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Abstract

We study the slightly broken higher-spin currents in various CFTs with U(1) gauge field,
including the tricritical QED, scalar QED, fermionic QED and QED-Gross-Neveu-Yukawa
theory. We calculate their anomalous dimension by making use of the classical non-
conservation equation and the equations of motion. We find a logarithmic asymptotic
behaviour (γs ∼ 16/(Nπ2) log s) of the anomalous dimension at large spin s , which
is different from other interacting CFTs without gauge fields and may indicate certain
unique features of gauge theories. We also study slightly broken higher-spin currents of
the SU(N)1 WZW model at d = 2+ε dimensions by formulating them as the QED theory,
and we again find its anomalous dimension has a logarithmic asymptotic behaviour with
respect to spin. This result resolves the mystery regarding the mechanism of breaking
higher spin currents of Virasoro symmetry at d = 2+ε dimensions, and may be applicable
to other interesting problems such as the 2+ ε expansion of Ising CFT.
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1 Introduction

Conformal field theories (CFT) are a family of quantum field theories with fundamental im-
portance and wide applications in physics, which include quantum gravity as well as critical
phenomena in condensed matter physics. One interesting class of CFTs is critical gauge theo-
ries in 3d, which describes various exotic critical phases [1–3] and phase transitions [4–9] in
quantum matter systems. Theoretically, these critical gauge theories are not well understood
and pose challenges for modern CFT techniques such as the conformal bootstrap [10].

A wealth of physical properties of a CFT are determined by its operator spectrum labelled
by (∆, s): ∆ is the scaling dimension, and s is the Lorentz spin characterising how the operator
transforms under the Lorentz rotation symmetry SO(d). The spin-s (s ≥ 1) operators Jλ1···λs

of a unitary CFT are known to satisfy the unitarity bound ∆s ≥ d−2+ s, and the saturation of
the unitary bound implies the conservation of this operator ∂ · Js = ∂λ1

Jλ1···λs = 0. For s = 1
and s = 2 the conserved currents generally exist, corresponding to the conservation of the
global symmetry and stress tensor. In contrast, for s > 2 there are generically no conserved
currents except for special cases, namely free theories and 2d CFTs. The presence of conserved
higher-spin currents in these special cases is a consequence of integrability [11–14]. Once the
integrability is broken by an interaction, these higher-spin currents will acquire an anomalous
dimension

∆s = d − 2+ s+ γs , (1)

and subsequently a non-zero divergence,

∂ · Js = Ks−1 . (2)

These operators are called slightly broken higher-spin currents.
There are several motivations to study slightly broken higher-spin currents of interacting

CFTs. Firstly, their anomalous dimensions γs can serve as a measure of how interacting the
theory is. Analysis based on the analytical bootstrap of four-point correlator predicts γs to take
a general form [15–21],

γs = c1 log s+ c2 +O (1/s) , (3)

with c1,2 being theory dependent numerical constants. Specifically, for theories with a per-
turbation parameter λ (e.g. λ ∼ 1/N or λ ∼ ε in the large-N or 4 − ε expansion) one has
c1,2 ∼ O (λ). Perturbatively, by evaluating the loop diagrams, γs for O(N) vector model [22]
and Gross-Neveu-Yukawa theory [23] has been evaluated in the large-N limit up to the or-
der of 1/N2. Recently, a method utilising the classical equation of motion has been devel-
oped [24–29] and been applied to a variety of theories, such as Wilson-Fisher theory, cu-
bic model, non-linear sigma models [24], Gross-Neveu-Yukawa model [26] and non-Abelian
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Chern-Simons matter theories [25, 29]. It was found that γs of the theories without gauge
fields (i.e. Wilson-Fisher and Gross-Neveu-Yukawa) converges to a finite large-s limit (c1 = 0),
while non-Abelian gauge theories have a logarithmically growing piece and was interpreted
geometrically from the AdS/CFT correspondence [30].

Slightly broken higher-spin currents could also be useful for the conformal bootstrap using
a recently proposed algorithm called hybrid bootstrap [31]. It has been observed that the
performance of numerical bootstrap is largely improved if combined with the information of
slightly broken higher-spin currents from analytical light-cone bootstrap. This also motivates
us to study the slightly broken higher-spin currents of 3d critical U(1) gauge theories, as it
may help to bootstrap these CFTs.

These slightly broken higher-spin currents are also of theoretical importance as they im-
pose strong constraints on interacting CFTs. For example, the divergence operator Ks−1 (2)
has to be a spin s−1 primary operator with scaling dimension ∆= d−1+ s in the free theory
limit [32], and it becomes a descendent of Js in the interacting CFT. So the two different con-
formal multiplets of Js and Ks−1 in the free theories recombine into one when the interaction
is turned on,

[Js]int. = [Js]free ∪ [Ks−1]free . (4)

In other words, the shorthening condition ∂ · Js = 0 of the multiplet [Js] no longer hold in
the interacting theory, and [Js] becomes a long multiplet by absorbing the multiplet [Ks−1] in
the free theory. This phenomenon is called conformal multiplet recombination [27, 33, 34],
and it happens in all the interacting CFTs that can be accessed perturbatively via traditional
renormalisation group. More interestingly, it was explicitly shown that one can define and
calculate d = 4−ε O(N)Wilson-Fisher CFTs in a purely algebraic fashion using the conformal
multiplet recombination [27].

An intriguing question one may raise is, is it possible to use the idea of conformal multi-
plet recombination to perform perturbative calculations that the renormalisation group is not
applicable? One ideal target is 2d CFTs,1 which have conserved higher-spin currents due to
the Virasoro symmetry. One would expect slightly broken higher-spin currents once 2d CFTs
are perturbed, for example, to d = 2+ ε dimensions. However, in 2d CFTs’ spectrum the di-
vergence operators Ks−1 are absent,2 making it elusive whether or not the idea of conformal
multiplet recombination would work at all. In this paper, we resolve this mystery for 2d Wess-
Zumino-Witten (WZW) CFTs by reformulating them as gauge theories [36,37]. The solution,
as we will explain in the main text, is that Ks−1 is proportional to the gauge field strength,
which happens to decouple from the IR spectrum in 2d. We then manage to calculate the
leading order anomalous dimension of slightly broken higher-spin currents of SU(N)1 WZW
CFTs at 2+ ε dimensions.

In this paper, we apply the method based on the equation of motion to various U(1) gauge
theories, including tricritical QED, scalar QED, fermionic QED, etc, and we find that the anoma-
lous dimension γs of the slightly broken higher-spin currents has similar logarithmic behaviour
to the non-Abelian gauge theories studied before. This paper is organised as the following. In
Section 2, we review the properties of the higher-spin currents in free theories, and the method
to calculate their anomalous dimensions by making use of the equations of motion. The main
result is also summarised in this section, and the details of the calculation are presented in
the remaining sections. Specifically, in Section 3 we study bosonic QEDs in 3d, including the
scalar QED and the tricritical QED, and in Section 4, we look at the fermionic QED and the
QED-Gross-Neveu-Yukawa theory. In Section 5, we study the QED (i.e. SU(N)1 WZW) in
(2+ ε)-dimensions.

1See a recent attempt on the 2+ ε Ising CFT [35].
2The statement is simply that in 2d CFTs’ spectrum, there is no global conformal primary (also called quasipri-

mary) with spin s− 1 and scaling dimension s+ 1.
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2 Method and models

In this section we will introduce the slightly broken higher-spin currents in interacting the-
ories and discuss the method to calculate their anomalous dimensions by making use of the
classical equation of motion without calculating loop diagrams. This method was introduced
in Ref. [24–26], and to be self-contained we also present its technical details. We will also
review the models we study and present our main results.

2.1 The higher-spin currents in free field theory

To facilitate the description of higher-spin currents, we first introduce the index-free treatment
of symmetric tensors [24,38]. For a rank-l symmetric traceless tensor Tλ1···λl , we can contract
it with an auxiliary polarisation vector zλ,

T̂l ≡ Tλ1···λs
zλ1 · · · zλs . (5)

By setting zλ to be null z2 = 0, T̂l only selects out the symmetric traceless part of the tensor.
One can also go back to the full tensor by acting stripping operator on T̂l , which is a differential
operator in z-space

Dλz ≡
�

d
2
− 1
�

∂zλ + zµ∂zµ∂zλ −
1
2

zλ∂zµ∂zµ . (6)

Acting this operator once restores an index. By acting Dλz repeatedly one can restore the
uncontracted tensor

Tλ1···λl
∝ Dz

λ1
· · ·Dz

λl
T̂l . (7)

In this description, the conservation of a spin-s current Jµ1···µs
s can be expressed concisely

as
∂ · Ĵs = ∂µDµz Ĵs = 0 . (8)

By solving this equation, one can construct explicitly the conserved currents in free theories.
For the free theory of N -flavour complex scalar field φ i , φ i transforms in the fundamental

representation of the SU(N) global symmetry. This theory is described by the Klein-Gordon
Lagrangian

L0 = ∂µφ̄i∂
µφ i , (9)

and the scalar field satisfies the classical equation of motion

∂ 2φ i = 0 , ∂ 2φ̄i = 0 , (10)

where i = 1, . . . , N and summation over repeated indices is implied. This free theory admits
an infinite series of conserved higher-spin currents in the form of s derivatives acting on the
scalar bilinear φ̄ jφ

i − (trace) in the adjoint sector or φ̄kφ
k in the singlet sector [24], i.e.

(Ĵ (B)
s )

i
j(x) = P(B)

s (∂̂1, ∂̂2)φ̄ j(x1)φ
i(x2)
�

�

x1,2→x − (trace) ,

Ĵ (B)
s (x) = P(B)

s (∂̂1, ∂̂2)φ̄k(x1)φ
k(x2)
�

�

x1,2→x ,
(11)

where ∂̂ = zλ∂λ. The trace substracted is 1
dδ

i
j Ĵ

(B)
s , and

P(B)(ξ,η) =
s
∑

m=0

Csmξ
mηs−m (12)
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is a homogeneous polynomial of degree s. By making use of the equations of motion
Eq. (10), the conservation equation Eq. (8) reduces to a differential equation of the polynomial
P(B)

s (ξ,η)

�

d
2
− 1
�

�

(P(B)
s )
′
ξ(ξ,η) + (P(B)

s )
′
η(ξ,η)
�

+ ξ(P(B)
s )
′′
ξξ(ξ,η) +η(P(B)

s )
′′
ηη(ξ,η) = 0 . (13)

Its solution can be expressed in terms of the order-s Gegenbauer polynomial Cαs ,

P(B)
s (ξ,η) = (ξ+η)sC (d−3)/2

s

�

ξ−η
ξ+η

�

=
p
πΓ ( d

2 + s− 1)Γ (d + s− 3)

2d−4Γ
� d−3

2

�

s
∑

m=0

(−1)mξmηs−m

m!(s−m)!Γ (m+ d
2 − 1)Γ (s−m+ d

2 − 1)
. (14)

Note that this expression only holds for d ̸= 3. For d = 3, it vanishes due to the improperly
chosen renormalisation factor, and one can use instead (it only differs from Eq. (14) by a
factor)

P(B)
s (ξ,η) =

(
p

ξ+ i
p
η)2s + (
p

ξ− i
p
η)2s

2 · s!
. (15)

For the free theory of N -flavour fermionic field ψi , ψi transforms in the fundamental rep-
resentation of a SU(N) global symmetry. This theory is described by the Dirac Lagrangian

L0 = −ψ̄i /∂ψ
i , (16)

and the scalar field satisfies the classical equation of motion

/∂ψi = 0 , ∂µψ̄iγ
µ = 0 . (17)

This free theory admits an infinite series of conserved higher-spin currents in the form of (s−1)
derivatives acting on the fermion bilinear ψ̄ jγ̂ψ

i − (trace) in the adjoint sector or ψ̄kγ̂ψ
k in

the singlet sector [25], i.e.

(Ĵ (F)
s (x))

i
j = P(F)

s (∂̂1, ∂̂2)ψ̄ j(x1)γ̂ψ
i(x2)
�

�

x1,2→x − (trace) ,

Ĵ (F)
s (x) = P(F)

s (∂̂1, ∂̂2)ψ̄ j(x1)γ̂ψ
i(x2)
�

�

x1,2→x ,
(18)

where

P(F)(ξ,η) =
s−1
∑

k=0

Cskξ
kηs−k . (19)

The conservation asserts that P(F)
s should satisfy

d
2

�

(P(F)
s )
′
ξ(ξ,η) + (P(F)

s )
′
η(ξ,η)
�

+ ξ(P(F)
s )
′′
ξξ(ξ,η) +η(P(F)

s )
′′
ηη(ξ,η) = 0 . (20)

Its solution can be expressed in terms of the order-(s− 1) Gegenbauer polynomial,

P(F)
s (ξ,η) = (ξ+η)s−1C (d−1)/2

s−1

�

ξ−η
ξ+η

�

=
p
πΓ ( d

2 + s− 1)Γ (d + s− 2)

2d−1Γ ( d−1
2 )

s−1
∑

m=0

(−1)mξmηs−1−m

m!(s− 1−m)!Γ (m+ d
2 )Γ (s−m+ d

2 )
. (21)
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2.2 Anomalous dimensions of the slightly broken higher-spin currents

Now let us turn on adiabatically an interaction characterised by some small expansion param-
eter λ. For example, in the large-N limit, one can take λ = 1/N . The previously conserved
currents will evolve into some higher-spin operators which are no longer conserved for general
λ which we call ‘slightly broken higher-spin currents’ with scaling dimension

∆s = d − 2+ s+ γs , (22)

where the anomalous dimension γs is at least of order O (λ). Correspondingly, the divergence
of the operators

∂ · Ĵs = K̂s−1 (23)

are generally non-zero and of order O (λ). We reiterate that this equation describes the physics
of conformal multiplet recombination, namely the short multiplet of Js and the long multiplet
of Ks−1 in the free limit recombines into a long multiplet of Js in the interacting theory. For
this equation to hold, a necessary condition is that Ks−1 is a primary operator with spin s − 1
and scaling dimension ∆= d − 1+ s.

The divergence operator Ks−1 can generally be fixed by making use of the equation of mo-
tion. For example, for a scalar field, the equation of motion usually takes the form ∂ 2φ = λV ,
where V is some spin-0 and engineering dimension-( d

2 + 1) operator. The expression for K̂s−1
can be obtained by substituting ∂ 2φ by λV repeatedly in ∂ · Ĵs. As we will see later explicitly,
for s = 1 adjoint and s = 2 singlet sector, we have ∂ · (J1)i j = 0 and ∂ · J2 = 0, corresponding
to the conservation of the symmetry current and stress tensor.

Eq. (23) can be used to calculate the anomalous dimension. We write down the generic
form of the two-point correlator of the spin-s current




Ĵs(x)Ĵs(x
′)
�

= C (sg)

�

z · z′ − 2 (z·X )(z
′·X )

X 2

�s

X 2∆(sg)s

,




(Ĵs)
i
j(x)(Ĵs)

k
l(x
′)
�

= C (ad)

�

z · z′ − 2 (z·X )(z
′·X )

X 2

�s

X 2∆(ad)
s

�

δi
lδ

k
j −

1
N
δi

jδ
k
l

�

,

(24)

where X = x − x ′. For simplicity, we will discuss only the singlet sector in the following, and
the adjoint sector follows similarly. We take the divergence with respect to both x and x ′ and
then set z = z′ [24]



K̂s−1(x)K̂s−1(x
′)
�

|z′=z = ∂µDµz ∂
′
νDνz′〈Ĵs(x)Ĵs(x

′)〉
�

�

z′=z

= −
1

X̂ 2
s
�

s+
d
2
− 2
��

γs

�

s+
d
2
− 1
�

(s+ d − 3)

+γ2
s

�

s2 +
�

d
2
− 2
�

s+
d
2
− 1
��




Ĵs(x)Ĵs(x
′)
�

. (25)

Note that the second line is proportional to γs. This results from the higher-spin current con-
servation at zero coupling. By evaluating both sides to the leading order, we can obtain the
expression for the anomalous dimension

γs = −
1

s
�

s+ d
2 − 2
� �

s+ d
2 − 1
�

(s+ d − 3)

X̂ 2



K̂s−1(x)K̂s−1(x ′)
�

(leading order)



Ĵs(x)Ĵs(x ′)
�

(leading order)

+O (λ2) . (26)
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2.3 Models and summary of results

In this paper, we apply Eq. (26) to various gauge theories to calculate the anomalous dimension
of the slightly broken higher-spin currents.

We first discuss the tricritical QED and scalar QED in the large-N limit [39,40]. For scalar
fields, one can couple the free theory to a gauge field by replacing the derivatives in the free
Lagrangian (9) with covariant derivatives

Le = Dµφ̄i D
µφ i +

1
4e2

FµνFµν , (27)

where Dµφ
i = (∂µ − iAµ)φ i and Dµφ̄i = (∂µ + iAµ)φ̄i . This theory admits another relevant

operator, namely the quartic coupling λ
4N (φ̄iφ

i)2. This term can be written equivalently in
terms of a Hubbard-Stratonovich field σ,

Lσ = σφ̄iφ
i −

N
4λ
σ2 . (28)

This theory flows a fixed point in the infrared corresponding to an interacting CFT called the
scalar QED. In the large-N limit, one can also tune λ = 0 to get a different CFT called the
tricritical QED in the infrared.

As will be discussed in Section 3, the anomalous dimensions of slightly broken higher-spin
currents of these two theories in 3d are,

γtricr.QED,ad
s =

16
Nπ2

� s
∑

i=1

1
i − 1/2

−
2(11s2 − 2)
3(4s2 − 1)

�

,

γtricr.QED,sg
s =

16
Nπ2









s
∑

i=1

1
i − 1/2

−















2(11s4 + 3s3 − 13s2 + 15s+ 2)
3(s2 − 1)(4s2 − 1)

, s even

2(11s2 − 2)
3(4s2 − 1)

, s odd























,

γscal.QED,ad
s =

16
Nπ2

� s
∑

i=1

1
i − 1/2

−
7s2 − 1
4s2 − 1

�

,

γscal.QED,sg
s =

16
Nπ2









s
∑

i=1

1
i − 1/2

−















14s4 + 5s3 − 16s2 + 19s+ 2
2(s2 − 1)(4s2 − 1)

, s even

7s3 + 2s2 − s− 2
s(4s2 − 1)

, s odd























, (29)

where ‘ad’ and ‘sg’ denote the currents in the adjoint and singlet sector. To the first order of
large-N expansion, in the limit s→∞, the asymptotic behaviour is

γs ∼
16

Nπ2

�

log s− γ− 2 log2−
�

11
6 tricr.QED
7
4 scal.QED

�

+O
�

1
s

�

�

, (30)

where γ is the Euler Gamma constant. Note that the asymptotic behaviours are the same
for singlet and adjoint sector. We have also discussed the bosonic QEDs with Chern-Simons
terms. The results are included in Appendix B. Note γad

s=1 = 0 and γsg
s=2 = 0, corresponding to

the conservation of SU(N) symmetry current and energy momentum tensor.
We can similarly define the QED3 and QED3-Gross-Neveu-Yukawa theories for fermion

fields3 in the large-N limit [39–43]. One can couple the free fermionic theory to a gauge field
by replacing the derivatives in the free Lagrangian (16) with covariant derivatives

Le = −ψ̄i /Dψ
i , (31)

3The fermion flavor number is counted in the unit of 2-component fermions.
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where Dµψ= (∂µ− iAµ)ψ, and the irrelevant Maxwell term is omitted. We find the anomalous
dimensions of the slightly broken higher-spin currents of fermionic QED are exactly the same
as in tricritical QED, its bosonic counterpart.4 The detailed calculation is enclosed in Section 4.

One can also couple the fermions mass to a critical bosonic field through a Gross-Neveu-
Yukawa interaction

Lσ = σψ̄iψ
i . (32)

Again, we find the anomalous dimensions of the slightly broken higher-spin currents of
fermionic QED with GNY interaction are exactly the same as in scalar QED. The detailed cal-
culation is enclosed in Section 4.

Another particularly interesting limit is the QED (i.e. SU(N)1 WZW CFT) in (2 + ε)-
dimension, which is discussed in Section 5, and the anomalous dimensions in the adjoint
sector are calculated to be

γQED,ad
s =

ε

N

s−1
∑

i=1

1
i
+O
�

ε2

N

�

=
ε

N
Hs−1 +O
�

ε2

N

�

, (33)

where Hs−1 is the Harmonic number.

3 Bosonic QEDs in 3d large-N limit

In this section, we calculate the anomalous dimension of the tricritical QED and scalar QED
in the large-N limit, with Lagrangian defined in Eqs. (27) and (28). In the large-N limit, the
scalar field bubble diagrams can be resummed to be an effective photon propagator. In d < 4,
the Maxwell term is irrelevant and can be omitted. In other words, we take the e2→∞ limit
to do the calculation from the beginning. A non-local gauge fixing described in Ref. [40,41] is
adopted. Similarly, in the scalar QED, the effective propagator of σ is obtained by resumming
the bubble diagrams [44], and its mass term can be omitted. The scalar field propagator in
the large-N limit is the same as in free field theory. The Feynman rules altogether are listed
below:

G i
j(x) = 〈φ i(x)φ j(0)〉∞ = δi

j

Γ
� d

2 − 1
�

4πd/2

1
xd−2

,

Dµν(x) = 〈Aµ(x)Aν(0)〉∞ =
1
N

−Γ (d) sin πd
2

π(d − 2)Γ
� d

2

�2

(d − 2− ζ)δµν + 2ζ xµxν

x2

x2
, (34)

Dσ(x) = 〈σ(x)σ(0)〉∞ =
1
N

8(d − 4)Γ (d − 2) sin πd
2

Γ ( d
2 − 1)2

1
x4

.

3.1 Tricritical QED currents

The equations of motion for φ, φ̄ and A that we will make use of are

∂ 2φ i = i(∂µAµ)φ i + 2iAµ(∂µφ
i) +O (A2) , (35a)

∂ 2φ̄ j = −iφ̄ j(∂µAµ)− 2i(∂µφ̄ j)A
µ +O (A2) , (35b)

0= i(∂1µ − ∂2µ)φ̄k(x1)φ
k(x2)
�

�

x1,2→x +O (A) . (35c)

4Similar coincidence has also been found between 3d O(N)Wilson-Fisher and Gross-Neveu-Yukawa theory [22,
23]. This coincidence is not an indication of any type of duality, and will no longer hold at the 1/N 2 order.
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We keep these equations to the leading order in A, as the correlation function of A is a small
quantity of order 1/N .

When the coupling to the gauge field is turned on, the slightly broken higher-spin currents
should be modified to be gauge invariant by replacing the partial derivative in Eq. (11) with
covariant derivative [25].

Ĵ (B)
s (x) = P(B)

s (D̂1, D̂2)φ̄(x1)φ(x2)
�

�

x1,2→x , (36)

where the polynomial P(B)s (ξ,η) is given in Eq. (14) and (15). Here we omit the flavour index.
This expression applies both to singlet and adjoint sector. To the leading order in 1/N , we need
only to expand the expression to the linear order in the gauge field. When acting a power of
D̂ on φ, one gets

D̂nφ(x) = (∂̂ − iÂ)nφ(x) = ∂̂ nφ(x)− i
n−1
∑

m=0

∂̂ mÂ∂̂ n−1−mφ +O (A2)

= ∂̂ nφ(x)− i
(∂̂ + ∂̂ ′)n − ∂̂ n

∂̂ ′
Â(x ′)φ(x)

�

�

�

�

x ′→x
+O (A2) . (37)

Generalise this expression to a polynomial of D̂, one obtains Ĵs(x) to the linear order of Â

Ĵs(x) = P(∂̂1, ∂̂2)φ̄(x1)φ(x2) + iQ(∂̂1, ∂̂2, ∂̂3)φ̄(x1)Â(x3)φ(x2)
�

�

x1,2,3→x = Ĵ (P)s (x) + Ĵ (Q)s (x) ,
(38)

where

Q(ξ,η,χ) =
P(ξ+χ,η)− P(ξ,η+χ)

χ
. (39)

We then calculate its divergence

K̂s−1 = ∂µDµz Ĵs . (40)

The divergence of the A-independent part Ĵ (P)s is

K̂(P)s−1 =
�

M1(∂̂1, ∂̂2)∂
2
1 +M2(∂̂1, ∂̂2)∂

2
2

�

φ̄(x1)φ(x2) , (41)

where

M1(ξ,η) =
d − 2

2
P ′ξ(ξ,η) +

ξ−η
2

P ′′ξξ(ξ,η) +ηP ′′ξη(ξ,η) ,

M2(ξ,η) =
d − 2

2
P ′η(ξ,η)−

ξ−η
2

P ′′ηη(ξ,η) + ξP ′′ξη(ξ,η) . (42)

We then substitute in the equations of motion Eq. (35a) and (35b). The divergence of the
A-dependent part Ĵ (Q)s can be calculated similarly. For this part, one can simply use the free
equation of motion ∂ 2φ = 0. Combined together, the final result is gauge invariant, dependent
only on the field strength Fµν = ∂µAν − ∂νAµ.

K̂s−1 = K
µν

(A) (∂1,∂2,∂3)iφ̄(x1)φ(x2)Fµν(x3)
�

�

�

x1,2,3→x
, (43)

where the differential operator

K µν

(A) (∂1,∂2,∂3) = R1(∂̂1, ∂̂2, ∂̂3)∂
µ
1 zν + R2(∂̂1, ∂̂2, ∂̂3)∂

µ
2 zν + R3(∂̂1, ∂̂2, ∂̂3)∂

µ
3 zν , (44)
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and the polynomials

R1(ξ,η,χ) =
2
χ

M1(ξ+χ,η)−
1
χ

�

d − 2
2

Q− (η+χ)Q′ξ +ηQ′η +χQ′χ

�

,

R2(ξ,η,χ) = −
2
χ

M2(ξ,η+χ)−
1
χ

�

d − 2
2

Q+ ξQ′ξ − (η+χ)Q
′
η +χQ′χ

�

, (45)

R3(ξ,η,χ) =
1
χ
[M1(ξ+χ,η)−M2(ξ,η+χ)]−

1
χ

�

d − 2
2

Q+ ξQ′ξ +ηQ′η − (ξ+η)Q
′
χ

�

.

Especially, in 3d, for s = 1 adjoint, (K̂0)i j = 0, and for s = 2 singlet, due to the equation of
motion (35c) for A, K̂1 = 6i(∂ µ1 −∂

µ
2 )φ̄k,1φ

k
2 Fµν,3zν = 0, which corresponds to the conservation

of symmetry current and stress tensor.

3.1.1 Adjoint sector

We first calculate the anomalous dimension in the adjoint sector. To do this, we restore the
flavour index for the slightly broken higher-spin currents

(Ĵs)
i
j = P(∂̂1, ∂̂2)φ̄ j,1φ

i
2 + iQ(∂̂1, ∂̂2, ∂̂3)iφ̄ j,1φ

i
2Â3 − (trace) , (46)

and its divergence

(K̂s−1)
i
j =K

µν

(A) (∂1,∂2,∂3)iφ̄ j,1φ
i
2Fµν,3 − (trace) , (47)

and then calculate their correlation function in the large-N limit and plug it into Eq. (26).
For the correlation of Ĵs, the contribution of Â-dependent piece is of higher order and thus

can be omitted, leaving only the Â-independent part. In the adjoint sector, the only contribution
to the bilinear correlator is the direct contraction, thus

〈(Ĵs)
i
j(x)(Ĵs)

k
l(0)〉= P(∂̂1, ∂̂2)P(∂̂1′ , ∂̂2′)〈(φ̄1, jφ

i
2)(φ̄

′
1,kφ

′l
2 )〉
�

�

�

�

x1,2→x ,x ′1,2→0
− (trace)

= P(∂̂1, ∂̂2)P(−∂̂2,−∂̂1)G
k

j(x1)G
i
l(x2)
�

�

x1,2→x − (trace) . (48)

This expression can be evaluated by using the Schwinger parametrisation of the propaga-
tor [24]

G i
j(x) = δ

i
j

∫ ∞

0

dα
4πd/2

αd/2−2e−αx2
. (49)

When acting on the integrand, the hatted differential operators ∂̂ can be replaced by −2α x̂ ,
due to the null condition z2 = 0 and subsequently ∂̂ x̂ = 0. Hence,




(Ĵs)
i
j(x)(Ĵs)

k
l(0)
�

=
�

δi
lδ

k
j −

1
N δ

i
jδ

k
l

�

×
∫ ∞

0

∫ ∞

0

dα1

4πd/2

dα2

4πd/2
P(−2α1 x̂ ,−2α2 x̂)P(2α2 x̂ , 2α1 x̂)αd/2−2

1 α
d/2−2
2 e−(α1+α2)x2

. (50)

Similar techniques can be used to evaluate the correlation function of K̂s−1




(K̂s−1)
i
j(x)(K̂s−1)

k
l(0)
�

= −K µν

(A) (∂1,∂2,∂3)K
µν

(A) (−∂2,−∂1,∂3)

× Gk
j(x1)G

i
l(x2)D

µν,ρσ
P (x3)
�

�

x1,2,3→x − (trace) , (51)
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where Dµν,ρσ
P (x) = 〈Fµν(x)Fρσ(0)〉∞.

It is difficult to evaluate the Schwinger integral for Eqs. (48) and (51) for general s, so
instead, we evaluate the expression for finite s in 3d up to s = 50 and then match it with an
analytic expression. Our final result is

γtricr.QED,ad
s =

16
Nπ2

� s
∑

i=1

1
i − 1/2

−
2(11s2 − 2)
3(4s2 − 1)

�

. (52)

3.1.2 Singlet sector

In the singlet sector, the higher-spin operator Ĵs and its divergence K̂s−1 are

Ĵs = P(∂̂1, ∂̂2)φ̄ j,1φ
i
2 + iQ(∂̂1, ∂̂2, ∂̂3)iφ̄k,1φ

k
2 Â3 ,

K̂s−1 =K
µν

(A) (∂1,∂2,∂3)iφ̄k,1φ
k
2 Fµν,3 . (53)

Note that the correlators of Ĵs and K̂s−1 are no longer only contractions. To the leading order
of 1/N , we have to consider other possible contributions. Here we outline the process of
calculation and enclose the details in Appendix A.

For the correlation of Ĵs, It can be shown that the s = 1 current drops out from the spectrum,
and for s ≥ 2, the only contribution to its correlation function is still direct contraction. For
the correlation of K̂s, adding extra contribution is equivalent to making use of the equation of
motion (35c) for Aµ which effectively remove the pieces proportional to Ĵ1. More specifically,
we rewrite the divergence in terms of the slightly broken higher-spin currents, the field strength
and their descendants.

K̂s−1 =
s−2
∑

l=0

[Jl][F] , (54)

where [. . . ] denotes the conformal family of the operator, and in Jl we need only to keep the
Â-independent piece. The correlation of K̂s−1 in large-N limit can be written effectively as the
contraction of ˆ̃Ks−1 in which the terms proportional to J1 are removed from K̂s−1.




K̂s−1(x)K̂s−1(0)
�

∞ =
¬

ˆ̃Ks−1(x)
ˆ̃Ks−1(0)
¶

ct.
, ˆ̃Ks−1 = K̂s−1 − [J1][F] . (55)

Taking this extra contribution into account, we evaluate the anomalous dimension for finite
s and extrapolate an analytic expression in 3d. Our final result is

γtricr.QED,sg
s =

16
Nπ2









s
∑

i=1

1
i − 1/2

−















2(11s4 + 3s3 − 13s2 + 15s+ 2)
3(s2 − 1)(4s2 − 1)

, s even

2(11s2 − 2)
3(4s2 − 1)

, s odd























. (56)

3.2 Scalar QED

In this section we consider the scalar QED, with Lagrangian defined in Eqs. (27) and (28). The
modified equation of motion for φ are, to linear order of A and σ

∂ 2φ i = i(∂µAµ)φ i + 2iAµ(∂µφ
i) +φ iσ ,

∂ 2φ̄ j = −iφ̄ j(∂µAµ)− 2i(∂µφ̄ j)A
µ + φ̄ jσ . (57)

and there is an additional equation of motion for σ

0= φ̄kφ
k . (58)
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Substitute the equation of motion (57) into the divergence Eq. (42), we get an extra piece
in the divergence K̂s−1.

K̂s−1 = K
µν

(A) (∂1,∂2,∂3)iφ̄(x1)φ(x2)Fµν(x3) +K(σ)(∂1,∂2,∂3)iφ̄(x1)φ(x2)σ(x3)
�

�

�

x1,2,3→x
,

(59)

where
K(σ) = M1(∂̂1 + ∂̂3, ∂̂2) +M2(∂̂1, ∂̂2 + ∂̂3) . (60)

In the adjoint sector, the correlation of the higher-spin operator Ĵs remains the same as the
tricritical QED, and the correlation of the divergence K̂s−1 can be evaluated by direct contrac-
tion,

〈(K̂s−1)
i
j(x)(K̂s−1)

k
l(0)〉= −K

µν

(A) (∂1,∂2,∂3)K
µν

(A) (−∂2,−∂1,∂3)G
k

j(x1)G
i
l(x2)D

µν,ρσ
P (x3)

+K(σ)(∂1,∂2,∂3)K(σ)(−∂2,−∂1,∂3)G
k

j(x1)G
i
l(x2)Dσ(x3)
�

�

x1,2,3→x − (trace) . (61)

Substitute this into Eq. (26), we get the result for the anomalous dimension in 3d

γscal.QED,ad
s =

16
Nπ2

� s
∑

i=1

1
i − 1/2

−
7s2 − 1
4s2 − 1

�

. (62)

In the singlet sector, for the correlation of the divergence K̂s−1, we need to take into account
the equation of motion (35c) for A and (58) for σ. We write K̂s−1 in terms of Jl , F , σ and their
descendents

K̂s−1 =
s−2
∑

l=0

[Jl][F] +
s−1
∑

l=0

[Jl][σ] (63)

remove the pieces proportional to J1 and J0,

ˆ̃Ks−1 = K̂s−1 − [J1][F]− [J0][F]− [J1][σ]− [J0][σ] , (64)

and calculate its correlator through direct contraction

〈K̂s−1(x)K̂s−1(0)〉∞ = 〈 ˆ̃Ks−1(x)
ˆ̃Ks−1(0)〉ct. . (65)

The result for the anomalous dimension in 3d is

γscal.QED,sg
s =

16
Nπ2









s
∑

i=1

1
i − 1/2

−















14s4 + 5s3 − 16s2 + 19s+ 2
2(s2 − 1)(4s2 − 1)

, s even

7s3 + 2s2 − s− 2
s(4s2 − 1)

, s odd























. (66)

4 Fermionic QEDs in 3d large-N limit

In this section we calculate the anomalous dimension of the QED3 and QED3-Gross-Neveu-
Yukawa theory in the large-N limit, with Lagrangian defined in Eqs. (31) and (32). The ef-
fective photon propagator in the large-N limit comes from the resummation of the fermion
bubble diagrams. The large-N fermion propagator is the same as in free field theory. The
Feynman rules of QED3 are listed below:

G i
j(x) = 〈ψi(x)ψ̄ j(0)〉∞ = δi

j

Γ
� d

2

�

2πd/2

/x
xd

,

Dµν(x) = 〈Aµ(x)Aν(0)〉∞ =
1
N

−Γ (d) sin πd
2

π(d − 2)Γ
� d

2

�2

(d − 2− ζ)δµν + 2ζ xµxν

x2

x2
.

(67)
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For QED3-Gross-Neveu-Yukawa theory there is one extra Feynman rule for the effective prop-
agator of σ obtained by resumming the fermion bubble diagrams,

Dσ(x) = 〈σ(x)σ(0)〉∞ =
1
N

2d−1Γ ( d−1
2 ) sin

πd
2

π3/2Γ ( d
2 − 1)2

1
x2

. (68)

4.1 QED3

The equations of motion for ψ and ψ̄ to the linear order in A are

/∂ψ= i/Aψ ,

∂µψ̄γ
µ = −iψ̄/A ,

∂ 2ψ=
i
2
γλε

µνλFµνψ+ i(∂µAµ)ψ+ 2iAµ(∂µψ) ,

∂ 2ψ̄=
i
2
ψ̄Fµνγλε

µνλ − iψ̄(∂µAµ)− 2i(∂µψ̄)A
µ , (69)

where we have made use of the γ-matrix identity

γµγν = δµν + iεµνλγλ . (70)

The gauge invariant slightly broken higher-spin currents are

Ĵ (F)
s (x) = P(F)

s (D̂1, D̂2)ψ̄(x1)γ̂ψ(x2)
�

�

x1,2→x , (71)

where the polynomial P(F)s (ξ,η) is given is Eq. (21). Similar to the bosonic case, we truncate
the expression to the linear order in the gauge field

Ĵs(x) = P(∂̂1, ∂̂2)ψ̄(x1)γ̂ψ(x2)φ(x2) + iQ(∂̂1, ∂̂2, ∂̂3)ψ̄(x1)γ̂ψ(x2)Â(x3)
�

�

x1,2,3→x

= Ĵ (P)s (x) + Ĵ (Q)s (x) , (72)

where

Q(ξ,η,χ) =
P(ξ+χ,η)− P(ξ,η+χ)

χ
. (73)

We then calculate its divergence

K̂s−1 = ∂µDµz Ĵs . (74)

The divergence of the A-independent part Ĵ (P)s is

K̂(P)s−1 =
�

M1(∂̂1, ∂̂2)∂
2
1 +M2(∂̂1, ∂̂2)∂

2
2

�

ψ̄(x1)γ̂ψ(x2)

+
�

N1(∂̂1, ∂̂2)∂
λ
1 + N2(∂̂1, ∂̂2)∂

λ
2

�

ψ̄(x1)γλψ(x2) , (75)

where the polynomials

M1(ξ,η) =
d
2

P ′ξ +
1
2
(ξ−η)P ′ξξ +ηP ′ξη ,

M2(ξ,η) =
d
2

P ′η −
1
2
(ξ−η)P ′ηη + ξP ′ξη ,

N1(ξ,η) =
d − 2

2
P + ξ(P ′η − P ′ξ) ,

N2(ξ,η) =
d − 2

2
P +η(P ′ξ − P ′η) . (76)
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We then substitute in the equations of motion of (69). The divergence of the A-dependent part
Ĵ (Q)s can be calculated similarly. For this part, one can simply use the free equation of motion
/∂ψ = 0. Combined together, the final result is gauge invariant, dependent only on the field
strength Fµν = ∂µAν − ∂νAµ.

K̂s−1 =
�

R1(∂̂1, ∂̂2, ∂̂3)∂
µ
1 + R2(∂̂1, ∂̂2, ∂̂3)∂

µ
2 + R3(∂̂1, ∂̂2, ∂̂3)∂

µ
3

�

iψ̄1γ̂F3µνz
νψ2

+R4(∂̂1, ∂̂2, ∂̂3)ψ̄1F3µνzλε
µνλψ2 + R5(∂̂1, ∂̂2, ∂̂3)iψ̄1F3µνγ

µzνψ2

�

�

x1,2,3→x , (77)

where the polynomials

R1(ξ,η,χ) =
2
χ

M1(ξ+χ,η)−
1
χ

�

d
2

Q− (η+χ)Q′ξ +ηQ′η +χQ′χ

�

,

R2(ξ,η,χ) = −
2
χ

M2(ξ,η+χ)−
1
χ

�

d
2

Q+ ξQ′ξ − (ξ+χ)Q
′
η +χQ′χ

�

,

R3(ξ,η,χ) =
1
χ
(M1(ξ+χ,η)−M2(ξ,η+χ))−

1
χ

�

d
2

Q+ ξQ′ξ +ηQ′η − (ξ+η)Q
′
χ

�

, (78)

R4(ξ,η,χ) = −
1
2
(M1(ξ+χ,η) +M2(ξ,η+χ)) ,

R5(ξ,η,χ) = (M1(ξ+χ,η)−M2(ξ,η+χ)) +
1
χ
(N1(ξ+χ,η)− N2(ξ,η+χ)) +

ξ+η+χ
χ

Q .

Especially„ for s = 1 adjoint, (K̂0)i j = 0, and for s = 2 singlet, K̂1 = 6iψ̄k,1γ
µψk

2Fµν,3zν = 0 due
to the equation of motion for Aµ in 3d, which corresponds to the conservation of symmetry
current and stress tensor.

In the adjoint sector, the correlation of the higher-spin operator Ĵs and the divergence K̂s−1
can be evaluated by direct contraction. Substitute the correlation functions into Eq. (26), we
get the result for the anomalous dimension in 3d

γQED, ad
s =

16
Nπ2

� s
∑

i=1

1
i − 1/2

−
2
3

11s2 − 2
4s2 − 1

�

. (79)

Note that this result is exactly the same as tricritical QED. Based on this, we conjecture that the
anomalous dimension of the tricritical QED and fermionic QED3 in the singlet sector should
also be the same. We verify this coincidence up to s = 5 by calculating leading order diagrams
of the K̂s−1 correlators

〈K̂s−1(x)K̂s−1(0)〉= + (80)

4.2 QED3-Gross-Neveu-Yukawa theory

In this section we further couple the fermions in QED to an auxiliary bosonic field through a
Gross-Neveu-Yukawa interaction. The modified equation of motion for ψ and ψ̄ are, to linear
order of A and σ

/∂ψ= i/Aψ−σψ ,

∂µψ̄γ
µ = −iψ̄/A+ ψ̄σ ,

∂ 2ψ=
i
2
γλε

µνλFµνψ+ i(∂µAµ)ψ+ 2iAµ(∂µψ)− ( /∂ σ)ψ ,

∂ 2ψ̄=
i
2
ψ̄Fµνγλε

µνλ − iψ̄(∂µAµ)− 2i(∂µψ̄)A
µ + ψ̄( /∂ σ) . (81)
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This modification results in an extra piece in the divergence

K̂s−1 = K̂(QED)
s−1 + K̂(GNY)

s−1 , (82)

where K̂(QED)
s−1 is the divergence in QED given in the Eq. (77), and

K̂(GNY)
s−1 = R6(∂̂1, ∂̂2, ∂̂3)ψ̄1σ3ψ2 + R7(∂̂1, ∂̂2, ∂̂3)ψ̄1(∂

µ
3 σ3)z

νγλεµνλψ2 , (83)

the polynomials are

R6(ξ,η,χ) = χ [M1(ξ+χ,η)−M2(ξ,η+χ)] + N1(ξ+χ,η)− N2(ξ,η+χ) ,

R7(ξ,η,χ) = M1(ξ+χ,η) +M2(ξ,η+χ) . (84)

In the adjoint sector, the correlation of the higher-spin operator Ĵs is the same as in QED,
and the correlation of the divergence K̂s−1 can be evaluated by direct contraction. Substitute
the correlation functions into Eq. (26), we get the result for the anomalous dimension in 3d

γ(QED−GNY,ad)
s =

16
Nπ2

� s
∑

i=1

1
i − 1/2

−
7s2 − 2
4s2 − 1

�

. (85)

We note that this result is the same as scalar QED. We also expect γs in the singlet sector is the
same as that of scalar QED.

5 SU(N)1 WZW CFT in (2+ ε)

It is well known that starting from a Gaussian theory at the upper or lower critical dimen-
sions, one can perform dimensional continuation to obtain and to calculate interacting CFTs
perturbatively, which include: (1) d = 4−ε dimensional Wilson-Fisher [45,46], Gross-Neveu-
Yukawa [47, 48], critical gauge theories with bosonic and/or fermionic matter [49–53]; (2)
d = 2+ε dimensional non-linear sigma models with no topoloigcal terms5 [54]; (3) d = 2+ε
dimensional Gross-Neveu-Yukawa theory [55]. Conformal data such as scaling dimensions of
operators can be written as a series expansion of ε, and the series is known to be a diver-
gent asymptotic series. One physical reason for the series expansion being divergent is that
d = 2,4 dimensions are the branch cut of the theory at which the Gaussian fixed point merges
with the interacting fixed point. This naturally brings a question: can we perturbatively de-
fine and calculate an interacting CFT starting from a non-Gaussian (but solvable) theory? An
ideal starting point is the 2d CFT, in particular, the Ising CFT is believed to exist in 2 ≤ d ≤ 4
dimensions [56,57].

Similar to free theories, 2d CFTs also have conserved higher-spin currents as a consequence
of the Virasoro symmetry. However, it remains a mystery about how these conserved higher-
spin currents are broken if the theory is continued to d = 2 + ε dimensions. The idea of
conformal multiplet recombination does not naively apply here. Specifically, the divergence
equation ∂ · Js = Ks−1 requires a spin-(s− 1) operator Ks−1 with ∆ = s+ 1. Such an operator,
however, does not exist in a generic 2d CFT’s spectrum (viz. minimal models, WZW models)
even if null operators are taken into account. On the other hand, there is no known way
to get around the conformal multiplet recombination, as one can rigorously show that ∂ · Js
has to be a primary operator of the global conformal symmetry [32]. In this section, we will

5These non-linear sigma models are believed to describe the same fixed point as Wilson-Fisher bosons
with/without gauge fields.
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provide a solution to this mystery for the SU(N)1 WZW models, and it can be straightforwardly
generalised to other WZW models.

The idea is to consider a dual description of the SU(N)1 WZW CFT, namely a fermionic
QED with N Dirac fermions coupled to a U(1) gauge field. This is the only known description
that can be generalised into (2+ε)-dimensions. This QED2 theory is also called the Schwinger
model. It can be exactly solved using the bosonisation technique. One important feature of
the exact solution is that the gauge field strength Fµν as well as any operator proportional
to it will decouple from the IR spectrum.6 As we have explicitly shown in previous sections,
in gauge theories higher-spin currents get broken by ‘eating’ the divergence operator Ks−1
which is proportional to Fµν. The absence of divergence operator can also be understood from
the fact that there exist no operator with spin-(s − 1) and scaling dimension ∆ = s + 1. So
the decoupling of Fµν and its composite operators will make higher-spin currents conserved,
and also explains why the divergence operators are absent in the spectrum of SU(N)1 WZW
models. More importantly, these operators only decouple at 2d, they will re-enter the spectrum
at d = 2+ ε dimensions making higher-spin currents slightly broken.

Concretely, the correlator of Fµν can be written as

〈Fµν(x)Fρσ(0)〉= C(ε, N)
Iµρ Iνσ − Iµσ Iνρ

x4
, (86)

where Iµν(x) = δµν − 2
xµxν

x2 . Fµν decouples at 2d corresponds to C(ε = 0, N) = 0, and it is a
non-perturbative statement. To gain a more quantitative understanding, we can consider the
large-N limit, where the correlator of Fµν at arbitrary 2 ≤ d ≤ 4 and up to the order of 1/N2

is,

C(ε= d − 2, N) =
−Γ (d) sin πd

2

πΓ ( d
2 )2

1
N
+
Γ (d) sin πd

2

πΓ ( d
2 )2

�

3ψ′
�

d
2

�

−
π2

2
+

4(d − 1)
d

�

1
N2
+O
�

1
N3

�

,

(87)
where ψ(x) is the digamma function. The O (1/N2) correction is given by Ref. [58]. It is
consistent with the fact that they will decouple at 2d, namely 〈Fµν(x)Fρσ(0)〉= 0+O (1/N3).
In the regime 1/N ≪ ε≪ 1,

C(ε, N) = 2ε/N + 2ε2/N2 +O(1/N3) . (88)

So in this regime we have

γQED,ad
s =

ε

N

s−1
∑

i=1

1
i
+O (ε2) =

ε

N
Hs−1 +O (ε2) , (89)

where Hs−1 is the Harmonic number. It is tempting to conjecture that the same result holds
for the finite N . The indication is that, the O (1/N) correlator is of order O (ε), while O (1/N2)
correlator is of order O (ε2). It is possible that higher order O (1/N k) (k > 2) correlator is
also of order O (ε2) (or higher). It will be great to have a non-perturbative proof to justify this
conjecture.

6Intuitively, it can be understood from the fact that U(1) gauge field is always linearly confined in 2d.
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6 Conclusion and Discussion

In the previous sections, we have calculated the anomalous dimensions of various bosonic and
fermionic QEDs. We find these results have similar logarithmic asymptotic behaviours in the
large-s limit

γs =
const.

N
log s+ . . . (s→∞) , (90)

which is different from non-gauge interacting CFTs (i.e. Wilson-Fisher, Gross-Neveu-Yukawa),
γs = const./N + · · · . Results from light-cone bootstrap [15–17] provide an explanation for this
difference. For any primary (scalar) operator O in a unitary CFT, its twist family with scaling
dimensions, ∆ = 2∆O + 2n + s + O (1/s), will always exist in the CFT’s operator spectrum.7

The slightly broken higher-spin currents of the Wilson-Fisher theory is just a twist family of φ
, hence their γs = 2∆φ − 1+ O (1/s) = const./N + · · · . In contrast, a gauge theory does not
have φ in its spectrum (since they are not gauge invariant), so its γs does not have to follow
the behavior γs = const./N + · · · .

However, we would like to emphasise that our results do not apply to the real large-s limit.
Since we perform the large-N expansion in the first place, the results apply only to the case
where N is still the leading parameter compared to s.8 To compare gauge theories and non-
gauge theories in the large-s limit, we need to extend our results from the region where N is
the leading scale to the region where s is the leading scale. This region is not accessible by
our large-N expansion. There are several possibilities how γs would extend from the large-s
region to the large-N region. One possibility is the logarithmic divergence continues;9 the
other possibility is that γs converges to a finite limit, for example, one possibility is

γs ∼ γ∞(1− s−a/N ) , (91)

where γ∞ is an O (1/N0) constant.
One question to ask is whether the slightly broken spin-s current is still the spin-s operator

with the minimal twist in gauge theories.10 One candidate for the minimal twist is the twist
family of the SU(N) conserved current, which has lims→∞τ

′
s = 1. We can compare this with

γs of the slightly broken higher-spin currents. There are several possible scenarios: (1) Either
γs diverges logarithmically, or converges to a limit γ∞ > 1, then the minimal twist is τ′s; (2)
γs converges to a limit γ∞ < 1, hence the slightly broken higher-spin currents are the minimal
twist. Thanks to the lightcone bootstrap result [17], we know that γs as a function of s must be
convex. Thus, in either scenario, the minimal twist in the large-s limit τ∞,min = lims→∞τs,min
converges slower than 1/N in the large N limit, namely

lim
N→∞

τ∞,minN = lim
N→∞

�

lim
s→∞

τs,minN
�

=∞ . (92)

This is a crutial difference between gauge theories and interacting theories without gauge
theories, as the latter has limN→∞τ∞,minN = O (1/N0).

We have also discussed SU(N)1 WZW CFT at 2+ε dimensions using its dual QED descrip-
tion. Specifically, we argue that the conservation of higher-spin currents of SU(N)1 WZW CFT
at 2d can be understood as a consequence of the gauge field strength being decoupled in the
IR. At d = 2 + ε dimensions the gauge field strength re-enters the operator spectrum, and

7Schematically, we can write these operators as O∂ s□nO.
8We conjecture that the limit could be written as 1≪ log s ≪ N , as in this case, the correction to the scaling

dimension γs ≪ 1 is small.
9We would like to note that for the Wilson-Fisher theory, the large-N expansion result is identical to the light-

cone bootstrap result, although the former applies to the region where N is the leading scale while the latter is
valid for the region where s is the leading scale.

10The twist is defined as τs =∆− s− 1.
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breaks higher-spin currents through conformal multiplet recombination. It is worth empha-
sising that different from the conformal multiplet recombination in other previously known
cases, here the divergence operators (i.e. the operators being ‘eaten’) are not in the original
operator spectrum of the 2d theory. This new type of conformal multiplet recombination may
be present in the dimensional continuation of many other 2d CFTs, in particular the Ising CFT.
We will leave this to the future study.

At last, we would like to comment on the possible physical or experimental correspondence
of the anomalous dimensions of slightly broken higher-spin currents. An intriguing possibility
is that they may be related to the non-equilibrium properties of CFTs. The intuition behind
this is that in the presence of higher-spin symmetry, the system is known to be integrable. The
breaking of their conservation will spoil integrability, hence yielding non-equilibrium phenom-
ena like thermalisation or scrambling.
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A Calculation details for the singlet sector

In this appendix, we use tricritical QED as an example to demonstrate how we calculate the
singlet sector anomalous dimensions. In tricritical QED, the singlet sector higher-spin operator
Ĵs and its divergence K̂s−1 are

Ĵs = P(∂̂1, ∂̂2)φ̄ j,1φ
i
2 + iQ(∂̂1, ∂̂2, ∂̂3)iφ̄k,1φ

k
2 Â3 ,

K̂s−1 =K
µν

(A) (∂1,∂2,∂3)iφ̄k,1φ
k
2 Fµν,3 . (A.1)

Note that the correlators of Ĵs and K̂s−1 are no longer only contractions. To the leading order
of 1/N , we have to consider other possible Feynman diagrams. For the correlation of Ĵs, we
can still omit the Â-dependent piece, and




Ĵs(x)Ĵs(0)
�

= P(∂̂1, ∂̂2)P(∂̂1′ , ∂̂2′)
¬

(φ̄1,kφ
k
2)(φ̄

′
1,lφ
′l
2 )
¶

∞

�

�

�

x1,2→x ,x ′1,2→0

=

(a)

+

(b)

, (A.2)

where a ring dot denotes that differential operators are acted on this point. The diagram
(b) vanishes identically for s ≥ 2 due to the orthogonality between different spin currents
〈Ĵs(x)Ĵ1(0)〉 = 0. For s = 1, the spin-1 singlet current is the gauge current that is removed
from the operator spectrum.
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For the correlation of K̂s,

〈K̂s−1(x)K̂s−1(0)〉= K
µν

(A) (∂1,∂2,∂3)K
ρσ

(A) (∂1′ ,∂2′ ,∂3′)〈(φ̄1,kφ
k
2 Fµν3 )(φ̄1′,lφ

l
2′F

ρσ
3′ )〉
�

�

�

xα→x ,x ′α→0

=

(a)

+

(b)

+

(c)

. (A.3)

Here diagram (a) corresponds to direct contraction. Diagram (c) vanishes identically due to
the orthogonality between slightly broken higher-spin currents and the field strength, namely
〈Ĵs(x)Fµν(0)〉= 0. Taking into account diagram (b) is equivalent to making use of the equation
of motion for Aµ to the zeroth order of A

0= i(∂1µ − ∂2µ)φ̄
k(x1)φk(x2)
�

�

x1,2→x +O (A) , (A.4)

which effectively remove the pieces proportional to Ĵ1. To show this, we rewrite the divergence
in terms of the slightly broken higher-spin currents, the field strength and their descendents.

K̂s−1 =
s−2
∑

l=0

[Jl][F] , (A.5)

where [. . . ] denotes the conformal family of the operator, and in Jl we need only to keep the
Â-independent piece. More explicitly, one can write the descendents in the form

[Jl][F] =
s−1−l
∑

m=0

�

aslm∂̂
s−l−m−1Dµz Ĵl ∂̂

mFµνz
ν

+bslm∂̂
s−l−m−2∂ µ Ĵl ∂̂

mFµνz
ν + cslm∂̂

s−l−m−2 Ĵl ∂̂
m∂ µFµν
�

. (A.6)

The coefficeents aslm, bslm, cslm can be determined by writing out Ĵl explicitly and compare
the coeffecients with Eq. (44). In particular, due to the differential equation of P(ξ,η), the
coeffecient with l = 1 can be determined explicitly

am1 =
2

m!(s− 2−m)!(s−m)!
∂ m
χ Ds−2−m

p (R1 − R2)|χ=0 ,

d − 2
2

am1 + bm1 =
1

m!(s− 2−m)!(s−m)!
∂ m
χ Ds−2−m

P (ξR1 +ηR2)|ξ=1,η=−1,χ=0 , (A.7)

cm1 =
1

m!(s− 3−m)!(s− 1−m)!
∂ m
χ Ds−3−m

P k3|ξ=1,η=−1,χ=0 ,

where the differential operator

DP =
d − 2

2
(∂ξ + ∂η) + ξ∂

2
ξ +η∂

2
η . (A.8)

We then evaluate the diagrams in Eq. (A.3) using this form of K̂s−1.

(a) =

®� s−2
∑

l=0

[Jl][F]

�

(x)

� s−2
∑

l ′=0

[Jl ′][F]

�

(0)

¸

ct.

=
s−2
∑

l=0

〈([Jl][F]) (x) ([Jl][F]) (0)〉ct. , (A.9)

where ‘ct.’ means direct contraction. For diagram (b), we note that the bubbles are non-zero
only when l = 1 due to the orthogonality between slightly broken higher-spin currents with
different spin

=

®� s−2
∑

l=0

[Jl]

�

Jµ1

¸

ct.

=
s−2
∑

l=0




[Jl]J
µ
1

�

ct.δl,1 = 〈[J1]J
µ
1 〉ct. . (A.10)
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With this result, the chain integral [59] in diagram (b) is evaluated to be

(b) = −〈([J1][F]) (x) ([J1][F]) (0)〉ct. . (A.11)

Therefore, the correlation of K̂s−1 in large-N limit can be written effectively as the contraction
of ˆ̃Ks−1 in which the terms proportional to J1 removed from K̂s.

〈K̂s−1(x)K̂s−1(0)〉∞ = 〈 ˆ̃Ks−1(x)
ˆ̃Ks−1(0)〉ct. ,

ˆ̃Ks−1 = K̂s−1 − [J1][F] . (A.12)

B Bosonic QEDs with Chern-Simons term

In this section we add an additional Chern-Simons term to the bosonic theories,

LCS =
ik
4π
εµνλAµ∂νAλ . (B.1)

We consider the limit of large CS-level k and finite λ= k/N . This results in an extra factor in
front of the photon propagator [25]

〈Aµ(x)Aν(0)〉CS =
1

1+λ2
〈Aµ(x)Aν(0)〉∞

=
1

1+λ2

1
8π2N

(d − 2− ζ)δµν + 2ζ xµxν

x2

x2
, (B.2)

where 〈. . . 〉∞ are correlators evaluated with the Feynman rules without Chern-Simons term.
and the equation of motion for the gauge field A is modified to

ελµνFµν =
4πi

k
(∂ λ1 − ∂

λ
2 )φ̄k(x1)φ

k(x2)|x1,2→x =
4π
k

Jλ1 . (B.3)

In the adjoint sector, we need only take the 1/(1+λ2) factor in Eq. (B.2) into account when
calculating the correlation of the piece proportional to Fµν in K̂s−1, and the result is modified
to

γtr.QED+CS,ad
s =

16
Nπ2

1
1+λ2

� s
∑

i=1

1
i − 1/2

−
2(11s2 − 2)
3(4s2 − 1)

�

(B.4)

in tricritical QED, and

γsc.QED+CS,ad
s =

16
Nπ2

�

1
1+λ2

s
∑

i=1

1
i − 1/2

+
s2 − 1

3(4s2 − 1)
−

1
1+λ2

2(11s2 − 2)
3(4s2 − 1)

�

(B.5)

in scalar QED.
In the singlet sector, we also need to take into account the equation of motion for the gauge

field A (B.3) which relates the field strength to the gauge current. Substituting F with J1, we
get

K̂s−1 =
s−2
∑

l=0

[Jl][J1] . (B.6)

Its correlation function is

〈K̂s−1K̂s−1〉CS =
1

1+λ2

∑

l ̸=1

�

([J l][J1])(x)([J l][J1])(0)

�

∞

+
1

(1+λ2)2

��

([J1][J1])(x)([J1][J1])(0)

�

∞
+

�

([J1][J1])(x)([J1][J1])(0)

�

∞

�

, (B.7)
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where the contraction JmJn is a shorthand notation for (Pm(∂̂1, ∂̂2)φ̄1φ2)(Pn(∂̂1′ , ∂̂2′)φ̄1′φ2′).
Plugging it into Eq. (26), we get the result for the anomalous dimension

γtr.QED+CS,sg
s =

16
Nπ2

1
1+λ2

� s
∑

i=1

1
i − 1/2

−















2(11s2 − 2)
3(4s2 − 1)

, s odd

2(11s4 − s2 + 8)
3(4s4 − 5s2 + 1)

+
1

1+λ2

2(s− 2)(s− 1)
(s+ 1)(4s2 − 1)

, s even























(B.8)

in tricritical QED, and

γsc.QED+CS,sg
s =

16
Nπ2

�

1
1+λ2

s
∑

i=1

1
i − 1/2

+















s2 − 1
3(4s2 − 1)

−
1

1+λ2

2(11s3 + 3s2 − 2s− 3)
3s(4s2 − 1)

, s odd

s− 2
6(2s− 1)

−
1

1+λ2

2(11s4 − s2 + 8)
3(4s4 − 5s2 + 1)

−
1

(1+λ2)2
2(s− 2)(s− 1)
(s+ 1)(4s2 − 1)

, s even























(B.9)

in scalar QED.
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