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Abstract

In this paper we present a new integrable deformation of the Hubbard model. Our de-
formation gives rise to a range 3 interaction term in the Hamiltonian which does not
preserve spin or particle number. This is the first non-trivial medium range deformation
of the Hubbard model that is integrable. Our model can be mapped to a new integrable
nearest-neighbour model via a duality transformation. The resulting nearest-neighbour
model also breaks spin conservation. We compute the R-matrices for our models, and
find that there is a very unusual dependence on the spectral parameters in terms of the
elliptic amplitude.
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1 Introduction

The Hubbard model describes the physics of interacting spin-1/2 fermions on the lattice, and it
is one of the most important models in the condensed matter literature. In one space dimension
it is exactly solvable by the Bethe Ansatz [1,2], enabling the exact computation of interesting
phenomena such as spin-charge separation. The model is integrable and it can be embedded
into the standard framework of the Yang-Baxter equation; this is achieved using the R-matrix
of Shastry [3]. The transport properties of the model have been an object of interest for many
decades (see for example [4]), and research in this direction is still ongoing [5–9]. Recently so-
called integrable quantum quenches have also been considered in the 1D Hubbard model [10],
using information also about exact overlaps [11, 12]. The recent work [13] derived explicit
expression for all local charges of the model.

The Hubbard model is also important for research on the AdS/CFT correspondence [14].
It turns out that the R-matrix, which is relevant for the AdS/CFT correspondence, is related to
Shastry’s R-matrix [15, 16]. This remarkable relation shed some new light on the symmetry
algebra of the Hubbard model. It was known for a long time that the Hubbard model exhibits
su(2) ⊕ su(2) symmetry [17, 18]. By using the map to string theory these could be seen as
coming from a centrally extended superalgebra from which the Hubbard model can be ob-
tained in a certain limit [19]. Moreover, this observation recently lead to the formulation of
the so-called quantum spectral curve for the Hubbard model [20].

Over the years, many extensions and generalizations of the Hubbard model appeared, and
many of the models were found to be integrable. Examples include the models found from
the R-matrix of Shastry [21, 22], the models of Bariev and Alcaraz [23] (see also [24]), the
Essler-Korepin-Schoutens model, [25], and multi-component generalizations [26–28].

In this paper we consider a new extension of the Hubbard model. Our model belongs to the
class of medium range spin chains: it has next-to-nearest-neighbour interactions and it is still
integrable. The model depends on two parameters: the Hubbard interaction strength and a
deformation parameter. If both parameters are real, the model is Hermitian. The deformation
violates both the spin and charge conservation, therefore our model is reminiscent of the XYZ
spin chain. Accordingly, we find that the R-matrix is elliptic. However the dependence of the
R-matrix on the spectral parameter in very unusual.

We furthermore find that the new model can be transformed into a spin chain with nearest-
neighbour interactions after applying a certain duality (or bond-site) transformation. This
model is also characterized by two parameters, whose reality determines the Hermiticity of
the model. However, after the transformation there is no direct connection to the Hubbard
model.

The paper is structured as follows. In Section 2, we will first briefly discuss the Hubbard
model, with both the fermionic and the bosonic formulations, and the symmetries. After this,
in Section 3 we introduce the three-site extension of the Hubbard model and show that it
is integrable. We are also giving the explicit expression of the next conserved charge in the
Appendix B. In Section 4, we introduce the bond-site transformation and show that our model
becomes a new integrable model with nearest-neighbour interactions. In Section 5 we prove
the integrability properties of our model; the explicit form of the R-matrix is presented in the
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Appendix A. Finally, in Section 6 we discuss the large coupling limit of the models.
We have attached a Mathematica notebook which contains two sections with the explicit

expressions of the matrices of the following operators:

• Two-site model, with the Hamiltonian H2 (43) and the R-matrix (A.89)

• Three-site model, with the Hamiltonian H3 (28), the Lax operator Ľ j, j+1, j+2 (78) and
H̃ (B.3).

2 The Hubbard model

In this section, we give the basic definition of the Hubbard model. We also discuss several
transformations and reformulations to bring it into a form, which is more convenient for our
later purposes. We also briefly discuss the symmetries of the Hubbard model.

Definition Let us consider a fermionic Hilbert space, with two species of particles which can
be identified with electrons with spin up and down. We use the standard fermionic creation
and annihilation operators (c↑,↓j )

†, c↑,↓j , which satisfy the canonical anti-commutation relations
¦

cαj , cβk
©

=
¦

(cαj )
†, (cβk )

†
©

= 0 , α,β =↑,↓ ,
¦

cαj , (cβk )
†
©

= δα,βδ j,k ,
(1)

where j, k refer to the local Hilbert spaces.
We will also use the local particle number operators nαj = cα†

j cαj . The local Hilbert space is

spanned by the four vectors1

|;〉 , |↑〉= (c↑)†|;〉 , |↓〉= (c↓)†|;〉 , |↕〉= (c↓)†(c↑)†|;〉 . (2)

The Hubbard model [2,29] is defined by the Hamiltonian

H =
∑

j

�

(c↑j )
†c↑j+1 + (c

↑
j+1)

†c↑j + (c
↓
j )

†c↓j+1 + (c
↓
j+1)

†c↓j + Un↑j n
↓
j

�

, (3)

where U ∈ R is the coupling constant of the model. We will consider the model with both
periodic and free boundary conditions. In the periodic case it is understood that the sum over
j runs from 1 to L with the identification L + 1 ≡ 1, whereas in the case of free boundary
conditions j runs from 1 to L − 1.

The model has particle number conservation for both species separately. Hence the Hamil-
tonian commutes with the “total particle number” N and the “total spin” Sz defined as

N =
∑

j

�

n↑j + n↓j
�

, Sz =
∑

j

�

n↑j − n↓j
�

. (4)

Therefore, it is possible to add two magnetic fields. A convenient choice is to add magnetic
fields so that the interaction term becomes particle/hole symmetric. This choice preserves the
integrability of the model and its explicit form is

H ′ =
∑

j

�

(c↑j )
†c↑j+1 + (c

↑
j+1)

†c↑j + (c
↓
j )

†c↓j+1 + (c
↓
j+1)

†c↓j +
U
4
(1− 2n↑j )(1− 2n↓j )

�

. (5)

This Hamiltonian enjoys su(2) ⊕ su(2) symmetry; the symmetry properties will be discussed
in more detail below.

1In what follows, in particular in the Appendix A, we will use the standard basis ei , where
{e1, e2, e3, e4}= {|;〉, |↑〉, |↓〉, |↕〉}.
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Spin chain formulation For our purposes it is convenient to work with the “bosonic” version
of the model. In order to do this, we perform an (inverse) Jordan-Wigner transformation to
commuting spin chain operators. The operation can be performed in the case of open boundary
conditions. The local Hilbert space is the tensor product

Vj = C2 ⊗C2 , (6)

with the full Hilbert space being the tensor product

V = ⊗L
j=1Vj , (7)

with L the length of the spin chain. Using a standard notation in the literature, we introduce
two sets of Pauli matrices σa and τa, a = x , y, z that act respectively in the first or in the
second copy of C2. The connection between the operators is

σ−j =





j−1
∏

k=1

(−1)n
↑
k



 c↑j , τ−j =





j−1
∏

k=1

(−1)n
↓
k



 c↓j , (8)

σ+j = (c
↑
j )

†





j−1
∏

k=1

(−1)n
↑
k



 , τ+j = (c
↓
j )

†





j−1
∏

k=1

(−1)n
↓
k



 , (9)

σz
j = 1− 2n↑j , τz

j = 1− 2n↓j . (10)

This transforms the Hubbard model Hamiltonian (5) to its bosonic formulation

H ′′ =
∑

j

�

σ+j σ
−
j+1 +σ

−
j σ
+
j+1 +τ

+
j τ
−
j+1 +τ

−
j τ
+
j+1 +

U
4
σz

jτ
z
j

�

, (11)

where U is still the coupling constant of the model. At U = 0 the model describes two inde-
pendent XX spin chains which do not interact with each other.

Let us now consider the model with periodic boundary conditions and volume L = 4k,
k ∈ N. In this case, we can perform a similarity transformation by the diagonal operator

D = DσDτ , (12)

with

Dσ = ⊗L
j=1

��

i j 0
0 1

�

⊗ 12

�

= ik exp





∑

j

iπ j
4
σz

j



 , (13)

Dτ = ⊗L
j=1

�

12 ⊗
�

i j 0
0 1

��

= ik exp





∑

j

iπ j
4
τz

j



 , (14)

12 is the 2× 2 identity matrix.
Then we obtain

H1 ≡ D−1H ′′D =
∑

j

�

hσj, j+1 + hτj, j+1 +
U
4
σz

jτ
z
j

�

, (15)

where

hσj, j+1 ≡ i
�

σ+j σ
−
j+1 −σ

−
j σ
+
j+1

�

, hτj, j+1 ≡ i
�

τ+j τ
−
j+1 −τ

−
j τ
+
j+1

�

. (16)
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The notation H1 for the Hamiltonian signals that the interaction term is a one-site operator.
Later we will also introduce Hamiltonians Hk with k = 2,3. Our convention will be the same:
Hk is a Hamiltonian where the kinetic term is a standard two-site hopping term, but the inter-
action term spans k sites.

The kinetic terms above are known as “Dzyaloshinskii–Moriya interaction” terms [30],
which becomes apparent after the rewriting

hσj, j+1 =
1
2

�

σx
j σ

y
j+1 −σ

y
j σ

x
j+1

�

, (17)

and similarly for hτj, j+1. These hopping terms are antisymmetric with respect to space reflec-
tion.

If the volume L is divisible by 4, then model Hamiltonians (11) and (15) are completely
equivalent, despite the apparent spatial asymmetry. However, the Hamiltonian (15) defines
an integrable model in itself, and we take this model as the starting point of our discussion.

Symmetries Now we discuss the symmetries of the Hubbard model in more detail, focus-
ing on the Hamiltonian (15). The Hubbard model has both continuous as well as discrete
symmetries.

For what follows we would like to introduce the so-called Shiba transformation [2]. It is
defined on a chain of even length L by

Sσ = σ y
Lσ

x
L−1 . . .σ y

2σ
x
1 ,

Sτ = τy
Lτ

x
L−1 . . .τy

2τ
x
1 .

(18)

A similarity transformation with either Sσ or Sτ preserves the kinetic term of H1, while chang-
ing the sign of the interaction term. Explicitly,

SσH1Sσ = SτH1Sτ =
∑

j

�

hσj, j+1 + hτj, j+1 −
U
4
σz

jτ
z
j

�

. (19)

As a result, the combination of the two Shiba transformations is a discrete symmetry:

SτSσH1SσSτ = H1 . (20)

The Hubbard model Hamiltonian also enjoys invariance under the continuous group
su(2) ⊕ su(2) [17, 18]. For future reference, let us explicitly work out these symmetries for
the Hamiltonian (15).

The first su(2) corresponds to rotations in spin space, which can be interpreted also as a
mixing of the σ and τ operators. The generators are local in space if we express them using
the original fermionic variables. However, when we work with the spin variables, the Jordan-
Wigner strings appear. Formally we have

Az =
∑

j

σz
j −τ

z
j

2
, (21)

and

A+ =
∑

j

��

∏

k< j

σz
kτ

z
k

�

σ+j τ
−
j

�

, A− =
∑

j

��

∏

k< j

σz
kτ

z
k

�

σ−j τ
+
j

�

, (22)

that satisfy the standard su(2) algebra

[A+, A−] = Az , [Az , A±] = ±2A± . (23)
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For both periodic and open boundary conditions, the following condition holds

[Az , H1] = 0 , (24)

while for the off-diagonal generators the symmetry relations

[A±, H1] = 0 (25)

hold only in the case of free boundary conditions, or formally in the infinite chain limit.
The second su(2) follows from the Shiba transformation. The idea is to perform a sim-

ilarity transformation with either Sσ or Sτ, construct the su(2) generators of the modified
Hamiltonian, and then to transform them back to the original H1. In this way we obtain the
su(2)-generators (also called η-pairing generators)

Bz =
∑

j

σz
j +τ

z
j

2
, (26)

and

B+ =
∑

j

��

∏

k< j

σz
kτ

z
k

�

σ+j τ
+
j

�

, B− =
∑

j

��

∏

k< j

σz
kτ

z
k

�

σ−j τ
−
j

�

. (27)

Similarly to the As, the operator Bz commutes with H1 (15) for both periodic and open bound-
ary conditions and B± only in the open boundary case, or formally in the infinite volume
limit. All A operators commute with all B operators, therefore the symmetry algebra is indeed
su(2)⊕ su(2).

We would like to mention that the fact that A± and B± only commutes with H1 in the open
boundary case comes from the non-periodicity of the A± and B± operators defined in (22)
and (27).

3 Extension of the Hubbard model

We present a new integrable model of range 3 which is given by an extension of the Hubbard
model, more precisely a deformation of the Hamiltonian H1 (15).

Definition The Hamiltonian is given by

H3 =
∑

j

h

hσj, j+1 + hτj, j+1 +
u
4

lσj, j+1, j+2lτj, j+1, j+2

i

, (28)

where
lσj, j+1, j+2 = σ

z
j+1 +κ (σ

x
j +σ

x
j+2)σ

x
j+1 − κ

2σx
j σ

z
j+1σ

x
j+2 , (29)

and lτj, j+1, j+2 has the same expression but with the σ matrices replaced by the τmatrices, and
finally hσ and hτ are given in (16). Sometimes we will omit the superscript and we will just
use the notation l j, j+1, j+2.

The Hamiltonian H3 acts on the Hilbert space V = ⊗L
i=1Vi = ⊗L

i=1

�

C2 ⊗ C2
�

and the no-
tation hσ, lσ or hτ, lτ identify respectively whether the operators appearing in h and l are
respectively σ or τ, so that if they act on the first or on the second copy of C2. As mentioned
before, the notation H3 signals that the density of the Hamiltonian acts on 3 sites of the spin
chain, as it is clear from the subscript j, j+1, j+2.

The parameters u and κ are the two independent coupling constants of the model; the
model is Hermitian if they are both real. u is the Hubbard interaction strength, while κ is
the deformation parameter. In this normalization, the original Hubbard model is restored for
κ= 0.
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However, for κ ̸= 0, there are two crucial differences:

1. The interaction term spans 3 consecutive sites.

2. Particle number conservation is broken.

It can be seen that the terms including the σx and τx operators, that are linear or quadratic
in the deformation parameter κ, manifestly break the u(1) symmetries of the Hubbard model;
they describe correlated particle creation and annihilation processes. In this respect, the model
is analogous to the XYZ spin chain.

Given the many years of work that researchers spent with studying the Hubbard model
and its generalizations one might wonder whether this model is indeed new or perhaps it
exists in the literature. We performed an exhaustive search of the literature and did not find
this model in any of its formulations (see also next Sections). All the previous extensions and
deformations of the Hubbard model had two common properties [23,25]:

1. The fundamental Hamiltonian was always nearest-neighbour interacting.

2. The model had (at least) two local u(1) charges.

Our Hamiltonian (28) appears to differ from these properties, however, it could be that our
H3 is a rotated version of a linear combination of a two-site and three-site charge of a known
model. In order to exclude this possibility we performed a search for a generic two-site charge
A which would commute with our H3. Explicitly

[H3, A] = [H3,
∑

j

a j, j+1] = 0 . (30)

We used the program Mathematica [31] version 12.0 and found that, for generic coupling
constants u and κ, the only possibility for the operator density a j, j+1 is to be of the form
a j, j+1 = b j − b j+1 + α1, which (after summation over j) lead to a trivial global charge. Thus
our model does not have any conserved charges with range less than three. This excludes the
possibility that our model is somehow included in the family of charges of a known model
with a two site Hamiltonian.

Integrability The model given by H3 is integrable: it has an infinite family of commuting
local charges, which can be embedded into a transfer matrix construction. We checked this
using the recently developed formalism of [32] for medium range spin chains and we explicitly
found the R-matrix. For a brief review of the method see paragraph 5.2. Here we just note that
the work [32] generalized the by-now canonical results of the Quantum Inverse Scattering
Method to describe models with medium range interactions; the key idea is to enlarge the
so-called “auxiliary space” and to use special Lax operators to allow for the embedding of
multi-site Hamiltonians into this framework.

Alternatively, we can also treat the integrability properties by performing a duality trans-
formation, see Section 4. In this way, the model becomes nearest-neighbour interacting and it
allows for a more standard treatment.2

Finally, we note a curious property of the three site interaction operator given in (29): for
every κ we have

(l j, j+1, j+2)
2 = (1+κ2)2 . (31)

This property appears to follow from the integrability of the model and the structure of the
Hamiltonian; we will discuss this relation in an upcoming publication [34].

2We discovered this model first in the two-site version, using the classification procedure of [33], which leads
to integrable Lindbladians. The connection to the Hubbard model was understood afterwards.
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We also note that the operators l j, j+1, j+2 are non-commuting for generic values of κ:

�

l j, j+1, j+2(κ), l j, j+1, j+2(κ
′)
�

= 0 (32)

holds only if κ= κ′ (trivial) or if κκ′ = −1.
The special structure implies that [l j, j+1, j+2(κ), l j+2, j+3, j+4(κ′)] = 0, while generally

[l j, j+1, j+2(κ), l j+1, j+2, j+3(κ
′)] ̸= 0 . (33)

The latter commutation vanishes only in the case of the Hubbard model (κ= κ′ = 0).

Special points Apart from the point κ = 0, where the model becomes the Hubbard model,
there are two more special points where the symmetry of the model is enhanced. The other
special points of the model are at κ= ±1. In this case, (29) becomes

l j, j+1, j+2 = ±(σx
j +σ

x
j+2)σ

x
j+1 +σ

z
j+1

�

1−σx
j σ

x
j+2

�

. (34)

This model possesses exactly two u(1) charges,

Qσx
2 =
∑

j

σx
j σ

x
j+1 , Qτx

2 =
∑

j

τx
j τ

x
j+1 . (35)

In fact, it can be shown that [Qσx
2 , H3] = [Q

τx
2 , H3] = 0 if H3 is computed from (28) with the

three site interaction given by (34).
Furthermore, Qµ2 in (35) also commutes with

∑

j hµj, j+1 and
∑

j lµj, j+1, j+2, for µ= σ,τ.
We proved these properties by direct computation. Equivalently, it can be also easily

checked after performing a duality transformation; this is presented in the next Section. We
used the program Mathematica [31] version 12.0 to check that indeed these points are the
only ones that admit a commuting charge which is at most of range3 2.

4 The two-site model

Here we transform the previous model into a form where the Hamiltonian is two-site inter-
acting. The transformation has its roots in the Kramers-Wannier duality [35]. Performing the
duality transformation has advantages and disadvantages, which we will discuss.

4.1 The duality transformation – generalities

There are two ways to introduce the desired duality transformation: either via a real space
description of the states, or formally on the level of the operators acting on the Hilbert space.
We treat both formulations. In order to define the transformation, we need to consider the
models with open boundary conditions.

For simplicity, let us consider just one copy of the local space C2, on which our previous
σa operators act. The same argument can be repeated for the τa operators acting on the
second copy of C2. On the level of operators, the duality transformation is a particular Clifford
transformation [36]: a mapping between operators with the following two requirements:

• Products of Pauli matrices are mapped to products of Pauli matrices (including possible
multiplication with phases, but without producing linear combinations).

3We remark that in this formalism, a density operator of range 2 can be written in term of σ and τ matrices as
Ai,i+1 =
∑3

q1 ,q2 ,q3 ,q4=0 cq1q2q3q4
σ

q1
i σ

q2
i+1τ

q3
i τ

q4
i+1, with σ0 the identity operator and σ1,2,3 the set of Pauli matrices.
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• The operator algebra is preserved.

The duality is then defined by the mapping

σz
j → σ

x
j− 1

2
σx

j+ 1
2

, σx
j →

j
∏

k=1

σz
k− 1

2
. (36)

Here we introduced half shifts for the space coordinates after the mapping; the physical mean-
ing of these shifts is explained below.

We can use the operator algebra of the Pauli matrices to extend this mapping to all opera-
tors. For example a product of σx operators is mapped to a single σz matrix, in this way we
obtain a symmetric formulation for the elementary steps:

σz
j → σ

x
j− 1

2
σx

j+ 1
2

, σx
j σ

x
j+1→ σ

z
j+ 1

2
. (37)

The real space interpretation of this transformation is the following: working in the com-
putational basis, we perform a rotation and afterwards we put spin-1/2 variables on the bonds
between the original sites, such that the new variables measure the presence or the absence of
a domain wall (kink or anti-kink). This is why we call these steps a “bond-site transformation”.

To be more precise, let us assume that the model in question has spin reflection symmetry.
Then we can map the Hilbert space of a chain of length L to that of an other chain of length
L − 1, such that for each bond we put an up spin if the two neighbouring sites have the same
orientation, and a down spin if they have different orientation. The original spin pattern can
be reconstructed from the bonds up to a global spin reflection step, which preserves all values
of the bonds.4 Denoting the new variables with space positions at half shifts, the mapping on
the operatorial level becomes simply

σz
jσ

z
j+1→ σ

z
j+ 1

2
. (38)

A single spin flip on the original chain necessarily changes the values on two bonds, thus we
obtain the other elementary transformation rule

σx
j → σ

x
j− 1

2
σx

j+ 1
2

. (39)

These are not yet identical to the steps (36)-(37). In order to achieve the same formulas, one
needs to perform a global rotation before the bond site transformation, which maps

σz → σx , σx → σz , σ y →−σ y . (40)

Combining this rotation with (38)-(39) we obtain the transformation rules (36)-(37).
The advantage of using the formulas (36)-(37) is that they describe an involutive transfor-

mation, so that applying the transformations twice will produce the initial model.
This bond-site transformation has its origin in the Kramers-Wannier duality, which can be

used to determine the critical point of the Ising model on the square lattice. It can also be
applied to the 1D quantum Ising chain, where it acts as a self-duality [35]. More recently the
same transformation was also used in the “folded XXZ model” [37,38].

The transformation is non-local: a subset of local operators remains local after the map-
ping, but the remaining subset (including σx by the definition (36)) becomes truly non-local.
In those cases when the local Hamiltonian density is mapped to local operators it is possible
to define the bond-site transformed model also with periodic boundary conditions. However,

4We remark that if the model does not have spin reflection, those statements remain true with the addition that
we need to know the state of the first site. Furthermore, in this case the Hamiltonian becomes non-local.
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in this case the two models are strictly speaking not equivalent. This can be seen on the level
of the real space transformation: in the periodic case any state has an even number of domain
walls, therefore it is mapped to a state with an even number of down spins. Therefore, the
sectors of the new model with odd down spins do not correspond to the states of the original
model. This difference should not affect the thermodynamic properties of the models, but it
is crucial for the comparison of finite volume quantities.

4.2 Model with nearest-neighbour interactions

Now we compute the transformation of our model Hamiltonian H3 (28). We perform the
bond-site transformation for the σ and τ matrices as well.

First we transform the kinetic terms (given by (16)). They are odd with respect to spin
reflection, however, this does not cause any complications. Starting with the σ matrices, we
use the rewriting

σ
y
j σ

x
j+1 −σ

x
j σ

y
j+1 = i
�

σz
j+1 −σ

z
j

�

σx
j σ

x
j+1 →

i
�

σx
j+ 1

2
σx

j+ 3
2
−σx

j− 1
2
σx

j+ 1
2

�

σz
j+ 1

2
= σ y

j+ 1
2
σx

j+ 3
2
−σx

j− 1
2
σ

y

j+ 1
2

.
(41)

We see that after transformation, the kinetic term is now localized on three sites. However,
summing over these contributions on an infinite chain (or extending the transformation for-
mally to periodic boundary conditions) and redefining j → j + 1

2 , we see that the integrated
kinetic term is self-dual. This means that for these particular models the bond-site transforma-
tion will only change the interaction terms.

Let us now perform the transformation for the total Hamiltonian H3 of (28). Now it is
more convenient to use a different parametrization. We introduce the coupling constants U
and θ such that

κ= tan
θ

2
, u= 8U cos4 θ

2
. (42)

Direct computation then gives5

H2 =
∑

j

�

hσj, j+1 + hτj, j+1 + 2 U Lσj, j+1 Lτj, j+1

�

, (43)

where

Lσj, j+1 =
sinθ

2

�

σz
j +σ

z
j+1

�

+ cosθ
�

σ−j σ
−
j+1 +σ

+
j σ
+
j+1

�

+
�

σ−j σ
+
j+1 +σ

+
j σ
−
j+1

�

, (44)

the kinetic terms are given in (16). The notation H2 signals that the interaction term is acting
on 2 sites of the chain. The parameters U and θ are two coupling constants and H2 is Hermitian
if both are real. For θ we choose the fundamental domain [−π,π].

In a concrete matrix representation we can write

L j, j+1 =







sinθ 0 0 cosθ
0 0 1 0
0 1 0 0

cosθ 0 0 − sinθ






. (45)

This matrix is of 8-vertex type [39]: it does not conserve the Sz particle numbers, but particle
creation and annihilation only happen in pairs. The structure of the resulting Hamiltonian

5We remark that the letter L was also used for the number of sites of the spin chain. The context will clearly
tell how to distinguish the two cases.
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H2 is the same as in the Hubbard model and its various extensions, see for example [21,27].
However, now the interaction L j, j+1 does not conserve particle number for a generic θ . After
investigating the special points, we will establish that (contrary to the three-site model given
by H3) the family of Hamiltonians (43) does not include the actual Hubbard model given by
(15) for any choice of θ .6 The usual Hubbard Hamiltonian (3) is connected to (15) by a
twist transformation, which does not change the structure of the interaction terms (it would
only add some phases), therefore we conclude that the family (43) does not include the usual
Hubbard model either.

The curious property7 (31) holds also after the bond-site transformation: direct computa-
tion confirms that

�

L j, j+1

�2
= 1 . (46)

We also note that the matrix L j, j+1 is free fermionic, which is evident from the representation
(44): performing again a Jordan-Wigner transformation we find terms which are only bilinear
in the fermionic operators. In fact, the models obtained by the Hamiltonian

∑

j L j, j+1 are
known in the literature as the XYh models [40]. However, our model involves the coupling of
Lσj, j+1 and Lτj, j+1, therefore it is interacting.

In parallel with the non-commutativity (33), we observe that for a generic value of θ

[L j, j+1, L j+1, j+2] ̸= 0 . (47)

Let us now discuss the symmetries of (43) for a generic value of θ . First of all, we do not
find any continuous symmetries. However, there are discrete symmetries. In particular, the
Shiba transformations (18) preserve the kinetic terms and both of them negate the sign of the
coupling constant U . Therefore their combination is a discrete symmetry:

SτSσH2SσSτ = H2 . (48)

Because both interaction matrices create/annihilate particles in pairs, the “fermionic par-
ity” is conserved for both sub-chains:

[Zσ, H2] = [Zτ, H2] = 0 , (49)

where

Zσ =
L
∏

j=1

σz
j , Zτ =

L
∏

j=1

τz
j . (50)

This property also holds for the range 3 spin chain (28).

4.3 Special points

Just as in the previous case, there are some points where the the family given by H2 (43) has
additional symmetries, those are θ = 0,±π/2.

6The fact that H2 does not degenerate to the actual Hubbard model for any θ is not surprising. The Hamiltonians
H2 and H3 are connected by a bond-site transformation, which is a duality transformation. Typically there is no
reason to expect that the same operators appear on both side of the duality. A so-called self-dual point is found
only U = 0.

7Note that (31) can be also made equal to 1 by renormalizing the l operator.
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The choice θ = 0. In this point, the interaction operator L j, j+1 (44) is

L j, j+1 = σ
x
j σ

x
j+1 , (51)

which is represented by an anti-diagonal matrix. This particular model is the bond-site trans-
formation of the Hubbard model. Accordingly, it possesses two u(1)-charges given by Qσx

2 and
Qτx

2 defined in (35), which can be extended to two su(2) algebras.
The known coordinate Bethe Ansatz solution of the Hubbard model [1] can be used to

construct eigenstates of the model (43) with L j, j+1 given in (51). The idea is to perform the
bond-site transformation on the level of the eigenstates. However, as remarked earlier, this
computation will only produce those states which have an even number of down spins for
both the σ and the τ sub-lattices. It follows from the commutation relations (49) that this
“parity” is indeed consistent with the Hamiltonian. At present it is not known how to treat the
odd sub-sectors.

The choice θ = ±π/2. In this case we obtain the bond-site transformation of the model
given by (34). For θ = π/2 we find the Hamiltonian (43) with the interaction matrix

L j, j+1 =







1
1

1
−1






= σ+j σ

−
j+1 +σ

−
j σ
+
j+1 +

1
2

�

σz
i +σ

z
i+1

�

. (52)

The case with θ = −π/2 is not independent from the one just shown: one can apply a unitary
off-diagonal local basis transformation and a re-definition of the coupling constant U to relate
the two models.

These cases are special because they enjoy two u(1)-symmetries due to the particle con-
servation: the Hamiltonian now commutes with N and Sz given by (4). More generally, it
formally commutes with the all the generators (21) up to boundary terms.

Interestingly, this model can be obtained as a particular limit of a known extension of the
Hubbard model [21], which originates from the R-matrix of Shastry. In the model of [21] the
Hamiltonian is

H j, j+1 = σ
x
j σ

x
j+1 +σ

y
j σ

y
j+1 +τ

x
j τ

x
j+1 +τ

y
j τ

y
j+1 +αLσj, j+1 Lτj, j+1 , (53)

with the two-site interaction matrix given by

L j, j+1 =







cos(2v) 0 0 0
0 1 − sin(2v) 0
0 sin(2v) −1 0
0 0 0 − cos(2v)






, (54)

with α, v two independent parameters. The case v = 0 is the Hubbard model (up to a trivial
global shift of H). Let us now perform the similarity transformation with the diagonal operator
(12) and change the normalization by a factor of 1/2. Then we obtain

1
2

D−1HD =
∑

j

�

hσj, j+1 + hτj, j+1 +αLσj, j+1 Lτj, j+1

�

, (55)

where now

L j, j+1 =







cos(2v) 0 0 0
0 1 −i sin(2v) 0
0 −i sin(2v) −1 0
0 0 0 − cos(2v)






, (56)
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and hσ is given in (17).
We can now take in (56) the limit v→ i∞ to get the L j, j+1 in (52) and α→ 2Ue−4v will

make the total H equivalent to H2.
It is remarkable that two special points of the model of [21] are reproduced by two very

different versions of our models: the actual Hubbard model (v = 0 of (53)) is found as a
special point of our three-site Hamiltonian H3, whereas the v → i∞ limit of (55) can be
found in our two-site family H2. Perhaps there is a larger family of integrable models which
contains all these special points.

5 Integrability

In this Section we rigorously prove the integrability of our models by embedding them into the
Quantum Inverse Scattering Method [41], which is the canonical framework to treat integrable
spin chains. As a by-product, we find a solution of the famous Yang-Baxter relations, which
has some unusual spectral parameter dependence and appears to be new.

First we consider the two-site model, and afterwards we turn to the three-site model.

5.1 Two-site model

Here we treat the integrability of the Hamiltonian (43) for an arbitrary value of the coupling
constants U , θ . It is our goal to construct families of commuting transfer matrices, which
generate a set of commuting local charges for each value of U and θ .

Consider a Lax operator La j(u,µ) which acts on the tensor product of an auxiliary space
Va ≈ C4 and a local 4-dimensional space, having two complex valued “spectral parameters” u
and µ. The transfer matrix t(u|µ) is a matrix product operator (MPO) defined as the trace

t(u|µ) = Tra [LaL(u,µ) . . .La2(u,µ)La1(u,µ)] . (57)

The transfer matrices form a commuting family for fixed µ:

[t(u1|µ), t(u2|µ)] = 0 , (58)

if the Lax operators satisfy the intertwining relation

Rab(u, v)Lan(u,µ)Lbn(v,µ) = Lbn(v,µ)Lan(u,µ)Rab(u, v) . (59)

Consistency of the intertwining relations imply that the R-matrix should satisfy the quantum
Yang-Baxter equation

R12(u1, u2)R13(u1, u3)R23(u2, u3) = R23(u2, u3)R13(u1, u3)R12(u1, u2) . (60)

If the Lax operator is regular, i.e. L(u, u) = P, where P is the permutation operator, then
the logarithmic derivative of the transfer matrix at u= µ defines a Hamiltonian with nearest-
neighbour interactions:

H2(µ) =
d
du

log t(u|µ)
�

�

�

�

u=µ
, (61)

and for the other charges

Qr+1(µ)∼
d r

dur
log t(u|µ)
�

�

�

�

u=µ
. (62)

The higher logarithmic derivatives define the higher conserved charges that characterise
an integrable model. From (58) and (62) one gets

[Qr(µ) , Qs(µ)] = 0 . (63)
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Our explicit solution for the R-matrix is presented in Appendix A. We reproduce8 the correct
Hamiltonian (43) if we take our Lax operator to be related to the R-matrix in the following
way

L(u,µ)≡ R(αu,µ) , (64)

where

α=
2

dn (µ |k2 )
, µ= cn−1
�

− secθ
�

�k2
�

, k =
2iU cos2 θ
Æ

1+ U2 sin2(2θ )
. (65)

While (64) holds for any model, the condition (65) is specific for the model analyzed in
this paper. The choice was done in order to use some properties of the elliptic functions to
simplify some of the entries in the R matrix.

We have checked that the R-matrix from Appendix A satisfies the Yang-Baxter equation
and braiding unitarity. We would also like to point out that this R-matrix has a very non-
trivial functional dependence on the spectral parameter. First, the R-matrix is of non-difference
form. This can be easily seen since it depends both on sums and differences of Jacobi elliptic
functions. Second, it cannot be completely expressed in terms of the usual Jacobi elliptic
functions, due to terms of the form

sin
1
2

�

am(u|k2)− am(v|k2)
�

, sec
1
2

�

am(u|k2)− am(v|k2)
�

, (66)

where am is the Jacobi amplitude. The product of this two functions can be expressed in term
of Jacobi functions, in fact

tan
1
2

�

am(u|k2)− am(v|k2)
�

= csc
�

am(u|k2)− am(v|k2)
�

− cot
�

am(u|k2)− am(v|k2)
�

=
cn
�

u|k2
�

cn
�

v|k2
�

+ sn
�

u|k2
�

sn
�

v|k2
�

− 1

cn (u|k2) sn (v|k2)− cn (v|k2) sn (u|k2)
, (67)

but still one of the two functions in (66) escapes the elliptic property. In particular, it can only
be expressed in the Jacobi elliptic functions sn, cn,dn by introducing square roots. To the best
of our knowledge, this R-matrix is new and we have also not encountered a model with this
functional dependence before.

5.2 R-matrix for the three-site model

The integrability of the two-site version also implies that our original three-site formulation H3
is integrable, in the sense that it also possesses an infinite family of local conserved charges.
This can be proven in two ways.

First of all, we can show that the higher charges of the two-site Hamiltonian H2 remain
all local9 if we perform the duality transformation to the three-site family. This follows from
the fact that H2 commutes with Zσ and Zτ, therefore it can contain an even number of Pauli
matrices which cause a spin flip. The duality transformation (37) produces non-local operators
only for an odd number of spin flipping Pauli matrices. It follows that all charges of the two
site models remain local after the transformation.

8We would like to remark that the regularity condition for the R-matrix in this new parametrization corresponds
to consider u= µ/α(µ), while for the standard parametrization used in the Appendix A: u= v. Same choices of u
should be used to reproduce the correct Hamiltonian.

9We remark that with locality we do not mean nearest-neighbour. Higher conserved charges will be character-
ized by a range of interaction that remains finite even if L→∞.
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Alternatively, we also applied the formalism of [32] to directly prove integrability of the
three site model by constructing a Lax operator with a higher dimensional auxiliary space.
This auxiliary space is typically a tensor product of copies of the elementary spaces.

For an integrable spin chain with three site interactions the auxiliary space is a tensor
product of two copies of the fundamental vector space. Therefore, the Lax matrix is an operator
which acts on three spaces, one physical space and two auxiliary spaces. It is denoted as
La,b, j(u), where a and b are the two auxiliary spaces, and j refers to a physical space. The
transfer matrix is defined as

t(u) = Tra,b

�

La,b,L(u) . . .La,b,2(u)La,b,1(u)
�

. (68)

As for the two site model, the conserved charges are defined by taking the logarithmic deriva-
tive of the transfer matrix. In particular, the Hamiltonian (range 3 charge) is related to the
transfer matrix by

H =Q3 = ∂u log t(u)|u=0 = t−1(0)∂u t(u)|u=0 , (69)

and similarly the higher conserved charges

Qr = ∂
r−2

u log t(u)|u=0 = t−1(0)∂u t(u)|u=0 . (70)

For completeness, in appendix B we will write explicitly the expression of the next conserved
charge (a range 5 operator) after Q3.

These charges are local if the Lax operator satisfies the initial condition

La,b, j(0) = Pa, j Pb, j , (71)

where P stands again for the permutation operator acting respectively (as specified) on one of
the auxiliary space and the physical one. Following [32] we also introduce

Ľa,b, j(u) = Pb, j Pa, jLa,b, j(u) . (72)

The initial condition for Ľa,b, j(u) that ensures locality of the charges is

Ľa,b, j(0) = 1 . (73)

The transfer matrices form a commuting family, which is established from the fundamental
intertwining relation:

Ř23,45(u1, u2)Ľ123(u1)Ľ345(u2) = Ľ123(u2)Ľ345(u1)Ř12,34(u1, u2) . (74)

Here R(u, v) is the R-matrix, which depends on two spectral parameters, and it acts on a four-
fold tensor product space, and we also defined

Řab,cd(u, v) = Pa,c Pb,dRab,cd(u, v) . (75)

Consistency requires the Yang-Baxter equation for the Ř matrix:

Ř34,56(u1, u2)Ř12,34(u1, u3)Ř34,56(u2, u3) = Ř12,34(u2, u3)Ř34,56(u1, u3)Ř12,34(u1, u2) . (76)

In order to prove the integrability of a three site Hamiltonian, one needs to provide an explicit
solution of eq. (74); relation (76) follows automatically.

Since the two-site model Hamiltonian H2 in (43) is related to the three-site one (28) by
a bond-site transformation, it is reasonable to assume that the L matrix is given by the bond
site transformed version of the 2-site one. The necessary steps for the bond-site transformed
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models can be extracted from Section V.A of [32], with the only difference that here the Lax
operator will also depend on two spectral parameters (as will be clarified in the following).
For completeness we present here the details of this procedure.

The starting point is the R-matrix for the 2 site model given in appendix A, in particular
we work with

Řa,b(u, v) = Pa,bRa,b(u, v) . (77)

We first perform the rotation (40) followed by the transformations (38)-(39). The result will
be a range-three operator that we will identify as the Lax-matrix. Accordingly, in this case the
Lax matrix will have two spectral parameters:

Ř j, j+1(u, v) → Ľ j, j+1, j+2(u|v) . (78)

Therefore, in this particular case of a bond-site transformed model we expect an intertwining
relation of the form

Ř23,45(u1, u2)Ľ123(u1|u3)Ľ345(u2|u3) = Ľ123(u2|u3)Ľ345(u1|u3)Ř12,34(u1, u2) . (79)

In all of the computations below the second spectral parameter of the Lax operator is seen as
an outer (spectator) parameter, for which we do not introduce intertwining relations. This
special structure for the three-site Lax operator is generic for models obtained via a bond-site
transformation from a two-site model.

Note that in (79) the Lax operators on either side overlap only on site 3. The construction
of the bond-site transformation implies for example

�

Ľ123(u1|u3), Ľ345(u2|u3)
�

= 0 . (80)

This relation comes from the fact that for the two site model, R-matrices acting on non-
overlapping sites commute, in particular [R12(u1, u3), R34(u2, u3)] = 0. However, eq. (79)
is not trivial at all, because the order of the rapidities is exchanged. A priori it is not clear why
such a relation could hold.

In order to prove that a solution exists, we start with the bond-site transformation of eq.
(60) in the checked version, which now becomes

Ľ123(u2|u3)Ľ234(u1|u3)Ľ123(u1|u2) = Ľ234(u1|u2)Ľ123(u1|u3)Ľ234(u2|u3) . (81)

Now multiplying with Ľ123(u2|u3)−1 from the left, and with Ľ234(u2|u3)−1 from the right we
get

Ľ234(u1|u3)Ľ123(u1|u2)Ľ234(u2|u3)
−1 = Ľ123(u2|u3)

−1Ľ234(u1|u2)Ľ123(u1|u3) . (82)

This makes it possible to define the four-site Ř matrix via two different equations

Ř12,34(u1, u2) = Ľ−1
123(u2|u3)Ľ234(u1|u2)Ľ123(u1|u3) , (83)

and
Ř23,45(u1, u2) = Ľ345(u1|u3)Ľ234(u1|u2)Ľ−1

345(u2|u3) . (84)

Note that in the second case we applied a shift to the indices. Substituting these formulas into
(79) we see immediately that the intertwining works as expected.

The reader might notice that formulas (83)-(84) depend on u3. It is clear from the com-
putation that any selected value for u3 will be satisfactory. In models where the R-matrix is of
difference form, this selection actually drops out. However, in our case it does not drop out,
therefore the intertwining can be performed by a one-parameter family of R-matrices.
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6 Large coupling limits

Here we investigate the large coupling limits of the models, by considering both the three-site
and the two-site versions. The idea is to take the limit u→∞ of the three-site Hamiltonian
(28), and the U →∞ of the two-site Hamiltonian (43). The u →∞ limit of the three-site
model will be identical to the bond-site transformed version of the U →∞ limit of the two-site
model. In this limit the interaction term between the two sub-chains will dominate, which is
equivalent to setting the kinetic terms equal to zero.

For a generic coupling κ and θ the non-commutativity in (33) and (47) imply that the
interaction terms generate dynamics in the system. This means that non-trivial integrable
models are obtained by the direct u, U → ∞ limit and a simple rescaling. In this way we
obtain the models

H∞3 =
∑

j

lσj, j+1, j+2lτj, j+1, j+2 , H∞2 =
∑

j

Lσj, j+1 Lτj, j+1 , (85)

with l j, j+1, j+2 and L j, j+1 given by (29) and (45), respectively.
The two models are the bond-site transformations of each other. To our best knowledge,

these models are also new. Their integrability follows directly from the constructions of the
R-matrices for the general cases.

In the case of the two site model the Hamiltonian H∞2 given in (85) is obtained via the
substitutions

L(u,µ)≡ R(αu,µ) , α=
2i cos2 θ

k
, µ=

1
k

K
�

1
k2

�

, k = i cotθ , (86)

where K is the elliptic integral of the first kind.10 For the three site model, the R-matrix can
be obtained in the same way as explained above at the end of Section 5.

The situation is somewhat different in the case of the Hubbard model, corresponding to
κ = 0 and its bond-site transformed model (θ = 0). In this case both H∞3 and H∞2 become a
sum of commuting operators:

H∞3 →
∑

j

σz
jτ

z
j , H∞2 →
∑

j

σx
j σ

x
j+1τ

x
j τ

x
j+1 . (88)

These operators do not generate non-trivial dynamics. However, it is still meaningful to inves-
tigate the U →∞ limit of the Hubbard model.

In this limit the double occupancies become forbidden and one obtains the so-called t − 0
model as an effective theory, see for example [2, 43]. We do not discuss this limit further in
this work.

7 Conclusions and Outlook

In this work we introduced different generalizations of the Hubbard model. The model Hamil-
tonian (28) is a generalization with three-site interactions, such that the special choice κ = 0
reproduces the original Hubbard Hamiltonian. In contrast, the two-site formulation (43) has a

10In order to get this result, we used the relations of [42],

dn
�

v
�

�k2
�

= cn

�

v k

�

�

�

�

1
k2

�

, cn
�

v
�

�k2
�

= dn

�

v k

�

�

�

�

1
k2

�

, sn
�

v
�

�k2
�

=
1
k

sn

�

v k

�

�

�

�

1
k2

�

, (87)

and we chose the branch cut
p

sec2 θ cosθ = −1.
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Hamiltonian with similar structure, but this family does not include the Hubbard model itself.
The two distinguished properties of the Hamiltonian (28) are that it is three-site interacting
and it breaks the u(1)-symmetries of the original model. Correspondingly, the R-matrix of the
model involves an unusual dependence on the elliptic functions (similar to the case of the XYZ
spin chain), and it appears to be new.

The three site interaction with a tunable deformation parameter is interesting on its own
right. Most integrable models in the literature either have nearest-neighbour interactions, or
true long range interactions with some coupling/deformation parameters. The recent work
[32] set up a framework to study and classify models with medium range interactions: in these
cases the Hamiltonian density has a finite range bigger than two. None of the the examples
found in [32] is a continuous deformation of a nearest neighbour interacting model. In this
sense our model is unique. The Bariev model [44] is somewhat similar, because in that case the
coupling can be tuned such that the model falls apart into two disconnected XX chains with
nearest-neighbour coupling. However, this situation is different, because the “deformation”
parameter couples two chains and it does not modify a single nearest-neighbour interacting
model. We stress that in our case the undeformed model with κ = 0 is still interacting, it is
given by the Hubbard model with a non-zero coupling.

Even though we could clarify the integrability structure of our models, we leave the actual
solution (construction of eigenstates) to further work. The breaking of the u(1) symmetries
makes the problem considerably more complicated than in the case of the Hubbard model. We
expect that some combination of the nested Bethe Ansatz with methods used to solve the XYZ
spin chain needs to be used.
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A R-matrix

Here we publish the concrete R-matrix, which describes the integrability properties of the two-
site Hamiltonian (43). This matrix can be found in the Mathematica notebook attached under
the name Rmat[u,v].
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The actual matrix form reads

R=























































r8 0 0 0 0 −r12 0 0 0 0 −r12 0 0 0 0 r1
0 r6 0 0 r7 0 0 0 0 0 0 r11 0 0 0 0
0 0 r6 0 0 0 0 r11 r7 0 0 0 0 0 0 0
0 0 0 r2 0 0 −r9 0 0 −r9 0 0 r4 0 0 0
0 r7 0 0 −r5 0 0 0 0 0 0 0 0 0 r11 0
−r12 0 0 0 0 r10 0 0 0 0 r1 0 0 0 0 r12

0 0 0 −r9 0 0 r3 0 0 r4 0 0 r9 0 0 0
0 0 r11 0 0 0 0 r5 0 0 0 0 0 r7 0 0
0 0 r7 0 0 0 0 0 −r5 0 0 0 0 r11 0 0
0 0 0 −r9 0 0 r4 0 0 r3 0 0 r9 0 0 0
−r12 0 0 0 0 r1 0 0 0 0 r10 0 0 0 0 r12

0 r11 0 0 0 0 0 0 0 0 0 r5 0 0 r7 0
0 0 0 r4 0 0 r9 0 0 r9 0 0 r2 0 0 0
0 0 0 0 0 0 0 r7 r11 0 0 0 0 −r6 0 0
0 0 0 0 r11 0 0 0 0 0 0 r7 0 0 −r6 0
r1 0 0 0 0 r12 0 0 0 0 r12 0 0 0 0 r8























































,

(A.89)

where we suppressed the dependence on two spectral parameters, i.e. ri = ri(u, v).
This matrix is written in the standard basis ei where {e1, e2, e3, e4} = {|;〉, |↑〉, |↓〉, |↕〉}, see

also (2).
The matrix elements are

r1 = −
2ikgu,v

dnu + dnv
, r4 = fu,v , r7 = 1,

i r9 =
cnu − cnv

snu + snv
, i k r11 =

dnu − dnv

snu + snv
,

r12

k
=

cnu − cnv

dnu + dnv
,

r5 + r6 = −2i gu,v , k (r5 − r6) = (dnv − dnu) fu,v ,

r3 + r10 + r8 − r2 = 2 fu,v , r3 + r10 + r2 − r8 =
4 i k(cnu − cnv)

(dnu + dnv)(snu + snv) fu,v
,

r10(dnu + i k cnusnu) + r8(dnu − i k cnusnu)
r4

=

sn2
u(dnv − dnu) +

2dnu

f 2
u,v
+

2k2snu(cnu − cnu)gu,v

(dnu + dnv) fu,v
, (A.90)

r3(dnu + i k cnusnu) + r2(dnu − i k cnusnu)
r4

=

r12

� 4dnu

(snu + snv) f 2
u,v
+ snu (dnv − dnu)

�

+
fu,v gu,v

k

�

2k2sn2
u

f 2
u,v
− dnudnv + dn2

u

�

,

where we defined the shorthand notations for the Jacobi functions:

cnu = cn
�

u|k2
�

, snu = sn
�

u|k2
�

, (A.91)

Amu = am
�

u|k2
�

, dnu = dn
�

u|k2
�

, (A.92)

k and the spectral parameters are related to U , θ by (65) and we defined for simplicity

gu,v = sin
�

1
2
(Amu −Amv)
�

, fu,v = sec
�

1
2
(Amu −Amv)
�

. (A.93)
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These two functions are related by the following expression

fu,v gu,v = csc
�

Amu −Amv

�

− cot
�

Amu −Amv

�

=
cnucnv + snusnv − 1

cnusnv − cnvsnu
, (A.94)

however keeping both the f and g dependence make the expression of the entries of the R
matrix shorter.

The R-matrix given in this appendix satisfies the Yang-Baxter equation. By using version
12.3 of Mathematica the check is straightforward, however, using version 12.0 particular at-
tention should be payed to the choice of the sign of the branch-cut.

For completeness, we will also write the expression of the R-matrix in term of Pauli Matrices

Ri,i+1 =
1
8
(r8 + r2 + r3 + r10)

�

1+σz
iσ

z
i+1τ

z
iτ

z
i+1

�

+
1
8
(r8 − r2 − r3 + r10)

�

σz
iσ

z
i+1 +τ

z
iτ

z
i+1

�

+
1
8
(r8 − r2 + r3 − r10)

�

σz
i τ

z
i+1 +σ

z
i+1τ

z
i

�

+
1
8
(r8 + r2 − r3 − r10)

�

σz
i τ

z
i +σ

z
i+1τ

z
i+1

�

+
r6

4

�

σz
i +τ

z
i −σ

z
iσ

z
i+1τ

z
i+1 −σ

z
i+1τ

z
iτ

z
i+1

�

+
r5

4

�

σz
iσ

z
i+1τ

z
i +σ

z
i τ

z
iτ

z
i+1 −σ

z
i+1 −τ

z
i+1

�

+
1
4

�

r1 + r4

�

�

σx
i σ

x
i+1τ

x
i τ

x
i+1 +σ

y
i σ

y
i+1τ

y
i τ

y
i+1

�

+
1
4

�

r4 − r1

�

�

σx
i σ

x
i+1τ

y
i τ

y
i+1 +σ

y
i σ

y
i+1τ

x
i τ

x
i+1

�

+
1
4

�

r9 + r12

�

�

σz
i+1τ

y
i τ

y
i+1 −σ

x
i σ

x
i+1τ

z
i +σ

y
i σ

y
i+1τ

z
i+1 −σ

z
i τ

x
i τ

x
i+1

�

+
1
4

�

r9 − r12

�

�

σz
i+1τ

x
i τ

x
i+1 +σ

x
i σ

x
i+1τ

z
i+1 −σ

y
i σ

y
i+1τ

z
i −σ

z
i τ

y
i τ

y
i+1

�

+
1
4

�

r7 + r11

�

�

τx
i τ

x
i+1 +σ

x
i σ

x
i+1 +σ

y
i σ

y
i+1τ

z
iτ

z
i+1 +σ

z
iσ

z
i+1τ

y
i τ

y
i+1

�

+
1
4

�

r7 − r11

�

�

σ
y
i σ

y
i+1 +τ

y
i τ

y
i+1 +σ

x
i σ

x
i+1τ

z
iτ

z
i+1 +σ

z
iσ

z
i+1τ

x
i τ

x
i+1

�

, (A.95)

where the expressions of the ri are given in the previous page.

B Next conserved charge of the three-site model

In this appendix, we will explicitly write the expression of the next conserved charge of the
range 3 model. This charge is a range 5 operator. All the other charges can be obtained from
the expression (70).

Q5 =
∑

i

Qi , (B.1)

where Qi is the range 5 density given by

Qi = [Q123,Q234 +Q345] + H̃ . (B.2)
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Qi jk are range 3 density operator corresponding to the Hamiltonian (28), while H̃ is given by

H̃ =b1

�

σx
i σ

y
i+1 −σ

y
i σ

x
i+1 +τ

x
i τ

y
i+1 −τ

y
i τ

x
i+1

�

+ b2

�

σz
i τ

z
i+1 +σ

z
i+1τ

z
i

�

+ b3

�

1
4
σz

iσ
z
i+1τ

z
i +

1
4
σz

i τ
z
iτ

z
i+1 −

1
4
σz

i+1σ
z
i+2τ

z
i+1

−
1
4
σz

i+1τ
z
i+1τ

z
i+2 −

1
2
σz

i + 1/4σz
i+1 +

1
4
σz

i+2 −
1
2
τz

i +
1
4
τz

i+1 +
1
4
τz

i+2 + 1

�

+ b4

�

σz
i+1τ

z
i+1 −

1
2
σz

i+1τ
z
i+2 −

1
2
σz

i+2τ
z
i+1 +

1
2
σz

i+1σ
z
i+2 −

1
2
τz

iτ
z
i+1 +

1
2
τz

i+1τ
z
i+2

+
1
2
κσx

i σ
x
i+1τ

z
i +

1
2
κσx

i σ
x
i+1τ

z
i+1 +

1
2
κσz

i τ
x
i τ

x
i+1 +

1
2
κσz

i+1τ
x
i τ

x
i+1 −

1
2
σz

iσ
z
i+1

�

+ b5

�

σz
i+1σ

z
i+2τ

z
i+1τ

z
i+2 −σ

z
i+2τ

z
i+2 −σ

z
iσ

z
i+1τ

z
iτ

z
i+1

�

+ b6σ
z
i τ

z
i

+ b7

�

−
1

2κ
σx

i σ
x
i+1τ

x
i τ

z
i+1τ

x
i+2 −

1
2κ
σx

i σ
z
i+1σ

x
i+2τ

x
i τ

x
i+1

−
1

2κ
σx

i σ
z
i+1σ

x
i+2τ

x
i+1τ

x
i+2 −

1
2κ
σx

i+1σ
x
i+2τ

x
i τ

z
i+1τ

x
i+2 +σ

x
i σ

z
i+1σ

x
i+2τ

x
i τ

z
i+1τ

x
i+2

�

+ b8

�

uκ2σx
i σ

x
i+1

2
−

uκ2σx
i+1σ

x
i+2

2
+

uκ2τx
i τ

x
i+1

2
+

uκ2τx
i+1τ

x
i+2

2
+

uκ2σx
i σ

x
i+1τ

z
i+2

2

−σx
i σ

z
i+1σ

y
i+2 +

uσ y
i σ

y
i+1τ

z
i

2
+

uσ y
i σ

y
i+1τ

z
i+1

2
+σ y

i σ
z
i+1σ

x
i+2 +

uσz
i τ

y
i τ

y
i+1

2

+
κ2uσz

i τ
x
i+1τ

x
i+2

2
+
κ2uσx

i+1σ
x
i+2τ

z
i

2
+

uσz
i+1τ

y
i τ

y
i+1

2
−
κ2uσz

i+2τ
x
i τ

x
i+1

2

−τx
i τ

z
i+1τ

y
i+2 +τ

y
i τ

z
i+1τ

x
i+2 + κuσx

i σ
x
i+1τ

y
i τ

y
i+1 +

κuσx
i σ

x
i+1τ

y
i+1τ

y
i+2

2

−
κ3uσx

i σ
z
i+1σ

x
i+2τ

z
i

2
−
κ3uσx

i σ
z
i+1σ

x
i+2τ

z
i+2

2
+ κuσ y

i σ
y
i+1τ

x
i τ

x
i+1

+
κuσ y

i σ
y
i+1τ

x
i+1τ

x
i+2

2
−
κ3uσz

i τ
x
i τ

z
i+1τ

x
i+2

2
+
κuσx

i+1σ
x
i+2τ

y
i τ

y
i+1

2

+
κuσ y

i+1σ
y
i+2τ

x
i τ

x
i+1

2
−
κ3uσz

i+2τ
x
i τ

z
i+1τ

x
i+2

2
−
κ2uσx

i σ
z
i+1σ

x
i+2τ

y
i τ

y
i+1

2

−
κ2uσx

i σ
z
i+1σ

x
i+2τ

y
i+1τ

y
i+2

2
−
κ2uσ y

i σ
y
i+1τ

x
i τ

z
i+1τ

x
i+2

2
−
κ2uσ y

i+1σ
y
i+2τ

x
i τ

z
i+1τ

x
i+2

2

�

,

(B.3)

where

b1 = −
i
�

κ2
�

�

κ2 − 1
�2 �
κ2 + 1
�

u2 + 48
�

+ 16
�

8κ
, b2 =

i
�

6κ2 − 1
�

u

4κ
, (B.4)

b3 =
i
�

1− 5κ2
�

u

2κ
, b4 =

i
�

4κ2 − 1
�

u

2κ
, (B.5)

b5 =
i
�

1− 3κ2
�

u

8κ
, b6 =

i
�

1− 7κ2
�

u

8κ
, (B.6)

b7 = −
1
2

iκ3
�

3κ2 − 1
�

u , b8 =
i
2

. (B.7)
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The matrix expression of H̃ can be found in the Mathematica notebook attached under the
name Htilde.
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