Scil SciPost Phys. 15, 073 (2023)

Finite temperature spin diffusion in the Hubbard model
in the strong coupling limit

Oleksandr Gamayun'?*, Arthur Hutsalyuk®, Balazs Pozsgay®> and Mikhail B. Zvonarev*

1 London Institute for Mathematical Sciences, Royal Institution,
21 Albemarle St, London W1S 4BS, UK
2 Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
3 MTA-ELTE “Momentum” Integrable Quantum Dynamics Research Group,
Department of Theoretical Physics, E6tvos Lorand University,
Pazmany Péter stny. 1A, 1117 Budapest, Hungary
4 Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France

* og@lims.ac.uk

Abstract

We investigate finite temperature spin transport in one spatial dimension by considering
the spin-spin correlation function of the Hubbard model in the limiting case of infinitely
strong repulsion. We find that in the absence of a magnetic field the transport is diffusive,
and derive the spin diffusion constant. Our approach is based on asymptotic analysis of
a Fredholm determinant representation. The obtained results are in agreement with
Generalized Hydrodynamics approach.
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1 Introduction

Quantum transport in the integrable systems attracts ever increasing attention of the physics
community [1]. Distinctive features of these systems — a completely elastic and factorized
(two-body reducible) scattering, and a presence of an infinite number of conservation laws —
combined with basic principles of hydrodynamics resulted in the formulation of the General-
ized Hydrodynamics (GHD) [2,3]. In less than a decade, the GHD evolved into a matured
field of research [4]. It offers a systematic treatment of ballistic transport in integrable mod-
els [2, 3,5, 6], an example being calculation of finite temperature Drude weights [5, 7, 8],
until then requiring case-by-case approach [9-11]. The analysis of non-ballistic (that is, dif-
fusive) transport, along with computation of diffusion constants, can also be tackled within
the GHD framework, with the use of thermodynamic form factors or hydrodynamic projec-
tions [12-15]. This includes treating anomalous diffusion found in systems possessing special
nonabelian symmetries, reviewed in Ref. [16]. The use of the GHD for systems quenched far
from equilibrium is also possible [17].

The GHD is an asymptotically exact theory aimed at capturing the dynamics at large dis-
tances and past a long-time evolution. It is desirable to complement its findings with first-
principle microscopic calculations, making use of exact solvability of integrable models. This
has been done for current mean values [18-20] and for the Drude weights in some cases
[11,21]. As a general rule, however, diffusion constants have not been extracted from exact
solutions of many-body integrable quantum systems so far. The reason is that the structure
of the exact (Bethe-ansatz) wave functions is complicated, and getting closed-form tractable
expressions for dynamical correlation functions requires extremely involved resummation pro-
cedures for the matrix elements [22]. For example, there exist expressions for dynamical corre-
lation functions in the Heisenberg spin-1/2 chain [23-30], but its finite temperature diffusion
constants have not yet been found in this manner.

A way to proceed further is to shift the focus to the models having particularly simple
Bethe Ansatz solution and yet non-trivial interparticle interactions. In the case of classical
cellular automata such selected models include the Rule54 model [31], box-ball systems [32,
33], and a particle hopping model with two-color excitations [34-36]. A number of physical
quantities (relevant also to transport of conserved quantities) were derived exactly in these
models, starting from the fundamental equations of motion. In the case of quantum spin
chains promising candidates are their large coupling limits. High temperature transport of the
Heisenberg spin chain in the large anisotropy limit is described by the folded XXZ model [37-
39]. Another useful model with infinite dimensional local spaces is the infinite coupling limit of
the g-boson model (the phase model), whose real-time dynamics is tractable within the Bethe
ansatz approach [40-42]. Finally, predictions of GHD for the one-dimensional Hubbard model
can be tested in the limiting case of infinitely strong repulsion. Studying the spin transport
and deriving the exact analytic formulas for diffusion constant in that limiting case free of any
assumptions is the subject of our work.
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The Hubbard model is one of the basic models in physics. It is exactly solvable in one spatial
dimension by the Bethe ansatz [22,43,44], providing full information about the many-body
excitation spectrum and collective phenomena, such as spin-charge separation. The integrabil-
ity of the one-dimensional Hubbard model is proven within the Yang-Baxter framework using
the R-matrix of Shastry [45,46]. The exact solution involves an interplay of fermion and spin
degrees of freedom, and is consequently more complicated than those for some other well
known integrable models, including the Heisenberg spin-1/2 chain, and the g-boson model.
Tractable analytic results for correlation functions at and far from equilibrium exist for rather
particular observables, and initial conditions [47]. The GHD solution of the Hubbard model
has been worked out in Refs. [48-51], and is not yet complemented by the use of the exact
solution for dynamical correlations.

The Hubbard model in the limiting case of infinitely strong repulsion, known as the t — 0
model or the restricted hopping model, has been discussed extensively in the literature [44,52]
(as well as its bosonic counterpart, the Maassarani-Mathieu spin chain, also known as the
SU(3) XX model [53-55]). The spectral functions were studied in [56-58]. The coordinate
Bethe Ansatz solution of the model has been used to calculate finite temperature correlation
functions in Ref. [59]. An alternative representation for its solution, further elaborated in the
works [60,61], has provided grounds for the investigation of real time dynamics in Refs. [62,
63] followed by [64, 65].

In the infinite coupling limit the double occupancies of the Hubbard model are forbidden,
they are projected out from the Hilbert space. As an effect the t —0 model has a three dimen-
sional local Hilbert space: the local basis states are the vacuum, and the two different single
particle states, corresponding to the original Hubbard fermions with the two different spin
orientations. The special dynamical properties of the t — 0 model follow from the projection
procedure and the allowed hopping terms of the original Hamiltonian: One can easily show
that the spatial ordering of the spins of the electrons is not changed during time evolution, and
the time evolution of the positions of the electrons does not depend on the spin configuration.
These dynamical phenomena were called “single-file property” and “charge inertness” in [66].
These properties underly the exact solvability of real time dynamics the model.

In this work we focus on the finite temperature spin-spin correlation function in the t —0
model. We start with the derivation of the exact results using spin-charge separations. The
correlation function can be presented as an integral of the Fredholm determinants for which
we perform the asymptotic analysis using a heuristic method of the effective form factors [67-
69]. Performing saddle point analysis of the obtained expressions we observed that depending
on the initial profile the correlation function in question contains both the ballistic and the
diffusive parts. From these expressions we extract value for the Drude weight and the diffusion
constant correspondingly. Appendices contain all necessary technical derivations. Our results
agree with those obtained from GHD, which we demonstrate in Sec. (5). For the infinite
temperature the value of the diffusion constant agrees with the one given in [70]. To the best
of our knowledge this is the first time that finite temperature spin diffusion was treated in an
interacting lattice model via the exact formulas valid at thermodynamic limit at all times and
distances. Also, it is a first quantum mechanical extension of the results of [34-36] regarding
models with the “single-file” property.

2 Model and spin-charge separation

In this section we introduce the model and a basis separating spin and charge excitations. This
basis is well suited to calculate dynamical correlation functions of the model exactly, which
we do in section 3.
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We consider the Hubbard model describing interacting spin-1/2 fermions on a one-
dimensional lattice. The Hamiltonian reads

oo oo
H=— > (Wl ¥j1a+],1,0a) —hN +2BS, +U D njny;. m
j=—00 j=—00
a=T,l

The fermionic creation, l,b;a, and annihilation, 1) ja» Operators (a is a spin index, a =T, |) satisfy
canonical equal-time anti-commutation relations,

wjawj'/a/ + w;/alea = 5jj’5aa’ > (2)
where
1, a=b,
5ab_{0’ Cl?éb, 3)

is the Kronecker delta symbol. The operator n;, = zpj.alp jq 1s the density operator for the
spin-up (a =T7) and spin-down (a =|) fermions, and

counts the total density of fermions on site j. The local spin vector s(j) = (s,(j),s,(j),s,(j))

is defined as
N . Yir

where
O'Z(CTx,Uy,Uz) (6)

is the vector composed of the three Pauli matrices. In particular, s,(j) = (nj; —n;;)/2. The
spin-ladder operators s.(j) = s,(j) % is,(j) flip the z component of a local spin, and read

s ()= 1/)}1/) jpands_(j) = wjl"gb i1, respectively. The total number of particles,

N= > n, )
j=—00
and the z projection of the total spin,
oo
S:= Y. s:0), ®)
j=—00

are conserved quantities.

In the present work, we focus on the infinitely strong repulsion limit, U — oo, of the
Hubbard model (1). It would cost infinite energy to put two particles on any site in this limit,
due to the on-site interaction term UZ]. nitn;y in Eq. (1). We thus arrive at the no double
occupancy (NDO) constraint, which can be fulfilled by applying the projection operator

=[] a—nyny 9
j=—00
to the Hamiltonian (1). This results in the t —0 model [71],
oo
H=P|= > (Wl ji1a+ ¥l 1,1ja)—hN +2BS, | P. (10)

j=—00

a=1,]
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Each site of the lattice can now be either empty, or occupied by one spin-up or one spin-down
fermion.
Any eigenstate of the Hamiltonian (1) can be constructed of basis states

ja)=y! , ...

IN,>ON

|0}, J1<J2 <N (11)
where |0) is the vacuum state, which contains no fermions. Only those states satisfying

Plj,a) #0, (12)

which is equivalent to the NDO constraint
J1<J2 <Jn> (13)

can be used to construct the eigenstates of the Hamiltonian (10). Taking the coordinates
j1,---,jn and the spin orientations a, ..., ay from a state (11) satisfying the NDO constraint
we define the state

_ T T
If) =cj ...c; 10) (14)
made of spinless fermions (c;r creates, and ¢ annihilates a fermion on site j), and the state

|€):|a1,...,aN> (15)

of a spin-1/2 chain of length N uniquely. The reverse is also true: having defined |f) # 0 by
Eq. (14) and |£) by Eq. (15) one can reconstruct [j, a), which will satisfy the NDO constraint.
Thus, we can write

i, @) =1f) ® [0), J1<jpa<-<Jn. (16)

The subscript f in ®; indicates that the tensor product ® is equipped with a constraint: the
number of spinless fermions in the charge part of the wave function, |f), determines the num-
ber of sites of the spin chain in the spin part of the wave function, |£).
+ . .
The operators ) ja and v, can be expressed via ¢ 75 Cjs and the local spin operators

e(m):1®---®$®---®1 (17)

acting onto |{), where ¢ is defined by Eq. (6). The explicit formulas are given in Ref. [52].
The local spin operators (5) preserve the fermion number N, and their representation is con-
sequently simpler [72]. Its key ingredient is the counting operator

Ni= >0 n,. (18)

The value of ; increases by one each time a lattice site is occupied, when j runs from minus
infinity to infinity. The local density operator (4) expressed via spinless fermion operators read

n; = c;cj ) (19)
The local spin operator can be represented via £(m) and n; using Eq. (18):

oo

s(N=n; >, Lm)Syu - (20)

m=—0oQ

Let us illustrate how Eq. (20) works for |¥) = wi,alwg’ a2|0>' Following Eq. (16) we write
|¥) = cci|0) ®; |ag, az). Applying s(j) to |[¥) we get zero for j other than one and five,

5
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because of vanishing n; (naturally, there are no spins at the lattice sites not occupied by the
fermions). We have n; = 1 for sites one and five; V; = 1 and N5 = 2 imply s(1) = £(1) and
s(5) = £(2), respectively, and the action of the operator £ is defined by Eq. (17).

We rewrite Eq. (20) as

(/) = }Z f 2 e Mg (m), e

using the integral representation of the Kronecker delta symbol. The Hamiltonian (10) ex-

pressed via cJ , ¢, and £(m) reads

o
_ Z (c;.‘cjﬂ +c;.f+1cj)—hN +2BS,, (22)
j=—00

where N is the number operator (7) written via the spinless fermion density (19). We have

N
SV =1f)&p Ll0), L= l,(m). (23)
m=1

The eigenbasis of the Hamiltonian (22) is formed by the vectors |k) ® |}, where
_ T T
k) = Cp, -+, |0) (24)

are the momentum-space components of the vector (14), and

= Z e"kicl, (25)

Therefore,
H (k) ®f 1€)) = (E+E,) (Ik) ® [¢)) , (26)
where
N
E=>e(k), e(k)=—2cos(k), @27)
and
E; = —h(N; + N}) + B(N; —N). (28)

Here, |€) is a state of a spin chain containing N; spin-up and N = N — N, spin-down sites.
The use of the representation (16) for the t —0 model is called the spin-charge separation
in some literature [73]. A few words of caution should be mentioned about this terminology.
Indeed, |f) and |¢) can be chosen independently from each other, with the only constraint
defining the length of the spin chain via the fermion number N. A separation can also be seen
in the Hamiltonian (22): S, acts non-trivially onto |£), Eq. (23), the remaining terms act onto
|f), and L, depends on N. However, Eq. (21) and the formulas for I,bj. « and ¥4, Ref. [52],

cannot be split into a product of operators containing only spin, £(m), and charge, c]' and c;,
parts. Although the bosonization offers splitting of the local operators into spin and charge
parts at low energies and momenta (this procedure is also called the spin-charge separation
in the literature), it requires the linearity of the excitation spectrum [74,75]. Thus, the spin-
charge separation understood in the sense of the transformation (16)—(22) works far beyond
the bosonization in the model (10). It captures, in particular, the polaron [72,76] and the spin-
incoherent [77] physics of the model. A limitation of the transformation (16)—-(22) is the need
for the NDO constraint, resulting in its failure for the finite U Hubbard model, Eq. (1), where
the bosonization works. There exists a transformation aimed to separate spin and charge
degrees of freedom for the finite U Hubbard model beyond the bosonization paradigm [60,
61,78-82], but its analysis lies out of the scope of the present work.

6
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3 Dynamical correlation functions

In this section we evaluate the connected, two point dynamical correlation function of the
z-projection of spins,

oG =i, t) = (5,(j, )s,(5", 0)) r — {5, (G, D)) 1 {s.(57, 0)) 7 - (29)
The average
()r=2 > (e (1)t (15 o5 10) (30)
N=0 fu

is computed in the grand canonical ensemble at temperature T, chemical potential h, and
magnetic field B. Note that the right hand side of this expression is the trace of the equilib-
rium density matrix e P /Z, where Z is the grand partition function, and 8 = 1/T is the
inverse temperature. The trace is invariant with respect to the choice of the basis, therefore
2.7 (fl--+If) can be replaced with >}, (k|---[k), where |k) is defined by Eq. (24). We rep-
resent the function (29) as a Fredholm determinant of an integrable integral operator. This
representation is exact for any value of relative coordinate j — j’ and time t.

3.1 Local magnetization

We start evaluating Eq. (29) with considering the local magnetization (s,(j, t))y, which does
not depend on time at equilibrium. We substitute the representation (21) into Eq. (30) and
calculate ) ,(¢]---|€) in the first place:

> e 7P = PN [2cosh(BB)]V, (31)
{

and

1
> e Pl (m)le) = -3 tanh(BB)e"™[2 cosh(BB)]V . (32)
14
We see that the right hand side of Eq. (32) is independent of m. Taking into account that

oo

Z e =2185(0), —n<A<Tm, (33)

m=—0oQ

we arrive at the sum over spinless fermion states, which we write in the basis (24):
tanh(8B) Zn—o e " {kln;[k)
2 Z;O:o dxe P 2

The energy E is a sum of single-particle energies &(k;) which are shifted relative to e(k;)
defined by Eq. (27):

<Sz(j: t))T = (34)

N
. . . log[2 cosh(f3B
E = Z é(k;), Ek)=¢e(k)—h— gl (BB)] . (35)
i=1 B
Indeed, such a modification accounts for the charge-dependent prefactors in the spin average
(32). After accounting for these subtleties the rest of the computations are performed as in a
free Fermi gas and result in the following expression in the thermodynamic limit

5.0,y == [ g, 36)

7
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where n, (k) is a Fermi-Dirac distribution with the modified energies

_ 1 _ 2 cosh(fB)
"0 = Fa0 11 = 2cosh(pB) + Pt &7
3.2 The two-point function
Now we turn to the two-point correlation function
o(G=J" )= (s:(3, )s;(i", 0)) 1. (38)

Using the same arguments and employing presentation (21) we factorize the average in
Eq. (38) into the spin and charge sectors

T /
o(j—j, t) = ZZ Z J @ﬂe—ilm“”m’e—ﬂkcp(x,A’;j—j’;t)S(m,m’). (39)

N 0 k,{ m,m'=—o0 T 21 27

Similar separation formulas, though approximate, appear in the desription of the tracer dy-
namics [83]. The charge part is the correlation function of the free spinless fermions

C,(A,A5j—Jj5t) = (klnj(t)eW\/j(f)e—illf\/j’(O)nj,(O)|k) . (40)
The spin part formally is defined as
S(m,m") = e PPt (s, (m)s,(m")Ie) . (41)

Notice that here the time dependence canceled out since s,(m) does commute with the Hamil-
tonian. For the chains of length N, similarly to (32) we can write

D 1 S(m,m’) =Tr[s,(m)s, (m)e PSRN = L (2 cosh pBYY (5’"—’“ - tanhz(ﬂB)) . (42)
7 4 cosh? BB

Using relation (33) we arrive at the following representation for the total correlation function

O'(j—j/,t):Uo(j—j/,t)+0'1(j—j/,t), (43)
where
.. tanh“(8B _
outi—1.0) = 2 (EE) ) S S e (I (O)IK) (44)
N=0 k
s

SN pE, | 42 Kk iAN(£) ,—iAN/(0) K
- [ 22 (KIn (0)eMNiOe N On L (0)|K) . (45
o1(G—j,t)= 4cosh2(/33)ZZ:(:)Zk:e JZn In;(t)e e "y (0)k).  (45)

Here as above the energy £ is constructed from the quasienergies (35).
The first contribution o can be computed immediately by applying the Wick’s theorem,
but instead we proceed with the computation of o; and then take limit A — O of the function

under the integral. To compute the average in o'; we notice that e'*"in = eilnj and
llnj(t) 1 e—ilnj/(o) -1
n;(t) = i1 n;(0) = Qa1 (46)
This way if we have a string correlator
FOG =17, 1) = (ke N0 2N O, (47)

8
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then

270G =1, )= FG =i =1,0-FPG =+ 1,0)

iAN: —iAN (0 —
(kln;(0)e ™02 O, (0)[1) = 2(1—cosA)

(48)

The string correlator F. ;k)( j—j’, t) can be expressed as a single determinant, which in the
thermodynamic limit takes a form of a Fredholm determinant.

Folx,t) =det(1 +U). (49)
The kernel of the operator ¢ reads

Z-{-(xz k)e—(xﬂ q) - e—(xz k)£+(x> q)

Uk,q) = g (50)
27 sin =+
where 1 ]y -
(k) = /n, (k) (%Em,k) + SEE k)) , (51)
(e, k) = E_(x,k)4/ny(k),  E_(k)= et 0/2mik/z) (52)
with
E,(x,k)=E(x,k)E_(x,k), (53)
n . ( ) .
—ite(q)+ixq
T tanT

—T
There integral is taken in the principal value sense. We present the derivation in Appendix (A)
(see also [84]).
Taking into account a special structure of the coordinate dependence in (48), it is useful
to introduce the shift operator § acting on the functions of the discrete variable x

SF()=2f ()= f(x+1)—f(x—1), (55)

which is nothing but a discrete analog of the second derivative. This way, o; in the thermo-
dynamic limit reads

1 dA SF(x,t
o100, )= —— [ 42 SRk (56)
4cosh?(BB) ) 2m2(1—cosA)
—T
and o can be presented as
tanh?(BB) SF,(x,t
oo, £) = 20 (BB) SF(x,t) 57)

4 2(1—cosA)la=0"

Expanding Fredholm determinants (see Appendix (B)) we obtain the following expressions

oo(x,t)
; T 2 b T
h*(BB . . d . .
_ tan 4(ﬁ ) f%np(k) _l_f %np(k)elte(k)—zkxfﬁe—lte(q)-ﬂqX(l_np(q)) . (58)

This way, taking into account (36) the connected correlation function (29) reads

o©(x, 1) = 09 (x, 1) + o1(x, 1), (59)

9
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with

d_qe—ite(q)+iqx(1 _ np (q)) ) (60)

T T
2
(c) _ tanh (/‘J)B) % ite(k)—ikx
oy (x,t)= —2 2nnp(k)e o
—T

—T
The formula (59) is an exact form for the spin-spin correlation function (29) in the thermo-
dynamic limit. Fredholm determinants can be effectively evaluated numerically [85] at any
values of x and t. The universal physical characteristics can be extracted from (59) by studying
its asymptotic behavior for large x and t. We perform this analysis in the next chapter.

4 Transport coefficients

Having derived the two-point function now we turn to its asymptotic analysis. This way we
derive the key transport properties of the model. We show that in the general case the model
supports both ballistic and diffusive spin transport, and we derive the characteristic quantities,
the Drude weight and the diffusion constant. We use the notations of Ref. [86].

Let us start with the static covariance defined as

C=> 00, t=0). 61)

First, we simplify the kernel of the Fredholm determinant. Integral in (54) can be evaluated
exactly

E(x, k)‘ 0= isgn(x)e*™ (62)
t=
so the full kernel (50) simplifies into
llsgn(x) -1 |X|(k—Q)

Uk,q) = ——F—/ p(k g V n,(q). (63)

In this form, this kernel is identical to one of the effective fermions with the constant phase
shift A [68]. The Fredholm determinant ., can be considered as a series expansion of the
traces of the antisymmetric powers of the /. The first few terms read

T
. dk .
Fy =1+ (e"e) —1)|x| f z—np(k)w((elMgn(x)—1)2). (64)
T

Taking into account that forn > 1

+iA n
-1 . .
(6 ) zezl:ll(eil)t 1)n—2 , (65)

1—cosA

we see that terms in the remainder in (64) vanish after the integration over A. Further, we
compute the action of the shift operator on the first two terms.

$1=0, 8™ —1)|x| =2(1—cosA)5,. (66)

Therefore performing summation over x we obtain contribution to the static covariance from
01

1 dk
Zx:Ul(X,t—O)—mJ%np(k). 67)

10
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Now let us turn to an evaluation of 08 part in (59). Using (33) we arrive at

9 ™
Cy= D 05(x,t=0)= WJ %np(k)(l—np(k)). (68)

Notice that this evaluation remains valid even at t # 0. The same statement can be demon-
strated even for o, using the fact that SF plays a role of second derivative, so after the
summation over x, one has to take into account only boundary terms at large distances for
which one can use the asymptotic in the space like regime (see for instance [67-69]). Overall,

we obtain
TT

1 ( dk tanh?(B) r dk
_ (© - == e WWe =2 2
C= xg ox,t)= 4J oy n, (k) 2 27Inp(k) . (69)

Further, following [86], we define the Drude weight D and Onsager matrix £ via the asymptotic
at long times of the second moment, namely

% Z x2 (a(c)(x, t)+ o(c)(x,—t)) =Dt2+ Lt +o(t). (70)

To account for the contributions from o, we use second derivative of the relation (33) to arrive
at

=2 (000, 0+ 00, —0) = De? +o(0), 71
with -
tanh?(BB) ( dk ,
D= SR | e P, (01—, (K)). (72)

More specifically, we can describe not only the second moment but the full asymptotic behavior
of oy(x, t) on the ballistic scale x,t — oo and x/t = const. For x > 2t the integrals vanish
exponentially, so

oo(x, 1) =0(e ™), (73)

while for 0 < x < 2t they are dominated by two saddle points k, = arcsin(x/2t) and
k, = m—kg. This way introducing

. = 2cosh(fB) o1
* 2 cosh(BB) + e~ B2/ 1=x7/(2t7)
we obtain , -
tanh B n(1—n,+(—1 X 1—n_)e” is
o, £) & (8B) Z ( (=1)*( ) ) ’ 75)
4= VD202 —x2)
with .
in
¢ = (2t)2—x2+xk0—z. (76)

The integral of the Fredholm determinants in o, are expected to produce diffusive terms in
the region x ~ +/t. To proceed with the asymptotic of the determinant we notice that the
kernel (50) also appears in the correlation function of one-dimensional impenetrable anyons
upon the identification y6(k) = ng(k) = n,(k) [67,87,88]. Moreover, this kernel is nothing
but a generalized sine-kernel on a lattice so its asymptotic behavior can be found rigorously
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by solving the corresponding Riemann-Hilbert problem [87,89], or obtained heuristically, by
using the effective form factors approach [67-69]. The result for x < 2t reads

C(x/t)

ehR

Falx, t) ~ 2

—T

T d . ,
exp ( J —ilx —&/(q)t|log(1 + n, (q)(e8" e @Y — 1))) S

Here

(78)

log(1 +n, (k,)(e* — 1)) ( log(1 +n, (ke — 1)))
v~ - — 5

27l 27l

with k, is one of the critical points ky or m — k introduced after Eq. (73). In princi-
ple, we have to sum over all these points, however further we will see that the integral
is dominated by A ~ x/t ~ 1/4/t, therefore the power-law prefactors are of the order
LN exp (O((log t)/ ﬁ)), so we can regard them to be constant as well as the prefac-
tor C(x/t) ~ C(0). We are going to compute integral in (56) by means of the saddle point
methods. For this let us expand expression in the exponential for small A

. (d 22 (dq .,
hmfxxxwwmxjE%nA@—ugﬁfE%wommxwu—nA@y (79)

Here we assume that x ~ 4/t or less. We also assume that due to the symmetric properties of
e(q) and n,(q) (see (37)), we have

f ¢'(qQ)n,(q)dg=0. (80)

So after integration over A we obtain

T
d
C(0) | 52ny(q) o—x2/(2D1)
—T

4cosh®(BB) +2nDt

oq(x,t)= (81)

with

[ 1@y (@)1 — 1, (@) 22
D=-" . (82)

- 2
ReH

In Fig. 1 we compare theoretical predictions (81) with numerical results obtained from the
exact expression (56) using numerical methods described in [85]. This allows us to compute
non only the diffusion constant D but also conclude that the constant C(0) ~ 1 for various
regimes.

Fitting the numerically evaluated (56) by the function exp(—x2/(2Dt) + B) at the space
scale x ~ 4/t we could estimate the diffusion constant at the finite time scales. The results are
shown in the inset in Fig. 1. We see that the “infinite time” limit is reached very quickly.

For B = 0, or in the case of infinite temperature, the spin-spin correlation function is given
only by o; and has a diffusive shape. Then the condition C(0) = 1 comes naturally via the
connection with the initial profile. For infinite temperature n,(q) = p and

D=2(p t=1)/m. (83)
In the absence of magnetic fields we have p = 2/3, thus

D=1/r. (84)
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Figure 1: Coordinate dependence of the diffusive part of the spin-spin correlation
function. Solid lines show analytic answer (81) and dots correspond to numeric
evaluation of (56) for the density given by (37) with h =2, B=1, T = 2, for times
shown in legends. Inset shows the diffusion constant D after fitting results of (56),
for B = 0, h = 2 and temperatures according to the legend. Dashed lines show
analytic answer (82).

This coincides with the results obtained with the tracer dynamics in [83]. Note that the nor-
malization of the Hamiltonian in [83] includes an extra factor of 1/2 (see eq. (48) in that
work), therefore their diffusion constant differs from ours also in a factor of 1/2.

The magnetic field dependence for various temperatures is depicted in Fig. (2).

Notice that if we formally replace summation into integration with the profile (81) and put
C(0) = 1 we recover the static correlation result (67). Similarly, we can compute the Onsager
matrix £ in (70)

[ 1€'@In,(@)(1 —n, (@) 5
=== R : (85)
4cosh?*(BB) f np(q)‘zjl—ft

We observe that the diffusion constant © = £/C coincides with D only when the ballistic part
is absent (i.e. for B = 0).

5 Thermodynamics of the model and GHD diffusion constant

In our approach, we did not have to introduce the Euler and the diffusive scales, but they ap-
pear naturally from the exact expressions. Nevertheless, we can also compare our results with
predictions of the generalized hydrodynamics. The essential ingredient to it is Thermodynamic
Bethe Ansatz (TBA) formulation, which we briefly recall below.

Let us start with Bethe Ansatz equations for the Hamiltonian (10). In notations of [59]
every eigenstate is parameterized by N unequal quasimomenta k1, ... ky, and by the set of M
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Figure 2: Magnetic field dependence of the Drude weight and the diffusion constant
for various temperatures, h = 1.

auxiliary momenta A ... Ay, satisfying

ekl =¢!h  q=1,...N, (86)
) M

eV (1M b=1,...M, A=) 1. (87)
b=1

The corresponding state has M spins down and N — M spins up. To formulate these equations
as TBA, we introduce the corresponding densities of the quasiparticles

1 1
k)=——""—", 0,A)="7—"—=. (88)
TS L TR )
Then the corresponding energy density reads
E
= J(s(k)—h)pp(k)dk+B Jpp(k)dk—zj o,(A)dA | . (89)
—T —TT —T
The total densities are constant
Y
1 dk
pe(k)= o’ O-t(}'):fpp(k)ﬁ' (90)

—TT

Notice that the only term describing an interaction between quasimomenta and auxiliary mo-
menta comes in the normalization for the latter. In other aspects both these particles can be
considered as fermions, so the free energy takes the following form

F=LE—TLs(p;,p,)—TLs(o,,0,), 91)

with

s(pepp) = J dk(p;logp;—pplogp, —p,logp,),  Pp=pPc—Pp> (92)
—T

and identically for s(o,0,). To describe thermodynamic equilibrium we compute variations
over p,, and o, which leads to the following equations, correspondingly

T

pp T (o
e(k)—h—B—Tlo ———Jlo ————dA =0, (93)
Soe—pl) 21 ) Po—0,()

—T
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2B + T log Up—(7t) = (94)
O:— o-p(l) ’
which leads to o
_op(A) 1 _ 1
o) = = T S el T T e 93)
pp(k) 2 cosh(BB 1
ny (k) = 2 = (PB) __ _ (96)

p.  2cosh(BB) + eBe(k)—h) - 1+

Recall that f = 1/T. Notice that the last expression (96) is identical to (37). The relation
between the total densities and particle densities can be written as

Y
pe \_ [ o)t dk (0 0 \( pp®) \_ . s [ pp)
(at)_( o )t a2z\1 0 )\ o) JEOTTH ooy )0 ©7
—T
Here we have introduced the driving terms d, and the “scattering” kernel T which is deter-
mined by Bethe equation system (86),
A 0 0
T= (1 0) , (98)
and the dressing is trivial in this case.
Denoting the vector of densities as ¢ and introducing n = diag(n,,n,), we see that g is a
dressed version of d; in a sense that it is a solution of the following integral equation

p=dy+Tnxp. (99)

Further, the magnetization (36) can be written as

(s,(j, ) g = J hyp,(k)dk + f heo,(k)dk. (100)

With h, = —1/2 and h,, = 1, being essentially the one-particle eigenvalues of the S,. To ad-
dress transport coefficients these quantities should be “dressed”, either as via the magnetic de-
pendence of quasienergies in the TBA solutions (95), (96), namely h,, , =—0d¢, ,(k)/3(23B)

or via the solution of the integral equation hY" = h 4+ TThhd (see for instance Eq. (3.22)
in [13]), with k9" = (hf}r, hgr)T and h = (hp,hU)T. The results read

_tanh 8B

dr _
hp = TR

d
hir=1. (101)

The static covariance C computed within GHD for two types of particle (p and o) is given
by [86]

_ d d
C= J dkp,(k)(1— np(k))(hpr)2 + J dko,(k)(1— na(k))(hor)2 . (102)
Using explicit formulas for the distribution functions (95), (96) and (101), we reproduce (69)

obtained from the exact correlation function. The Drude weight can be computed in a similar
manner

D= J dkpp(k)(1—n, ()T (kR ) + J dko,(k)(1 —n,()(vEFORTY? . (103)
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The effective veloc1t1es again can be computed from the quasienergies v¢" p = —B1o0¢

p,0?
which gives vef p = ¢/(k) and va = 0. Substituting all the quantities we recover the Drude
weight (72).

Finally, for Onsager matrix £ can be computed as follows [12,13]

dk,dk
L= J f 2 0 (k1)p e (ka)(1 = 110 (k)) (A — i (k) [VEE(Ky ) — vET (k)|
a,b=p,o

( Tdr ko, Ky )hdr(kz) Tdr L (k1 kz)hdr(kﬂ) (104)
pt,b(kz) pt;a(kl)

Here we assume that p,., = p, and p,., = 0,, and similarly for p,,,. The dressed kernel
can be understood again as a solution of 1ntegral equatlon similar to (99) TY = T + Tnx T,
which has not effect due to nilpotency of the matrix T i.e. T = T After this we arrive at the
expression

T

L= thfdkz 2 )p(kZ)(]- np(k))(1 = ng(ko))le’ (koI (105)

which exactly reproduces Eq. (85).

6 Summary and Outlook

In this work we computed the key physical properties of spin transport in the t-0 model. Our
computations are based on the exact presentation of the correlation functions in the thermody-
namic limit in terms of the Fredholm determinants with their subsequent asymptotic analysis.
This way we provide the first rigorous computation of spin diffusion for interacting quantum
lattice systems. The results confirm the diffusion constant obtained earlier by semi-classical
methods for infinite temperature [83], as well as the formula suggested by the generalized
hydrodynamic [13].

In closely related deterministic models it was found that the fluctuations of spin transport
are anomalous, even though the mean transport is still be diffusive [33,66,90-92]. It would
be interesting to consider the full counting statistics also in the t — 0 model, which is a fully
quantum mechanical model.

In contrast to the diffusion found in our model it was found in [51] that in the Hubbard
model the spin transport is superdiffusive at any finite coupling constant in zero magnetic
field. This is not contradicting our results: in the Hubbard model the U — oo limit is rather
singular, and it can change the asymptotic behaviour of correlation functions.

It would be interesting to extend the present methods to spin diffusion in the folded
XXZ model, which describes the infinite temperature dynamics of the XXZ model in the large
anisotropy limit.

We hope to return to these questions in future work.
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A Correlation functions of spinless fermions: Fredholm determi-
nant representation

In this section we revisit derivation of the Fredholm determinant obtained in [84] with the
“universal” use of the Wick’s theorem according to [93]. We use finite lattice regularization,
and perform minimal generalization of the string correlator (47) to consider the following
correlation function of vertex operators

Dy (m,n; ) = (VM (6)v(0)) (106)
where
m—1
vim(0) = v{™ =exp (iu Z cfcl) . (107)
I=—L
The lattice fermions are normalized as usual
{ct, cn} =68um- (108)

The Fourier-transformed fermions C;. defined as
L) L3
C=— e~tkme ey =——= > ekmc, (109)
2L & 2L 4

makes the Hamiltonian diagonal H = ), e(k)C]:r Ck. Summation over momenta is taken over
the Brillouin zone, meaning that

k=—n, nez, —n<k<m. (110)

For now, we assume that the average is computed over the vector that is given by
|q)z|q1...qn)=c;...c;|o). (111)

The vertex operator defined in (107) is a particular case of the group-like element G(B) [93],
which can be roughly defined as

G(B) =: ek» Cp BoiCic . (112)

where the averaging is taken with respect to the mathematical vacuum |0). The matrix B can
be extracted from the action on the individual fermion

G(B)C; = Y (8, +Bpi)C; G(B). (113)
p

In fact, G(B) can be defined via relation (113), which is valid also for the non-invertible group-
like elements. The “group” property if reflected in the composition law

G(B')G(B) = G(B'+B +B'B), (114)
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which readily follows from (113). Finally, to evaluate (106) we will need the following corol-
lary of Wick’s theorem regarding the average of the group-like element on the state (111)

€q,9°€q

q
Now let us compute the corresponding B matrix for the vertex (107). Commuting it with the
fermion creation operator, we obtain

v§m>cg =[1+(*"—1)0(a<m)] c;vljm), (116)
or for the Fourier modes
VMG = (8, +Bp)C V™, (117)
p
where . mCp) )
s _q pim(k—p) _ p—iL(k—p
mq ¢
[BM ]pk - 2] ei(k_P) -1 ] (118)
for p # k, while diagonal components are given by
et —1
(B ] = —5—(L+m). (119)

Note that if we keep L dependence explicitly then the diagonal part comes as 'Hopital rule.
Time dependence can be easily included as well

[B,L(Am)]pk(t) = [BLm) Jprel @Il (120)

Now employing (114) and (115) we arrive at

Dy, (m,n;t) =det A, (121)
with
A= 5qiqj + [B‘Sm)]qiqjei(S(qi)—S(qj))f/Z + [B;,n)]Qinei(S(qi)_E(qj))t/z
+ etelai)t/2 Z[Bflm)]qike_is(qk)t[B%n)]kqjeie(qj)t/z . (122)
k

Let us evaluate the sum in this expression treating L as a large parameter. First, we rewrite
the sum identically

. i _ w_ 0(q;,q:; k) . .
E (m) —ie(q)tr p(n) _ (¢! 1)(e 1) E vipy —ite(qi)+ig;+ik
- [BP" ]qike [Bl ]kqj - (2L)2 - (eik eiqi)(eiqj _eik)e 5 (123)

with
e(q;, q;; k) = ell@n—gqim+k(m=—n)) 4 ,iL(gi—q;) _ pi(ng;+Lgi—(L+n)k) __ ,i((L+m)k—mq;—Lg;) (124)
For q; # q; we present this expression as

A_1)(e*—1) V—-W

(m) ety _ (e
Z[Bu Joxe (B, ]kqf n 2L el — %’

k

(125)

with

y = LEM it@ma) _ gintama0)g-iteta)ria 4 L S 0k iveoriaik (1)
2L 2L & eldi — etk ’
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W = Lz_zn(eim(qj_qi) _ eiL(qi_qj))e_itE(qj)+iqi + i Z Me—im(k)”qi“k_ (127)

PR
k#q; et —ef

After these preparations let us evaluate the limit of these sums as Riemann integral. The highly
oscillating terms can be thrown away and the corresponding superficial divergences should be
treated as principal value (as we demonstrate in Appendix (A.1))

1 i) 1 v.p. [© 1 (7 fi—f
T I ke 7= 5 | kg (128)
iz e T ), ed—e T)_, ed—e
For g; = q; we can formally compute I'Hopital’s limit to obtain
1+ eil-}—iu
Aii = T‘l‘O(l/L), (129)
which means that .
det A ~ (cos(A + p))*Lelt+1) (130)
So, we have to demand y = —A to obtain non-zero answer as L — oo. Once this condition

is assumed we can get rid of terms proportional to ¢'(%~9)% in all expressions in Eq. (122),

similarly to (128). Further assuming that m,n < L, we present

e ite(q)+igi+in(g;—q;)

V== 2 —einmim e (), (131)
eim(g;—qi)—ite(g;)+ig; ) . .
W= 5 _ emqj—l(m—l)QiE(qj) , (132)
with . < kite(®)
i(m—n+ —ite
EA(q)Z v-p: dke.—., (133)
2 | eld — etk
and finally
iA E(a:) — E(a:
I ot 1> £(q) E_(qJ)einqj_i(m_nqi+i(s(qi)+a(qj))t/z
H 2L eldi — e'9j
eim(qj_qi)+iqi+i(€(qi)_€(qj))t/2 _ ei(e(qj)_e(qi))t/2+iqi+in(qj_qi)
—isin(A) . (139

2L(ei% — e'%)
To literally reproduce results of [84] we would need the following relation

4 1el%+el% 1 1 1
NS S i +=. (135)
2 2itan((q; —q;)/2) 2

eidi — ol4j 2 eidi — ¢l4;

Moreover, using this relation we can connect E(q) with E(m —n, q) defined in (54), we have

A E(m—n, G(m—
E(qQ)=- (m 7 ?) , Gm n), (136)
21 2
where G(x) is defined as
s
d . .
G(x) = J G —ite(@+ixa — x5 (2¢). (137)
27
—T
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Since G(x) does not depend on q it does not contribute to matrix elements .A;; (134). Finally,
assuming x = m —n and using notations (52) and (53) we obtain

1 E+(X, qi)E—(Xa q]) - E+(X, qj)E—(x: ql)
2L sin @
The conjugation factors will cancel in the determinant det.A. Further, taking into account the
level spacing (110) and introducing density of states n, (k) in L — oo limit we recover (50).
For the formal proof of the validity of injection of the density distribution after averaging over
the thermal ensemble see, for instance, appendix A in [94].

-Aij — e—i(m+n+1)qi/2 (511 + )ei(m+n+1)qj/2 . (138)

A.1 Proof of the lemma

Here we present some comments on transformation of the sum (128) into integrals. First we

notice the following identity
1 1 dk
=== —, 13
2L Zk: 27 .(fc e2ikl —1q (139)

where counterclockwise contour C encircles solution of el — 1 = 0 that are inside the first

Brillouin zone (—m < k < 7). For summation of the smoothing varying function on these
interval we can present C as the combination of the contours above and below the real axis

C=71U72, (140)
Y1 :{k+i6|k€[ﬂ::_ﬂ:]}; Yzz{k—i6|k€[—ﬂ,ﬂ]}, (141)

where € < 1 < Le. This way we may ignore contribution from the contour y, while contri-
bution from v, actually gives normal Riemann integral

T

1 1 fr dk
2L = | k== —fi: 142
oL ka ZnJ = el (142)
k Y1 n
Let us consider
1 elltk—a) _q 1 dk L= _1
Sa= 57 20 s ek =52 P oy e Sk (143)
k#q o

where in C; we emphasize that point k = q is not encircled. Taking into account that e?ial =1
we can present

1 dk iL(k—q) _q 1 dk
S f; - fi i (144)
Cq Cq

97 on T e2ilk—)L —1 eiq —eik X7 on T ilk—q)L + 1 eid — gik
or including residue, and transforming as in the regular case we get

_iq m+ie —iq
q=%j£ - h el L PO S (145)
C

- - — + - -
ellk=a)L 41 eiq —eik = 2 2m eld—ek = 2
Transforming further we can present

L (" e fi _a—k e_iq__ﬂfﬁdk fi

S

—n+ie

(146)

Sg=—— dk . . = . —,
a 21 ) q—k—ieeld—elk 2 27 eld — etk

T

which basically means that you can throw away e from the integration if you treat everything
in a primary value sense. At the final step we use the following identity

vp. (71

on | d gk O (147)

leading to Eq. (128).
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B Series expansion

Let us expand the string correlator F,(x, t) in(49) at A = 0. Taking into account the following
expansion of the determinant

(TrR)? — TrR?

det(1+R)=1+TrR+ +0(R?), (148)

we obtain

Filx,t)=1— i)LJ %np(k)(te’(k)—x)

27
—T
2 [ .
A7 [ Ak oeite® g ok A2 [ dk o
+ ?J %np(k)e”g( )3k[e i xE(k)] +I?J ﬂnp(k)xeltg( )—i xE(k)
gt J
22 F dk ¢ dg Sin[%(e(k)_g(q))_ x(kZ—CI)]
7| 25 | 2@ B
J 2m) 2m sin %
gt ~
2 F s P
_%J %Tlp(k)(fg’(k)—x)J ﬁnp(q)(tg/(q)_x)' (149)
gt EA

This way,

T

T
A dk dq
SF(x,t)= Azf ﬁnp(k)f %np(q)
—T

—T
T

s

dk dg - o

+AZJ %np(k)f ﬁelt(s(k) e(q))—ix(k q)(l—np(q))+0(/13), (150)
—T

—T

C Kernels

In this chapter we compare our answers with those in Ref. [59]. To do so we have to introduce
one more kernel

£ (k) (x,q) =€ (x, k)l (x,q) 11—cosA

Q(x,Alk,q) = - G(x)_(x,k)_(x,q), (151)

Zntank%q 2 2

where
TT

da . .
G(x) = f 9 pitel@rrixg — x5 (2¢), (152)
27
—1TT

with £(q) = —2cos(q). Further one can notice that
E(x +1,k) = e*E(x,k) +ie’* G(x) +iG(x + 1), (153)

or
E(x —1,k) = e E(x, k) —ie *G(x) —iG(x —1). (154)
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This leads to

1—cosA.

Lot LR = 20, (e k) + o p (k) —— =B (x, k) (26 (x) + e 2G(x +1)), (159)
or
ik/2 1—cosA. ik/2 1—cosA .
Co(x+1,k)=e""l (x,k) + ———il_(x,k)e"™“G(x) + — l_(x+1,k)G(x+1).

(156)
This way

U(x +1,Alk,q) = O(x, Alk,q)
N il (x,k)_(x,q)+ il (x,q)l_(x,k) _ 11—cos A
21 2 271

GO )_(x,k)_(x,q), (157)

Z/{(X - 17}'“{: q) = Q(X,)le, q)
_ il (x,k)_(x,q)+ il (x,q)l_(x,k) _ 11—cos A
21 2 2r

G(x)_(x, k)l _(x,q). (158)
Additionally, we can present

il (x,k)l_(x,q) — il (x,q)l_(x,k)
27

L1702 Cye (e k)l (x.q). (159)
2 2T

e =D214(x, Alk, q) = O(x, Alk, q) +

Let us introduce three rank -one operators

Rk = (50 ) 0 (115! )T( ) (160)
We=5\1+a0" 1+o )
Rkt = 5= (115 )0 (15! '@ (161)
V=5 \1+0 1+o*)
1—cosA 1 1 T
Rs(k,q) = 4—7TG(X) (ml_) (k) Tl—) (q). (162)
Than taking into account that
det(1 + e!=D/214(x, Ak, q)) = det(1 + U(x, Ak, q)) = D(x, t). (163)
We obtain D Lo
x+1,t) B
m = det(1 +Ry+R,y R3) 5 (164)
D(x—1,t) _ o
m =det(1 R{—R,y R3) , (165)
D(x,t) _
m = det(l R{+R,y +R3). (166)

Further, taking into account that linear combination of R; (R,) and R; is a rank-one operator,
we obtain
D(x+1,t)

————= =1+ Tr(Ry + Ry —R3) + Tr(R; —R3)TtR, — Tr(Ry —R3)R,, 167
(1 0) (Ry + Ry —~Rg) + Tr(Ry —R3)TrR; — Tr(Ry — Ry R, (167)
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% =1—Tr(Ry + Ry +R3) + Tr(R; +R3)TrR, — Tr(R; +R3)R,, (168)
M =1+4+Tr(Ry +R3—R;) + Tr(R3 —R;)TrR, — Tr(R3 —R;)R,. (169)
det(1+ Q)

This way,

D(x+1,t)+D(x—1,t)+2D(x,t) _
det(1+ Q) B

4. (170)

Or in other words

2D(x,t)—D(x—1,t)—D(x +1,t)

det(1 +U(A)) —det(1 + Q1)) = 2

(171)

This statement is enough to prove the equivalence of our results to those in [59].
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