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Abstract

We introduce an algorithm that constructs disordered mass-spring networks whose elas-
tic properties mimic that of glasses by tuning the fluctuations of the local elastic prop-
erties, keeping fixed connectivity and controlling the prestress. In two dimensions, the
algorithm reproduces the dependence of glasses’ vibrational properties, such as quasi-
localised vibrational modes and Boson peak, on the degree of stability. The sound attenu-
ation displays Rayleigh scattering and disorder-broadening regimes at different frequen-
cies, and the attenuation rate decreases with increased stability. Our results establish a
strong connection between the vibrational features of disordered solids and the fluctua-
tions of the local elastic properties and provide a new approach to investigating glasses’
vibrational anomalies.
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1 Introduction

The density of vibrational states (vDOS) controls solids’ specific heat and transport proper-
ties [1,2]. The vDOS of amorphous solids differs qualitatively from that of crystals. In crystals,
the low frequency vibrational excitations are plane waves (phonons) distributed in frequency
according to Debye’s law, Dp(ω) ∝ ωd−1 in d spatial dimensions. On the contrary, amor-
phous materials have an excess of low-frequency modes over Debye’s prediction that induces
a peak in the reduced density of states D(ω)/ωd−1 at the Boson peak frequency, ωbp, in the
terahertz regime for molecular solids. Previous works have attributed the Boson peak to elas-
tic disorder [3–5], localized harmonic/anharmonic vibrations [6–9], broadening of van Hove
singularities [10,11] (but see [12]). In addition, in amorphous solids the low-frequency exci-
tations comprises both phononic-like modes and additional quasi-localized vibrational modes
(QLMs) that appears to be universally distributed in frequency as Dloc(ω) = A4ω

4 [13–16],
with A4 decreasing as the stability of the material increases [17]. The low-frequency ω4 scal-
ing of the density of soft-localized modes may originate from general considerations on the
properties of localized excitations in disordered systems [18] (see, however [19]). The univer-
sality of the scaling law [14,15] and its dimensionality independence suggest that this scaling
has a mean-field origin [20–22]. Finally, in amorphous materials the extended low-frequency
modes are not phonons: even in the absence of temperature induced anharmonic effects [23],
phonons of wave vector κ attenuate with a rate Γ (κ) exhibiting a crossover from a Rayleigh
scattering [24] regime, Γ ∝ κd+1, to a disordered-broadening regime, Γ ∝ κ2 [25–29], as κ
increases.

The squared vibrational eigenfrequencies ω2 are the eigenvalues of the matrix of the sec-
ond derivatives of the energy with respect to the particle positions or Hessian matrix. As such,
the vibrational anomalies of amorphous materials may possibly be rationalized within random
matrices [30–35]. Previous works primarily focused on the eigenvalues of Wishart matrices,
which are positively defined and hence may model stable systems. A mean field [36] random-
matrix approach suggests that the Boson peak may originate from the reduction in coordi-
nation number driving the system toward isostaticity [31, 37] and from hierarchical energy
landscape. These two scenarios are possibly relevant in colloidal hard-sphere-like glasses and
highly connected molecular systems. The random matrix approach may also be used to inves-
tigate QLMs. In this case, the issue is determining the random matrix ensemble reproducing
the Dloc(ω) distribution characterizing amorphous solids or, equivalently, the correlations to
be enforced on the matrix. Research in this direction [38] succeeded in reproducing a pseudo-
gap, D(ω)∝ ωα, with an exponent α < 4. In this research direction, the issue is integrating
the two approaches to random matrices that reproduce at the same time Boson peak and
quasi-localized modes, as well as their correlations.

Other approaches recovered theω4 distribution by describing an amorphous material as an
elastic continuum punctuated by defects, possibly anharmonic or interacting [21, 22, 39, 40].
Localized vibrations may thus cause all vibrational anomalies of glasses, considering that they
may induce the Boson peak [6–9] and control sound attenuation in Rayleigh’s theory [24].
Recent numerical results supported this scenario in three dimensions by demonstrating a re-
lation between QLMs’ frequency distribution and Boson peak frequency [17, 41], A4∝ ω−5

bp .
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In two-dimensions, vibrations with frequencies close to the Boson peak consist of phonons
hybridized with QLMs [42].

In this manuscript, we investigate the physical origin of the vibrational anomalies of amor-
phous solids by creating mass-spring networks, or equivalently Hessian matrices, that repro-
duce them and their relationships. Rather than looking for the ensemble of random matrices
exhibiting the anomalies of interest, we study how to vary an amorphous solid’s mass-spring
network to modulate them. Similar approaches have been introduced to induce a Boson peak
in unstressed networks [43] or suppress A4 by artificially reducing the prestress in stressed
ones [44]. Here, we introduce an algorithm to generate systems with varying degrees of elas-
tic disorder and prestress. We find that the boson peak frequency A4 satisfies the relation
A4∝ω−5

bp and that A4 decreases as the degree of elastic disorder is suppressed. Our networks
also reproduce sound’s attenuation crossover from a Rayleigh scattering to a disordered broad-
ening regime observed in amorphous solids. In the Rayleigh scattering regime, the attenuation
rate relates to the material properties as predicted by fluctuating elasticity theory [3, 4], con-
sistently with our observation of no varying correlations in the elastic properties. Our results
support a deep connection between the vibrational anomalies and glasses and clarify their
relationship with the fluctuations of the local elastic properties.

The paper is organised as follows. We introduce our approach to construct mass-spring
networks in Sec. 2. We illustrate how it influences geometrical and macroscopic elastic prop-
erties in Sec. 3, and the local elastic ones in Sec. 4. Sec. 5 demonstrates that the vibrational
spectrum of our networks reproduces the vibrational anomalies of amorphous materials and
their correlations [41]. Finally, Sec. 6 shows that sound attenuation in our networks crossovers
from Rayleigh scattering regime Γ ∼ ω3 to disorder-broadening regime Γ ∼ ω2, as expected
for two-dimensional solids. We summarise our results and discuss future research directions
in the conclusions.

2 Numerical model and protocols

Our mass-spring network generating algorithm takes as input the disordered mass-spring net-
work associated with the linear response regime of an amorphous solid, which generally has
bond-depending elastic constants and rest lengths. We transform this original network by
swapping the attributes of randomly selected bond pairs, i.e., by exchanging their spring con-
stants and rest lengths, as schematically illustrated in Fig. 1. Henceforth, the algorithm does
not vary the connectivity. We define the fraction of swapped bonds as f = 2Nswap/Nb, where
Nswap is the number of swap moves, Nb the number of bonds in the network, and the factor 2
accounts for the fact that each swapping event involves two bonds. Hence, for f = 0 we retain
our original network, while for f = 1 each bond has been swapped once on average. After the
bond swapping, we minimize the energy of the new network bringing it into a mechanically
stable configuration and study its vibrational properties.

We remark that, on increasing f , the bond randomization procedure destroys the correla-
tions in the local elastic properties of the initial network more effectively. However, regardless
of the f value, the elastic properties of the final network might or might not exhibit correla-
tions that build up during the final minimization procedure. The exact relation between f and
correlation in the elastic properties, if any, needs to be determined a posteriori.

The swapping procedure may change the network’s prestress. To ascertain if the changes
in the prestress correlate with changes in the vibrational properties, for selected f values we
also generate a set of networks at fixed prestress, which we tune by varying the density after
the bond-swapping procedure.

We have implemented our bond-swapping procedure in two dimensions. To generate our
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Figure 1: Schematic of the bond-swapping algorithm we use to tune the elastic prop-
erties of a disordered mass-spring network. In each bond swapping event, we ran-
domly select two elastic springs and swap the values of their elastic constants and
rest lengths. We obtain different network by varying the fraction of swapped bonds
f = 2Nswap/Nb, where Nswap is the number of swap moves and Nb the number of
bonds in the network, and then minimizing the energy of the resulting network.

initial network, we consider systems of particles interacting via the Weeks-Chandler Andersen
(WCA) potential

Ui j(ri j) = 4ε

�

�

σi j

ri j

�12

−
�

σi j

ri j

�6�

+ ε , ri j ≤ 21/6ri j , (1)

with ri j the distance between interacting particles, σi j = (σi +σ j)/2.0 where σi is a particle
diameter drawn from a uniform random distribution in the range [0.8:1.2]. We equilibrate
systems at fixed number densityρ = 1.2 at high temperature T = 4ε, and then instantaneously
quench them into amorphous solid configurations by minimizing the energy via the conjugate-
gradient algorithm [45].

We generated initial mass-spring networks with N = 1024 to 360000 particles. Each net-
work is fed to our algorithm to create different networks by swapping a fraction f of the bonds.
For each N and f , we average our data over 200 independent initial networks unless otherwise
specified.

3 f dependence of mechanical and geometrical properties

We investigate the influence of the bond-swapping procedure on the geometrical and mechan-
ical properties of the elastic network in Fig. 2. Panel a shows that bond swapping does not
affect two-point correlations as the radial distribution function is de-facto f -independent. In
panel b, we study the f dependence of the distribution of the interparticle forces F. We obtain
our initial f = 0 network by minimising the energy of a system of particles interacting via a
repulsive potential. Consequently, for f = 0 all interparticle forces are positive, i.e., repulsive.
The swapping protocol changes the interparticle forces’ distribution by inducing tensile forces.
These changes influence the network’s mechanical properties by increasing the shear modulus
and reducing the pressure, as in Fig. 2c. The reduction in pressure results from the emer-
gence of tensile forces. To rationalise the origin of the shear modulus’ change, we decompose
µ0 = µa − µn.a. in its affine and non-affine contribution. We find µ0 increases with f as the
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Figure 2: Panel (a) illustrates the radial distribution function of N = 40000 particle
systems. Panel (b) shows the distribution of the magnitude of the spring forces F
normalized by their average value. Data are averaged over 200 configurations. Panel
(c) illustrates the dependence of shear modulus µ0 on the swapping fraction f . Panel
(d) shows the variation of pre-stress e with f . Data (b)-(d) are for N = 1024. Full
symbols refer to different f values, e.g., as in (b). Open symbols for f ≥ 0.6 represent
systems compressed to impose a fixed pre-stress value.

affine contribution grows while the non-affine contribution decreases.
As the swapping fraction f increase, the prestress [46,47] e=(d − 1)〈(−U ′(ri j)/ri jU

′′(ri j)〉i j

monotonically decreases, as illustrated in Fig. 2d. The prestress change is small and compa-
rable to that reported in previous works [44, 48], and mostly occurs on moving from f = 0
to f > 0, i.e., as tensile forces appear in the system. To assess if this small change in pre-
stress could sensibly affect the vibrational properties, at selected f values we create additional
networks by changing the density to impose a fixed prestress value. In Fig. 2d, we use open
symbols to indicate the pre-stress value of these configurations.

4 Disorder parameter and fluctuations of elastic properties

Our investigation of the local elastic properties starts from the measure of particle-based elastic
ones [49], which we obtain by studying how a per-particle defined stress tensor varies under
imposed external deformations [41]. We provide details in Appendix A. The distribution of the
single-particle shear modulusµi = µx y,i [49] has a central Gaussian peak and long, asymmetric
tails, as illustrated in Fig. 3a, where the moduli are scaled by their averaged value µ0 (equal
to the macroscopic shear modulus). We previously observed analogous distributions in three
dimensions [41]. Fig. 3a clarifies that the scaled variance γ1 = σ2

µi
/µ2

0 of the single-particle
shear modulus decreases as f increases.

The spatial heterogeneities of the local elastic constant are commonly assessed via the
investigation of the disorder parameter γ introduced in Schirmacher’s fluctuating elasticity [3,
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Figure 3: (a) Scaled distribution of the single-particle shear modulus. (b) Correlation
function of the single-particle shear modulus defined in Eq. 3. Symbols represent
different f values as in Fig. 2d.

50]. In this theory, the elastic constants are assumed to be short range correlated. Therefore,
according to central limit theory, the fluctuations σw of the shear modulus coarse-grained
over a large length scale w scale asymptotically as the inverse of the number of particles in
that region, Nw∝ wd in d spatial dimensions. Therefore, the normalised fluctuations of the
shear modulus asymptotically scale as

σ2
w

µ2
0

∝
γ

Nw
, (2)

where γ is proportional to the fluctuations of the single-particle modulus and the correlation
volume.

The assumption of spatially uncorrelated elastic constants does hold for amorphous solids.
Indeed, stability induces long-range shear correlations (∝ r−d in d spatial dimensions) with
quadrupolar spatial symmetry in the shear stress [51] and the shear modulus [49,52]. These
correlations have been numerically observed in model systems [49, 51, 52] via the study of a
radial correlation function that occurs for the quadrupolar symmetry [49,52],

C(r) =
〈µ(0)µ(r)〉 − 〈µ〉2

〈µ2〉 − 〈µ〉2
cos(4θ ) , (3)

where θ is the angle between r and the x-axis (as µ= µx y). Our model amorphous networks
reproduce these correlations, as illustrated in Fig. 3b. The figure demonstrates that curves
corresponding to different f values collapse onto each other. This observation indicates that
the bond-swapping does not alter the elastic constant’s spatial correlations, as conversely the
asymptotic r−2 decay would have set in after an f -dependent length.

While the local shear modulus has long-range correlations, the anisotropy of these corre-
lations ensures that 〈µ(0)µ(r)〉 = 0 at all r. Equivalently, the radial correlation function of
the local shear modulus appears δ-correlated if the quadrupolar symmetry is not taken into
account. Because of this, the fluctuations of the shear modulus of Nw particles enclosed in
a compact volume are insensitive to anisotropic correlations and scale as if there were no
correlations, Eq. 2. Indeed, many previous works verified Eq. 2, e.g. [4,23,41,44,53,54].

The coarse-grained normalised fluctuations of the single-particle shear modulus of our
model system also satisfy Eq. 2, as we demonstrate in Fig. 4a. The asymptotic value of the
scaled fluctuations define the disorder parameter γ, we find to decrease as the degree of swap-
ping f increases, as in Fig. 4b. The disorder parameter depend on the fluctuations of the
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Figure 4: Panel a illustrates the dependence of fluctuations of the local shear mod-
ulus on the coarse-graining length scale w. Panel (b) shows the asymptotic value of
Schirmacher’s disorder parameter γ as a function of swapping fraction f . The dis-
order parameter is proportional to the normalised fluctuations of the single-particle
shear modulus. The inset illustrates that γ is to a good approximation proportional
to the normalised fluctuations of the single-particle shear modulus γ1.

single-particle shear modulus and on its spatial correlations. Since Fig. 3b proves that spatial
correlation are f -independent, we expect γ to be proportional to the scaled fluctuations of the
single-particle shear modulus, γ∝ γ1, as we observe in the inset of Fig. 4b.

These investigations demonstrate that the local elastic properties of our model systems
have the same correlations observed in amorphous materials, provided the elastic correlation
length stays constant. The dependence of the disorder parameter γ on f indicates that swap-
ping leads to the networks resembling those of glasses with increased stability.

5 Vibrational spectra

We now show that the bond-swapping algorithm leads to elastic networks whose vibrational
properties exhibit a Boson peak and QLMs and investigate how these vibrational anomalies
relate to the disorder parameter γ.

5.1 Boson peak

We determine the vibrational density of states of large N = 160000 systems by Fourier trans-
forming the velocity auto-correlation function. Fig. 5(a) illustrates the vDOS for different f
values, upon scaling the frequency by ω0 = cs/a0, with cs =

p

µ0/ρ the shear-wave speed
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Figure 5: Panel (a) illustrates the density of states of system with N = 160000 as
a function of ω/ω0 for different swapping fractions f . The Boson peak frequency
shifts towards higher frequency on increasing f . Panel (b) shows the reduced D(ω),
as a function of ω/ω0. The Boson peak strength (D(ωbp)/omegabp increases with
the disorder parameter, as in the inset.

and a0 = ρ−1/2 the interparticle spacing. The reduced vDOS D(ω)/ω exhibits a boson peak
at characteristic frequency which increases with f . Fig. 5(b) illustrates the reduced density of
states, to highlight that the boson peak strength decreases as f increases, or equivalently, the
disordered parameter decreases, as illustrated in the inset. These results further confirm that
swapping leads to networks resembling those of stable glasses, which have a reduced Boson
peak anomaly [3,7,17,41,50].

5.2 Quasi-localized modes

We investigate the vibrational spectrum’ low-frequency end via the direct diagonalization of
the Hessian matrix. We focus on small N = 1024 systems to shift the lowest phonon frequency
(ωmin ∝ cs/L) upwards, exposing the QLMs, and perform averages over 50000 realizations
for each f value. For all swapping probabilities, f , QLMs are distributed in frequency as A4ω

4,
as illustrated in Fig. 6a. The amplitude A4 decreases on increasing f , as in the inset, again
suggesting that networks with larger f mimic those of glasses with increased stability.

Our swapping procedure leads to a small change in pre-stress e, which could be considered
responsible [44] for the observed change in A4. To assess this possibility, for some values
of f > 0 we have prepared additional networks by slightly changing the density, and re-
minimizing the energy, after the swapping procedure. We considered density changes that
induce a net zero-change in the pre-stress, as shown with open symbols in Fig. 2d. Fig. 6
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Figure 6: (a) Dloc = A4ω
4 scaling of low-frequency density of states. Different closed

symbols indicate different swapping fraction f . The inset illustrates the f depen-
dence of the prefactor A4. Open symbols for f ≥ 0.6 represent compressed systems
of constant prestress in both the main panel and the inset. (b) A plot of Dlocω

5
bp/n

vs ω, with n a number density that weakly depends on f as in the inset, leads to a
data collapse. For each f , data are averaged over 50, 000 configurations of N = 1024
particles.

demonstrates that the low-density end of the vibrational density of states of these additional
networks match those of the original ones, clarifying that small changes in the prestress do
not affect the vibrational properties.

The amplitude A4 has the units of a density of modes over a frequency to the power 5. If
ωbp is the QLMs’ characteristic frequency, then A−1

4 = ω5
bp/n with n the number density. In

Fig. 6, we find that if D(ω)ω5
bp/n is plotted versusω4 data for different f collapse on a master

curve, A4ω
5
bp having a weak f dependence, particularly for f > 0, as in the inset. This result

establishes a close correspondence between Boson peak and QLMs. The estimated values of n
are essentially constant. A similar result holds in three-dimensional glasses [17, 41]. In that
case, however, the density of modes n resulted smaller by a factor of ten. However, Ref. [16]
found more stable glasses to have a smaller n.

We estimate the typical size of a mode as N p, with p the mode-participation ratio. Fig. 7
shows a crossover from extended modes, where N p is of the order of N = 1024, to more
localised ones as the frequency decreases. Interestingly, the localised modes involve around
N p ≃ 100 particles, regardless of the swapping fraction f . This result is consistent with
previous ones suggesting that the size of the localised modes relates to the correlation length of
the elastic properties [41], as we do not see this length changing with f (see Fig. 3b). Besides,
the large asymptotic N p value indicates that the low-frequency modes might not be truly
localised. Indeed, previous results have shown that the lowest frequency modes have an N
independent N p value in three and four spatial dimensions [55], qualifying them as localised.
Conversely, N p grows with N in two-spatial dimensions, indicating that two-dimensional low-
frequency modes are not truly localised.

6 Phonon attenuation

We now discuss how swapping influences phonon attenuation. To evaluate the phonon atten-
uation rate, Γ , we excite [56,57] a transverse acoustic wave by giving each particle a velocity
v0

i = AT cos(κr0
i ), where ATκ = 0, considering κ in which one among κx and κy is zero, and
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evaluate the velocity auto-correlation function:

C(t) =

∑N
i=1 vi(0).vi(t)
∑N

i=1 vi(0).vi(0)
. (4)

We remind we work by definition in the linear response regime as we are considering the
response of a system of masses and springs. For each κ = |κ|, we average this correlation
function over 30 phonons from independent samples for N ≤ 360000. Finally, we extract
attenuation rate Γ and frequency ω as a function of wave-vector κ by fitting the velocity auto-
correlation function to a damped oscillation, cos(ωt)e−Γ t/2. As an example of this procedure,
we show in the inset of Fig 8 the velocity autocorrelation function for κ = 2π

L (3, 0,0) in a
N = 160000 system and its damped exponential fit.

Fig 8 illustrates the dependence of the attenuation parameter onω/ω0. At all f values, we
observe the crossover from strong Rayleigh scattering Γ ∼ ω3 to disorder-broadening regime
Γ ∼ ω2 with increasing frequency ω as found in glasses. At fixed ω/ω0, the attenuation
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parameter Γ reduces with increasing f . We remark that these results do not suffer from size
effects, as we explicitly show combining data for different N values.

Rayleigh’s original model [24] explains theωd+1 scaling of the attenuation rate by describ-
ing the elastic medium as an elastic continuum punctuated by isolated defects. In this model,
the attenuation rate depends on the number density of defects n, their size ξ, and the devia-
tion of their shear elastic properties from the background. In terms of the disorder parameter
γ, Rayleigh’s prediction results [41]

Γ
ξ

cs
∝ γ
�

ωξ

cs

�d+1

. (5)

The same prediction is recovered by a version of fluctuating elasticity theory that considers
the elastic properties to be correlated over a length scale ξ [41, 50]. In the present system
two-dimensional system, at variance with the three-dimensional case, the typical size of the
localised modes is constant. This suggests that ξ is constant so that Rayleigh’s prediction

simplifies to Γ a0
cs
∝ γ
�

ωa0
cs

�4
. This prediction is obtained by fluctuating elasticity theory at

constant elastic correlation length [3]. Eq. 5 with ξ constant has also been recovered by
studying the disordered induced broadening of the width of phonon bands [58].

Fig. 9 illustrates the dependence of Γω2
0/ω

d+1 on ω/ω0, and demonstrates that the low-
frequency attenuation rate is well described by the theoretical prediction of Eq. 5 with ξ con-
stant. This result confirms previous investigation of sound attenuation in two-dimensional
systems [44]. In three dimensions, Eq. 5 also holds, but the correlation length ξ, identified
with the size of the soft modes, decreases as the glass becomes more stable [41].

Eq. 5 predicts the dependence of the attenuation rate on the disorder parameter and the
elastic correlation length up to a constant factor. Estimating this factor suggests that the fluc-
tuating elasticity framework quantitatively underestimates the damping coefficient [59]. Pos-
sibly, this occurs as the theory uses linear elasticity to account for the scattering by sources
of length scale ξ, without considering that elasticity theory only holds on larger length
scales [16]. In addition, fluctuating elasticity theory assumes the local elastic constant to
be short-range correlated, while conversely, they are long-range correlated, as we illustrated
in Fig. 3b.
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7 Conclusions

We have introduced an algorithm that modulates the elastic disorder of a mass-spring network
without affecting its connectivity by swapping the properties of randomly selected bonds. We
have generated a series of disordered networks and investigated their elastic properties using
this algorithm and an initial network derived from a two-dimensional model system. Increas-
ing the fraction of swapped bonds suppresses the fluctuation of the shear modulus, reduces the
Boson peak’s amplitude and the Boson peak’s frequency over the natural frequency ω0, and
increases the typical frequency of the low-frequency modes. As such, bond-swapping leads
to networks whose vibrational properties increasingly resemble those of stable glasses. The
observed changes in vibrational properties do not relate to variation in the connectivity occur-
ring close to the jamming point [60], or analogous, to the emergence of many weak contacts
leading to a small effective connectivity [61]. Similarly, they do not originate from changes in
the prestress.

The generated networks reproduce the sound wave attenuation rate’s crossover from a low-
frequency Rayleigh scattering to a disordered broadening regime characterizing amorphous
solids in the harmonic approximation. The attenuation rate in the Rayleigh scattering regime
scales with the material properties as predicted by fluctuating elasticity theory, which works
under the constant shear modulus correlation length assumption.

Our investigation of the bond-swapping algorithm to a two-dimensional model network
reproduces vibrational anomalies and sound attenuation observed in two-dimensional amor-
phous solids. Soft modes are dimensionality dependent as in two-dimensions they are not
truly localised [14,62], a feature possibly connected to the dimensionality dependence of the
glasses’ relaxation dynamics [63–66]. It would be interesting to assess if the bond-swapping
algorithm reproduces three-dimensional systems’ vibrational properties. More generally, the
influence of dimensionality on sound attenuation requires further investigations.
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A Local elasticity

Within two-dimensional linear elasticity the macroscopic stress and the macroscopic strain
are related by σα = cαβεβ , with α,β ∈ {x x , y y, x y} and cαβ the stiffness tensor. Here, we

define the local stiffness matrix ccg
αβ
= dσcg

α

dεβ
as the ratio between a locally defined stress and

the macroscopic strain [41,52]. We define the coarse grained stress as σcg
α (w) = 〈σ(i)α 〉, where

the average is over all particles i in the coarse-graining volume, and σ(i)α is a per-particle
stress [49].

We note that other approaches could be used to define local elastic properties [67, 68],
e.g., by introducing locally defined stresses and strains. These diverse definitions converge
for large coarse-gaining lengths but differ at finite w. The definition we have adopted here
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recover self-averaging. In addition, with this definition the statistics of the elastic properties
coarse grained over a sub-region containing N0 particles of a N ≫ N0 system match those of a
N0 particle system [41].

Practically, we evaluate cαβ by monitoring the change in the stresses of the particles in
response to small deformation followed by energy minimization, to capture the non-affine
contribution to the elasticity, making sure we work in the linear response regime. We coarse
grain the single-particle elastic properties over square regions of side length w.
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