
critical scaling in this model we perform data collapses [62, 63] at the transition and as a
function of the external field and system size, as can be seen in Fig. 8. Here by plotting the
exponent obtained from pair collapses of system sizes (L,2L), we observe high sensitivity with
respect to the value of the transition used during data collection (shown for J2/J1 = 2.52205
and 2.5223 in the inset). Of the two values tested, the best agreement with the exponent
quoted in the literature [39] is obtained with J2/J1 = 2.5223 and so this value is used in the
data presented in the main text.
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