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Abstract

Topological domain walls separating 2+1 dimensional topologically ordered phases can
be understood in terms of Witt equivalences between the UMTCs describing anyons in
the bulk topological orders. However, this picture does not provide a framework for
decomposing stacks of multiple domain walls into superselection sectors — i.e., into
fundamental domain wall types that cannot be mixed by any local operators. Such a
decomposition can be understood using an alternate framework in the case that the
topological order is anomaly-free, in the sense that it can be realized by a commuting
projector lattice model. By placing these Witt equivalences in the context of a 3-category
of potentially anomalous (2+1)D topological orders, we develop a framework for com-
puting the decomposition of parallel topological domain walls into indecomposable su-
perselection sectors, extending the previous understanding to topological orders with
non-trivial anomaly. We characterize the superselection sectors in terms of domain wall
particle mobility, which we formalize in terms of tunnelling operators. The mathemati-
cal model for the 3-category of topological orders is the 3-category of fusion categories
enriched over a fixed unitary modular tensor category.
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1 Introduction

The study of defects in topologically ordered phases of matter has many important physical
applications, from engineering non-abelian anyons for quantum information applications [23,
30,33,100,113] to classification of phases [1,52,121]. In 2+1 dimensions, an important class
of defects are topological domain walls separating two topologically ordered regions [59, 79,
86,97,105].

The classification of such domain walls is well understood from several different perspec-
tives. A topological domain wall separating topological orders described by the unitary modu-
lar tensor categories (UMTCs) C and D is defined by a Witt equivalence between C and D, which
describes the point defects that can be localized to the domain wall in a manner that is con-
sistent with the fusion and braiding rules of the anyons that can be brought to the wall from
either of the adjacent bulk regions [79]. Choosing such a Witt equivalence is equivalent to

2

https://scipost.org
https://scipost.org/SciPostPhys.15.3.076


SciPost Phys. 15, 076 (2023)

2D bulk UMTC
1D topological domain wall Witt equivalence

Figure 1: Standard description of topological order in terms of localized excitations,
cf. [79,85]; contrast with Figures 2 and 3 below. A Witt equivalence [42] C→D is a
unitary multifusion category X with a choice of braided equivalence Z(X )∼= C ⊠D;
see § 2.4. When we write nD above, we mean the spatial dimension. We also use
this abbreviation in Figures 2 and 3.

specifying a Lagrangian algebra in C⊠D,1 i.e. a gapped boundary between C⊠D and the vac-
uum [85,97]. Another useful perspective is to study particle mobility across domain walls. This
has been explored extensively for invertible domain walls M [2,7,13,17,22,23,30,33,95,126],
in which a quasiparticle with topological charge a entering the domain wall exits on the other
side with topological charge ΦM(a), where ΦM is a braided equivalence between the UMTCs
on either side.

However, the characterizations described above leave unaddressed an important question:
what happens when we “compose” parallel domain walls by horizontally stacking them? This
has been studied extensively in the case of non-chiral theories [6, 9, 10], where it has been
shown that a composite of two parallel indecomposable domain walls can decompose as the
direct sum of multiple superselection sectors, which need not be equivalent to one another. In
particular, particle mobility need not be the same in different superselection sectors. In this
setting, extensive use is made of the higher 3-categorical structure of fusion categories, which
classify topological defects according to the cobordism hypothesis [12,101].

In this paper, we develop the tools necessary to extend the study of composite domain walls
to the chiral setting. We describe tunneling operators, which bring anyons from one side of a
domain wall to the other, and explain how the structure of the space of tunneling operators gives
a natural description of a general domain wall from the perspective of anyon mobility. We show
how composites of certain tunneling operators across a composite domain wall can be used
to determine the decomposition of the composite wall into distinct superselection sectors. We
then describe how to identify the indecomposable domain walls in each superselection sector
by computing sets of tunneling operators for the various anyon types, and we carry out the
computations in several examples. Parallel results in the context of conformal field theory
have been previously obtained in [58].

While this work contains some results that are primarily of mathematical interest, which
we phrase in the language of higher category theory, the statements of the main results do
not require this technology, and are interesting and accessible to physicists with a background
in topological order. In particular, we separate out some remarks which provide context for
those interested in higher categories of topological orders but which could be safely skipped
over via the label “Remark (Mathematical).”

In order to study these questions, we adopt a new mathematical perspective on (2+1)D
topological orders. The standard characterization of a (2+1)D topological order is by its UMTC
of localized excitations, resulting in the correspondence between defects and mathematical
data in Figure 1.

A natural attempt to put this characterization in mathematical terms would be to describe
(2+1)D topological order using the Morita 4-category UBFC of unitary braided fusion cate-
gories.2 In this 4-category, 0-morphisms are unitary braided fusion categories, which corre-
spond to bulk topological orders, and 1-morphisms are bimodule multifusion categories, which

1D is the UMTC with the reverse braiding of D.
2To be more precise, we take the 1-truncation of the 4-subcategory UMTC of UBFC whose objects are UMTCs

and whose higher morphisms are all invertible.

3

https://scipost.org
https://scipost.org/SciPostPhys.15.3.076


SciPost Phys. 15, 076 (2023)

2D bulk UFC
1D domain wall bimodule category
0D point defect bimodule functor
local operators4 bimodule natural transformations

Figure 2: Description of anomaly free topological order in terms of ingredients for
commuting projector model, cf. [79,93]; compare with Figure 3 below.

correspond to codimension 1 topological defects, i.e. domain walls. However, 2-morphisms
are bimodule categories (with compatible actions of the relevant braided fusion categories
on each side), which do not correspond to codimension 2 topological defects. In particular,
the anyons themselves do not appear as 2-morphisms. Moreover, 3-morphisms, which are bi-
module functors, do not form a vector space, so linear algebraic data such as F -symbols do
not appear at this categorical level. (We refer the reader to Remark 2.4 for a more detailed
discussion of UBFC.)

Consequently, details such as how one can concatenate tunneling operators across parallel
domain walls or use local operators to distinguish superselection sectors of the composite of
two walls cannot be explained naturally from this perspective (e.g. via the graphical calculus of
UBFC). In particular, since the composite of two Witt equivalences is again a Witt equivalence,
the decomposition of a composite domain wall into superselection sectors is not a direct sum
decomposition of 1-morphisms in UBFC.

These difficulties illustrate the necessity of placing the tensor categories of excitations listed
in Figure 1 into the context of a 3-category of (2+1)D topological orders. In the anomaly-
free3 setting, this context is well-understood: a unitary fusion category (UFC) X can be used
to construct a Levin-Wen string-net model [103] with (2+1)D topological order, where the
localized excitations are given by EndX−X (X )∼= Z(X ) [76,80,103]. Moreover, unitary fusion
categories form a 3-category UFC describing all levels of anomaly-free (2+1)D topological
order, as summarized in Figure 2.

From this perspective, it is clear how to decompose parallel domain walls into superse-
lection sectors by decomposing the relative tensor product of bimodule categories into inde-
composable summands [9,10]. Moreover, since 0D point defects between a domain wall and
itself are wall excitations, and 0D point defects between the trivial domain wall and itself are
localized excitations in the 2D bulk, this perspective naturally produces the tensor categories
of localized excitations in Figure 1 as endomorphisms of 1-morphisms [79].

We adapt these techniques to the anomalous setting by introducing a new perspective on
(2+1)D topological order afforded by enriched fusion categories. (2+1)D topologically ordered
phases typically carry an anomaly described by an invertible (3+1)D topological quantum field
theory [71]. Such anomalies correspond to Witt classes of UMTCs [15].

To describe a given topological order, we therefore first choose a representative UMTC A of
the Witt class of the anomaly. An A-enriched UFC is a UFC X equipped with a (fully faithful)
unitary braided tensor functor F : A→ Z(X ),5 the Drinfeld center of X .6 In fact, A-enriched

3Here, the anomaly refers to an obstruction to being realizable with a commuting projector local Hamiltonian,
or equivalently, an obstruction to the low energy effective topological quantum field theory (TQFT) being fully
extended. We refer the reader to § 2.1 for a further discussion of the anomaly.

4In this paper, by a local operator in a topologically ordered system, we mean a topological local operator,
which in general is only a quasilocal operator (i.e., can be approximated by local operators) which corresponds to
an intertwining operator between superselection sectors of the low energy effective quantum field theory describing
the emergent topological order. In the commuting projector lattice models we will describe, such operators will
actually be local.

5Such pairs (X , F) were called module tensor categories for A in [67,90], and the later articles [74,92,93,108,
109] motivate the name A-enriched fusion category.

6The Drinfeld center Z(X ) of a UFC X is constructed by looking at objects equipped with half-braidings. See
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2D bulk A-enriched fusion category
1D domain wall A-enriched bimodule category
0D point defect A-centered bimodule functor
local operators bimodule natural transformations

Figure 3: Description of topological order in terms of ingredients for commuting
projector model afforded by A-enriched fusion categories.

fusion categories form a linear 3-category denoted UFCA.
As for the string net models previously described, from this perspective, the UMTC of bulk

excitations in Figure 1 arises as EndA
X−X (X ); i.e. by taking the enriched center/Müger cen-

tralizer ZA(X ) [91, 112]. More generally, the tensor category of excitations localized to a
domain wall is similarly a category of endomorphisms of the corresponding A-enriched bi-
module category. We explore this in detail in Construction 2.8 and Example 2.9 below. Since
the A-enriched center functor is fully faithful on the 1-truncation of UFCA [90] (see also § 3.2
below), we can use both perspectives on topological order side-by-side, and describe phenom-
ena such as anyon condensation using the usual language of condensable algebras in a UMTC
(see Appendix B for more details).

Instead of putting these bulk excitations front and center, however, our perspective should
be viewed as describing topological orders in terms of the data which can be used to write down
a (3+1)D commuting projector lattice model in which the desired topological order appears on
the boundary. The role of the bulk is to trivialize the anomaly relative to A, thereby enabling
such a commuting projector realization. In § 2.2, we show by explicit construction how an
A-enriched fusion category (X , F) is exactly the necessary data to write down a commuting
projector boundary of the Walker-Wang model [125] with bulk A. This is parallel to how an
honest fusion category is the necessary data to construct a Levin-Wen string net model [103];
in fact, string-net models occur as the special case A= Hilb.7

In this setting, we get the categorical description of topological order in Figure 3. In this
framework, (2+1)D topological orders form a linear 3-category, where local operators at the
top level can be used to describe tunneling operators, the decomposition of composite domain
walls, and the spaces of ground states when a domain wall is placed along the equator of a
sphere.

Applying our anyon mobility perspective on domain walls, we discuss at some length a
particularly interesting class of composite domain walls, obtained by beginning with a C bulk
region and condensing a condensate A ∈ C in the complement of a strip.8 In other words, by
composing two condensation boundaries between a C bulk and the Cloc

A bulk obtained when
A is condensed, we obtain a domain wall between two Cloc

A bulk regions. We will see that the
superselection sectors of the composite domain wall are related to the topological ground state
degeneracy within the strip of C bulk, when appropriate boundary conditions are imposed.

In particular, when the condensing anyons form a copy of the regular representation CG

of G for a finite group G, then in the absence of excitations in the strip, different topological
ground state sectors are associated with invertible boundaries carrying out different symmetry
actions on the anyons in question. In this case, the boundaries represent G-crossed braided de-
fects, the tunneling operators describe the corresponding braiding operation in the G-crossed
braided category, and anyon condensation is associated with de-equivariantization of the cat-

[111] or [99, §4] for an introductory discussion of such UMTCs.
7In this paper, Hilb refers to the symmetric monoidal category of finite dimensional Hilbert spaces.
8Anyon condensation involves a choice of condensate A, which is identified with the vacuum where A is con-

densed. Anyons in A are then precisely those which can become condensed at the domain wall, or equivalently,
those which can pass across the domain wall to become the vacuum.
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egorical symmetry G. We emphasize that this choice of condensate is very special: for more
general condensates, the superselection sectors of the composite boundary need not be invert-
ible, meaning that some anyons cannot cross between the two Cloc

A regions.

1.1 Outline

The structure of our paper is as follows. In § 2, we begin by explaining the description of
(2+1)D topological orders and (1+1)D domain walls between them in terms of enriched fu-
sion categories, including the passage back and forth between enriched fusion categories and
the usual description in terms of categories of localized excitations. In § 3, we review the
description of domain walls in terms of condensable algebras, including a detailed descrip-
tions of how an arbitrary indecomposable domain wall factorizes as the composite of parallel
invertible and condensation domain walls, as well as the mathematical operations involved
in composing domain walls. We then build a description of how the composition of two par-
allel indecomposable domain walls splits into superselection sectors under the action of local
operators. In § 4, we introduce sets of tunneling operators, and explain how indecompos-
able domain walls can be characterized by their tunneling operators. We then investigate the
relationship between tunneling operators and composition of parallel domain walls, reveal-
ing how tunneling operators for a composite domain wall split up across the superselection
sectors, allowing one to identify the resulting domain wall in each sector. Finally, in § 5, we
work out the decompositions of several composite domain walls into superselection sectors,
including non-Abelian examples and an example with nontrivial anomaly.

We include several appendices which contain well understood mathematical background
material. Appendix A explains the basics of fusion categories and UMTCs, and Appendix B
gives a review of condensable algebras. Appendix C.1 discusses D(G) := Z(Hilb(G)) in detail,
and § C.3 does the explicit example of the dihedral group G = D2n.

1.2 Glossary

We end this introduction with a brief dictionary summarizing the correspondence between
mathematical terminology and notation and the physical concepts related to topological order,
which appears as Figure 4 below. The descriptions here are abbreviated, and this table should
be interpreted as an expansion of [79, Table 1]. Note that the operations � and � are all
usually denoted by ⊠ in the literature.

2 Enriched UFCs and domain walls between (2+1)D topologically
ordered phases

In this section, we extend the 3-categorical description of anomaly-free topological order from
[79] to the anomalous setting using enriched UFCs. That is, we replace the 3-category UFC
of unitary fusion categories with the 3-category UFCA of UFCs enriched over a fixed UMTC A
representing the anomaly; in the case A∼= Hilb, we recover UFC. We also explain how taking
the enriched center can be used to translate between the enriched setting and the description
of bulk topological orders and domain walls via UMTCs and Witt-equivalences. In this way, our
description contains all the information present in the UMTC/Witt-equivalence picture, but we
show that it also contains additional structure which sheds light on domain wall composition.

In § 2.1 and 2.3, we explain enriched UFCs in further detail, as well as how modular cat-
egories describe topological order from the viewpoint of enriched UFCs. In § 2.2, we show
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Details of boundary for Walker-Wang model Algebraic structure

(3+1)D bulk invertible TQFT anomaly UMTC A
edge labels of bulk simple objects in A
(2+1)D boundary theory A-enriched UFC X , which is an object in the 3-category

UFCA ⊂ UmFCA := UBFC(A→ Hilb)
edge labels of boundary simple objects in X
anyonic boundary excitations enriched center/Müger centralizer ZA(X ) =A′ ⊂ Z(X )
change of representative of anomaly composition with Witt-equivalence BWA in UBFC by

BWA �A − : UmFCA→ UmFCB

(1+1)D topological domain wall A-centered X −Y bimodule M
edge labels of domain wall simple objects in M
excitations on domain wall objects in the category EndA

X−Y(M) of
A-centered X −Y bimodule functors

condensate condensable algebra A∈ ZA(X )
anyons in condensed region simple objects in ZA(X )loc

A
excitations at boundary of condensed region simple objects in ZA(X )A
edge labels for condensed region simple objects in XA

classification of topological domain walls Lagrangian algebras L(A, B,Φ) ∈ ZA(X )⊠ ZA(Y)
fusion of domain walls relative Deligne product XM�Y NZ
summands of composite domain wall minimal projections in ZA(Y)(B1→ B2) where

XMY↔ L(A, B1,Φ) ∈ ZA(X )⊠ ZA(Y) and

YNZ↔ L(B2, C ,Ψ) ∈ ZA(Y)⊠ ZA(Z)
point defect A-centered X −Y bimodule functor F : M→N
local operator X −Y bimodule natural transformation
fusion channel to transport anyon c
through domain wall to become d

tunneling operator in HomUFCA

�

M
c −→ M

d

�

Figure 4: Glossary for details of boundary for Walker-Wang models and algebraic
higher categorical structure from UFCA, expanding on [79, Fig. 1].

how an enriched UFC gives rise to a lattice model for a chiral (2+1)D topological order on the
boundary of a Walker-Wang model, including a concrete example. In § 2.4, we introduce en-
riched bimodules between enriched UFCs as the data which determine a (1+1)D domain wall.
We also describe how to go back and forth between enriched UFCs and enriched bimodules
and the UMTCs and Witt equivalences which describe bulk and wall excitations.

2.1 Topological orders and enriched fusion categories

In [79], the authors explain how each level of morphism in UFC labels an aspect of anomaly-
free (2+1)D topological order, a correspondence which is summarized in Figure 2, and more
extensively in [79, Table 1]. A unitary fusion category X is the input for the well-known
Levin-Wen string net model [103], which is a commuting projector model of Z(X ) topologi-
cal order. The 1-morphisms in UFC(X → Y) are unitary X − Y bimodule categories XMY ,
which determine commuting projector models for (1+1)D topological domain walls between
the Levin-Wen models determined by X and Y . (This is in contrast to the Witt equivalence
bimodule categories mentioned previously, which are bimodules between the two UMTCs rep-
resenting the topological orders.)
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X Z
A

ZA(X )

X

A A
A

ZA(X )

Figure 5: Since Z(X )∼= ZA(X )⊠A, attaching anA-Walker-Wang bulk toX trivializes
the A-layer of topological order, leaving only ZA(X ).

In general, (2+1)D topologically ordered phases carry an anomaly [87]. This can be seen
in the fact that the underlying mapping class group representations of surfaces appearing in the
associated topological quantum field theory are projective, rather than honest. The anomaly
is characterized by an invertible (3+1)D topological quantum field theory (TQFT) such that
the original (2+1)D theory can be realized as a topological boundary [71, § III.B]. A concrete
realization of this is the Walker-Wang construction [125], which takes as input a UMTC; the
corresponding model has an invertible bulk, and can be cut off to realize the topological order
associated with the corresponding UMTC on its boundary [123].

From a physical perspective, it may seem odd that we are claiming that a (3+1)D theory
with boundary is describing a (2+1)D universality class. However, this can be understood
conjecturally via [119, § 4]. The idea is that (3+1)D Walker-Wang models built from UMTCs
can conjecturally be disentangled to a trivial phase by a quantum cellular automata (QCA). In
this sense, we can consider the (3+1)D phase to be trivial, and a topological boundary of a
(UMTC) Walker-Wang model is in the same universality class of a purely (2+1)D theory.

Ansatz 2.1. The topological order of a (2+1)D topologically ordered system with anomaly de-
scribed by the UMTC A is described by an A-enriched UFC (X , F). The low energy excitations of
this system are described by the enriched center ZA(X ).

Here, an A-enriched unitary (multi)fusion category consists of a pair (X , F), where X is
a unitary (multi)fusion category and F : A → Z(X ) is a braided unitary tensor functor that
takes anyon types (or more generally, objects) in A to anyon types (objects) in the Drinfeld
center of X . In what follows, we will frequently suppress F . The enriched center of (X , F) is
the Müger centralizer ZA(X ) := F(A)′ ⊂ Z(X ) [91,112]. That is, ZA(X ) are those anyons in
the usual Drinfeld center Z(X ) that braid trivially with (are centralized by) the image of A.

Since A is nondegenerate and F is fully faithful, the Drinfeld center Z(X ) can be factored:
Z(X )∼=A⊠ ZA(X ) [112]. Physically, this means that Z(X ) describes two decoupled (2+1)D
layers, one with A topological order and one with ZA(X ) topological order. By attaching an
invertible (3+1)D topological order to the A-layer, we can trivialize its (2+1)D topological
order, leaving only the ZA(X ) topological order of interest (Fig. 5).

As we will see in § 2.4, the UMTC ZA(X ) of local excitations completely determines (up
to Morita equivalence) the A-enriched fusion category X , so one can equivalently use the
UMTC ZA(X ) to specify the topological order. However, Remark 3.13 will show that consid-
ering A-enriched fusion categories (and bimodules between them) helps in developing a more
complete understanding of defects between regions with (2+1)D topological order.

Example 2.2. In the case of trivial anomaly, i.e. A= Hilb, the enriched center is the ordinary
Drinfeld center, and the above discussion agrees with the Levin-Wen description of localized
excitations in string-net models [103].
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Example 2.3. In the usual UMTC description of topological order, the UMTC C describing the
(2+1)D topological order can be viewed as self-enriched, since Z(C) ∼= C ⊠ C. In this case, the
UMTC representing the anomaly is A = C, since ZC(C) = C. We will see in the next section
that the Walker-Wang model arises from this perspective [123,125].

Remark (Mathematical) 2.4. A subset of the authors had long been troubled by the following
‘off-by-one’ inconsistency. It is expected (mostly from the sorts of pictures drawn in physical
arguments) that (2+1)D topological orders together with topological domain walls and point
defects should form a 3-category, possibly with some kind of symmetric monoidal product
corresponding to stacking of phases.

However, it is generally agreed that UMTCs are the correct object to describe (2+1)D topo-
logical orders. These are naturally objects of the 4-category UBFC of unitary braided fusion
categories [14,63,73] [74, §2.3], whose 1-morphisms are bimodule multifusion categories, 2-
morphisms are compatible bimodule categories, 3-morphisms are compatible bimodule func-
tors, and 4-morphisms are natural transformations. In addition, equivalence between objects
in this 4-category is Witt equivalence by [74, Thm. 2.18], which is clearly the wrong equiva-
lence relation for topological orders.

These inconsistencies are fixed by using enriched fusion categories to describe topolog-
ical orders. Indeed, A-enriched fusion categories form a 3-category UFCA which arises as
the 3-subcategory of the Hom 3-category9 UBFC(A → Hilb) whose objects are A-enriched
UFCs (as opposed to A-enriched unitary multifusion categories (UmFCs)), where the UMTC
A representing the anomaly is fixed.

UFCA ⊂ UmFCA = UBFC(A→ Hilb) .

The 3-category UFCA, however, is not symmetric monoidal, as anomalies multiply. That is,
given topological orders (X , F) : A→ Hilb and (Y , G) : B→ Hilb, stacking (which is the natu-
ral tensor product in this category) gives us a topological order (X ⊠Y , F ⊠G) : A⊠B→ Hilb.

Note thatUBFC includes into the Morita 4-category of fusion 2-categories via C 7→Mod(C),
and objects in this latter 4-category describe fully extended (3+1)D commuting projector lat-
tice models of topological order [45]. The dimensional reduction appears because a (2+1)D
topologically ordered phase occurs on the boundary of a (3+1)D invertible TQFT. While the
natural pictures for these models are (3+1)D, since there are no bulk excitations in the Walker-
Wang models associated to UMTCs [123], and we do not allow defects that extend into the
bulk, we can just draw (2+1)D pictures of the boundary, which corresponds to looking at the
3-category UFCA and forgetting its origin as the hom-category UBFC(A→ Hilb).

2.2 Walker-Wang type model for an enriched fusion category

To understand how the A-enriched fusion category (X , F) realizes a given topological order, it
is enlightening to examine the commuting projector models realizing our construction in more
detail. Morally, our construction can be viewed as follows. Any Drinfeld center can be realized
by a (2+1)D string net model, which is constructed from a UFC [79, 99, 103] The string net
model associated to X (thought of as an ordinary fusion category) is a commuting projector
model with anyons described by the UMTC Z(X ) ∼= ZA(X )⊠A. To trivialize the A layer, we
attach this string net to the Walker-Wang model associated to A (see Fig. 5). This generalizes
the topological boundary conditions for the Walker-Wang models considered in [123, 125],
by gluing a suitable (2+1)D string net to the boundary; the resulting surface theory has the
topological order ZA(X ).

9In this manuscript, if C is an n-category, then C(x → y) denotes the (n − 1)-category of morphisms from x
to y . For example, if H and K are finite dimensional Hilbert spaces, then Hilb(H → K) is the linear 0-category,
i.e. vector space, of linear operators from H to K .
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To make this construction explicit, we must specify how the bulk and boundary layers are
attached. Here we describe in detail the simplest subset of these models, for which the fusion
rules of X and A are multiplicity free, and that the composite A→ Z(X )→ X is fully faithful.
This latter assumption means we can identify the anyons a, b, c, . . . in A with simple objects in
X , so that Irr(X ) can be written as a disjoint union {a, b, c, . . . }⨿{x , y, z, . . . }where x , y, z, . . .
are the remaining simples in X not coming from A. Moreover, given two anyons a, b ∈ Irr(A),
the Ω tensor to describe the half-braiding for F(a) with the image of b ∈ X is given by the
R-matrix in A. From these simplifications, the R-matrix for the A-bulk and the Ω-tensor for
the X -boundary string net, together with the choice of which subset of anyons in Z(X ) to
identify with A, is sufficient to fully describe the Hamiltonian. For the general case, we can
add degrees of freedom to vertices as in [84], and the description of half-braidings requires
more indices for the Ω tensors as in [99, (42,43)].

We begin with the usual brick-layer lattice for the Walker-Wang model, where red edges
carryCIrr(A) spins labelled by anyons a, b, c, . . . inA and black edges carryCIrr(X ) spins labelled
by simple objects {a, b, c, . . . , } ⨿ {x , y, z, . . . } of X .

(1)

The Hamiltonian in the red A-bulk is identical to the Walker-Wang Hamiltonian. There are
vertex terms projecting to the subspace of admissible triples at that vertex, and the plaquette
term uses the braiding of A to resolve the crossing.

a ⇝ α
α†

β
β†

Here, we resolve the crossing by the formula

�

ab
�

�

�

�

�

=
∑

y

R
ba
c

√

√ dc

dadb

�

c
a

a

b

b

�

�

�

�

(2)

We then use the F -symbols to resolve the diagram on the right hand side back to the original
lattice, to obtain the matrix elements of the Hamiltonian.

The Hamiltonian on the black boundary has vertex and plaquette terms similar to the
Levin-Wen string net model for X , with two important changes. The vertices which have a
red edge where the A-bulk meets the X boundary must have CIrr(A) spins on the red edge
and CIrr(X ) on the black edges. By assumption, we can identify Irr(A) as a subset of Irr(X ),
so we use the usual Levin-Wen vertex term for X at these vertices. The plaquette term for the
X -boundary uses the half-braiding for the A-anyons with X afforded by the (fully faithful)
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central action F : A→ Z(X ).

x ⇝ α
α†

β
β†

By our simplifying assumption, the anyons in A stay simple when we forget them down to X ,
and so the Ω-tensor (3) giving the 6 j-description of the half-braiding as in [99, (42,43)]10 can
be substantially simplified. We resolve the crossing of the blue x-string from X with the red
a-string from A ⊂ Z(X ) by

�

xa
�

�

�

�

�

=
∑

y

Ω
a,x
y

√

√

√
dy

dx da

�

y
x

x

a

a

�

�

�

�

. (3)

To see the boundary excitations are indeed ZA(X ), we consider the category of excitations
Z(X ) in the boundary string net model. Pairs of such excitations are created by quasiparticle
string operators, as described in [99]. In order for the corresponding anyon to represent a
point-like, deconfined excitation at the surface of our 3D model, we must be able to change
the path of the anyon string operator arbitrarily away from its endpoints without creating
additional excitations. Thus we must be able to move this path past the red links extending
from the boundary to the bulk. This is exactly the condition that the anyon is centralized by
F(A), i.e., the excitations are given by ZA(X ).

Remark 2.5. In this section, our conventions for the S, T matrices follow [7, (35) and (37)],
which do not agree with those in [99, (58) and (62)]. The S-matrix in a UMTC A is given by

Sa,b :=
1

DA
· a b ,

where DA is the square root of the global dimension ofA, and the T -matrix T= diag(θa)a∈Irr(A)
where

θa :=
1
da
· aa

aa
.

2.2.1 Chiral example: SU(2)4

To illustrate this construction in more detail, we show how to realize SU(2)4 at the boundary
of a Walker-Wang model with SU(3)1-bulk. We reverse engineer this model by starting with
SU(2)4 and considering the domain wall (see § 2.4 below) coming from the conformal inclu-
sion SU(2)4 ⊂ SU(3)1, which can be obtained by condensing the Z2 boson in SU(2)4 to obtain
SU(3)1.

SU(2)4 SU(3)1

T Y3,−

The UMTC SU(2)4 can be defined as the semsimple part of Rep(Uq(su2)) at
q = exp(2πi/12) [3, 16, 117], [83, § 6], or as the semisimple quotient by negligibles of the
Temperley-Lieb-Jones category T LJ (s) with s = exp(πi/12). This latter skein-theoretic de-
scription has loop parameter

10We choose here a different convention for indices for our Ω-tensors than in [99], as our assumptions of multi-
plicity free and the composite A→ Z(X )→ X being fully faithful let us use fewer indices. In particular, our index
convention here is chosen to be as close as possible to the convention for the R-matrix. The two conventions are
related by Ωa,x

y = Ω
x ,aa y
a from [99, (42)] where a ∈ Irr(A) and x , y ∈ Irr(X ).
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= −s2 − s−2 = −
p

3

and braiding

:= s + s−1 (4)

[53], [81, § 9], [124, §1.2], [49, §2]. Since the loop parameter for the strand is negative, the
pivotal structure11 on this braided fusion category is given by ϕn := (−1)n on the anyons { fn},
which endows SU(2)4 with the structure of a MTC. Under the dagger structure given by the
conjugate linear extension of

( )† := − , (5)

SU(2)4 is a UMTC.12

The fusion and modular data of SU(2)4 is as follows:

• anyons: { f0 = 1, f1, f2, f3, f4 = g}

• fusion rules:
⊗ f1 f2 f3 g
f1 1+ f2 f1 + f3 f2 + f4 f3
f2 f1 + f3 1+ f2 + g f1 + f3 f2
f3 f2 + f4 f1 + f3 1+ f2 f1
g f3 f2 f1 1

• quantum dimensions: d1 = dg = 1, d f1 = d f3 =
p

3, and d f2 = 2

• associator/F-symbols: see [81, § 9.12] or [4, Appendix E]

• braiding/R-symbols:

c

a b

= Rab
c

c

a b

where

Rab
c = (−1)

a+b+c
2 s

c(c+2)−a(a+2)−b(b+2)
2

• S-matrix:13

1

2
p

3













1
p

3 2
p

3 1p
3
p

3 0 −
p

3 −
p

3
2 0 −2 0 2p
3 −

p
3 0

p
3 −

p
3

1 −
p

3 2 −
p

3 1













11A pivotal structure on a fusion category is a trivialization of the double-dual functor, which consists of a scalar
for each simple satisfying a coherence condition [48, § 4.7].

12 It was determined in [53] when T LJ (s) is unitary. As stated in [124, § 1.4], T LJ (s) is unitary when
s = ±ie±

2πi
24 . These 4 choices of s give the 4 unitary braidings on the unitary Temperley-Lieb-Jones category which

arises from subfactor theory [75] with dagger structure

( )† := .

We also have that T LJ (s) is unitary whenever s = ±e±
2πi
24 with the dagger structure (5); these 4 choices of s give

the 4 unitary braidings on the underlying UFC of SU(2)4.
13The S-matrix above was computed with the formula Si, j = [(i + 1)( j + 1)]s where [n]s =

s2n−s−2n

s2−s−2 for
s = exp(πi/12). This formula is obtained from [124, p. 15] by including the pivotal structures ϕi = (−1)i for
fi and ϕ j = (−1) j for f j .
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• twists:14 1, eπi/4, e2πi/3, e−3πi/4, 1

It is helpful to use shorthand notation for the boson f4 =: g and the condensable alge-
bra 1 + g =: A. We refer the reader to Appendix B for background on condensable alge-
bras and anyon condensation. The category of right A-modules in SU(2)4, which describes
excitations on the domain wall between SU(2)4 and SU(3)1 (see Example 3.2), is a Z/3
Tambara-Yamagami unitary fusion category T Y3,−,15 and can be described as follows [122],
[99, § VII E]:

• simple objects: {0, 1,2,σ}

• fusion rules: Z/3 for {0,1, 2} and σ2 = 0+ 1+ 2

• quantum dimensions: d0 = d1 = d2 = 1 and dσ =
p

3

• associator/F-symbols: determined by the bicharacter 〈a, b〉 := ζ−ab, where
ζ := exp(2πi/3) and a choice of sign:

F aσb
σσσ = Fσaσ

bσσ = ζ
−ab ,

Fσσσσab =
−1
p

3
ζab .

Since the generator f1 of SU(2)4 is pseudo-real, so is the non-invertible object σ ∈ T Y3,−,
which is reflected in the F-symbol Fσσσ

σab above. (Observe σ = f1 + f3 in the category of right
A-modules.)

The category of local right A-modules in SU(2)4, corresponding to those wall excitation
types which braid trivially with the condensate and thus remain deconfined, is SU(3)1. This
category is described by the following data, where again ζ= exp(2πi/3) [116, 5.3.3]:

• anyons: {0,1, 2}

• fusion rules: Z/3

• quantum dimensions: d0 = d1 = d2 = 1

• associator/F-symbols: trivial

• braiding/R-symbols:
R1,2

0 = R2,1
0 = ζ−1 ,

R1,1
2 = R2,2

1 = ζ .
(6)

• S-matrix:
1
p

3





1 1 1
1 ζ ζ2

1 ζ2 ζ





• twists: 1,ζ,ζ

14The twists above were computed with the formula θn = sn(n+2) with s = exp(πi/12), which agrees with the
formula from [83, §6], and can be proven by induction using the balance axiom and (4). Our formula differs
from [81, § 9.7] by including the pivotal structure ϕn = (−1)n for fn; see [67, (32) from Appendix A.2].

15There are four Z/3 Tambara-Yamagami UFCs corresponding to a choice of bicharacter 〈a, b〉 = ζ±ab and a
choice of sign ± corresponding to the Frobenius-Schur indicator of σ. For SU(2)4, this sign must be −1, and the
two UFCs corresponding to the ± bicharacters give monoidally opposite UFCs. Their centers differ by reversing the
braiding; the UFC with ζab bicharacter has center SU(2)4 ⊠ SU(3)1, and the UFC with ζ−ab bicharacter has center
SU(2)4 ⊠ SU(3)1 as desired.
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By [42, Cor. 3.30],
Z(T Y3,−)∼= SU(2)4 ⊠ SU(3)1 , (7)

so setting A := SU(3)1 and X := T Y3,−, we have ZA(X ) = SU(2)4. In the lattice model for
this example, in (1), every red edge has C3 spins labelled by Z/3 = {0,1, 2}, and every black
edge has C4 spins corresponding to Irr(X ) = {0,1, 2,σ}. Vertices at the surface impose the
fusion rules of T Y3,−, with the labels 0, 1,2 in the bulk being treated as equivalent to labels
0, 1,2 in the boundary under fusion.

As A has only Abelian anyons, d0 = d1 = d2 = 1, resolving the crossing (2) is as easy as
y = x + z:

�

ab
�

�

�

�

�

= R
b,a
(a+b)

�

a+b
a

a

b

b

�

�

�

�

,

where R is the reverse R-matrix of (6). Resolving (3) to describe the boundary plaquette terms
is also easier since for any bulk edge label a, da = 1, and dx = dy as xa = y = ax . In
particular, Ωa,x

y = Ra,x
y whenever x , y ∈ {0,1, 2}, so the only extra data needed are the 1× 1

unitary matrices Ωσ,σ
a :

�

σa
�

�

�

�

�

= Ω
a,σ
σ

�

σ
σ

σ

a

a

�

�

�

�

.

These Ω-symbols are given by

Ω0,σ
σ = 1 , Ω1,σ

σ = ζ , Ω2,σ
σ = ζ .

2.2.2 The Drinfeld center of T Y3,−

The centers of the Tambara-Yamagami UFCs were first computed in [70, § 3]. For complete-
ness, we list here the 15 simple objects in Z(T Y3,−) and the data of the Ω-tensor using the
conventions of [99];16 the Ω-tensor is determined by the Ω-tensor by [99, (48b) and (48c)].
Here, we use the original notation of [99] (see Footnote 10) as some of the objects in the
center are direct sums of simples in T Y3,−.

• invertibles αg, j for each element g ∈ Z/3 and j = 0, 1, for a total of 6 abelian anyons.
The underlying object of αg, j is g ∈ T Y3,−, so dim(αg, j) = 1.

α= α0, j: Ω
1,001
α = Ω2,002

α = 1

Ωσ,00σ
α = (−1) j

α= α1, j: Ω
1,112
α = ζ−1

Ω2,110
α = ζ
Ωσ,11σ
α = (−1) jζ−1

α= α2, j: Ω
1,220
α = ζ

Ω2,221
α = ζ−1

Ωσ,22σ
α = (−1) jζ−1

16The Ω-tensor for the Z/3 Tambara-Yamagami UFCs with bicharacter ζab were computed by Chien-Hung Lin.
The case with +1 Frobenius-Schur indicator appears in [99], and the case with −1 Frobenius-Schur indicator is
commented out in the arXiv source of [99]. Taking complex conjugate gives the Ω tensors for the other two Z/3
Tambara-Yamagami UFCs (see Footnote 15). Indeed, the complex conjugate UFC is equivalent to the opposite UFC
by taking dagger, and the opposite is equivalent to the monoidal opposite by taking duals. We present here the
Ω-tensor for the bicharacter ζ−ab and sign −1 by taking the complex conjugate of this commented out data with
Chien-Hung Lin’s permission.
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• 1 simple γg,h for each distinct pair of elements g, h ∈ Z/3 whose underlying object is
g ⊕h in T Y3,−, so dim(γg,h) = 2. The Ω-tensors are determined up to three U(1) gauge
phases φ1,φ2,φ3:

γ= γ0,1: Ω1,001
γ = ζ−1

Ω2,002
γ = ζ
Ωσ,00σ
γ = Ωσ,11σ

γ = 0

Ω1,112
γ = Ω2,110

γ = 1

Ωσ,01σ
γ = eiφ1

Ωσ,10σ
γ = e−iφ1

γ= γ0,2: Ω1,001
γ = ζ

Ω2,002
γ = ζ−1

Ω3,00σ
γ = Ω3,22σ

γ = 0

Ω1,220
γ = Ω2,221

γ = 1

Ωσ,02σ
γ = eiφ2

Ωσ,20σ
γ = e−iφ2

γ= γ1,2: Ω1,112
γ = Ω2,221

γ = ζ

Ω2,110
γ = Ω1,220

γ = ζ−1

Ωσ,11σ
γ = Ωσ,22σ

γ = 0

Ωσ,12σ
γ = ζ−1eiφ3

Ωσ,21σ
γ = e−iφ3

• 2 simples δg, j for each g ∈ Z/3 and j = 0, 1 whose underlying object is σ ∈ T Y3,−, so
dim(δg, j) = 1.

δ = δ0, j: Ω
1,σσσ
δ

= Ω2,σσσ
δ

= ζ

Ω
σ,σσ0
δ

= (−1) je−πi/4

Ω
σ,σσ1
δ

= Ωσ,σσ2
δ

= −(−1) je−11πi/12

δ = δ1, j: Ω
1,σσσ
δ

= 1

Ω
2,σσσ
δ

= ζ−1

Ω
σ,σσ0
δ

= Ωσ,σσ2
δ

= −(−1) je−7πi/12

Ω
σ,σσ1
δ

= (−1) je−11πi/12

δ = δ2, j: Ω
1,σσσ
δ

= ζ−1

Ω
2,σσσ
δ

= 1

Ω
σ,σσ0
δ

= Ωσ,σσ1
δ

= −(−1) je−7πi/12

Ω
σ,σσ2
δ

= (−1) je−11πi/12

The S, T -matrices for Z(T Y3,−) (see Remark 2.5) are given by [70, Thm. 3.6]. First, for
each g ∈ Z/3, we let ωg be a square root of (−1)g · i · exp(−g2πi/3). We choose

ω0 = eπi/4 , ω1 =ω2 = e7πi/12 .

The twists are given by:

• T (αg, j) = 〈g, g〉= ζ−g2
which is 1 if g = 0 and ζ−1 otherwise.

• T (γg,h) = 〈g, h〉= ζ−gh which is 1 if g = 0 and ζ if g = 1 and h= 2.
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• T (δg, j) = (−1) jωg , giving the following twists:

eπi/4 , e5πi/4 , e7πi/12 , e19iπ/12 , e7πi/12 , e19πi/12 .

We give a table of the twists of all anyons in Z(T Y3,−) in (8) below. The block S-matrix is
given by:

αk, j γk,ℓ δk, j

αg,i
1
6
〈g, k〉

2 1
3
〈g, k+ ℓ〉

(−1)i

2
p

3
〈g, k〉

γg,h
1
3
〈g + h, k〉

1
3
〈g,ℓ〉〈h, k〉+ 〈g, k〉〈h,ℓ〉 0

δg,i
(−1) j

2
p

3
〈k, g〉 0

(−1)i+ jωgωk

6

∑

ℓ

〈ℓ− (g + k),ℓ〉

Ordering the anyons of Z(T Y3,−) as follows (the φ such that the twist θ = eφπi is matched
for convenience)

α0,0 = 1 α1,0 α2,0 δ0,0 δ2,1 δ1,1 γ1,2 γ0,2 γ0,1 δ0,1 δ2,0 δ1,0 α0,1 α1,1 α2,1

φ 0
−2
3

−2
3

1
4

19
12

19
12

2
3

0 0
5
4

7
12

7
12

0
−2
3

−2
3

(8)

we see that the S, T -matrices of Z(T Y3,−) = Z(X ) are exactly the tensor product of the S, T -

matrices of SU(2)4 ∼= ZA(X ) and SU(3)1 =A respectively. Here, the anyons in violet and red
generate the copy of SU(3)1 in Z(T Y3,−), and the anyons in violet and blue generate the copy
of SU(2)4.

2.3 Change of enrichment and 1-composition in UBFC

Comparing the model described above to the original construction of [125], it is evident that
the choice of bulk is not unique. This reflects the fact that, by the cobordism hypothesis [12,
101], anomalies are characterized by a Witt class of UMTCs [15]. Here, the Witt class of a
UMTC A is all UMTCs B such that A ⊠ B is braided equivalent to the Drinfeld center [42]
Z(W) of a UFC W; when W has such a braided tensor equivalence A⊠B→ Z(W), we call it
a Witt equivalence from A to B.17 In the previous section, for example, we saw that T Y3,− is
a Witt equivalence between SU(3)1 and SU(2)4.

Physically, this means that Witt equivalent UMTC’s determine invertible bulks which can
realize the same set of boundary topological orders, and also that Witt equivalent UMTCs can
appear as surface topological orders of the same invertible bulk. In the previous subsection,
for example, the standard boundary conditions of [125] lead to SU(3)1 surface topological
order, and we could have obtained the same SU(2)4 surface topological order from a bulk
theory A= SU(2)4. This suggests that these two Walker-Wang models should, in some sense,
be equivalent, since they can realize the same set of topological orders at their boundaries. In-
deed, it is widely believed that two Walker-Wang models are related by a finite depth quantum
circuit if, and only if, they are Witt equivalent [119]. This leads to the conjecture in [119, § 4]
that the group of QCA modulo finite depth quantum circuits is isomorphic to the Witt group
of UMTCs.

17Note that here, the bimodule tensor category W is not describing the excitations on a (1+1)D domain wall
between (2+1)D bulks, but the data of a commuting projector model of a (2+1)D domain wall between (3+1)D
bulks. One can, however, interpret this as a mapping from edge labels in A and B to anyons in the string-net model
associated to W .
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Explicitly, we can change the choice of which bulk theory describes the anomaly by com-
posing with an appropriate invertible 1-morphism B→ A in the 4-category UBFC, giving an
invertible 3-functor UmFCA → UmFCB. This composition should be viewed as stacking a
Witt-equivalence W in the 3D bulk on top of the 2D boundary:

X

A

W

B

The X -labelled boundary hosts the topological order ZA(X ). The surface labeled by W rep-
resents a bulk defect implementing the Witt equivalence between A and B. If we collapse
the A-bulk region to the boundary, we can think of the parallel X and W sheets as a single
(2+1)D topological boundary from the B-bulk to vacuum, which supports the same UBFC of
localized excitations as the original boundary labelled by X . This boundary will be equivalent
to the boundary determined by the B-enriched multifusion category W �A X , which we will
define below.

In order to understand this stacking operation, let us discuss the bulk defect labelled by W
in more detail. In the Walker-Wang model, such a defect is obtained by inserting a layer of the
string net constructed from the fusion category W . To attach this layer to the Walker-Wang
bulk, we adopt the same strategy as in § 2.2, using the functor A → Z(W) to attach the A
Walker-Wang bulk from below. If W is a Witt equivalence (i.e., if F is a braided equivalence),
then this defect will be invertible by [74, Thm. 2.18]. Invertibility means that there is another
boundary, namely Wmp,18 which can be stacked with W to give the trivial boundary. This
implies that in the absence of further defects, an invertible boundary cannot be detected us-
ing operators localized near the 2D defect; in particular, the defect plane does not have any
topological order or anyons.

We now describe how to stack defects corresponding to Witt equivalences. As noted above,
stacking with the invertible boundary W corresponds to composing with the 1-morphism W
in UBFC. Mathematically, this stacking operation is given by the relative Deligne product �A.

Warning 2.6. The operation �A is generally written⊠A, since it is related to the (non-relative)
Deligne product ⊠. However, in this paper, several operations which have different mathe-
matical definitions and/or physical meanings, but are all conventionally denoted by ⊠A, will
appear. We therefore introduce this unconventional notation as a disambiguation.

Definition 2.7. Given a UMTC A ∈ UBFC, we define the canonical Lagrangian algebra

KA :=
⊕

a∈Irr(A)
a⊠ a ∈A⊠A . (9)

Here, the term Lagrangian algebra refers to the fact that the category (A⊠A)loc
KA

of local mod-
ules is just Hilbfd – in other words, condensing the anyons in KA leads to a trivial topological
order. See Appendix B for details. Note that, since the Deligne tensor product is symmetric,
A ⊠A ∼= A ⊠A, and this canonical equivalence takes KA to KA. As such, we denote both
algebras by KA.

Given an A−B bimodule fusion category U and a B−C bimodule fusion category V where
A,B,C ∈ UBFC are UMTCs, following [74, §2.3] based on [14], we define the 1-composite

U �B V := (U ⊠V)KB
. (10)

18Given a (multi)fusion category X , Xmp is the (multi)fusion category obtained from X by reversing the
monoidal product.
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In other words, U �B V is given by the category of KB-modules in U ⊠ V (see Appendix B).
Here, KB ∈ B⊠B ⊂ Z(U ⊠V) is given by the analog of (9) for B. The composite defect U �BV
is an A − C bimodule multifusion19 category, describing a Witt equivalence between A and
C. See § 2.4 below for a definition of bimodule multifusion category (which appears with a
different physical interpretation!).

This composition has a concrete realization in terms of Walker-Wang models. Consider a
stack of three initially decoupled Walker-Wang layers, with bulks constructed from three Witt
equivalent UMTC’s A,B, and C ∈ UBFC respectively. We first attach a string-net associated
with the fusion category U to the bottom of the A layer, as described in Sec. 2.2. Using an
reflected procedure, we then attach a V string net to the top of the C layer. In the case that U ,V
are Witt equivalences to B from A,C respectively, we now have a Walker-Wang model with a
A bulk and surface B topological order at the boundary on the bottom, and a Walker-Wang
model with a C bulk and surface B topological order at the boundary on the top. Finally, we
must connect the U and V string nets in such a way that their topological order is trivialized,
by taking modules over KB as in (10). Physically, there are two ways to view this process.
On the one hand, we can bring together the (2+1)D B boundary of the bottom half of our
system and the B boundary from the top half, and annihilate the resulting topological order
by condensing the anyons in KB. On the other hand, we can also leave these boundaries
spatially separated, and insert a slab of the Walker-Wang bulk ground state with edges labeled
by objects in B to connect the U and V defects. Both of these are valid physical interpretations
of the mathematical process of taking modules over KB. The A− C bimodule tensor category
U �B V describes the remaining surface topological order near the B-slab.

U

A

B surface excitations

B surface excitations

V

A

C

U�BV

Figure 6: Taking KB-modules in U ⊠ V glues the Witt-equivalences AUB and BVC to
obtain the Witt-equivalence A(U �B V)C .

In the case that U and V are Witt equivalences, this trivializes both surface topological
orders, confining all the surface anyons, as seen by the fact that U �B V is again a Witt equiv-
alence between A and C. Indeed, by [42, Thm. 3.20],

Z(U �B V)∼= Z((U ⊠V)KB
)

∼= Z(U ⊠V)loc
KB

∼= (A⊠B⊠B⊠ C)loc
KB

∼=A⊠ C .

Mathematically, the point is that Witt equivalences are invertible 1-morphisms in UBFC, and
the composition of two invertible morphisms will be invertible.

19Given a connected separable algebra A in a fusion category X which lifts to a commutative (and thus con-
densable) algebra in Z(X ), XA is again a fusion category [48]. However, the image of KB in U ⊠ V is usually
not connected. Precisely, KB will only be sent to a connected algebra in U ⊠ V when no anyon in the B bulk can
condense on both domain walls.
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This also gives a simple picture of the case we are interested in: composing a (2+1)D topo-
logical order, which we describe as a boundary between the Walker-Wang model associated to
the UMTC A and the vacuum, with a Witt equivalence defect between the Walker-Wang mod-
els associated to the UTMCs A and B. We begin with a bulk A region, with surface topological
order described by an A-enriched fusion category X . We introduce an invertible 1-morphism
W ∈ UBFC(B→A), corresponding to a Witt-equivalence B ≃A, into the bulk, and push this
defect to the boundary. The composite boundary is described by the B-enriched multifusion
category W �A X . Just as in the case of composing two Witt equivalences, we have

B⊠ ZB(W �A X )∼= Z(W �A X )
∼= (Z(W)⊠ Z(X ))loc

KA

∼= (B⊠A⊠A⊠ ZA(X ))loc
KA

∼= B⊠ ZA(X ) ,

so ZB(W �A X ) ∼= ZA(X ). In other words, the stacking operation depicted above indeed
results in a model with a different, Witt equivalent bulk theory B, but the same boundary
topological order. Evidently, both bulk enrichments are equally valid from the point of view of
the boundary theory.

2.4 Topological domain walls and enriched bimodule categories

We begin by sketching the mathematical data and physical implications of a topological domain
wall separating two regions with (2+1)D topological order, with anyons in the bulks described
by the UMTCs C and D respectively. Such domain walls have been studied in [59, 79, 86, 97,
105].

One way to describe a domain wall is to characterize the point-like excitations localized on
the wall. These correspond to simple objects of a UmFC W , similar to how anyons correspond
to simple objects in a UMTC. The category W is equipped with additional structure, describing
how wall excitations interact with bulk excitations. Mathematically, these take the form of two
monoidal functors F : C → W and G : D → W , dictating which wall excitation is obtained
from fusing an anyon from the C and D bulk regions, respectively, onto the domain wall.
These functors lift to give braided monoidal functors F, G : C,D → Z(W), because when
fusing a bulk excitation c with a wall excitation w, we can bring c to the wall on either side of
w, relating the two products F(c)w and wF(c) by a half-braiding on F(c). This half-braiding
is exactly the data needed to construct the Drinfeld center Z(W) [59, § 3]. Particles from
C are transparent to particles from D inside Z(W), because they approach the domain wall
from opposite sides, meaning that the two action functors assemble into a single braided tensor
functor C⊠D→ Z(W). The resulting mathematical structure is a unitary multifusion category
W equipped with actions of C and D that are central, in the sense that the images of anyons
in C and D can braid past wall excitations in W . Equipped with these actions, W is called a
C −D bimodule multifusion category [67,90], and written CWD. In other words, the data that
describes point-like defects on W , together with exchange processes consistent with the bulk
braiding, is a bimodule UmFC.

In the case that the domain wall hosts a single superselection sector of topologically trivial
states, W will be a UFC; this is often assumed in the literature. However, as we will see,
two parallel domain walls, viewed as a single domain wall between the outer bulk regions,
can decompose into multiple superselection sectors, even if each individual domain wall was
indecomposable. Consequently, there are wall excitations in each superselection sector of
ground states, as well as point defects between different sectors of the domain wall. The
resulting structure is an indecomposable UmFC category, with one simple summand of the
tensor unit associated to each superselection sector.
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In fact, not all bimodule UmFCs arise as the categories of wall excitations on a topological
domain wall. The bimodule UmFCs W that appear as categories of wall excitations are pre-
cisely those that induce Witt equivalences on the UMTCs C and D of anyons [85, § 5] [59, § 4],
meaning that the braided tensor functor C⊠D→ Z(W) is a unitary braided equivalence. Thus,
an alternative but equivalent description of topological domain walls is to specify a Witt equiv-
alence between C and D [42].

Domain walls between anomaly-free topological orders have been thoroughly studied from
the perspective of boundaries between Levin-Wen models in [79]. There, it was shown that a
topological boundary between the string-net models associated to the fusion categories X and
Y comes from the data of an indecomposableX−Y bimodule category, i.e. a finitely semisimple
category M equipped with a tensor functor X⊠Ymp→ End(M). It was also shown that point-
like excitations localized on such a boundary form a fusion category, namely the category
EndX−Y(M) where objects are endofunctors of M (i.e. of functors from M to itself) which
commute with the X and Y actions (which is extra data on such functors), and morphisms are
natural transformations. Specifically, this means that pointlike excitations on the domain wall
correspond to functors in End(M). However, these functors must satisfy certain conditions
to ensure that they can be coupled consistently to the bulk. The X and Y actions are part of
the data describing this coupling; the condition of being in EndX−Y(M) ⊆ End(M) allows an
excitation to be exchanged with other domain wall excitations in a manner consistent with the
bulk braiding. The tensor product on EndX−Y(M), dictating the fusion rules of excitations on
the boundary, is just functor composition.

A special case of the construction of [79] recovers the fact that localized excitations in
the X bulk region are described by the UMTC Z(X ), since EndX−X (X ) ∼= Z(X ) (where the
X − X bimodule structure on X is just ⊗ in X ). Here, X is the identity X − X bimodule,
which describes the trivial domain wall, i.e. no domain wall, in the (2+1)D string-net bulk
determined by X . Since EndX−Y(M) is canonically a Witt equivalence between EndX−X (X )
and EndY−Y(Y), and as we have seen EndX−X (X )∼= Z(X ) and EndY−Y(Y)∼= Z(Y), it follows
that EndX−Y(M) is a Witt equivalence Z(X ) → Z(Y). As argued in [85, § 5] [59, § 4], a
domain wall between (2+1)D topological orders is topological precisely when the category of
wall excitations is a Witt equivalence.

We will now show that the picture in the A-enriched case is analogous. Topological domain
walls between (2+1)D TOs X ,Y ∈ UFCA correspond to A-enriched bimodule categories,
i.e. an X −Y bimodule category M such that the two actions

A→ Z(X )→ X → End(M) ,

A→ Z(Y) = Z(Ymp)→ Ymp→ End(M) ,

agree on the underlying fusion category of A (which is the data of a particular natural iso-
morphism); see [14] or [74, §2.3] for the precise definition.20 Concretely, given the data of
an A-enriched bimodule category, it is straightforward to combine the lattice model in § 2.2
and the lattice model for a domain wall in [79] to produce a lattice model for the (1+1)D
boundary separating the topological orders ZA(X ) and ZA(Y) on the surface of the 3D bulk
constructed from A; this shows that the resulting domain wall is topological. In the resulting
lattice model, the first two arrows above collectively indicate how an edge label a ∈ Irr(A)
in the Walker-Wang bulk can be identified with an edge label xa ∈ Irr(X ) of the string net
constructed from X . The last arrow tells us that a point defect arises when a string labeled by
xa ∈ Irr(X ) terminates on the domain wall M. The condition that the A-actions on M agree
simply ensures that the association between bulk and boundary string labels is consistent on
both sides of the domain wall, such that the resulting defect resides entirely in the (2+1)D
X -boundary, and does not extend into the (3+1)D A-bulk.

20When a (multi)fusion category Y is A-enriched, then Ymp is A-enriched and ZA(Y)∼= ZA(Ymp).
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To understand why this data describes topological domain walls, recall that
Z(X )∼= ZA(X )⊠A, and the string-net model associated to X describes a system with decou-
pled layers of ZA(X ) and A topological order (see Fig. 5). As discussed in [79], a topological
domain wall between string net models for X and Y is described by an X −Y bimodule M.
By Lemma 2.12 below, the condition that M is A-enriched is equivalent to requiring that for
any anyon a ∈ Irr(A), a and a will annihilate when fused on the domain wall, even when
they are brought in from opposite sides. In other words, the domain wall factors as a domain
wall connecting the ZA(X ) and ZA(Y) layers and a domain wall connecting the two A-layers,
and the boundary in the A-layer is the trivial A−A domain wall, i.e. no domain wall. Thus,
the choice of an A-enriched X −Y bimodule M is just the choice of a domain wall between
ZA(X ) and ZA(Y) topological orders.

To turn the domain wall between Z(X ) and Z(Y) described above into a domain wall
between ZA(X ) and ZA(Y), we simply attach the A-Walker Wang bulk to the A-layer on both
sides of the domain wall, using the prescription of § 2.2. Since the domain wall is trivial in this
layer, this can be done without adding any bulk codimension 1 defects. Moreover, any domain
wall that is extended into the bulk via a Witt equivalence can be folded into the surface; from
our discussion in § 2.3, it follows that such domain walls are topologically equivalent to the
ones that we describe here.

We have just explained that topological domain walls admit two equivalent characteriza-
tions. The first involves a Witt equivalence (which may be multifusion) between the two bulk
topological orders, describing point-like defects localized to the domain wall, and the second
involves fixing an A-enriched bimodule between the A-enriched multifusion categories which
determine commuting projector models for the bulk topological orders, which is the data re-
quired to construct a commuting projector Hamiltonian for the domain wall.

By identifying domain walls between ZA(X ) and ZA(Y) with a subset of domain walls
between Z(X ) and Z(Y), we obtain both of these pictures from our construction. We have
already described how the data of an A-enriched bimodule category determines a topological
domain wall between (2+1)D bulk topological orders with anomaly described by A, and a
corresponding commuting projector Hamiltonian. Moreover, we can use the methods of [79]
to show that point-like defects on the domain wall are described by the UmFC EndA

X−Y(M).
In the remainder of this section, we explore the mathematical relationship between these

two descriptions. Specifically, we give two fundamental constructions which relate the Witt
equivalence describing wall excitations to the enriched bimodule categories that define our
lattice model. Specifically, Construction 2.8 turns the data of an A-enriched bimodule cat-
egory into the Witt equivalence of wall-excitations. Construction 2.11 shows that one can
also go the other way: given the desired category of wall excitations, by including the action
functors which describe bringing bulk excitations to the domain wall, one can produce the
data necessary for defining a commuting projector lattice model of a (1+1)D domain wall that
hosts those wall excitations and actions. Taken together, these constructions show that the
perspective of understanding (2+1)D topological order in terms of enriched fusion categories
subsumes the perspective of looking solely at UMTCs, because all possible UMTCs of bulk ex-
citations and Witt equivalences of wall excitations arise from enriched fusion categories and
enriched bimodules.

In the unenriched case, i.e. string-net models, Witt equivalences W between Z(X ) and
Z(Y) correspond to Lagrangian algebras in Z(X )⊠ Z(Y)∼= Z(X ⊠Ymp) (as we recall in § 3.1
below), which in turn correspond to indecomposable X⊠Ymp module categories [41, Def. 3.3]
(see Remark 2.10 below). Construction 2.11 generalizes this to the enriched setting, taking
in a Witt equivalence between enriched centers and producing an indecomposable enriched
bimodule category which would be mapped to that Witt equivalence under Construction 2.8.

Construction 2.8. Just as we take the enriched centers ZA(X ) and ZA(Y) to obtain excitations

21

https://scipost.org
https://scipost.org/SciPostPhys.15.3.076


SciPost Phys. 15, 076 (2023)

in the (2+1)D bulk regions, wall excitations on the domain wall whose commuting projector
model is obtained from the A-enriched X − Y bimodule category M are described by the
multifusion category

EndA
X−Y(M) := EndUBFC(M) = EndX�AYmp(M) ,

where X �A Ymp = (X ⊠Ymp)KA
by (10). Since

Z(EndX−Y(M))∼= Z(X ⊠Ymp)∼= Z(X )⊠ Z(Y)∼= ZA(X )⊠A⊠A⊠ ZA(Y) ,

by [42, Thm. 3.20], we have

Z(EndA
X−Y(M))∼= Z(X �A Ymp)

= Z
�

(X ⊠Ymp)KA

�

∼= Z(X ⊠Ymp)loc
KA

∼= ZA(X )⊠ ZA(Y) .

Thus the bimodule tensor category EndA
X−Y(M), which is the category of excitations on the

(1+1)D domain wall whose commuting projector model is described by M, is indeed a Witt
equivalence between the enriched centers ZA(X ) and ZA(Y), verifying that the domain wall
is topological [59, § 4].

Example 2.9. For the trivial A-enriched X − X bimodule XXX , manifestly we have
EndA

X−X (X ) = ZA(X ), as forgetting the enrichment, EndX−X (X ) = Z(X ) ∼= ZA(X ) ⊠ A.
We provide further discussion in § 3.2 below.

Remark 2.10. Before presenting Construction 2.11, we recall the correspondence between
indecomposable X -module categories M, describing gapped boundaries from Z(X ) to the
vacuum, and Lagrangian algebras in Z(X ) from [41, Def. 3.3]. Given an X -module
category, observe that EndX (M) is a fusion category Morita equivalent to X , and thus
Z(EndX (M)) ∼= Z(X ). This means there is a Lagrangian algebra A ∈ Z(X ) such that
EndX (M) ∼= Z(X )A. Indeed, A=

⊕

m∈Irr(M) End(m) ∈ X , which lifts to a Lagrangian algebra
in Z(X ).

Conversely, given a Lagrangian algebra A∈ Z(X ), the forgetful image of A in X is a direct
sum of Morita equivalent indecomposable algebra objects A=

⊕

Ai . Then M =ModX (Ai) is
an indecomposable X -module category, and choosing a different A j gives an equivalent M by
Morita equivalence of Ai and A j .

This correspondence is one-to-one between Lagrangian algebras in Z(X ) up to isomor-
phism and X -module categories (i.e. gapped boundaries to the vacuum) up to equivalence.
In § 3.1, we will show how this implies that topological boundaries between (2+1)D topolog-
ical orders all arise from anyon condensation, up to the folding trick.

Construction 2.11. Given a Witt-equivalence W between ZA(X ) and ZA(Y), i.e., a fusion
category W such that Z(W)∼= ZA(X )⊠ ZA(Y), we can promote it to a canonical A-enriched
X −Y bimodule category M which recovers W as EndA

X−Y(M).
Indeed, observe that as braided fusion categories,

Z(W ⊠A)∼= Z(W)⊠ Z(A)∼= ZA(X )⊠ ZA(Y)⊠A⊠A∼= Z(X )⊠ Z(Y)∼= Z(X ⊠Ymp) .

Let L in ZA(X )⊠ ZA(Y) be the Lagrangian algebra corresponding to W , and let KA ∈A⊠A
be the canonical Lagrangian from (9). Then L⊠KA gives a Lagrangian algebra in Z(X ⊠Ymp),
corresponding to a X ⊠Ymp-module category M under the correspondence [41, Def. 3.3] (see
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Remark 2.10). Unfolding, the X −Y bimodule category M has an A-enrichment by Lemma
2.12 below. Also by construction, EndA

X−Y(M)∼= (Z
A(X )⊠ZA(Y))L . Since both EndA

X−Y(M)
and W correspond to the Lagrangian algebra L, they are equivalent as ZA(X )−ZA(Y) bimod-
ule tensor categories.

Physically, we should think of this construction as follows. The Lagrangian algebra L⊠KA
specifies a domain wall between X and Y that factors into a domain wall between ZA(X ) and
ZA(Y ) in one layer, and a trivial domain wall in the A layer. This follows from the fact that L
is transparent to anyons in A, and that KA is the Lagrangian algebra in A⊠A corresponding to
the trivial domain wall; see Remark 3.5. Lemma 2.12 does the mathematical work of verifying
that an A-enriched bimodule is the same thing as one which is transparent to anyons from A,
and is therefore the correct data to describe the resulting domain wall.

Lemma 2.12. Suppose X ,Y are A-enriched fusion categories and XMY is an X −Y bimodule
category. Let L be the Lagrangian algebra in

Z(X ⊠Ymp)∼= ZA(X )⊠ ZA(Y)⊠A⊠A ,

corresponding to M. The following are equivalent:

(1) There is a compatible A-enrichment on M

(2) There is an algebra homomorphism KA→ L, where KA is in the copy of A⊠A ⊂ Z(X⊠Ymp).

(3) We can factorize L = L′ ⊠ KA for some Lagrangian algebra L′ ∈ ZA(X )⊠ ZA(Y).

Proof. By definition, A-enrichments on XMY correspond to monoidal natural isomorphisms

A⊠A A

EndX−Y(M)
Â⊠Ã

⊗

⇒ Â

whereÂ ⊠ Ã: A⊠A→ EndX−Y(M) is the free module functor for L∩A⊠A, and⊗ : A⊠A→A
is the free module functor for KA.21 Since KA is Lagrangian, such a factorization will exist if
and only if KA is isomorphic as an algebra to L ∩A⊠A.

Clearly (3) implies (2). To show that (2) implies L = L′⊠KA for some Lagrangian algebra
L′ ∈ ZA(X ) ⊠ ZA(Y), we simply observe that L is a condensable algebra with 1 ⊠ KA as a
subalgebra, and therefore, possible choices of L are in bijection with Lagrangian algebras in

(Z(X )⊠ Z(Y))loc
KA
∼= ZA(X )⊠ ZA(Y) .

Local KA modules are all of the form c⊠KA for c ∈ ZA(X )⊠ZA(Y), so the Lagrangian algebra
L′ ∈ ZA(X )⊠ ZA(Y) corresponds to the algebra L′ ⊠ KA ⊇ 1⊠ KA, as claimed.

In the preceding constructions, we saw that an A-enriched bimodule category XMY
between A-enriched fusion categories X ,Y ∈ UFCA determines a Witt equivalence
EndA

X−Y(M) : ZA(X ) → ZA(Y), and that all Witt equivalences between enriched centers
arise in this way. By Example 2.3, any UMTC A arises as an enriched center, so all Witt

21For an algebra A in C, the free module functor C → CA is given by c 7→ cAA, where the module structure on
cAA comes from the multiplication AA → A. By [20], any surjective (dominant) tensor functor between fusion
categories S → T is equivalent to the free module functor associated with some commutative algebra A ∈ Z(S),
including the functors Â ⊠ Ã and ⊗ considered here in the lemma. The interpretation of the free module functor
in the context of anyon condensation is reviewed in detail in Example 3.2.
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equivalences between UMTCs can be obtained from Construction 2.8. In other words, the per-
spective of Remark 2.4 that (2+1)D topological orders should be described by enriched fusion
categories, with domain walls described by enriched bimodule categories, is in harmony with
the expectations that bulk excitations are described by UMTCs, wall excitations are described
by Witt equivalences between them, and that categories of excitations completely determine
the topological order of the bulks and domain walls.

We remark that from the usual viewpoint, if a topological order is described by a UMTC
C, then the topological domain walls from C to itself are described by the fusion 2-category
Mod(C). Indeed, given such a domain wall M, we take the semi-simple category of so-called
twist defects, i.e. point defects between the trivial domain wall and M. Bringing in excitations
from the bulk makes this into a C − C bimodule category, but moving excitations around the
bottom of a twist defect allows us to equip this category with a C-enriched structure. The
fusion 2-category of C-enriched C − C bimodules is equivalent to Mod(C) [43]. By [71] this
yields an equivalence between the fusion 2-category of topological domain walls from C to
itself and Mod(C).

On the other hand, using UFCA as a 3-category of topological orders leads us to ex-
pect that topological domain walls from ZA(X ) topological order to itself are described by
UFCA(X → X ), which is the fusion 2-category BimA(X ). To demonstrate the consistency of
our framework with the usual point of view, we have the following mathematical result.

Proposition 2.13. There is an equivalence of fusion 2-categories BimA(X )∼=Mod(ZA(X )).

Proof. Observe that BimA(X ) = EndUBFC(AXHilb). Now consider Xmp as a ZA(X )−A Witt-
equivalence, i.e., invertible 1-morphism in UBFC. Composing these two 1-morphisms, we get
Xmp �A X as a 1-morphsim in UBFC(ZA(X )→ Hilb). Since Xmp �A X is Morita equivalent
to ZA(X ) via the A-enriched bimodule X , we see

EndUBFC(ZA(X )Z
A(X )Hilb)∼= EndUBFC(AXHilb) .

The left hand side is exactly Mod(ZA(X )) by [43]. A graphical representation of this map in
a 2D projection of the 4D graphical calculus of UBFC22 is as follows:

BimA(X ) ∋

X

X

MA 7→
X

X

ZA(X )

ZA(X )

MXmp A

ZA(X )

∈Mod(ZA(X )) .

3 Decomposing composite domain walls

Having outlined our perspective on topological boundaries between (2+1)D topological or-
ders, we now turn to the question of central interest: namely, what can happen when we
compose two or more domain walls by stacking them? This question is mathematically impor-
tant, since any domain wall can be obtained by such a composition. Moreover, in the context of
generalized symmetries (see [32,107] for reviews), there has recently been considerable inter-
est in the fusion rules of non-invertible symmetry defects (see, for example, [8,11,31,54,82]
and references therein), which are closely related to the composition of topological domain
walls studied here. The mathematical structure underpinning our analysis of composition also

22Hom 2-categories in UBFC are 2-categories themselves, and have a well-defined 2D graphical calculus.
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has connections to duality transformations of 1-dimensional lattice models, which have also
recently enjoyed renewed interest [47,96,102].

In § 3.1, we review how domain walls are related to condensable and Lagrangian alge-
bras in UMTCs, as well as how this relation can be used to describe any domain wall as a
composition of elementary domain wall types. In § 3.2, we introduce the mathematical opera-
tions corresponding to composing domain walls, i.e. treating parallel domain walls as a single
domain wall. Finally, in § 3.3, we explain the mathematics of decomposing parallel domain
walls into irreducible summands, including the calculation of the GSD which occurs given a
composite of domain walls.

3.1 Elementary topological domain walls

To set the stage for the remainder of this work, we now review the results of [44], who describe
how every (indecomposable) topological domain wall can be viewed as a composite of several
elementary domain walls (see Fig. 8). There are two classes of elementary domain walls: in-
vertible domain walls (Example 3.1), which implement a braided tensor equivalence between
the UMTCs of excitations on each side, and domain walls where an algebra is condensed on
one side (Example 3.2).

Example 3.1. Suppose X is an A-enriched fusion category. Invertible defects between
regions with ZA(X ) bulk topological order correspond to invertible enriched X − X bi-
module categories (i.e. Morita equivalences), which correspond to braided autoequivalences
Φ ∈ Autbr

⊗ (Z
A(X )) by [50, 74]. Anyons which cross the boundary are permuted by the sym-

metry Φ, i.e. an anyon c ∈ ZA(X ) crosses the domain wall to become Φ(c). Invertible defects
have been discussed extensively in the literature [2, 7, 13, 17, 22, 23, 30, 33, 95, 126]. Locally,
such invertible defect lines are simply a benign relabelling of anyon types on one side of the
defect relative to the other. However, they can have striking physical consequences, such as
altering the ground state degeneracy, when the defect lines terminate.

Another important class of domain walls comes from condensable algebras, a.k.a. unitarily
separable étale algebras A in a UMTC C. We include a review of condensable algebras in
Appendix § B below. As the name suggests, a condensable algebra A is a collection of anyons
which can be condensed, leading to a distinct phase with a different topological order [24,27,
29, 85]. When the anyons before condensation are described by the UMTC C, the condensed
phase is described by the UMTC Cloc

A , which we will describe presently (see Appendix § B for
details). By Constructions 2.8 and 2.11, the discussion of condensation in [85] applies equally
well, regardless of whether C is a Drinfeld center or an enriched center.

Example 3.2. The article [85] (see also [25]) explains how anyon condensation can be car-
ried out on one side of a domain wall, giving a topological boundary between the uncondensed
phase with topological order C and the condensed phase with topological order Cloc

A , the cat-
egory of local right A-modules in C. Excitations on the boundary are described by CA, which
is the fusion category obtained from C by condensing A, but not demanding locality, which
physically corresponds to requiring that the excitation braid trivially with A.

The data necessary to perform anyon condensation is a condensable algebra A, which is a
collection of anyons (described mathematically as a direct sum) in C together with a collection
of fusion channels satisfying consistency conditions [85]. These conditions guarantee that A-
lines can be treated as equivalent to vacuum lines. Similarly, the data of an excitation on the
domain wall created by condensation is a direct sum of anyons M ∈ C together with a choice of
how the condensate A can be absorbed by M , which is mathematically the choice of an A-action
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morphism in C(MA→ M).23 This is the mathematical data of an A-module, i.e. an object MA
in CA. Here, the letter M refers to the direct sum of anyons of the uncondensed phase, and
the subscript ·A reminds us of the A-action. We emphasize that, although we usually denote
simple objects by lowercase letters, we will usually denote simple objects in CA by uppercase
letters, because the underlying object in C may not be simple. Physically, this action allows M
to absorb excitations from the condensate A through fusion as if they were the vacuum.

The UMTC Cloc
A which describes bulk excitations in the condensed phase is a subcategory of

CA, consisting of those particles which braid trivially with the condensate A. Thus, we typically
denote anyons in the condensed phase with the same notation as wall excitations, although
we add the superscript M◦A to point out that an object lives in Cloc

A .
Bringing an anyon M◦A ∈ Irr(Cloc

A ) out of the condensate corresponds to applying the for-
getful functor Cloc

A → CA → C : M◦A 7→ MA 7→ M ; this functor forgets the data of the A-action
on MA, leaving only the underlying direct sum of anyons M . The resulting bulk excitation in
the uncondensed region can in general be viewed as a direct sum of different anyon types in
C. We provide further explanation of CA and Cloc

A , including their physical interpretation, in
Appendix B.

Now suppose that C = Z(X ), where X ∈ UFC. As we show in Appendix B, the condensed
phase Cloc

A is then the center of the fusion category XA of right A-modules,24 Z(XA)∼= Z(X )loc
A .

The fusion category XA can be obtained from X in the following way. Objects of XA are objects
Y of X equipped with a module action YA→ Y satisfying associativity and unitality conditions,
which we depict in the diagrammatic calculus as a trivalent vertex. The tensor product on XA
is the relative tensor product (YA, ZA) 7→ YA⊗A ZA over A, which is the image of the following
projection.

Y Z

∈ X (Y Z → Y Z) .

The Y and Z strings in the diagram above represent worldlines of excitations Y and Z confined
to the domain wall at the boundary of the region where A is condensed. (We use capital letters
for Y , and Z because they in general they correspond to direct sums of bulk anyons.) The
unlabelled black string is the worldline of the condensable algebra A ∈ Z(X ). The orange
and green trivalent vertices describe processes where the anyons A are brought to this gapped
boundary, and fused with a Y or Z boundary excitation.

There are several ways to interpret the category XA. First, as we have just alluded to,
objects in XA correspond to excitations on the gapped boundary between Z(XA) and Z(X )loc

A .
Second, because Z(XA) ∼= Z(X )loc

A , XA fixes the data for a commuting projector model for the
condensed region. Finally, XA can be viewed as a X −XA bimodule category, describing the
states of the resulting string-net near the domain wall. The action of XA on XA is just the tensor
product ⊗A, while the action of X is the free module functor X → XA : x 7→ xAA.

To see how this construction generalizes to the enriched case, let X be an A-enriched
fusion category. If A ∈ C := ZA(X ) is a condensable algebra, then XA is again an A-enriched
fusion category,25 describing the topological order to the right of the domain wall. Since the
free module functor X → XA is monoidal (i.e. it respects the tensor product), we can also
view XA as an A-enriched X −XA bimodule. Construction 2.8 then shows how to obtain the

23One can view M as another collection of anyons and consistent fusion channels where the fusion channels
have one input leg from M and one leg from A, and the output leg is again in M . The consistency conditions are
entirely similar to those of a condensable algebra.

24Here we suppress some of the data associated with XA; for an explicit discussion of the full data see e.g. [56,57]
25By [42, Thm. 3.20], Z(XA) ∼= Z(X )loc

A . Since Z(X ) ∼= ZA(X ) ⊠ A and A ∈ ZA(X ), we have
Z(X )loc

A
∼= ZA(X )loc

A ⊠A. Thus, XA is A-enriched, with ZA(XA)∼= ZA(X )loc
A .
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C D ⇝ D
C

Figure 7: By folding, a topological boundary between C and D is equivalent to a
topological boundary between C ⊠D and the vacuum. Here, gray indicates regions
of the phases C and D (or D), and light blue indicates that the line defect can be
thickened to a region with an intermediate topological order.

Witt equivalence EndA
X−XA

(XA)∼= ZA(X )A describing point-like excitations on the domain wall
from this enriched bimodule.

We sometimes wish to condense the algebra A to the left of the domain wall, instead of
to the right. In this case, we use the similarly defined A-enriched fusion category AX of left
A-modules in X for the condensed bulk region, and the domain wall is given by the A-enriched

AX −X bimodule category AX . We do so because the fusion category X most obviously acts on
the opposite side from where A acts. However, the fusion categories XA and AX are canonically
monoidally equivalent: given a right A-module MA, we obtain a left action of A on M by com-
posing the right action with the half-braiding on A. Similarly, ZA(AX )∼= loc

A ZA(X )∼= ZA(X )loc
A ,

with the canonical braided monoidal equivalence ZA(X )A→ AZA(X ) preserving the subcat-
egories of local modules. Consequently, we will sometimes tacitly identify AX and XA, e.g.
in (38).

Example 3.3. Condensing a condensable algebra on one side of a domain wall as in Ex-
ample 3.2 results in a topological boundary to vacuum precisely when the algebra is La-
grangian [85, Rem. 5.4] [97]. If A is a condensable algebra in a UMTC C, the Drinfeld center
of CA satisfies

Z(CA)∼= C ⊠ Cloc
A , (11)

by [42, Cor. 3.30]. (Recall that D is the same unitary fusion category as D, but equipped with
the reverse braiding.) Hence A is a Lagrangian algebra if and only if Cloc

A
∼= Hilb. Eq. (11)

implies that this can occur if and only if C is the Drinfeld center of some unitary fusion category.

A priori, Example 3.3 is a special case of Example 3.2. On the other hand, by the so-called
folding trick (see Fig. 7), any gapped boundaries between the topological orders C and D are
equivalent to gapped boundaries between C ⊠D and the vacuum. Consequently, topological
domain walls between C and D correspond to Lagrangian algebras in C⊠D, which correspond
to fusion categories X with a choice of equivalence Z(X )∼= C ⊠D by (11).

Remark 3.4. In the A-enriched setting, when performing the folding trick in UBFC, we have
an A-region between the two sheets, which corresponds to taking a relative Deligne product
over A. That is, gapped A-enriched domain walls between X and Y correspond to gapped
boundaries for the ordinary Hilb-enriched multifusion category X �A Ymp.

By [44, Thm. 3.6], Lagrangian algebras L = L(A, B,Φ) ∈ C ⊠D are determined by:

• condensable algebras A∈ C and B ∈D, where

A⊠ 1 := L ∩ C ⊠ 1D and 1⊠ B := L ∩ 1C ⊠D ,

and

• a unitary braided equivalence Φ : Cloc
A →Dloc

B .
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C

CA

Cloc
A

Φ

Dloc
B

BD

D

Figure 8: Every topological boundary between topological orders C,D can be ob-
tained by juxtaposing condensation boundaries and invertible boundaries cf. [44, §3].

To understand this, consider first when we have an equivalence Φ : C→D. In this case, there
is a canonical Lagrangian algebra

L ∼=
⊕

X∈Irr(C)
X ⊠Φ(X ) . (12)

In general, C and D are not equivalent, but if a Lagrangian algebra exists in C⊠D, we can find
algebras A∈ C and B ∈D that can be condensed such that there is an equivalence Cloc

A →Dloc
B .

We then get a corresponding Lagrangian algebra in

(C ⊠D)loc
A⊠B
∼= Cloc

A ⊠D
loc
B ,

which is necessarily of the form (12).
To illustrate the meaning of L(A, B,Φ), we describe several special cases. In the case

where A = 1C and B = 1D, the Lagrangian algebra must be L(1, 1,Φ) for some equivalence
Φ ∈ Funbr

⊗ (C → D), and we obtain an invertible domain wall, as in Example 3.1. This wall
simply applies the relabeling Φ to anyons crossing the wall, and when C = D, can be thought
of as applying a symmetry action [7]. The inverse domain wall corresponds to L(1D, 1C ,Φ−1).

The condensation boundaries of Example 3.2 correspond to Lagrangian algebras of the
form L(A, 1Cloc

A
, idCloc

A
) or L(1Cloc

A
, A, idCloc

A
), depending on which side of the wall A is condensed

on. These walls are thoroughly analyzed in [85].

Remark 3.5. We note that the trivial C−C topological boundary corresponds to the canonical
Lagrangian algebra of C given by KC = L(1, 1, idC) ∈ C⊠C from (9). Physically, condensing c⊠c
means that a c particle from the left C-bulk and a c particle from the right C-bulk annihilate
on the boundary, or equivalently, that a c particle can pass freely through the wall. Thus, the
domain wall is completely transparent to all anyons in C, and must be trivial.

More generally, the Lagrangian algebra L(A, A, idCloc
A
) contains (A⊠A) ∈ C⊠C as a subalge-

bra, and hence corresponds to a Lagrangian algebra in Cloc
A ⊠ C

loc
A ; this Lagrangian algebra is

precisely KCloc
A

.

Remark 3.6. An isomorphism ψ : A→ A′ between condensable algebras induces a braided
tensor equivalence eψ : Cloc

A′ → Cloc
A . Thus, the Lagrangian algebra L(A, B,Φ) depends on the

isomorphism classes of A and B, as well as on the choice of Φ up to natural isomorphism and
composition with elements of Aut(A) and Aut(B).

The physical content of [44, Thm. 3.6] is that by unfolding the classification, every topo-
logical domain wall between (2+1)D topological orders can be obtained by juxtaposing walls
of the two types in Examples 3.1 and 3.2, as in Figure 8.26 For this reason, we refer to the
domain walls described in Examples 3.1 and 3.2 as elementary domain walls.

A dictionary between the mathematical formalism and the physical interpretation for do-
main walls, including additional details which we will discuss below, appeared in Figure 4.

26The article [85] gives another method to decompose topological domain walls into two condensations, but in
the reverse order of Figure 8.
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3.2 Composing domain walls

In this section, we review the mathematical operation on bimodule categories for fusion cat-
egories which corresponds to composition of domain walls between anomaly-free topological
orders. We then argue that the concepts generalize in a straight forward way to the A-enriched
case.

Notation 3.7. Given UFCs X ,Y ,Z, an X −Y bimodule category M, and a Y −Z bimodule
category N , we can treat parallel domain walls defined by M and N , as in (13) below, as a
single domain wall between the bulk regions determined by X and Z. As described in [79,
§ 6], the X −Z bimodule category which determines the composite string-net Hilbert space
associated with the composite domain wall is the relative Deligne product M�Y N [9, 50].
This bimodule category is defined as

X

M

Y

N

Z ∼= XM�Y NZ
∼= (M⊠N )SY . (13)

The algebra SY ∈ Ymp ⊠Y is given by

SY ∼=
⊕

y∈Irr(Y)
y ⊠ y ,

with the multiplication
⊕

x ,y,z

∑

γ∈Bz
x ,y

γ† ⊠ γ : SY ⊗ SY → SY ,

where x , y run over Irr(Y), and Bz
x ,y is an orthonormal basis of Y(x y → z), i.e. a set of fusion

channels x y → z. One can check that this multiplication is basis independent. In fact, �• is
the definition of 1-composition for 1-morphisms in UFC. Note also that XM�YNZ is defined
to be the category of SY -modules in M⊠N , which is itself a module category for the tensor
category Y ⊠Y where SY lives. This notion is discussed in Remark B.1.

In the diagram in equation (13), as in many diagrams throughout the remainder of this
paper, the labels X ,Y ,Z of spatial regions denote (A-enriched) UFCs which determine a com-
muting projector model, rather than the corresponding UMTCs of local excitations. Such dia-
grams naturally live in the graphical calculus of UFC. However, they can also be interpreted
physically as representing 2-dimensional spatial regions labelled with the categories neces-
sary to define string-net models, using the constructions of [79] to describe the corresponding
gapped domain walls. The corresponding UMTCs can be obtained by taking the (enriched)
center. In the string-net picture, there is an equivalent definition of the relative Deligne prod-
uct as a ladder category [9]. In physical terms, M�Y N describes the space of local ground
states at the boundary, modulo the action of string operators in the Y bulk which have one
endpoint on each domain wall, as in the following sketch.

X

M

Y

N

Zc

While such a string operator can create nontrivial wall excitations, since these excitations were
obtained from a pair of antiparticles, they must fuse to the vacuum and so cannot be detected
from far away.

Warning 3.8. As with � (see Warning 2.6), the operation which we have denoted by �Y is
also conventionally denoted by ⊠Y , despite the apparently different definition. We have again
introduced the notation �Y as a disambiguation.
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Remark 3.9. One can check that, as an algebra in Ymp ⊠ Y , the image of the canonical La-
grangian algebra (9) KZ(Y) ∈ Z(Y) ⊠ Z(Y) ∼= Z(Ymp ⊠ Y) is Morita equivalent to SY , i.e.
(Ymp⊠Y)SY and (Ymp⊠Y)KZ(Y)

are equivalent as Ymp⊠Y module categories. In other words,
� and � have equivalent definitions; the difference lies in interpretation, and in the fact that
in the (3+1)D case where � is used, the additional structure of a braiding on the categories
describing bulks and a tensor product on the categories describing the boundaries produces a
tensor product on U �A V .

Notation 3.10. Just as we can compose bimodule categories for parallel domain walls to
obtain a bimodule category which dictates the data for the composite boundary in a string net
model, we can also compose Witt equivalences to obtain the bimodule (multi)tensor category
of wall excitations on the composite domain wall. In the situation of (13), the category of
excitations on the composite domain wall is EndX−Z(M�YN ). For ordinary (i.e. unenriched)
bimodule categories ZMY and YNZ , by [90, Thm. 3.1.7 and 3.1.8], we have

EndX−Z(M�
Y
N )∼= EndX−Y(M) ⊟

Z(Y)
EndY−Z(N ) , (14)

as Z(X ) − Z(Z) bimodule multifusion categories, where ⊟ is defined identically to � (see
(10)). The product ⊟

Z(Y)
reflects the fact that when the two domain walls are composed, a pair

of wall excitations associated with bringing a to M and a to N is a trivial excitation, since the
two anyons can be locally annihilated in the bulk.

Warning 3.11. Although the operations ⊟C and �C have the same mathematical definition,
and are both conventionally denoted by ⊠C , we use a different symbol to emphasize the dif-
ferent physical interpretations. Namely, the operation � describes how the data which defines
the ground state Hilbert space of a commuting projector model for (2+1)D defects between
(3+1)D Walker-Wang models behaves under stacking, while ⊟ describes the category of wall
excitations on a composite (1+1)D domain wall between (2+1)D bulks.

We now describe how the above story generalizes to the case of nontrivial anomaly. Math-
ematically, the picture in (13) can be thought of as a picture in the diagrammatic calculus of
UFCA, where X , Y , Z, M, and N are now A enriched. In this case, the figure depicts a 2D
region on the boundary of a (3+1)D Walker-Wang bulk, which we have not drawn. The X −Z
bimodule category M�YN will be A-enriched by Lemma 2.12, Remark 3.9, and the fact that,
since Z(Y)∼=A⊠ ZA(Y), we have KZ(Y)

∼= KA ⊠ KZA(Y) as well.
In the A-enriched setting, it is claimed in [93, Thm. 4.15] that (14) implies

EndA
X−Z(M�

Y
N )∼= EndA

X−Y(M) ⊟ZA(Y)
EndA

Y−Z(N ) , (15)

as ZA(X ) − ZA(Z) bimodule multifusion categories.27 This shows that ⊟ is still the correct
operation to compose categories of excitations.

This mathematical argument has the following physical interpretation. As discussed in
§ 2.4, by Lemma 2.12, in the A-enriched setting, each domain wall factors into a domain wall
between the two enriched centers, and a trivial domain wall between A and itself; the latter is
compatible with attaching the system to the boundary of a Walker-Wang model, leaving only
a topological domain wall between the enriched centers. From this perspective, composing
the domain walls corresponding to A-enriched bimodule categories M and N amounts to
composing domain walls ZA(X )− ZA(Y)− ZA(Z) in one layer, and trivial domain walls in
the A layer.

27The symmetry enriched version has also recently appeared in [120].
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In fact, we can turn this physical picture into a proof of (15). By (the correspondence
outlined in) Lemma 2.12, for an arbitrary indecomposable A-enriched X − Y bimodule M,
EndX−Y(M) is a Witt equivalence of the form (Z(X )⊠ Z(Y))L⊠KA

, where L is a Lagrangian

algebra in ZA(X ) ⊠ ZA(Y). Consequently, the point defects/wall excitations which live on
this domain wall factor according to EndX−Y(M)∼= EndA

X−Y(M)⊠A, where A is the identity
A−A bimodule.

This insight allows us to obtain (15) from (14), by exploiting the following sequence of
equivalences of Witt equivalences Z(X )→ Z(Z).

EndA(M�
Y
N )⊠A

∼= End(M�
Y
N )

∼= End(M) ⊟
Z(Y)

End(N )

∼= (EndA(M)⊠A) ⊟
ZA(Y)⊠A

(EndA(N )⊠A)

∼= (EndA(M) ⊟
ZA(Y)

EndA(N ))⊠A .

The two sides of (15) are now just the (ZA(X )⊠1)−(ZA(Z)⊠1) bimodule tensor subcategories
generated (as bimodule categories) by the tensor unit – in other words, the set of domain wall
excitations corresponding to the identity particle in the A layer. These are precisely the domain
wall excitations that are not confined by attaching the Walker-Wang bulk.

We now turn to the key issue which makes understanding the composition of parallel do-
main walls so difficult. The composition M�Y N of two indecomposable A-enriched bimod-
ule categories need not be indecomposable, and so the Witt equivalence EndA

X−Z(M�Y N )
of wall excitations on the composite wall is in general a multifusion category. In other words,
it does not describe a single topological domain wall, but rather a direct sum of multiple dis-
tinct domain wall types. Physically, this means that stacking two domain walls M and N in
general can decompose into a direct sum of distinct indecomposable superselection sectors.
Each superselection sector corresponds to a type of gapped boundary that is invariant under
the action of all local operators.

It is instructive to consider the following simple example involving the fusion of boundaries
between Z/2-toric code; complete fusion rules for such boundaries appear in [10], [94, Ta-
ble 1].

Example 3.12. Consider a vertical strip of Z/2 toric code, sandwiched between two smooth
gapped boundaries to the vacuum, where the m-particle becomes condensed. Mathemat-
ically, we realize the toric code bulk D(Z/2) := Z(Hilb[Z/2]) from the fusion category
Y = Hilb[Z/2], and the vacuum from the trivial fusion category X = Z = Hilb. The smooth
domain walls are obtained from the bimodule categories M=N = Hilb[Z/2], with the action
of Hilb[Z/2] on Hilb[Z/2] given by the tensor product.

As for the corresponding Witt equivalence between D(Z/2) and Z(Hilb) ∼= Hilb, the ac-
tion D(Z/2) → EndHilb[Z/2](Hilb[Z/2]) ∼= Hilb[Z/2] is given by the forgetful functor, which
forgets the half-braiding. That is, if Irr(M) = Irr(N ) = Z/2 = {1, g}, where g ∈ Z/2 is the
nonidentity element, then the anyons 1 and m forget to the tensor unit 1 ∈ Hilb[Z/2], i.e. the
vacuum, while e and ε forget to the nontrivial object in Hilb[Z/2], and become nontrivial
wall excitations. This gives the left (right) boundary of our Toric code strip the structure of a
Hilb−Hilb[Z/2] (Hilb[Z/2]−Hilb) bimodule tensor category.

In this case, the composite bimodule category M �Y N is just Hilb[Z/2] ∼= Hilb ⊕ Hilb
as a Hilb−Hilb bimodule – i.e. the direct sum of two copies of the trivial domain wall from
the trivial topological order to itself. The fact that there are two copies arises because, with
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appropriate boundary conditions, the toric code strip has a GSD associated with the number
of m-lines running between the two boundaries.

Example 3.12 illustrates a general property composing domain walls, described in detail
in and below Theorem 3.22: in general, we can project onto an individual summand (or
domain wall type) in the (decomposable) composite domain wall using a linear combinations
of certain short string operators connecting the two domain walls. The short strings in question
do not create wall excitations, because the associated anyons - in this case, the m particles-
are condensed at each wall. The resulting projectors are local, as they need not be separated
by more than the width of the central Y strip. To go between different summands, however,
requires a non-local operator, such as a string operator which is extended parallel to the domain
walls. In our Example 3.12 above, the relevant operator is an e-string extending across the Y
strip parallel to M and N .

In contrast, the Witt equivalence of wall excitations on a composite domain wall,
which is the composition of two Witt equivalences in UBFC, is not decomposable,
since Mod(ZA(X ) ⊠ ZA(Z)) is a connected fusion 2-category [45, Remark 2.1.22].
For example, in Example 3.12, the composition of the two Witt equivalences is
Hilb[Z/2]⊟D(Z/2)Hilb[Z/2]∼= M2(Hilb), an indecomposable unitary multifusion category (and
hence an indecomposable Hilb−Hilb bimodule tensor category). The underlying reason for
this indecomposability is that the multifusion category EndA

X−Z(M�Y N ) of wall excitations
on the composite domain wall consists both of localized excitations in the individual sum-
mands, and of point defects that connect different summands (i.e. different types of domain
walls). We will further explore the details of this in § 4.4, once we have developed the neces-
sary tools.

Remark (Mathematical) 3.13. Expanding on Mathematical Remark 2.4, we take a moment
to discuss the issue of finding a correct 3-category of (2+1)D topological orders. It is natural
that (2+1)D topological orders should form a 3-category, where objects are (2+1)D bulk topo-
logical orders, 1-morphisms are codimension 1 defects (i.e. domain walls), 2-morphisms are
codimension 2 defects (i.e. point defects), and 3-morphisms are topological local operators.
We have proposed UFCA as a 3-category of topological orders. However, (2+1)D topological
orders are frequently understood in terms of the anyons, which form a UMTC. It is there-
fore natural to wonder if the 4-category UBFC is somehow related to a 3-category of (2+1)D
topological orders.

In § 2.1 and (15), we saw that the categorical data which determine commuting projector
models for (2+1)D bulk topological orders and (1+1)D domain walls between them, i.e. data
in UFCA, are mathematically interchangeable with the tensor categories describing bulk and
wall excitations, which are their counterparts in UBFC.

A precise formulation of this statement is as follows. Consider the two ‘truncated’28 1-
categories

• UFCA
≤1, where objects are A-enriched fusion categories and morphisms are equivalence

classes of A-enriched bimodule categories

• UMTC≤1, where objects are UMTCs and morphisms are Morita equivalence classes of
Witt equivalences.29

28Given an n-category C, for 0 ≤ k < n, we can truncate to obtain a k-category C≤k, where 0-morphisms up
through (k−1)-morphisms are the same as in C, and k-morphisms in C≤k are k-morphisms in C up to equivalence.

29Here, UMTC is the 4-subcategory of UBFC whose objects are UMTCs and whose higher morphisms are all
invertible. For mathematical experts, UMTC= Ω(core(B(UBFC))), the loop space of the core of the delooping of
UBFC.
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The enriched center construction gives a functor UFCA
≤1→ UMTC≤1 which is an equivalence

onto its image, and by Example 2.3, everything in UMTC≤1 appears in the image of UFCA
≤1

for some A. Thus, these candidate 1-categories of (2+1)D topological order, where objects are
(2+1)D bulk theories and morphisms are domain walls up to invertible point defect, agree.

The only question is whether this agreement can be extended to include point defects and
topological local operators, which should respectively be 2-morphisms and 3-morphisms in a 3-
category of (2+1)D topological orders. That is, is there an also embeddingUFCA

≤2→ UMTC≤2

or UFCA→ UMTC≤3? If that were the case, one could analyze (2+1)D topological order by
only considering the categories of excitations (bulk excitations, wall excitations, and super-
selection sectors at point defects), and the machinery of enriched fusion categories which
we have introduced would be superfluous. However, the equivalence outlined in § 2.1 fails
to extend even one category level higher, because the composition of 1-morphisms in UFCA

can be decomposable, while the composition of the corresponding 1-morphisms in UBFC is
indecomposable. This can already be seen in studies of domain wall decomposition in the
non-anomalous case [9,10].

Decomposability of the composition of 1-morphisms in UFCA means that there are 2-
morphisms, i.e. A-balanced bimodule functors, which project onto individual summands. On
the other hand, 2-morphisms in UBFC are bimodule categories between Witt equivalences,
and there is no bimodule category which can project onto a corner of an indecomposable
multifusion category. Thus, a hypothetical embedding UFCA

≤2 → UBFC≤2 has nowhere to
map the bimodule functors which project onto summands.

This can be compared to the basic fact that (for n ≥ 2) the vector space Cn decomposes
as a direct sum ⊕nC, while the algebra End(Cn) = Mn(C) is simple. There are matrices in
Mn(C) projecting onto individual components of a vector in Cn, i.e. diagonal matrices with a
single nonzero entry, but Mn(C) does not act on any of these 1-dimensional subspaces. We
saw something extremely similar in Example 3.12: the space of ground states of the string-net
model for the composite domain wall was described by Hilb ⊕Hilb, with two summands to
project onto, but the multifusion category M2(Hilb) of wall excitations contains point defects
between these two summands, and hence does not decompose as a direct sum of the (trivial)
categories of wall excitations for each summand.

Thus, as candidate 3-categories of (2+1)D topological order, truncations of UMTC do not
agree with [79] as to the possible point defects between domain walls, leading us to adopt
UFC, and more generally UFCA, as 3-categories of (2+1)D topological orders.

3.3 Decomposing composite domain walls

Consider the horizontal composition of two indecomposable domain walls, as in (13), which
we reproduce here.

XM�Y NZ
∼= X

M

Y

N

Z
(13)

As we have seen in Example 3.12, such a composite domain wall can be decomposable, mean-
ing that there are multiple superselection sectors. A superselection sector is characterized
by the fact that it remains unchanged when any local operator acts on or near the compos-
ite domain wall, and that it cannot be further decomposed into components invariant under
such local operators. Each superselection sector is therefore an indecomposable domain wall
between ZA(X ) and ZA(Z) bulk topological orders.

Mathematically, these superselection sectors are the summands of the A-enriched X −Z
bimodule category M �Y N . In this section, we provide the mathematical tools needed to
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obtain them, and to describe the local operators which project into each superselection sector.
We will show how to use these tools in many explicit examples in § 5 below.

Before giving the full mathematical arguments, we present a physical outline of our results.
To understand the superselection sectors of composite domain walls, we must first identify
the (semisimple) algebra S of topological local operators which act on a composite domain
wall and preserve the space of ground states. Because these operators are local, by definition
superselection sectors must be fixed under their action. It follows that superselection sectors
must be the images of minimal central projections of S, i.e. minimal projections in Z(S).30

One class of local operator which acts non-trivially on the space of ground states can be
obtained by creating a particle-antiparticle pair c ⊠ c in the ZA(Y) bulk region, and bringing
one to each domain wall. If c (c) is condensed at the left (right) wall, as depicted in (16),
then the resulting local operator creates no topological excitations, i.e. the trivial domain wall
exctiations 1M and 1N , and hence can return the system to its ground state.

X

M

Y

N

Zc
(16)

As we will later show in the proof of Theorem 3.22, modulo operators which act trivially on
the space of ground states (such as creating a particle-antiparticle pair, moving them onto the
same boundary, and then annihilating them), linear combinations of such operators make up
all of S.

What is the vector space of linear combinations of operators of the form (16)? Sup-
pose the Lagrangian algebras corresponding to the A-enriched bimodule categories M and
N are L1 = L(A, B1,Φ) and L2 = L(B2, C ,Ψ) respectively, so that B1 and B2 are the al-
gebras in ZA(Y) which condense at each domain wall. Then the data of an operator of
the form (16) consists of three choices: an anyon type c ∈ Irr(ZA(Y)), and morphisms
α ∈ ZA(Y)(c → B1) ∼= ZA(Y)(B1 → c) and β ∈ ZA(Y)(c → B2). which live in the multi-
plicity spaces of the anyons c, c in B1, B2 respectively. These morphisms determine how c is
condensed at each wall. The space of linear combinations of such operators is thus

⊕

c∈Irr(ZA(Y))
ZA(Y)(B1→ c)⊗ ZA(Y)(c→ B2) , (17)

and composing the two tensor factors gives an isomorphism to the hom space31

ZA(Y)(B1→ B2), which describes the set of possible short string operators in (16).
Now that we have identified the space of local operators as ZA(Y)(B1→ B2), we need to

be able to multiply two such operators. To do so, we can apply them in parallel. The strings
passing through the ZA(Y) can be topologically deformed, and therefore fused:

X

M

Y

N

Z
c

d =
∑

X

M

Y

N

Z
c

d

f
.

Diagrams of the form
X

M

Y

N

Z
c

d

f
, (18)

30The Abelian algebra Z(S) is isomorphic to Cn for some n, and the minimal projections are the ei ∈ Cn which
are all zeroes except for a 1 in the i-th slot.
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are local operators which take an f -particle in the ZA(Y) bulk and condense it on the N wall,
so they should be elements of ZA(Y)( f → B2). Resolving them as such, however, is not trivial.
For one thing, if anyons c and d appear in the condensate B2, it is still possible that some fusion
products f of c and d do not appear in B2, so that the morphism (18) may be 0.

The data required to resolve such vertices comes from the multiplication m : B2B2 → B2
on B2: if x : c → B2 and y : d → B2 are the data used to condense c and d at the wall, then
the morphism in (18) is precisely m◦(x⊗ y). Applying this at both domain walls, we find that
ZA(Y)(B1→ B2) carries a multiplication ⋆ which we now define.

Definition 3.14. Suppose C is a UMTC and A, B ∈ C are condensable algebras. The convolution
multiplication ⋆ on the hom space31 C(A→ B) is given in the graphical calculus for C by

A

B

x ⋆

A

B

y :=

A

B

x y .

This product gives a way of composing the two maps x and y , both of which take objects in A
to objects in B, into a single map from A to B. If u : 1→ A and v : 1→ B are the units of each
algebra, then vu† ∈ X (A→ B) is the identity for ⋆. The involution32 is given by





A

B

x





∗

:=
A

B
x† .

Here, the univalent vertices are the units of the algebras (see Appendix B on condensable
algberas). One can view this cap and cup (with the univalent vertices) as standard duality
pairings of A and B respectively, which is similar to an (a, a, 1) vertex for an anyon a in a
UMTC. The hom space C(A→ B) with this convolution multiplication and involution is a finite
dimensional C∗ algebra. Moreover, the multiplication is commutative because

x ⋆ y =

A

B

x y =

A

B

x y = y ⋆ x .

The commutativity of (ZA(Y)(B1 → B2),⋆) also makes sense in terms of the string oper-
ators across the ZA(Y) bulk going between domain walls. Since the strings can be deformed
topologically, the middle parts of two parallel strings can slide past one another, and commu-
tativity of B1 and B2 means that the endpoints on the domain walls can also change places.

Thus, to find the superselection sectors of the composite domain wall M�Y N , we need
only diagonalize the finite dimensional commutative C∗ algebra ZA(B1→ B2).33 We carry this
computation out in each of our examples in § 5.

31Suppose the simple objects of a UFC X are Irr(X ) = {x1, . . . , xn}. Given objects a, b ∈ X , we can write
a =

⊕n
i=1 ni x i and b =

⊕

mi x i . The hom space X (a→ b) =
⊕n

i=1 Mmi×ni
(C). Matrix units Ekℓ for Mmi×ni

(C) are
given by the rank one operators |x i,k〉〈x i,ℓ|, where x i,ℓ denotes the ℓ-th copy of x i in a and x i,k denotes the k-th
copy of x i in b.

32One can define this ∗ in the case A, B ∈ X are Frobenius, i.e., the multiplication m†
A is an A−A bimodule map,

and similarly for B.
33Since C∗-algebras a semisimple, ZA(B1 → B2) is a finite dimensional Abelian semisimple algebra, i.e. it is

isomorphic to ⊕nCn for some n. The minimal projections are the ei as in Footnote 30.
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The remainder of this section is devoted to a rigorous justification of the results we have
just outlined. The main detail we did not explain above is why ZA(B1 → B2) is the correct
algebra of topological local operators.

3.3.1 Dualizability

The calculations in the remainder of this section utilize the graphical calculus for 3-categories
from [19], which applies to weak 3-categories by [62]; in particular, we work in the 3-category
UFCA, which satisfies important finiteness, semisimplicity, and dualizability conditions as it is
a full 3-subcategory of a hom 3-category in UBFC.34

There are 2D and 3D diagrams drawn in this section. 3D diagrams represent the top level
of 3-morphisms in UFCA, i.e., topological local operators (see Figure 3). These include 1D
world-lines of anyons in the bulk regions or point defects on domain walls, 2D surfaces cor-
responding to world-sheets of domain walls, 3D world-volumes of bulk topological order, and
0D point-like operators. The horizontal 2D slices are spatial, and the third vertical dimension
represents time. Reading our diagram from bottom to top represents the time-ordering of
applying topological local operators.

More specifically, a bulk 3D space-time region is labelled by an A-enriched fusion category
X ,Y ,Z which determines a (2+1)D topological order with anomaly A. A codimension 1
surface separating a pair of 3D space-time regions is labelled by A-enriched bimodule category
M,N , which specifies a (1+1)-dimensional topological domain wall. A codimension 2 line is
labelled by a A-centered bimodule functor, which specifies a point defect. When such a line
lives in a 3D bulk region, it depicts an anyon world-line. When it is localized to a domain wall
world-sheet, however, it corresponds to the world-line of a point-like excitation on the domain
wall, or of a point defect separating two different domain walls. 0D point defects in our 3D
space-time diagrams are labelled by natural transformations, which correspond to completely
local, topologically trivial, operators.

The 2D diagrams can be thought of as spatial slices of the 3D diagrams at a fixed time. As in
previous sections of this paper, each bulk 2-dimensional region can therefore be thought of as a
topologically ordered ground state, described by a A-enriched fusion category X . 2D diagrams
can also contain domain walls M,N , ... separating different A-enriched fusion categories, as
well as point defects – i.e. with A-centered bimodule functors, which are 2-morphisms in
UFCA one level down. Finally, 2D diagrams which involve arrows connecting point defects,
which we have previously used (e.g. (16)) to represent short string operators, should be inter-
preted as 3-morphisms (or types of 3-morphisms), where the string with the arrow shows the
passage of time. In other words, the 2D diagram simultaneously depicts the source and target
of a 3-morphism.

In the formulae below, we will associate a 2D diagram with each possible type of point or
line defect. Thus, a 2D region labelled by a single A-enriched fusion category X , containing
no visible line or point defects, depicts the trivial/identity point defect. This corresponds to
the identity endofunctor of X (viewed as an A-enriched X −X bimodule category), namely
1 ∈ Irr(ZA(X )), as explained in Example 2.9. Similarly, a 2D diagram with only a single 0D
point defect in the bulk represents an A-centered endofunctor of XXX , which corresponds to
an object of ZA(X ), i.e. an anyon or direct sum of anyons. A 2D diagram with a single 1D
defect between 2D regions labelled by an A-enriched X − Y bimodule XMY with no point
defect denotes the identity endofunctor of M in EndA

X−Y(M), i.e. the trivial wall excitation.
Throughout this section, we will consistently use pink to denote X -labeled regions, and light

34Here, we assume the 3-category UFCA has sufficient additional structure to permit the use of the 3D graphical
calculus, as in [19, 45]. Physically, the use of this graphical calculus can be justified via the notion of topological
Wick rotation [92,93].
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blue to denote Y-labeled regions, unless otherwise stated

X = 1ZA(X ) ,
M

X Y
= idM .

Dualizability in UFCA means we can topologically deform world-sheets of domain walls
in space-time. We use dualizability in this section in several important ways.

Example 3.15. Dualizability allows us to close a line corresponding to an (irreducible) A-
enriched bimodule XMY into a closed loop. Zooming out, we may view this loop as a point
defect, labeled by direct sum of those anyons in ZA(X ) that can dissappear at the domain wall
M with no energy cost. Dualizability also means we can form a ‘pair of pants’ multiplication
for this object, under which it becomes a condensable algebra in ZA(X ) (up to scaling).

M

X

Y (19)

Sub-Example 3.16. When A = Hilbfd is the trivial enrichment, it is well known [66, 69, 85,
106] that, if a module category XM labels a topological boundary to vacuum, and L ∈ Z(X )
is the Lagrangian algebra associated to XM, i.e. EndX (M)∼= Z(X )L , then we have

M
X
= L .

Physically, this means that the point defect can contain any anyon in L, since these are con-
densed in the white region and therefore cost no energy.

Sub-Example 3.17. More generally, we can consider the case when M is a condensa-
tion boundary. If the blue region is obtained from the pink one via condensing A, i.e.
ZA(Y) = ZA(X )loc

A , then the circle bounded by M is a droplet of condensate. As a defect
in the ZA(X ) bulk, it is equivalent to A, the the direct sum (with multiplicity) of all the anyons
which have condensed.

On the other hand, if the pink region is obtained from the blue one via condensing B, i.e.
ZA(X ) = ZA(Y)loc

B , then the circle bounded by M is a small region where B is not condensed.
Because this region is surrounded by condensate, and does not contain an excitation, it is
equivalent to the vacuum of the ZA(Y)loc

B -bulk; the circle is the same as a pink sheet with
nothing in it.

These assertions are justified in Lemma 3.19 and Proposition 3.20 below.

Example 3.18. Just as we have the isomorphism EndZ(z) ∼= HomZ(1Z → zz) in a fusion
category Z, given an A-enriched bimodule XMY , we have an isomorphism

EndA
�

M

X Y

�

∼= HomZA(X )

�

1ZA(X ) → M
X

Y

�

,
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where the maps both ways are given by

fX

M

Y 7→ f
X

M
Y

g

X
M

Y
← [

g

X
M

Y
.

3.3.2 Decomposing a domain wall

Suppose X ,Y ∈ UFCA are A-enriched fusion categories, and M is an A-enriched X − Y
bimodule category, which may be decomposable. We now see how the condensable algebra
of an M-loop can be used to decompose M into irreducible A-enriched X − Y bimodule
summands.

First, we note that the hom 2-category UFCA(X → Y) of A-enriched X − Y bimodule
categories is finitely semisimple in the sense of [45, Definition 1.4.2], as it is a hom 2-category
in UBFC. By [45, Prop. 1.3.16], indecomposable A-enriched X −Y bimodule summands of

XMY correspond to minimal projections in EndA
X−Y(idM). Now, using Example 3.18, these

minimal projections correspond to copies of the unit 1ZA(X ) in the condensable algebra cor-
responding to the M-loop from Example 3.15. This algebra is the image of 1ZA(Y) under the

lax monoidal functor ZA(Y)→ ZA(X ) given by

ZA(Y)→ EndA
X−Y(M)

I
−→ ZA(X ) ,

where I is the adjoint of the tensor functor ZA(X )→ EndA
X−Y(M).

In the case of trivial anomaly, we identify the condensable algebra in question in the fol-
lowing lemma. We will then generalize to the case of arbitrary A in Proposition 3.20.

Lemma 3.19. When A= Hilb is the trivial enrichment,

M
X

Y = L ∩ Z(X )⊠ 1 , (20)

where L ∈ Z(X )⊠ Z(Y) is the Lagrangian algebra corresponding to the X ⊠ Ymp-module cate-
gory M.

Proof. By the folding trick, we can view M as a X ⊠Ymp-Hilb module category, corresponding
to a Lagrangian algebra L ∈ Z(X )⊠ Z(Y) by [41, Def. 3.3]. As in Sub-Example 3.16,

M =
X

Ymp

= L , (21)

where the purple color denotes the stacking of the blue and pink sheets. We then obtain the
left-hand side of Equation (20) by closing up the Ymp sheet to a hemisphere

⇝ M
X

Y .
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Since the only excitation supported in a contractible region of Z(Ymp)-bulk is the vacuum, this
reduces L to the right-hand side of Equation (20).

Proposition 3.20. For an arbitrary A-enrichment,

M
X

Y = A∈ ZA(X ) ,

where L(A, B,Φ) ∈ ZA(X ) ⊠ ZA(Y) is the Lagrangian algebra corresponding to the Witt-
equivalence EndA

X−Y(M) from Construction 2.8.

Proof. By Lemma 3.19, ignoring theA-enrichment, i.e. forgetting theA-centered structure and
considering M as an X −Y bimodule category, we know that a closed M-loop with external
X ⊠Ymp shading corresponds to a Lagrangian algebra L. But since X ,Y are A-enriched and

XMY is an A-enriched bimodule, by Lemma 2.12, L contains the canonical Lagrangian KA as
a subalgebra where

Z(X ⊠Ymp)∼= Z(X )⊠ Z(Y)∼= ZA(X )⊠ ZA(Y)⊠A⊠A .

Now instead of ignoring the A-enrichment at the beginning, we can perform the A-
enriched folding trick (see Remark 3.4) for A-enriched fusion categories, which also requires
we perform a relative tensor product over A, leading to an anomaly cancellation. This relative
tensor product over A is accomplished by condensing KA. So the enriched Lagrangian algebra
we obtain from the A-enriched folding trick is isomorphic to the image of L after condensing
KA in

ZA(X )⊠ ZA(Y)∼= Z(X ⊠Y)loc
KA

.

This yields exactly L(A, B,Φ), by Construction 2.11. The result now follows by gluing in a
hemisphere (with attached A-bulk) corresponding to Y , as in Lemma 3.19.

Combining Example 3.18, [45, Prop. 1.3.16], and Proposition 3.20 above, we get the fol-
lowing result.

Corollary 3.21. Indecomposable X − Y summands of an A-enriched X − Y bimod-
ule M correspond to copies of 1ZA(X ) in the condensable algebra A ∈ ZA(X ), where

L(A, B,Φ) ∈ ZA(X ) ⊠ ZA(Y) is the Lagrangian algebra corresponding to the Witt-equivalence
EndA

X−Y(M).

3.3.3 Decomposing a composite domain wall

Now, we are finally ready to mathematically justify our identification of the algebra of lo-
cal operators which preserve the ground state of the composite domain wall M �Y N
with ZA(Y)(B1 → B2). As just explained in § 3.3.2, this algebra is EndA

X−Z(idM�YN ),
by definition. By applying the results of the previous subsection, we will verify that
EndA

X−Z(idM�YN )∼= (ZA(Y)(B1→ B2),⋆), as promised.

Theorem 3.22. Suppose XMY and YNZ are two A-enriched bimodules between the A-enriched
fusion categories X ,Y ,Z. Let

L1 = L(A, B1,Φ) ∈ ZA(X )⊠ ZA(Y) ,

L2 = L(B2, C ,Ψ) ∈ ZA(Y)⊠ ZA(Z) ,
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be the Lagrangian algebras corresponding to the Witt-equivalences EndA
X−Y(M) and EndA

Y−Z(N )
respectively from Construction 2.8. Indecomposable A-enriched X − Z bimodule summands of
XM�Y NZ correspond to minimal projections33 in the Abelian algebra (ZA(Y)(B1 → B2),⋆),
as defined in Definition 3.14.

For the graphical proof, we use the same region shadings from (13).

Proof. Since the A-enriched X −Z bimodules form a finitely semisimple 2-category, indecom-
posable summands of XM �Y NZ correspond to minimal projections in EndA

X−Z(idM�YN )
[45, Prop. 1.3.16].

In more physical terms, the A-enriched bimodule (a 1-morphism in UFCA) XM�YNZ de-
scribes the system depicted in (13), the endofunctor id

XM�YNZ
(a 2-morphism) corresponds

to the vacuum states of this system, i.e. when there are no pointlike localized excitations, and
3-morphisms in id

XM�YNZ
are topological local operators that preserve the ground states.

Thus, minimal projections in EndA
X−Z(idM�YN ) are topological local operators which project

onto a single summand of the composite domain wall.
Therefore, we need only check that EndA

X−Z(idM�YN ) ∼= (ZA(Y)(B1 → B2),⋆). By dual-
izability, we have

EndA
X−Z

�

X
M

Y
N

Z

�

∼= HomZA(Y)

�

M
Y

X → N
Y

Z

�

.

By Proposition 3.20, we have

M
Y

X = L1 ∩ 1⊠ ZA(Y) = B1 ,

N
Y

Z = L2 ∩ ZA(Y )⊠ 1= B2 ,

so EndA
X−Z(idM�YN )∼= (ZA(Y)(B1→ B2),⋆) as ∗-algebras, and the result follows.

We will decompose M�Y N using Theorem 3.22 for many explicit examples in § 5 below.

Remark 3.23. One reason that we investigated the algebra of local operators abstractly, rather
than as operators on the Hilbert space of ground states, is that the space of ground states
depends on our choice of manifold. We point out one particular case. Observe that, if we
place the parallel domain walls in the statement of Theorem 3.22 on a sphere, as in

X ZY

,

then the space of ground states is exactly ZA(Y)(B1→ B2). Thus, we see that in the right cir-
cumstances, there is a factor of topological ground state degeneracy local to the strip between
the two walls which is isomorphic to ZA(Y)(B1→ B2) as a representation of ZA(Y)(B1→ B2).
We expand on this idea in § 4 and § 5, where we will see that, when the strip of ZA(Y) bulk is
closed up to a tube, noncontractible (and thus nonlocal) Wilson loop operators in the ZA(Y)
strip which fail to commute with ZA(Y)(B1→ B2) act transitively on the superselection sectors
of the composite domain wall.
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So far, we have identified the algebra of local operators which can be analyzed to deter-
mine superselection sectors of the composite domain wall. However, we have not yet explained
how to characterize the indecomposable domain wall in each sector, or computed any concrete
examples; that will be the work of the following sections. In the next section, we will flesh
out our particle mobility perspective on domain walls, and outline how it can be used in con-
junction with Theorem 3.22 to characterize the summands of the composite wall. Concrete
examples where the minimal projections in ZA(Y)(A→ B) are computed, along with the Witt
equivalences of wall excitations in each summand, will appear in § 5.

4 Anyon mobility and tunneling operators

An important property of domain walls between regions with (2+1)D topological order is
anyon mobility: which anyons from each bulk are confined to one side of the wall, which
can pass through the wall, and the different possibilities for what an anyon can become when
crossing the wall. In this section, we will explain how to turn the data of a Witt equivalence
of wall excitations into a set of tunneling channels, which move an anyon from one side of a
domain wall to another. In a (2+1)D bulk region, we have local operators which bring a pair of
anyons together to produce a single anyon, which one might well call fusion operators; these
all arise as linear combinations of a finite set of operators satisfying an orthogonality condition,
which select distinct “fusion channels.” We will see below that, in an analogous way, possi-
ble tunneling operators are also generated as linear combinations of operators which select
“tunneling channels.” Indeed we can think of tunneling channels as a special kind of fusion
channel, in which two anyons from opposite sides of a domain wall fuse to the vacuum on the
wall. We will then apply the results of the previous section to describe sets of tunneling op-
erators through the composition of two domain walls in terms of tunneling operators through
the individual domain walls, so that Theorem 3.22 can be used to identify the domain wall
present in each superselection sector.

We define tunneling channels as follows.

Definition 4.1. Let XMY be an A-enriched bimodule category, and let c ∈ Irr(ZA(X )) and
d ∈ Irr(ZA(Y)) be anyons. A set of tunneling channels Tc→d = {Ti} from c to d through the
domain wall corresponding to XMY is a maximal set of orthogonal partial isometries. In other
words, a tunneling channel is an operator local to the domain wall and adjacent bulk regions
which acts as a partial isometry between the space of states containing a c anyon at a given
location in the ZA(X )-bulk, and the space of states containing a d anyon at a given location in
the ZA(Y)-bulk, and distinct tunneling channels Ti and T j satisfy the condition that whenever
j ̸= i, T †

j Ti = 0.

We now unpack Definition 4.1. We begin by defining the space of tunneling operators as
the space of morphisms

HomUFCA



 M
c −→ M

d



 .

Here c and d denote anyon types that are fixed, and we are interested in the space of oper-
ators that bring c across the domain wall to give d. In fact, this is equivalent to the space of
operators which take a c particle from the left bulk, and a d particle from the right bulk, an-
nihilating them on the domain wall. However, because c and d can each correspond to direct
sums of different domain wall excitations, there can be multiple distinct ways in which this
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annihilation can occur; in this case there are multiple distinct tunneling channels associated
with this annihilation.35

A set {Ti} of tunneling channels c → d is a basis for this space of tunneling operators
satisfying additional conditions, just as fusion channels are special elements of the space of
operators which fuse two anyons. By semisimplicity, any tunneling operator factors as a linear
combination of operators which first bring c to the domain wall as a simple wall excitation m,
and then bring m off the wall as a d particle, as shown below.

M

c 7→
M

m 7→
M

d

Thus, the space of tunneling operators c→ d is of the form
⊕

m∈Irr(W)
W(c Â 1W → m)⊗W(m→ 1W Ã d)∼=

⊕

m∈Irr(W)
Mnd

m×nc
m
(C) .

Here we adopt the notation W := EndA
X−Y(M) for brevity, c Â 1W and 1W Ã d denote the

direct sums of wall excitations obtained by bringing the anyon c or d to the domain wall, and
nc

m and nd
m are the multiplicities of m as a summand of c Â 1W and 1W Ã d. The maximal set

of partial isometries in
⊕

m∈Irr(W)Mnd
m×nc

m
(C) is, up to a unitary change of basis, {em

i, j}, where
all entries of em

i, j are 0 except the i − j entry of the m summand. Thus, by specifying that
tunneling channels must be partial isometries, Definition 4.1 yields tunneling channels which
factor through a single m ∈ Irr(W), rather than a direct sum of multiple wall excitation types
m. Evidently, a set of tunneling channels c→ d is mapped to a set of tunneling channels d → c
by †.

Remark 4.2. By dualizability, the space of tunneling operators above is isomorphic to

HomUFCA





c
M −→

d



 .

This second process is directly analogous to the process which ‘injects a droplet’ and then
selects the d anyon [79, §5].

Tunneling channels to the vacuum have a special interpretation: a particle which has a
tunneling channel to the vacuum can condense on the domain wall. Moreover, in the setting
of Theorem 3.22, the set of projections in (ZA(Y)(B1→ B2),⋆) onto superselection sectors of
the composition of two domain walls is exactly the set of tunneling channels from the vacuum
to the vacuum across the composite domain wall!

As we will illustrate below, the set of possible tunneling channels is uniquely fixed (up
to a unitary change of basis for each type of simple wall excitation) by the choice of bulk
topological orders and the topological domain wall, and does not depend on non-universal
details of the boundary conditions. In other words, different choices of A-enriched fusion
categories, enriched bimodules, and anomaly A which produce equivalent UMTCs of bulk
exictations and Witt equivalences of wall excitations will also give rise to equivalent sets of
tunneling channels. To see this, observe that because a set of tunneling channels through M
is a set of morphisms in the Witt equivalence EndA

ZA(X )−ZA(Y)(M), defined in terms of the

35It is also possible that c or d could decompose into wall excitations with non-trivial multiplicities, introducing
another source for multiple tunneling channels.
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actions of ZA(X ) and ZA(Y), the possible sets of tunneling channels depend only on the Witt
equivalence EndA

ZA(X )−ZA(Y)(M).
Next, we turn to the question of how to compose tunneling operators across parallel do-

main walls. If XMY and YNZ are two A-enriched bimodule categories, with c ∈ Irr(ZA(X )),
d ∈ Irr(ZA(Y)), and e ∈ Irr(ZA(Z)), tunneling operators T from c to d and S from d to e can
be concatenated to obtain tunneling operators c→ e:

M

N
c

T⊠1
−−→

M

Nd

1⊠S
−−→

M

N
e . (22)

Notice that this operation involves all levels of our 3-category of topological order UFCA. We
will discuss this composition of tunneling operators further in § 4.3.

In § 4.2 we identify elementary tunneling channels, i.e. the tunneling channels through
elementary domain walls. We will see in § 4.3 that sets of tunneling channels through multiple
parallel domain walls can be obtained by composing sets of tunneling channels through the
individual domain walls. That is, all tunneling operators through a composite domain wall
can be obtained as compositions, as in (22), and there is no redundancy among tunneling
operators obtained in this way which is not implied by linearity. In particular, this will allow
us to characterize tunneling channels through any indecomposable domain wall, using the
decomposition into elementary domain walls shown in Figure 8. Finally, in § 4.4, we will
describe the interaction between sets of tunneling channels through the composition of two
domain walls and the decomposition of two parallel walls into indecomposable summands
obtained in Theorem 3.22. This will allow us to understand each summand of a composite
domain wall in terms of the fates of anyons near the domain wall. The examples in § 5 will
also contain computations of sets of tunneling channels.

4.1 A first example of tunneling channels

We begin by discussing a simple example, in which we compare sets of tunneling channels
in two models for the same topological domain wall between Abelian topologically ordered
phases. Our example illustrates the following important phenomenon: two gapped boundaries
between a pair of phases with the same topological order, but different microscopic realiza-
tions, give different, but equivalent, sets of tunneling channels.

Example 4.3. For a minimal example, we choose a bulk topological order with anyons de-
scribed by C ∼= D(Z/4), the Z/4-toric code. This is realized by a lattice model for the fusion
category X ∼= Hilbfd[Z/4], with C4 spins on each edge of an oriented square lattice, where
links in the lattice are oriented upwards and to the right, while those in the dual lattice are
oriented downwards and to the right.

The usual lattice model for Z/n-toric code [77] (see also [5, 103]) on a 2D square lattice
with n-state spin degrees of freedom on each edge is described by the Hamiltonian:

H = −
∑

v

Av −
∑

p

Bp , (23)

where

Av =
n
∑

k=1

Zk
n (Zk

n )
†

Zk
n

(Zk
n )

†

v , Bp =
n
∑

j=1

X j
n

X j
n

(X j
n)†

(X j
n)†

p . (24)
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X X X

X †

e

e

Z†

Z†
Z

m

m

Figure 9: String operators for the particles e (red) and m (blue).

Here Xn and Zn are n × n clock matrices which satisfy the relations XnZn = ωnZnXn, where
ωn := e2πi/n is a primitive n-th root of unity. For the case n= 4, these have the form:

X4 =







0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0






, Z4 =







i 0 0 0
0 −1 0 0
0 0 −i 0
0 0 0 1






.

For general n, these models have two types of excitations. The first, which we denote
ek, k = 1, ..., n− 1, are pair-created from the ground state by the string operator Sk

e (π). Here
π is an oriented path on the lattice running from an initial vertex vi to a final vertex v f .
Sk

e (π) applies X k (X−k = (X k)†) along upward and rightward- (downward and leftward)-
oriented edges, creating ek (e−k) at v f (vi). The resulting state |φ(k, vi , v f )〉 hosts an ek

particle (anti-particle) at the vertex v f (vi), with Av f
|φ〉 = ωk

n|φ〉, Avi
|φ〉 = ωn−k

n |φ〉, with
Av|φ〉= Bp|φ〉= φ〉 for all p, and v ̸= vi , v f .

The second type of excitation, which we denote m j , are pair-created from the ground
state by the string operator Sk

m(eπ), where eπ is an oriented path in the dual lattice, running
from an initial plaquette pi to a final plaquette p f . The operator Sk

m(eπ) applies Z j (Z− j)
along downward and rightward- (upward and leftward)-oriented edges, creating mk (m−k)
at p f (pi). The resulting state |φ( j, pi , p f )〉 obeys Bp f |φ〉 = ω

j
n|φ〉, Bpi |φ〉 = ω

n− j
n |φ〉, and

Av|φ〉= Bp|φ〉= φ〉 for all v, and p ̸= pi , p f . Sample string operators are shown in Figure 9.
We now consider a lattice with a boundary between Z/4 and Z/2 toric code.

Above, all edges carry C4 spins, and we change the Hamiltonian to condense m2 on the right
hand side, i.e. creating the condensation boundary corresponding to A = 1⊕m2. There are
multiple different ways to do this. For example, we may redefine the Bp term in the condensed
(green) region as

B′q =
1
2



1+
X 2

X 2

X 2

X 2 q



 , (25)

on any plaquette q containing at least one green edge, and choose the Hamiltonian to be

H = −
∑

v

Av −
∑

p

Bp −
∑

q

B′q − K
∑

ℓ

Cℓ ,
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with
Cℓ =

1
2

�

1+ Z2
ℓ

�

on any green edge. Notice that [Cℓ, Bp] = 0, so this Hamiltonian is frustration-free; for K > 0
its ground state is a simultaneous eigenstate of all Av , Bp and Cℓ operators with eigenvalue 1.
Since Z2

ℓ
is the operator which creates a pair of m2 particles on the two plaquettes adjacent to ℓ,

in this ground state, m2 is condensed on any plaquettes with at least one green edge. Moreover,
Cℓ has the effect of confining e and e3 particles: since [Z2, X ] ̸= 0, the corresponding string
operators incur a finite energy cost per unit length. (All other quasiparticle string operators
commute with Cℓ.) Here we consider the limit K ≫ 1, where the confinement scale is very
short, and such Cℓ- violating terms do not enter into the low energy physics.

In this case, we can tunnel an m particle into the green region using the usual string op-
erator Sk

m(π̃). On the green links, (1 + Z2
ℓ
) acts as the identity on states in the low-energy

Hilbert space, and this string operator becomes equivalent to the string operator creating
mA ∼= m ⊕ m3. More generally, since Z − Z3 = Z(1 − Z2) and (1 − Z2)Cℓ = 0, any opera-
tor T = α(Z − Z3)+β(Z + Z3) in the linear span of {Z , Z3} acts in this way on the low-energy
Hilbert space. Thus T = Z+Z3 is the unique choice of string operator on the green links, up to
a scalar. In other words, the set of tunneling channels m→ mA contains only one element, T .

Z Z T T
m 7→

mA

To tunnel from the condensed (green) region to the left hand side, we must bring the par-
ticle mA ∼= m ⊕ m3 across a vertex from a green link to a black one using an operator that
commutes with all terms in the Hamiltonian. Since applying Z2 to any green edge commutes
with the Hamiltonian, there are two choices for the resulting anyon, corresponding to tunnel-
ing operators from mA∼= m⊕m3 → m and from mA→ m3, which differ by an application of
Z2 on all links the particles crosses after exiting the green region. The resulting operators are:

m

m3

← [
Z

Z3

Z

Z3

T

T

T

T
mA

mA

.

Since the space of tunneling operators in each case is 1-dimensional, each of these choices is
unique up to a scalar. In other words, there are two 1-element sets of tunneling channels: one
from mA→ m, and one from mA→ m3.

One may also describe an antiferromagnetic condensed region, by instead choosing36

C ′ℓ =
1
2

�

1− Z2
ℓ

�

.

The two choices of Cℓ above are orthogonal projections, with Cℓ+ C ′
ℓ
= 1. The eigenspaces of

each Cℓ can exchanged by applying X or X 3 at ℓ. Since (1 + Z2)Cℓ = 0, the string operator
acting on green edges is now T = Z−Z3. Again, we obtain two single-element sets of tunneling
channels, one from m→ mA, and one from mA→ m, and mA→ m3, each unique up to phase.

The analysis of tunneling operators and channels for other anyons is completely analo-
gous. For each anyon c ∈ Irr(D(Z/4)), there are a unique (up to phase) tunneling channels
c → cA→ c, and c → cA→ cm2. Tunneling operators cA→ c and cA→ cm2 again differ by
applying the operator Z2 on a string of black edges in the dual lattice.

36A more general discussion of antiferromagnetic couplings, including the relationship to Z(Ising) topological
order, appears in [118].
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In string-net models for (2+1)D topological orders [79,99,103,104], string operators cre-
ate pairs of excitations, while hopping operators [65] move anyons adiabatically around the
system; in Abelian models, these operators coincide. The present discussion illustrates the
general fact that in string net models, tunneling operators are closely related to the hopping
operators which move an existing excitation from one place to another. Indeed, tunneling
channels can be viewed as hopping operators which end on different sides of a domain wall;
similarly the set of tunneling channels c → c through the trivial domain wall contains a sin-
gle element, the hopping operator for c. In the example at hand, the operator T applied at
the boundary of the green and black regions is also simply the hopping operator for an mA
excitation in the green bulk region; this coincidence is an artifact of working with Abelian
anyons.

4.2 Elementary tunneling channels

In this section, we will work out sets of elementary tunneling channels, i.e. sets of tunneling
channels through elementary domain walls. Tunneling operators through an invertible do-
main wall are simple to understand, because locally, an invertible domain wall does nothing
more than relabel anyons. By Remark 4.2, we see that tunneling operators c → d through
an invertible domain wall M which applies the braided tensor autoequivalence Φ : C → D
live in a space isomorphic to the hom space (see Footnote 31) D(Φ(c)→ d), which is either
0 or 1-dimensional, depending on whether Φ(c) and d are the same anyon type. In other
words, surrounding an anyon by M to create a ‘droplet’ amounts to applying the functor Φ,
and droplets can be freely attached to and detached from the domain wall. Thus,

M
c

∼= M
c
∼= M

Φ(c)
,

and there is a unique choice of tunneling channel c→ Φ(c) up to a phase.
Next, we will consider the elementary tunneling channels through a domain wall corre-

sponding to a condensation. We begin with domain walls obtained by condensation, as in
Example 3.2. Suppose we start with C topological order and condense the algebra A ∈ C, so
that wall excitations are described by the Witt equivalence CA from C to Cloc

A . On the domain
wall, particles can fuse freely with the A condensate by local operators. If M◦A ∈ Irr(Cloc

A ) is an
anyon in the condensed phase,37 then the elementary tunneling channels can be chosen from
the set of morphisms which take c through the wall to become M◦A:

¦

v ∈ CA(cAA→ M◦A)
�

�

�vv† = idM◦A

©

. (26)

Here, CA(cAA → M◦A) is a hom-space31 in the fusion category CA. This set spans the space of
tunneling operators, but is overcomplete as a basis, because not all the elements are orthogo-
nal. Thus, a set of tunneling channels is just a maximal subset {vi} of the set (26) satisfying
v†

j vi = 0 for j ̸= i.

Similarly, bringing a particle M◦A ∈ Irr(Cloc
A ) out of the condensate corresponds to applying

the functor Cloc
A → C : M◦A 7→ M which forgets the A action. The resulting bulk excitation in the

uncondensed region can in general be viewed as a direct sum of different anyon types in C;
because this direct sum is not a simple object, we denote it with a capital letter. An elementary

37Here, the anyon M is given the subscript A to remind the reader that M has a right A-action. Similarly, the unit
of C loc

A is denoted by A◦A. Even though MA is an anyon, we denote it by an uppercase letter, to remind ourselves that
the underlying collection of anyons M can contain more than one summand.
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tunneling channel which brings M◦A across the domain wall to become a particular anyon c in
this direct sum corresponds to a choice

�

w ∈ C(M → c)
�

�ww† = idc

	

. (27)

Again, a set of tunneling channels is just a maximal orthogonal set of members of (27).
In order to see how the choices of operators v and w in equations (26) and (27) are related

explicitly, recall that the free module functor is adjoint to the forgetful functor CA→ C, which
forgets about A-module structures, taking an A-module MA to the object M ∈ C. (Here, we
drop the ◦, since the fact that M◦A is a local A-module is not needed.) This means that we have
isomorphisms of vector spaces

CA(cAA→ MA)∼= C(c→ M)∼= C(M → c) , (28)

where the first isomorphism is from [83, Fig. 4] and the second isomorphism is the antilinear
† operation.

Because c ∈ Irr(C) and M◦A ∈ Irr(Cloc
A ) are simple objects, the isomorphisms (28) allows us

identify the possible choices of v in (26) with those of w in (27), up to some strictly positive
scalar depending on c, A∈ C and M◦A ∈ Cloc

A . In other words, sets of tunneling channels from c to
M◦A or from M◦A to c correspond to orthonormal bases of C(c→ M) and C(M → c) respectively.
Notice that these general statements about tunneling channels through an elementary domain
wall with condensation match with our observations in Example 4.3.

Remark 4.4. We have seen that if c and d are equivalent after fusing with the condensate A,
then a c particle can enter the condensed region, and return as a d particle. A natural related
question is whether, in the case where c splits to

∑

i(Mi)A in the condensed region, particles
from the condensed region can enter the uncondensed region and return as a different anyon
type. In particular, if A∈ C is a condensable algebra in a UMTC, and c ∈ Irr(C) is an anyon in
the uncondensed region, and MA and M ′A are distinct anyon types which appear as summands
of cAA, one might suspect that an MA-particle can be brought across the domain wall as c, and
then back into the condensate as M ′A.

It turns out that this is not the case; in the absence of other excitations, MA can only tunnel
through the uncondensed region and back to become MA. This is because a nonzero operator
which took MA to M ′A could be deformed smoothly into a local operator on the boundary,
where wall excitations are given by CA. But there is no non-zero operator local near the wall
that can turn MA into M ′A, since they are distinct simple objects in the Witt equivalence of wall
excitations.

However, it is sometimes possible for MA to enter the uncondensed region as c, braid
around an anyon c′ which is confined by the wall, and return as M ′A. We will explore this in
detail at the end of § 4.4 below.

4.3 Composition of tunneling operators

Having described elementary tunneling operators, we now discuss how one composes tun-
neling operators through a composite domain wall. As an application, we can characterize
tunneling channels through an indecomposable domain wall using its horizontal decompo-
sition from Figure 8. The main result of this section is Proposition 4.5, which says that a
set of tunneling channels through the composition of two domain walls can be obtained by
composing the members of sets of tunneling channels through each wall.

Proposition 4.5. Suppose XMY and YNZ are A-enriched bimodules. For each c ∈ Irr(ZA(X )),
d ∈ Irr(ZA(Y)), and e ∈ Irr(ZA(Z)), let Tc→d be a set of tunneling channels c → d, and Td→e
be a set of tunneling channels d → e. Then the set

∪d {(idM⊠u) ◦ (v ⊠ idN )|u ∈ Td→e, v ∈ Tc→d} (29)
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of horizontal composites of tunneling channels from Tc→d and Td→e is a set of tunneling channels
c→ e across XM�Y NZ .

Proof. By 3-dualizability, i.e. by two applications of Remark 4.2, we have an isomorphism from
the hom-space

HomUFCA





M

N
c −→

M

N
e



 ,

to the hom-space

Hom





c
M −→ e

N



 . (30)

As this latter hom-space (30) is contained in the UMTC ZA(Y) which is semisimple, any mor-
phism in this hom-space factors through a simple object/anyon in ZA(Y). This fact has the
following two important consequences:

(1) composites of nonzero morphisms in the hom-spaces

Hom





c
M −→

d



 , (31)

and

Hom





d
−→ e

N



 (32)

are non-zero, and

(2) the dimension of the hom-space (30) is the product of the dimensions of the two hom-
spaces (31) and (32).

By (1) above, the elements of (29) are non-zero partial isometries, and by (2) above, they are
a complete set of tunneling operators c→ e across XM�Y NZ , as claimed.

Example 4.6. We now use this proposition to characterize tunneling operators through an
indecomposable domain wall by considering the domain wall as a concatenation of elementary
domain walls from § 3.1.

Let X and Y be A-enriched fusion categories, with M an A-enriched X −Y bimodule cat-
egory corresponding to the Lagrangian algebra L(A, B,Φ). Then M is the composition of three
boundaries: the condensation boundary which condenses A, i.e. the X −XA bimodule XA, a
bimodule category I which is a Morita equivalence between XA and BY , and the condensation
boundary which condensed B, which is the BY −Y bimodule BY . Categories of excitations on
the three boundaries are ZA(X )A, ZA(X )loc

A
∼= ZA(Y)loc

B , and B ZA(Y), respectively.
Suppose c ∈ Irr(ZA(X )) and d ∈ Irr(ZA(Y)) are two anyon types. Tunneling opera-

tors across the three individual boundaries were explained in § 4.2 above. For a local mod-
ule M◦A ∈ Irr(ZA(X )loc

A ), tunneling operators across the condensation boundary for A tak-
ing c → M◦A are morphisms in ZA(X )A(cAA → MA); similarly, for N ◦B ∈ Irr(ZA(Y)loc

B ), tun-
neling operators across the condensation boundary for B taking N ◦B → d are morphisms in
ZA(Y)B(NB → dBB). Finally, there are unique tunneling channels, and 1-dimensional spaces
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of tunneling operators, M◦A → Φ(M
◦
A) across the invertible middle domain wall. Thus, we see

that the spaces of tunneling operators c→ d across the indecomposable domain wall M are
⊕

M◦A∈Irr(ZA(X )loc
A )

ZA(X )A(cAA→ MA)⊗ ZA(Y)B(Φ(MA)→ dBB)

∼=ZA(Y)loc
B (Φ(ℓ(cAA))→ ℓ(dBB)) ,

where ℓ(·) denotes the local part of a module.
Moreover, the tunneling channels c → d have a straightforward description, as the com-

posite of tunneling channels across all three boundaries. The choice of a tunneling channel
c → M◦A corresponds to choosing an isometry c → M , i.e. including c as a summand of the
direct sum M . There is a unique channel across the middle invertible boundary, which relabels
the anyon M◦A as Φ(M◦A). Finally, picking a tunneling channel Φ(M◦A)→ d amounts to choosing
a coisometry Φ(M◦A)→ d, i.e. projecting onto a particular summand of Φ(M◦A) which is of type
d. (Here, we forget the object Φ(M◦A) into D when choosing a coisometry.)

4.4 Tunneling operators and the decomposition of parallel domain walls

In addition to Example 4.6, we can also consider the case of a domain wall between two bulk
topological orders, where each is obtained by condensing a third topological order. This is the
context in which gapped boundaries were discussed in [85, § 3.2]. In other words, given a
bulk topological order with UMTC C and two condensable algebras A, B ∈ C, one can obtain a
Witt equivalence between Cloc

A and Cloc
B by composing the Witt equivalences Cloc

A → C→ Cloc
B . In

terms of enriched fusion categories, if C ∼= ZA(X ), then one composes the AX−X bimodule AX
and the X −XB bimodule XB. Here, we will see that methods similar to those used in proving
Theorem 3.22 give a method to explicitly compute the tunneling operators for each summand
of a composite domain wall. We will carry out these computations in several examples in § 5
below.

Remark 4.7. One reason to look specifically at examples involving the horizontal composition

AX �X XB is that, according to Theorem 3.22, the ground state degeneracy which leads to
parallel domain walls decomposing into superselection sectors depends only on the algebras of
anyons from the middle bulk which condense on each domain wall. Therefore, this special case
already captures all the possible complexity of the interaction between the decomposition of a
composite domain wall into superselection sectors and the composition of tunneling operators
across the individual domain walls to give tunneling operators across the composite wall. If
we want to analyze the composition of an arbitrary pair of indecomposable domain walls, we
only need to compose a wall of the form AX �X XB with other elementary domain walls in a
way that does not contribute additional degeneracy.

By Proposition 4.5, if M◦A ∈ Irr(ZA(X )loc
A ) and N ◦B ∈ Irr(ZA(X )loc

B ), then tunneling channels
M◦A → N ◦B across the composite domain wall are compositions of tunneling channels M◦A → c
and c→ N ◦B for c ∈ Irr(ZA(X )). The space of such compositions is just

⊕

c∈Irr(ZA(X ))
ZA(X )(M → c)⊗ ZA(X )(c→ N) , (33)

or (by composing the two tensor factors) ZA(X )(M → N). Note the similarity to (17), which
described operators local to the X region, connecting left and right condensates. Here, the
condensates have been replaced with modules over those condensates, because we wish to
consider processes that move non-trivial anyons from AX to XB. An immediate consequence
is that, if an anyon c ∈ Irr(ZA(X )) splits at one or both domain walls so that cAA or cBB
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has multiple local summands, then there are nonzero tunneling operators taking any local
summand of cAA to any local summand of cBB.

On the other hand, as we saw in Theorem 3.22, composite domain walls of this form are
in general decomposable, with superselection sectors corresponding to minimal projections in
the algebra (ZA(X )(A→ B),⋆). From Definition 4.1, it is clear that a set of tunneling channels
through a direct sum of domain walls W =

⊕

i Wi is a disjoint union of sets of tunneling chan-
nels for each summand Wi . We would therefore like to determine which tunneling channels
correspond to each superselection sector.

In order to do so, we observe that the space of tunneling operators ZA(X )(M → N) carries
an action of the algebra (ZA(X )(A→ B),⋆) (see Definition 3.14), given by

M

N

f Ã
A

B

φ :=

M

N

A

B

f φ . (34)

Here, Ã indicates that φ (an element of the algebra of short string operators) acts on the
tunneling operator f . Note that (34) makes sense for any A- and B-modules MA and NB, not
just local modules.

We now give a physical interpretation of the action (34). If ZA(X )(M → N) is nonzero,
then there is some c ∈ Irr(ZA(X )) such that MA is a summand of cAA and NB is a summand of
cBB. Morphisms in ZA(X )(M → N) correspond to operators of the form

AX

AX

X

XB

XBMA
c NB . (35)

If M◦A ∈ Irr(ZA(AX )loc) and N ◦B ∈ Irr(Z cA(XB)loc), then ZA(X )(M → N) is the space of tunnel-
ing operators MA→ NB across the composite domain wall. Indeed, if M◦A is simple, then MA is
simple (though in general there are multiple choices for c), so we can deform (35) to obtain
the following

AX

AX

X

XB

XB

M◦A
c N◦B .

Indeed, as in (17), operators of the form (35) are determined by a choice of anyon c in the
middle bulk ZA(X ) topological order, an operator in ZA(X )(M , c) bringing the MA excitation
out of the left region of condensate as c, and an operator in ZA(X )(c, N) bringing c into the
right region of condensate as N ◦B . Thus, the overall space of such operators is ZA(X )(M → N),
as it was in (33). Recall that in § 3.3, we saw that the algebra (ZA(X )(A→ B),⋆) was spanned
by local operators of the form

AX

AX

X

XB

XBc
,

where c ∈ Irr(ZA(X )) appears as a summand of both A and B. The action shown in (34)
simply involves applying these two kinds of operators in parallel, as shown below

AX

AX

X

XB

XB

MA
c NB
c′ . (36)
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Since applying operators in parallel was also how we obtained the multiplication ⋆ on
ZA(X )(A→ B), this is clearly an algebra action.

We now introduce one more computational tool. In § 5, we will consider the case A= B,
i.e. where a strip where the condensable algebra A ∈ ZA(X ) is not condensed is considered
as a domain wall between two regions where A is condensed, which have ZA(X )loc

A topo-
logical order. We will see that the trivial domain wall between two regions with ZA(X )loc

A
topological order always appears as a summand, corresponding to the identity morphism
idA ∈ ZA(X )(A→ A), which is a projection (but not the identity) for the convolution product
⋆. If M◦A, N ◦A ∈ Irr(ZA(X )loc

A ) are anyons, then tunneling operators M◦A → N ◦A through the trivial
summand corresponding to the projection idA are just the subspace
ZA(X )A(MA→ NA) ⊆ ZA(X )(M → N), by the following lemma.

Lemma 4.8. Suppose MA, NA ∈ ZA(X )A. Then f ∈ ZA(X )(M → N) is in ZA(X )A(MA→ NA) if
and only if

f =
M

N

f =

M

N

Af = f Ã idA .

Note that the condition that f = f Ã idA is not trivial, since idA is the identity for the
composition ◦, and not the convolution multiplication ⋆. We leave the routine proof of the
lemma as an exercise.

We conclude by exploring the relationship between anyon types in the middle ZA(X ) bulk
region and summands of the composite domain wall AX�XXB. There is an obvious monoidal38

functor ZA(XA)⊠ ZA(X )⊠ ZA(XB)→ EndA
AX−XB

(AX �X XB), given by

MA⊠ c ⊠ NB 7→ AX

AX
X

XB

XB

MA c NB

. (37)

In Lemma 4.9 below, we will show that this functor is dominant, i.e. the image generates the
whole multifusion category EndA

AX−XB
(AX �X XB).

Before proving Lemma 4.9, we explain its physical consequences and applications. We can
think of the multifusion category EndA

AX−XB
(AX �X XB) as a matrix of categories of bimodule

functors: if

AX �X XB
∼=
⊕

i

Wi ,

then
EndA

AX−XB
(AX �X XB)∼=

⊕

i, j

HomA
AX−XB

(Wi →W j).

The i-th diagonal entry is EndA
AX−XB

(Wi), the category of wall excitations in the i-th super-

selection sector, while the i, j entry is HomA
AX−XB

(Wi → W j), the category of point defects

between the domain walls in the i-th and j-th sectors. The fact that EndA
AX−XB

(AX �X XB) is
a Witt equivalence, and therefore indecomposable as a multifusion category, means that all of
these categories of point defects are nonzero; such point defects always exist.

On the other hand, since the superselection sectors that AX �X XB decomposes into are

AX −XB bimodule summands, acting by an anyon from the left and right ZA(AX ) and ZA(XB)
bulk regions cannot change the superselection sector; the image of these categories in

38This functor does not lift to a braided monoidal functor to Z(EndA
AX−XB

(AX �X XB)), because the right action

on the left domain wall is a braided monoidal functor ZA(X )→ EndA
AX−XB

, rather than being from ZA(X ).
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EndA
AX−XB

(AX �X XB) lies on the diagonal. Consequently, all of the off-diagonal entries must

come from the image of ZA(X ), the UMTC of excitations in the middle bulk region. In other
words, all point defects between the domain walls in distinct superselection sectors are of the
form

AX

AX XB

XB

wi

w j

c
. (38)

Here, wi and w j refer to minimal central projections in (ZA(X )(A → B),⋆); when i ̸= j,
c ∈ Irr(ZA(X )) is an anyon type in the middle bulk region which becomes confined (in at least
one fusion channel) by both condensates A and B. The red line labelled by w j braids under
the c-string because w j is applied second, i.e. on states where the c anyon already exists.

To see that these are the only point defects that can separate distinct superselection sectors,
observe that if either free module cAA or cBB happens to be local, then the point defect c
appearing in (38) is deconfined in either the left or the right bulk region, and is therefore
a direct sum of anyons in either the left ZA(AX ) or right ZA(XB) bulks regions. Such point
defects cannot change the domain wall type, and hence only occur when i = j. This reflects
the fact that only anyon types which are confined by both condensates can braid non-trivially
with the short string operators which comprise the algebra algebra ZA(Y)(A→ B) of operators
that preserve the ground state.

Another interpretation of (38) is that, after applying a minimal projection
wi ∈ ZA(X )(A → B) to select a particular superselction sector, an extended string operator
associated with a confined anyon type c (which is not a local operator) can take the system
into other superselection sectors. In other words, the operator:

AX

AX XB

XB

w j

c

wi
(39)

can be nonzero for i ̸= j. If we place our system on a sphere, as in Remark 3.23, then the
extended c string operator can become a closed loop operator. The same can be done on a
torus, or any other topology where the middle ZA(X ) strip is closed up to a tube.

We now turn to the mathematical justification for the above description of the relationship
between different superselection sectors.

Lemma 4.9. The functor (37) is dominant.

Proof. By (15), the canonical functor

EndA
AX−X (AX ) ⊟ZA(X )

EndA
X−XB

(XB)→ EndA
AX−XB

(AX �X XB) ,

is an equivalence. Hence, we only need to check that the map
ZA(AX )⊠ ZA(X )⊠ ZA(XB)→ EndA

AX−X (AX )⊟ZA(X ) EndA
X−XB

(XB) is dominant.

Since the bimodule category AX is indecomposable, EndA
AX−X (AX ) is a fusion category

(rather than multifusion). This means that the forgetful functor
Z(EndA

AX−X (AX ))→ EndA
AX−X (AX ) is a dominant tensor functor. Since EndA

AX−X (AX ) is a Witt

equivalence ZA(AX ) → ZA(X ), the action functor ZA(AX )⊠ ZA(X ) → Z(EndA
AX−X (AX )) is

an equivalence. Composing, we have a dominant tensor functor

ZA(AX )⊠ ZA(X )→ Z(EndA
AX−X (AX ))→ EndA

AX−X (AX ) .
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Similarly, the action gives a dominant tensor functor

ZA(X )⊠ ZA(XB)→ EndA
X−XB

(XB) .

Overall, so far, we have a dominant tensor functor

ZA(AX )⊠ ZA(X )⊠ ZA(X )⊠ ZA(XB)→ EndA
AX−X (AX )⊠ EndA

X−XB
(XB) .

Note that, as tensor categories (i.e. forgetting the braiding), ZA(X )∼= ZA(X ) . Composing
with the canonical dominant tensor functor

EndA
AX−X (AX )⊠ EndA

X−XB
(XB)→ EndA

AX−X (AX )⊟ZA(X ) EndA
X−XB

(XB) ,

we obtain a dominant tensor functor which is ZA(X )-balanced, and hence factors through

(ZA(AX )⊠ ZA(X ))⊟ZA(X ) (Z
A(X )⊠ ZA(XB))∼= ZA(AX )⊠ ZA(X )⊠ ZA(XB) ,

completing the proof.

As another application, we are now in a position to justify our the assertion in Remark 4.4:
that, if anyons M◦A and N ◦A in ZA(AX )∼= ZA(X )loc

A are both summands of the free module cAA
for c ∈ Irr(ZA(X )), i.e. they are both obtained as summands when a c anyon is brought to the
domain wall, then there is a nonzero local operator

AX

AX

X

M◦A

d

7→

AX

XN◦A d

. (40)

After some topological deformation, the above picture becomes

AX XA

AX

M◦A
d 7→

AX XA

AX

N◦A
d .

Here, the dotted line is the identity/trivial domain wall, which is a superselection sector of
the composite domain wall given by the A-enriched AX − AX bimodule AX �X AX . As we will
explain in detail in § 5 below, this identity bimodule is a summand of the composite domain
wall, corresponding under Theorem 3.22 to the convolution projection idA ∈ ZA(X )(A→ A).
The blue strip corresponds to another summand of this same composite domain wall. The local
operators depicted above are then just (adjoints of) tunneling operators N ◦A → M◦A through this
composite domain wall; such tunneling operators always exist by Proposition 4.5. A priori we
might worry that some summands of the composite wall could fail to appear in the above
diagram. However, because the pair of parallel domain walls are joined by a cup, Lemma 4.9
tells us that all summands will appear, for some choice of d ∈ Irr(ZA(X )). On the other hand,
when d ∼= 1, the cup is just the inclusion of the trivial domain wall into the composite, and
nonzero tunneling operators through that wall only take M◦A to itself.
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5 XYX examples

In this section, we will use the tools developed in § 3 and § 4 to work out the decomposition
of composite domain walls in several explicit examples. We will investigate composite domain
walls of the form

YA Y YA

AY YA

W := AY �Y YA
∼= AYA ,

where Y is an A-enriched fusion category and A ∈ ZA(Y) is a condensable algebra. For
brevity, we denote C := ZA(Y), X := YA, and W ∼= AY �Y YA

∼= AYA is the YA − YA bi-
module category describing the composite domain wall. Thus, ZA(X ) ∼= ZA(YA) ∼= Cloc

A , and
the Cloc

A − Cloc
A bimodule multifusion category of excitations on the composite domain wall is

End(W)∼= AC ⊟C CA
∼= ACA, the category of A− A bimodules in C.

We take a moment to discuss our choice to focus on such examples, which we call XYX
examples. In the previous section, we have just seen that XYX examples arise naturally when
analyzing operators of the form (40), which are natural to consider whenever a domain wall
based on anyon condensation appears. Beyond that, XYX examples are parameterized by a
minimal amount of data: we only need a choice of anomaly representative A, an A-enriched
fusion category Y to determine the uncondensed bulk topological order, and a choice of con-
densable algebra A ∈ ZA(Y). Then, the A-enriched fusion and bimodule categories labelling
the regions where A is condensed and the walls bounding those regions are all just YA. As
explained in Remark 4.7, examples of the form AX �X XB are already able to illustrate all the
interactions between the decomposition of composite domain walls and tunneling operators.
In studying XYX -examples, we only impose the further restriction that B = A. This class of
examples therefore simplifies the computational task ahead, and as we will see, still allows for
a variety of interesting behavior.

We now show that, for XYX examples, the trivial domain wall from ZA(X ) topological
order to itself always appears as a summand of the composite domain wallW . This observation
will prove useful in the analyses of the examples that folow. To show this, we recall that under
the correspondence set out in Theorem 3.22, (indecomposable) summands of W correspond
to (minimal) projections in the commutative algebra C(A→ A) with the convolution product.
However, C(A → A) also carries another product: the composition ◦ of morphisms in the
category C, with identity idA.

A

A

x ◦
A

A

y :=

A

A

A

y

x

A

A

idA = A .

That is, if A ∼= ⊕i x i , where each x i ∈ Irr(C) and pi : A → x i is the projection onto the i-th
summand, then idA =

∑

i p†
i pi; interpreted as short string operators as in (16), idA is a sum of

operators which bring each channel in A across the strip. Because A∈ ZA(X ) is separable, the
morphism idA is a projection for ⋆:

A

A

idA ⋆

A

A

idA = = A =
A

A

idA .

Since A is connected, it follows directly from EndCA
(AA) = C idA that idA is a minimal

projection in (C(A → A),⋆) (visibly, for any projection p ≤ idA, p = p ⋆ idA ∈ EndCA
(AA)).
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Therefore, its image is a superselection sector denoted W1 of the composite domain wall W .
In order to characterize this sector, we compute the action of idA on the spaces of tunneling
operators; as described in § 4.4, the space of tunneling operators M◦A → N ◦A through W1 is
just the image of idA acting on C(M → N) with the action (34). But by Lemma 4.8, the
image of idA is just CA(MA→ NA) ⊆ C(M → N), showing that EndA

Y−Y(W1) is just the identity
Witt autoequivalence of Cloc

A . Thus, as claimed, for any XYX composite domain wall, the
trivial domain wall appears as a superselection sector, since it is the image W1 of a minimal
projection. We will therefore refer to W1 as the identity superselection sector.

Furthermore, we see that the inclusions CA(MA → NA) ⊆ C(M → N) have two natural
interpretations in our setting. The first is that M and N are classical mixtures of anyons,
which result from bringing a domain wall excitation (in CA) into the C bulk. C(M → N) is thus
the space of topological local operators taking one such mixture to another, and CA(MA→ NA)
is the subspace of these operators which is stable under fusion with the condensate A.39 The
second is that C(M → N) is the space of tunneling operators M◦A → N ◦A through the composite
domain wall, and CA(MA → NA) is the subspace of tunneling operators through the identity
superselection sector.

Both interpretations will play a role in the examples below. In particular, suppose
MA = NA = cAA is a free module, where c ∈ Irr(C) is an anyon. Then under the first inter-
pretation, CA(cAA, cAA) ⊆ C(cA, cA) contains the morphisms which split the anyon c into inde-
composable wall excitations at the domain wall. Under the second interpretation, C(cA, cA)
consists of local operators bringing a c anyon from the left domain wall to the right one, and
CA(cAA, cAA) is again the subspace of those operators supported in the superselection sector
W1 associated to idA.

Remark 5.1. There is an alternative way to see that the identity domain wall must appear as
a summand in our XYX -examples, which does not involve the results of § 3 and 4. In our
chosen examples, X ∼= YA, and the bimodule category labelleing the composite domain wall
is AY �Y YA

∼= AYA, the category of A− A-bimodules in Y . As described in Appendix B, the
tensor product on YA comes from a monoidal embedding into AYA, and both the left and right
actions of YA on AYA will also come from this embedding. Therefore, the trivial domain wall,
corresponding to the identity YA−YA-bimodule category YA, appears as a summand of AYA.

In the following examples, we will show that the other superselection sectors can exhibit a
wide variety of behaviors: they may also be equivalent to the trivial domain wall, as in § 5.1,
they can be different invertible domain walls, as in § 5.2 and § 5.3, or they can be noninvertible
domain walls, where additional anyons become condensed or confined, as in § 5.4.

For each of the examples below, we use all of the tools developed in the preceding sections
to analyze the composite domain wall, according to the following steps.

(1) Specify a UMTC A (fixing the anomaly), an A-enriched fusion category Y (§ 2.1), and
a condensable algebra A ∈ ZA(Y) (§ B). The condensed phase is given by the enriched
fusion category X = YA, which has bulk excitations ZA(X ) ∼= ZA(YA) ∼= ZA(Y)loc

A . In all
cases, we also provide references to literature describing a specific lattice model for the
domain wall in question.

(2) Compute the convolution algebra (ZA(Y)(A→ A),⋆) of short string operators on the mid-
dle strip, where ⋆ is the convolution multiplication from Definition 3.14. Identify the min-
imal projections in this algebra, which are local operators that project onto superselection
sectors of the composite domain wall, by Theorem 3.22.

39As described in Footnote 31, operators in C(M → N) are not very interesting; in general, C(M → N) is just a
multiplicity space. However, the choice of subspace CA(MA→ NA) is part of the data specifying the wall excitations
MA and NA.
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(3) Identify the summands of any anyons c ∈ ZA(Y) from the uncondensed phase which
split on the domain wall to the condensed phase, by computing the decomposition of free
modules cAA. Identify the spaces of tunneling channels for each pair of anyons through
the composite domain wall, or at least give dimensions.

(4) Using sets of tunneling channels (Definition 4.1) for the original domain walls, the de-
composition of splitting anyons, and the action (34) of (ZA(Y)(A→ A),⋆) on spaces of
tunneling operators, we work out sets of tunneling channels for the indecomposable do-
main wall in each superselection sector. This allows us to identify the indecomposable
domain wall associated to each minimal central projection wi ∈ ZA(Y)(A→ A), either as
an indecomposable X −X A-enriched bimodule category Wi , the associated Witt equiva-
lence EndA

X−X (Wi), or the Lagrangian algebra in ZA(X )⊠ ZA(X ) which is condensed at
the wall.

(5) Based on (38), we briefly describe how different superselection sectors are related by
extended string operators which are confined to the uncondensed region, as well as how
anyons from the middle bulk become point defects between superselection sectors.

5.1 Toric code

(1) In this example, we choose

A= Hilb ,

X = Hilb[Z/2] ,
Y = Hilb[Z/4] ,

XMY = Hilb[Z/2] .

Setting A = CZ/2 ∈ Z(Y) to be the algebra obtained by condensing the boson m2, we
obtain Z(X ) = Z(Y)loc

A =D(Z/2), the toric code.

We will use the same Hamiltonian as described above in (23)-(25), but a different config-
uration of green and black edges, as shown.

(2) We now analyze the wall W := M using Theorem 3.22. As an object in
C := Z(Y) ∼= D(Z/4), we have A ∼= 1 ⊕ m2. Therefore, C(A → A) is 2-dimensional,
generated by projections π1 : A→ 1→ A and πm2 : A→ m2 → A for the usual categorical
composition in EndZ(Y)(A) (as opposed to the convolution multiplication ⋆ for EndZ(Y)(A)).
The convolution multiplication ⋆ has identity 2π1, and πm2 ⋆πm2 = 1

2π1, so that the gen-
erators 2π1 and 2πm2 form the group Z/2, i.e. (C(A→ A),⋆) ∼= C[Z/2]. (The factors of
2 and 1

2 appear because |Z/2| = 2, and are necessary to make the condensate A unitarily
separable.) The minimal convolution projections in C(A→ A) are thus

w1 := idA = π1 +πm2 ,

w−1 := π1 −πm2 .

(3) In this case, the objects of Irr(CA) are all of the form x ⊕ m2 x for x ∈ Irr(C), so they
partition the objects of Irr(C). Hence, for MA ̸= NA ∈ Irr(Cloc

A ), we have C(M → N) ∼= 0
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meaning that there are no tunneling operators between distinct simple objects. On the
other hand, for MA ∈ Irr(Cloc

A ), there are 2 tunneling channels MA → MA, one for each
projection w±1.

(4) Since w1 = idA, the corresponding summand W1 of the composite domain wall is equiv-
alent to the trivial domain wall (i.e. no domain wall) from ZA(X ) topological order to
itself. The other summand W−1 is also an invertible domain wall, which applies a Z2
symmetry Φ ∈ Autbr

⊗ (D(Z/2)) which does not permute anyon types, but under which the
m anyon is charged. For a single domain wall, however, the resulting phase cannot be
detected physically; hence W−1 must be equivalent to W1, in the sense that both produce
the same Witt autoequivalence of D(Z/2).

(5) We can understand why there are two distinct summands W1 and W−1 by examining the
ground-state degeneracy obtained from putting our system on a sphere with A uncon-
densed at the equator and condensed near the poles, as in Remark 3.23. In other words,
we impose periodic boundary conditions orthogonal to the domain walls, and then cap off
the two bulk regions where A is condensed. In this case, the algebra C(A→ A) becomes
the 2-dimensional space of ground states.

To understand the difference between W1 and W−1, consider the closed string operator
Le of type e which runs around a non-contractible loop in the middle unshaded region.

e

La for a = e2, m, m2, or m3 act trivially on the space of ground states, since these strings
can slide into the green region and be contracted. However, e is confined in the green
regions; hence Le need not have a trivial action. Indeed, because [Le,πm2] = −1, we
know that Lew1 = w−1 Le, so Le exchanges the two summands of W . In summary, the two
summands of W can be distinguished by the number of e-lines modulo 2 running around
a non-contractible loop in the C-bulk region.

Thus, we see that in the geometry depicted above, the image of the projectors w1 and w−1
differs by an extended e-string operator in the strip of the original uncondensed phase.
Although the two summands exhibit the same behavior in terms of particle mobility, the
composite tunneling operators Tm : mAA → m → mAA and Tm3 : mAA → m3 → mAA
will pick up different phases on each summand, which we denote by λm,1, λm3,1, λm,−1,
and λm3,−1 respectively. The phases themselves are not well defined, since they can be
modified by adding strictly local operators in the vicinity of the domain wall. However,
we can define a phase that is independent of these details, by first tunneling an m across
using Tm (or Tm3), then applying the non-local Le operator, and finally tunneling the
particle back using T−1

m (or T−1
m3 ). The net phase acquired in this process is λm,−1/λm,1

(or λm3,−1/λm3,−1), which is ±i. The overall sign is also not well defined, since it can be
modified by adding a contractible Le2 string encircling the domain wall. However, the
ratios

(λm,−1)
2/(λm,1)

2 = (λm3,−1)
2/(λm3,−1)

2 = −1

are well-defined, in the sense that they are independent of any local or contractible op-
erators. This is the sense in which the two boundaries represent different Z2-symmetry
actions on the m particle, which carries a 1/2 Z2 charge under one of the symmetry ac-
tions.
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The process of computing λm,−1/λm,1 described above cannot tell us whether the system
was initially in the image of W1, or that of W−1. On the spherical geometry, this is true
in general: no physical process can reliably tell us which of the two domain wall types
we have, since there is no way to measure the presence of the Le string that is robust
to adding local operators near the domain wall; the physically well-defined information
is simply that the two domain wall types are different. This is reflected mathematically
by the fact that W1 and W−1 are equivalent as X −X bimodule categories, even though
they are different summands of W . On the other hand, on the torus with a single white
region around the meridian, the presence of an extended e string in the white region can
be detected by a process that transports an m particle around the torus.

Remark 5.2. In a given microscopic realization, we can see that we obtain the summand
with an odd number of extended e-strings parallel to the domain walls in either the im-
age of w1 or of w−1, but not both. Recall that when we defined the lattice model, we
had to make choice of operator Cℓ to condense m2 in the green region. If we choose
Cℓ =

1
2(1+ Z)2 in both regions, then w1 selects states with an even number of extended

e-strings, and w−1 selects states with an odd number. If we instead choose Cℓ =
1
2(1+ Z)2

in the left bulk region and Cl =
1
2(1− Z)2 in the right bulk region, then the situation is

reversed.

Finally, we consider adding an e-e3 pair to the uncondensed D(Z/4) region. Each of
these excitations corresponds to a nontrivial point defect separating the two distinct types
of domain wall identified above. As above, because there is no physical process that
can detect a closed Le string, a priori the resulting domain wall can either have W1-type
domain wall below the e particle, and a W−1 wall above it, or be in a configuration where
the roles of W1 and W−1 are reversed. Note also that there is no universal meaning to
which particle we call e and which we call e3, since this can be altered by bringing a pair
of e2 particles from one of the toric code regions, and binding one to each defect.

In the presence of such defects, however, we can see the projective Z2 symmetry action
more explicitly. Tunneling an m := mAA particle from the condensed D(Z/2) toric code
in a closed path encircling an e or e3 defect gives a phase of φ = ±i. The overall sign
is not universal, in the sense that it can be modified by binding an e2 particle to the
defect. However, the fact that φ2 = −1 is universal, and cannot be modified by either
local operators, or binding anyons from the Toric code bulk to the defects. Thus, we see
that the m particle carries a 1/2 charge under one of the Z2 symmetries associated with
this domain wall.

5.2 Doubled Ising

(1) In this example, we choose

A= Hilb ,

X = Hilb[Z/2] ,
Y = Ising ,

XMY = Hilb[Z/2] .

Recall that the Ising UMTC40 has anyons 1, ψ, and σ, where ψ is a fermion and
dim(σ) =

p
2. Like any modular tensor category, its double C := Z(Y) ∼= Ising ⊠ Ising

40The Ising UMTC (which is distinct from SU(2)2) is the semisimple part of the Temperley-Lieb-Jones category
T LJ (ie− 2πi

16 ) with braiding (4), pivotal structure given by the identity for all simples, and dagger structure from
Footnote 12. The formulas for S, T are given in [124, p. 19]; compare with Footnotes 13 and 14.
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consists of two copies with opposite chirality. The particle ψ ⊠ψ is a boson, and after
condensing this boson, i.e. condensing the algebra

1⊠ 1⊕ψ⊠ψ ∈ Ising⊠ Ising ∼= Z(Ising) ,

we obtain Cloc
A
∼= Z(X ) =D(Z/2) [24,28], the toric code topological order.

A concrete description of the string-net [103] lattice model of Z(Ising) ∼= Ising ⊠ Ising,
including the modifications needed to condenseψ⊠ψ, appears in [28,64]. Many mathe-
matical details of the resulting boundary between doubled Ising and Z/2-toric code result-
ing from the condensation of A appear in [34], and another lattice model of the boundary
with detailed analysis appears in [127].

(2) As in § 5.1, the algebra C(A→ A) is 2-dimensional, and generated by composition projec-
tions π1 and πψ corresponding to the simple objects 1⊠1 and ψ⊠ψ respectively. Again,
2π1 is the identity for ⋆, and πψ ∗ πψ =

1
2π1. The minimal convolution projections are

thus

w1 := idA = π1 +πψ ,

w−1 := π1 −πψ .

Remark 5.3. One might wonder why, despite the fact that the UMTC C = Z(Ising) and al-
gebra A in this example are different from the UMTC C′ =D(Z/4) and algebra A′ ∼= 1⊕m2

from the previous example, the algebras (C(A→ A),⋆) and (C′(A′→ A′),⋆) are isomorphic.
This happens because the subcategories generated by each algebra are equivalent; both
are equivalent to Hilb[Z/2] with the trivial/symmetric braiding. On the level of objects,
the equivalence is given by 1 7→ 1 and m2 7→ψ⊠ψ, and it indeed maps A′ to A. However,
because the overall UMTCs C′ and C are different, the remaining details of this example
will differ significantly from those in the previous one.

(3) After condensingψ⊠ψ, the boson σ⊠σ of Z(Ising) splits into the direct sum e⊕m in the
toric code, while 1⊠ψ andψ⊠1 become em∼= ε. Thus there are tunneling operators Te→m
and Tm→e, as well as tunneling operators Ta→a for a = 1, e, m,ε. There are no tunneling
operators between any other pairs of Toric code anyons, since fusion with A at the domain
wall is equivalent to fusion with the vacuum. More precisely, the free modules cAA for
c ∈ Irr(C) partition the simple objects of C, i.e. each c ∈ Irr(C) appears in exactly one
(isomorphism class of) dAA where d ∈ Irr(C).
For the free modules AA and ε ∼= (ψ ⊠ 1)AA, we have
C(A→ A) ∼= C⊕C ∼= C((ψ⊠ 1)A→ (ψ⊠ 1)A), so there are 2 tunneling channels 1→ 1
and 2 channels ε→ ε, corresponding to the two choices of string operator (1 and ψ⊠ψ,
or (ψ⊠1) and (1⊠ψ), respectively) which can transport these between the left and right
domain walls. As in the previous example, this leads to one tunneling channel for each
particle in each of the two summands W±1. Again, this is because the toric code particles
1 and ε are free modules, and hence the spaces of tunneling operators 1→ 1 and ε→ ε
are isomorphic to C(A→ A) as representations of the algebra (C(A→ A),⋆) of short string
operators.

On the other hand, both e and m are local A-modules (i.e. anyons in the condensed
region) with the same underlying simple object (anyon) in the uncondensed topological
order, namely σ⊠σ ∈ Irr(C). Thus each of the 4 spaces of tunneling operators involving e
and m is 1-dimensional, given by C(σ⊠σ→ σ⊠σ)∼= C. In other words, there are unique
(up to phase) tunneling channels e→ e, e→ m, m→ e, and m→ m. In a given summand
of W , only one of the two possible channels e→ e, e→ m is non-vanishing (and similarly
for m).
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(4) To see how W1 and W−1 differ, we must analyze the spaces of tunneling operators through
each wall. The analysis for 1 and ε is analogous to that in § 5.1; as promised, we find that
W1 acts as the trivial superselection sector for these anyons, while W−1 induces an extra
phase factor when a ψ particle crosses.

To analyze the tunneling channels for e and m, we must compute the action of
(C(A→ A),⋆) on the spaces of tunneling operators e→ e, m→ m, m→ e, and e→ m. As
noted above, e and m particles are both transported through the Z(Ising) strip connect-
ing the left and right Toric code regions using the hopping operator for the anyon σ⊠σ.
Hence the four tunneling spaces are all isomorphic to C(σ⊠σ→ σ⊠σ) ∼= C; however,
they carry different actions of (C(A→ A),⋆).

We now show how to use this action to obtain a description of the superselection sectors,
using the mathematical machinery of § 4.4. We begin by investigating how, at either
domain wall, the anyon σ ⊠ σ ∈ Irr(D(Ising)) splits as the mixture e ⊕ m of toric code
anyons. If a σ ⊠ σ anyon is near a domain wall to the A-condensate, we can apply an
operator bringing a ψ⊠ψ anyon out of the wall and fusing it with the σ⊠σ. Since two
copies ψ ⊠ψ fuse to 1, performing this operation twice returns us to the original state.
Thus, our σ⊠σ anyon has a 2-dimensional space of configurations. The local operators
which can act on a σ⊠σ anyon near the A condensate are the space

C((σ⊠σ)A→ (σ⊠σ)A)∼= M2(C) , (41)

However, the operators which are stable under fusion with the A condensate are the sub-
space

D(Z/2)(e⊕m→ e⊕m)∼= CA((σ⊠σ)AA→ (σ⊠σ)AA)∼= C⊕C , (42)

spanned by projectors which pick out the toric code excitations e ⊕m into which σ ⊠σ
splits at the wall.

In order to write down operators in C((σ⊠σ)A→ (σ⊠σ)A) as 2× 2 matrices, we must
choose a particular isomorphism (41), analogous to a choice of orthonormal basis for the
2-dimensional configuration space. We choose the basis {|0〉, |1〉}, where | j〉 is a state
where the number ofψ⊠ψ lines from the condensate fused into the σ⊠σ anyon modulo
2 is j. Mathematically, we can describe this choice as follows. Since EndC(A) is generated
by the orthogonal projections π1 and πψ onto the 1⊠1 and ψ⊠ψ anyons, and there are

unique fusion channels (σ⊠σ)(1⊠1)∼= σ⊠σ and (σ⊠σ)(ψ⊠ψ)∼= σ⊠σ, EndC((σ⊠σA)
contains e1 := idσ⊠σ⊗π1 and eψ := idσ⊠σ⊗πψ as orthogonal rank 1 projections. Then
e1 is the projection onto |0〉 and eψ is the projection onto |1〉, so the isomorphism (41)
becomes

e1 =

�

1 0
0 0

�

, eψ =

�

0 0
0 1

�

.

The operator (unique up to phase) which brings a ψ⊠ψ line out of the condensate and
fuses it with σ⊠σ exchanges |0〉 and |1〉, so it is just the Pauli matrix

X =

�

0 1
1 0

�

.

Now, we can determine matrices for the subalgebra (42) of operators stable under fusion
with the A condensate. To do so, we will first compute the (C(A→ A),⋆) action on (41),
and then apply Lemma 4.8. We know that idA = π1 + πψ, that 2π1 is the identity for
the convolution ⋆, and that πψ ⋆ πψ =

1
2π1. Thus, the matrices satisfying the condition
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from Lemma 4.8 are exactly those which are preserved under the action of 2πψ, which is
conjugation by Pauli X , i.e.

M 7→
�

0 1
1 0

�

M

�

0 1
1 0

�

. (43)

If we think of EndC((σ⊠σ)A→ (σ⊠σ)A) as a space of tunneling operators through the
composite domain wall, we can interpret this fact as follows. Operators which take aσ⊠σ
anyon from the left domain wall to the right domain wall map the 2-dimensional space
of configurations near the left wall to the 2-dimensional space of configurations near the
right wall. Thus, for example, eψ is the operator |1R〉〈1L|, where the subscripts L and R
denote which configuration space a state lives in. If T is such a tunneling operator, then
T Ã 2πψ is obtained by applying the short string operator associated with ψ parallel to
T ; this short string operator can be fused into the σ ⊠ σ string near each domain wall,
which evidently has the effect (43).

The matrices which are invariant under (43) are just those which are diagonalized in the
eigenbasis of Pauli X , and are hence spanned by

1
2

�

1 1
1 1

�

and
1
2

�

1 −1
−1 1

�

.

Since these matrices are orthogonal Hermitian projections, one must be ide, the operator
that projects onto an e-type domain wall excitation, and the other must be idm. The choice
of which is which is arbitrary, because making a different choice amounts to applying the
symmetry exchanging the e and m labels in toric code. We choose

ide :=
1
2

�

1 1
1 1

�

and idm :=
1
2

�

1 −1
−1 1

�

.

Now that we know the projections which select an e or m particle on each domain wall, it
is easy to determine the tunneling operators e→ e, e→ m, m→ e, and m→ m across the
composite domain wall. Since each of these projections is rank 1, for each x , y ∈ {e, m},
the space of tunneling operators x → y is spanned by the unique (up to phase) partial
isometry Tx→y from idx to idy . Of course, a projection is a partial isometry from itself to
itself, so the unique (up to scalar) tunneling operators e→ e and m→ m are respectively

Te→e :=
1
2

�

1 1
1 1

�

and Tm→m :=
1
2

�

1 −1
−1 1

�

,

As 2×2 matrices, these are the same as ide and idm, but we now interpret them as tunneling
operators which map between the two configuration spaces of σ⊠σ near each of the two
boundaries, rather than local operators on the single configuration space near one of the
boundaries. The other two partial isometries, which take ide to idm and vice-versa, are:

Te→m =
1
2

�

1 1
−1 −1

�

and Tm→e =
1
2

�

1 −1
1 −1

�

.

These correspond to tunneling channels exchanging e and m.

Now that we have concrete matrices for each tunneling channel Tx→y , as well as for the
action of (C(A → A),⋆) on these tunneling operators, we can reap the rewards. That
is, we can compute Tx→y Ã wi for each choice of (x , y, i), and thereby determine which
tunneling operators correspond to which summand of the composite domain wall W . The
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tunneling operators Te→e and Tm→m are stable under conjugation by Pauli X , and hence
are tunneling operators through the summand W1 determined by the projection w1 = idA.
Meanwhile, conjugating the tunneling operators Te→m and Tm→e by X introduces a factor
of −1, so these are the tunneling operators through the summand W−1 determined by the
projection w−1.

This shows that EndX−X (W1) is the trivial Witt autoequivalence of Cloc
A
∼= D(Z/2), while

EndX−X (W−1) is the autoequivalence coming from the symmetry Φ : D(Z/2)→ D(Z/2)
which exchanges the anyons e and m.

(5) To understand the different superselection sectors intuitively, we once again place our
system on a sphere as in Remark 3.23. The ground state Hilbert space contains states in
which extended σ⊠1 or 1⊠σ string operators encircle the strip where A is not condensed.
Since σ⊠1 and 1⊠σ are the only anyons that become confined in the Toric code regions,
and they differ by fusion with anyons that are deconfined everywhere, the operator Lσ
that inserts such strings is the only operator that can act non-trivially on the ground state
Hilbert space.

σ⊠1

The operator Lσ anti-commutes with πψ, since
S(ψ⊠ψ)(σ⊠1)/S1(σ⊠1) = S(ψ⊠ψ),(1⊠σ)/S1,(1⊠σ) = −1. Thus Lσ exchanges the two summands
W1 and W−1. Moreover, with this geometry, the image of w1 (w−1) is a strip with an odd
(even) number of σ⊠1 or 1⊠σ lines encircling the white strip at the center of the sphere.

We can now understand why the projections w±1 have the action that they do. First,
because the W−1 domain wall contains an odd number of extended σ strings, as shown
in [28, 64], an e particle that enters this domain wall will exit as an m, and vice versa.
Moreover, an ε particle crossing such a wall will incur an extra phase of ±i relative to the
ε particle crossing the trivial, W1 domain wall due to its half-braiding with the extended
σ line.

Finally, if we allow pairs of σ⊠1 or 1⊠σ particles in our uncondensed strip, each particle
corresponds to a defect separating W1 and W−1 domain wall types. Once again, local
operators cannot be used to distinguish the locus of each domain wall type, but they are
clearly distinct: if we braid an e particle around such a defect it returns as an m, and vice
versa. Bringing an ε around such a defect in principle incurs a net phase of −1; however
in this case the phase is not well-defined, as it can be modified by attaching an e or m
anyon from the bulk to the defect.

Remark 5.4. As in the previous example, in the spherical geometry discussed above the
two summands W±1 cannot be distinguished by any local process, since the choice of
which anyon to call e or m in each region is a matter of convention. However, as before,
we can see that the two domain wall types are distinct, by first tunneling an e across the
domain wall from left to right, then applying Lσ, and finally tunneling the same anyon
back across from right to left. The particle that returns is necessarily an m, showing that
one of the two domain wall types exchanges e and m, while the other does not.

However, if we put the system on the torus, then we find that in W−1, an e particle that
traverses the torus in the direction perpendicular to the strip returns as an m. This changes
the nature of the topologically distinct ground states on the torus (though not their num-
ber).
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Remark 5.5. Depending on the topology of our system, we can relabel the toric code
anyons on only one side of the composite domain wall, exchanging e and m. How-
ever, such a relabeling will only preserve the Witt equivalence labelling one domain wall
CA
∼= EndXA−X (XA) ∼= EndX−XA

(XA) up to monoidal bimodule equivalence, so it will also
exchange which short string operators are identified with w±1. Thus, the Witt equiva-
lences EndXA−XA

(W±1) will be preserved.

5.3 Chiral example: T Y3,− wall between SU(3)1 and SU(2)4
We now turn to a chiral example, based on Example 2.2.1.

(1) We take

A= SU(3)1 ,

X = SU(3)1 ,

Y = T Y3,− = (SU(2)4)1⊕g ,

XMY = XY
mp
Y .

As we saw in Example 2.2.1, ZA(Y) = SU(2)4. It is clear that ZA(X ) = SU(3)1, as SU(3)1
is modular. The algebra in ZA(Y)∼= SU(2)4 which condenses at the boundary is 1⊕ g. It
follows that M := EndA

X−Y(Y)∼= ((SU(2)4)1⊕g)mp ∼= (T Y3,−)mp.

These choices of Y and of the bimodule XYX have an obvious implementation in terms
of the lattice model described in § 2.2: we simply restrict the set of labels of edges in
regions labelled by X to the simple objects of X ∼=A (as UFCs), rather than allowing the
additional simple object of Y = T Y3,−. In other words, while the description of the topo-
logical boundary corresponding to Y in § 2.2 was somewhat involved, X is the topological
boundary for the A-bulk obtained by simply cutting it off at a plane.

(2) The analysis of the algebra (C(A→ A),⋆)∼= C[Z/2] is identical to the non-chiral examples
5.1 and 5.2. In summary, if π1 and πg are minimal composition projections in C(A→ A),
then the identity for ⋆ is 2π1, and minimal projections for ⋆ are

w1 := idA = π1 +πg ,

w−1 := π1 −πg .

The domain wall W :=M�Y M therefore decomposes as a direct sum W =W1 ⊕W−1
of two indecomposable domain walls. As before, W1 is the identity domain wall of
Cloc

A
∼= SU(3)1. As we will see, W−1 is the nontrivial invertible boundary which exchanges

the anyons α and α2 of SU(3)1.

(3) The analysis is parallel to that of § 5.2. The space of tunneling operators 1 → 1
across the composite W domain wall is, as always, just (C(A → A),⋆). The only other
anyons in SU(3)1, α and α2, arise as summands when the anyon f2 ∈ C splits on
the domain wall: f2AA

∼= α ⊕ α2. As in the previous example, the forgetful functor
SU(3)1 ∼= CA→ C ∼= SU(2)4 maps both α and α2 to f2. Therefore, the space

C( f2A→ f2A)∼= M2(C) , (44)

which can be interpreted as the space of operators bringing an f2 anyon from the left
domain wall to the right domain wall, is the direct sum of the four 1-dimensional spaces
of tunneling operators α→ α, α→ α2, α2→ α, and α2→ α2.
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(4) To analyze the tunneling operators and determine which Witt autoequivalence of SU(3)1
describes each superselection sector, we must again work out a concrete isomorphism
for (44). One can think of an f2 anyon near either of the domain walls as having a 2-
dimensional configuration space, again spanned by two orthogonal states |0〉 and |1〉,
where the state |i〉 contains i modulo 2 g-lines between the condensate and the f2 anyon.
Operators which pull a g out of the condensate and fuse it with f2 again act as Pauli X on
this configuration space.

In terms of our hom-spaces, C( f2A → f2A) contains the orthogonal projections
e1 := id f2 ⊗π1 and eg := id f2 ⊗πg , which become the matrices

e1 =

�

1 0
0 0

�

, eg =

�

0 0
0 1

�

.

This completely determines the isomorphism (44). Then, by definition, e1 Ã 2πg = eg
and eg Ã 2πg = e1, so 2πg acts as Pauli X as promised.

When interpreting (44) as the sum of spaces of tunneling operators, we have a right action
of (C(A→ A),⋆); the action of πg is to apply a short g-string operator between the two
domain walls in parallel to the tunneling operator. As before, since this string could be
fused with the f2 string crossing the C bulk, the action of πg is therefore conjugation by

Pauli X , i.e. by the matrix

�

0 1
1 0

�

.

This has two consequences. First, if we interpret C( f2A→ f2A) as a space of local operators
acting on an f2 anyon near one of the domain walls, then by Lemma 4.8, the subspace

SU(3)1(α⊕α2→ α⊕α2)∼= CA( f2AA→ f2AA)∼= C⊕C (45)

of (44), which is the space of operators stable under fusion with the A condensate, is the
space of matrices stable under conjugation by Pauli X . Just as in § 5.2, minimal projections
in this subspace are given by the following matrices.

idα :=
1
2

�

1 1
1 1

�

and idα2 :=
1
2

�

1 −1
−1 1

�

.

Of course, we could swap the roles of α and α2, which amounts to composing with an
invertible domain wall which exchanges the two.

Second, now that we have identified projections onto the α and α2 summands near each
domain wall, we can resume our interpretation of (44) as the space of operators bringing
an f2 anyon from one domain wall to the other, in which case the subspace (45) consists
of tunneling operators in the W1 sector. The above projections are thus also tunneling
operators

Tα→α :=
1
2

�

1 1
1 1

�

and Tα2→α2 :=
1
2

�

1 −1
−1 1

�

,

since a projection is a partial isometry from itself to itself. Thus, we see that EndA(W1) is
the trivial Witt autoequivalance.

Meanwhile, tunneling operators through the W−1 sector form the orthogonal complement
of (45) in (44), i.e. the space of matrices which obtain a phase of −1 when conjugated by
Pauli X . Thus, they are spanned by the tunneling operators

Tα→α2 =
1
2

�

1 1
−1 −1

�

, Tα2→α =
1
2

�

1 −1
1 −1

�

.

This confirms that the anyons α and α2 are exchanged in the W−1 sector.
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(5) The anyons f1 and f3 in ZA(Y) ∼= SU(2)4 become confined in the condensate. These
differ by fusion with the condensing g anyon. Thus if we put our model on a capped
sphere, there is a single operator L f , corresponding to an f1 or f3 string encircling the
uncondensed strip, that acts non-trivially on the ground state Hilbert space. (In this case,
f1 and f3 strings become identified at the boundaries of the strip, as f1AA

∼= f3AA).

From the S-matrix in § 2.2, we can see that the short string operator πg and an extended
string operator L f anticommute, so that L f exchanges the images of the projections w1
and w−1. Moreover, we see that for the trivial domain wall W1, which is the image of w1,
the strip must contain an even number of extended f1 or f3 loops. The non-trivial domain
wall W−1, in contast, is encircled by an odd number of such loops.

Finally, a pair of f1 or f3 anyons in the strip are point defects separating W1 and W−1 wall
regions. An α particle that is sent through the domain wall on one side of such a point
defect, and brought back on the other, returns as α2.

In summary: as in § 2.2.1, by setting A = SU(3)1 and X ∼= SU(3)1, we begin with a
Walker-Wang model associated to the UMTC SU(3)1 in the (3+1)D bulk, and cut off along
a plane to obtain a (2+1)D boundary with ZA(X ) ∼= SU(3)1 topological order. As a fusion
category, X = SU(3)1 includes as (the full subcategory spanned by) the invertible objects of
our chosen Y = T Y3,−, so we can extend the boundary lattice model to allow the additional
simple object σ ∈ Irr(T Y3,−). This strip then exhibits ZA(Y)∼= SU(2)4 topological order, and
the algebra (1⊕ g) ∈ SU(2)4 condenses at each edge of the strip.

Similar to the situation in § 5.2, the short g-string operator between the two domain walls
splits the boundary into two superselection sectors, which differ by the autoequivalence of
ZA(X ) ∼= SU(3)1 which exchanges α and α2. Applying the short g-string operator can be
interpreted as counting the number of f1 and f3 lines in the uncondensed strip modulo 2, and
the confined f1 and f3 anyons become point defects between the two summands of composite
domain wall.

5.4 Nonabelian condensate example: dihedral groups

This example concerns a condensate in the double of D(Dn) of the dihedral group Dn. Be-
cause a complete description of D(Dn) is lengthy and the details are known to many in the
community, we defer a full treatment to Appendix C. Definitions, notation, and basic results
regarding the double D(G) of a finite group, as well as a thorough analysis of the special case
D(Dn) where this example arises, appear there. In particular, we write C[H] for the group
algebra and CH for the algebra of functions on a group H.

(1) In this example, we consider

A= Hilb ,

X = Hilb[Da] ,

Y = Hilb[Dn] ,

XMY = Hilb[Da] ,

where n is odd, and a is a divisor of n. Here, Dk is the dihedral group of order 2k,
with the presentation Dk

∼= 〈r, f |rk, f 2, (r f )2〉. Anyons in D(Dk) ∼= Z(Hilbfd[Dk]) are
irreducible Dk-graded Dk-representations, which we denote by (g,ρ), where g ∈ Dk and
ρ ∈ Irr(Rep(StabDk

(g))).

At the domain wall, we condense the subgroup algebra

A= C[〈ra〉]∼=

n/a−1
2
⊕

k=1

(rk, 1) .
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The resulting fusion category X ∼= YA is equivalent to Hilb[Da], because Dn/〈ra〉 ∼= Da
(note 〈ra〉 ∼= Z/ n

a ). Thus, we have Z(X ) ∼= D(Da). The Witt equivalence EndX−Y(X ) of
wall excitations is given by D(Da, Dn), where objects are Da-graded Dn-representations;
see Definition C.3 and Example C.4. As for the bimodule tensor category structure, the
action D(Da)→D(Da, Dn) involves inducing each Da representation to all of Dn, while the
action D(Dn)→D(Da, Dn) involves applying the quotient map Dn→ Da to the grading.

Before doing any computations, we will summarize the results of our analysis. The com-
posite domain wall W has n/a+1

2 summands. One of these W0, is the identity domain

wall of D(Da). The remaining n/a−1
2 summands all correspond to the Lagrangian algebra

L(B, B, id) ∈ D(Da)⊟D(Da), where B = CDa/〈 f 〉 ∼= 1⊕ (1,ε). The anyon ( f , 1) ∈ D(Dn)
splits as a direct sum of several wall excitations at each D(Dn)−D(Da) domain wall, one of
which becomes the anyon ( f , 1) ∈D(Da), and the rest of which are distinct and confined
to the wall. Each summand of W gives a different identification of the summands of ( f , 1)
on the left and right domain walls, with only the identity summand of W identifying the
mobile summands ( f , 1) ∈ D(Da) on both sides. We will see that the summands other
than W0 are all equivalent as Witt equivalences D(Da)→D(Da).

A description of string-net models for a class of similar boundaries appears in Appendix
C.2; this boundary is the case where G = Dn, H = 〈ra〉 ⊆ Dn.

(2) The algebra C(A→ A) is generated under composition by projections πrka = πr−ka onto
the simple summands of A, where k runs from 0 to n/a−1

2 . We also adopt the notation
π1 := πr0 . Observe that End(A) ∼= (C〈r

a〉) f , the part of the algebra C〈r
a〉 of functions on

〈ra〉 ∼= Z/ n
a stable under the action of f , which exchanges ra and r−a. Along the same

lines, the algebra (C(A→ A),⋆) is justC[〈ra〉] f , the part of the group algebra of 〈ra〉 stable
under the action of f . Explicitly, the identity for ⋆ is n

aπ1, and the convolution product is
given by

πrka ⋆ πr ja =
a
n
(πr(k+ j)a +πr(k− j)a) .

Minimal projections for the convolution product are as follows.

w0 :=

n/a−1
2
∑

j=0

πr ja ,

wk :=

n/a−1
2
∑

j=0

�

e2πi jk(a/n) + e−2πi jk(a/n)
�

πr ja .

We again denote the summand of W corresponding to wk by Wk. The minimal projections
correspond to indecomposable Dn-subrepresentations ofC[〈ra〉], i.e. subspaces ofC[〈ra〉]
which are preversed by the Dn-action. As usual, w0 is proportional to idA, and W0 is the
identity/trivial domain wall from Z(X )∼= Cloc

A
∼=D(Da) to itself.

(3) Most of the anyons d ∈D(Da)∼=D(Dn)loc
A are free A-modules. Similar to the the previous

two examples, distinct free modules partition those simple objects of D(Dn) which have
the form (r x ,ω j), including the objects (1,σ j). (Here r x represents a conjugacy class of
Dn, while ω j and σ j are associated with irreducible representations of Dn; see Appendix
C.3 for details). For each such anyon c ∈ D(Dn), either c is a summand of A, or cA is the
direct sum of n

a distinct simple objects. In fact, in this case we have C(cA→ cA)∼= C[〈ra〉]
as a C(A→ A)∼= C[〈ra〉] f -module. Therefore, for anyons d of the form (1,σk) or (rk,ω j),
there are 1-dimensional spaces of tunneling operators d → d for the summand W0, and
2-dimensional spaces of tunneling operators d → d for Wk when k ̸= 0.
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The remaining free modules can be divided into two overlapping pairs: A and (1,ε)A; and
( f , 1)A and ( f ,−1)A. We begin with the latter. Something more interesting happens to the
anyons ( f ,±1) ∈D(Da), because the anyons ( f ,±1) ∈D(Dn) split into several summands
at the domain wall, only one of which is local. Since ( f , 1)∼= ( f ,−1)(1,ε), and the Abelian
anyon (1,ε) remains an Abelian anyon when A is condensed, we focus solely on the fate
of ( f , 1). As described in Appendix C.3, the free module ( f , 1)AA decomposes as follows.

( f , 1)AA
∼= ( f , 1)A⊕





n/a−1
2
⊕

k=1

( f ,σk)A



 .

Here (g,ρ)AA denotes a free module over an object (g,ρ) ∈ Irr(D(Dn)), where g ∈ Dn
and ρ ∈ Irr(Rep(StabDn

(g))), while (h,λ)A denotes an object in Irr(D(Dn)A ∼= D(Da, Dn),
where h ∈ Da, and λ ∈ Irr(Rep(StabDn

(h))), with Dn acting on Da
∼= Dn/〈ra〉 by conjugacy.

In particular, when we write ( f ,ρ)A, ρ is an irreducible representation of

StabDn
( f ) = 〈 f , ra〉 ∼= Dn/a .

The underlying object of ( f , 1)A is the simple object ( f , 1), while the underlying object
of ( f ,σk)A is ( f , 1)⊕ ( f ,−1). Consequently, there are 1-dimensional spaces of tunneling
operators ( f , 1)A→ ( f , 1)A.

(4) In this case, we will be able to identify the domain wall summands Wi by the numbers of
tunneling channels alone. Since

W ∼=
n−1
2a
⊕

k=0

Wk

has many summands, yet CA(( f , 1)A, ( f , 1)A) ∼= C(( f , 1), ( f , 1)) is only 1-dimensional, we
can immediately see that there cannot be nonzero tunneling operators for the anyon
( f , 1)A ∈ Z(X ) through all summands of W - in fact, ( f , 1) must be confined in every
summand but W0.

The fate of (1,ε) is closely related to that of ( f , 1). The anyon (1,ε) in the condensed
D(Da) topological order is just the free module (1,ε)AA. However, since
(1,ε)(rak, 1) ∼= (rak, 1), there are many nonzero tunneling operators 1 → (1,ε) and
(1,ε)→ 1.

Explicitly, we have dim(C(A → A)) = dim(C((1,ε)A → (1,ε)A)) = n/a+1
2 , while

dim(C(A → (1,ε)A)) = dim(C((1,ε)A → A)) = n/a−1
2 = n/a+1

2 − 1. Thus, we see that
the anyon (1,ε) ∈ Cloc

A from the condensed region condenses on at least some summands
of the domain wall.

We can use these observations to give a more precise description of the various summands
in terms of a Lagrangian algebra L(B, B,Φ) of the folded theory D(Da)⊠D(Da). We know
that ( f , 1) is confined by all but the trivial summand W0. Thus some anyon which braids
nontrivially with ( f , 1) must condense on each of the remaining n/a+1

2 − 1 summands.
This can only be (1,ε), since no other anyons of Cloc

A have nonzero tunneling operators to
the vacuum. Thus, with the exception of W0, all summands of W must correspond to a
Lagrangian algebra L(B, B,Φ), where B ∼= 1⊕ (1,ε) is the condensable algebra in D(Da)
described above, and Φ is an outer automorphism of D(Da)loc

B
∼=D(Z/a). In other words,

the indecomposable domain walls in these superselection sectors correspond to a strip of
Z/a toric code containing an invertible boundary corresponding to the autoequivalence
Φ, separating the two D(Da) bulk regions. Since Z/a ⊆ Da is the subgroup generated by
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r ∈ Da, this is an example of the ‘smooth’ boundary D(G)−D(K) for K ⊆ G for which a
lattice model is given in § C.2.

As shown in Appendix C, D(Da)loc
B
∼= D(Z/a), the Z/a toric code, with (r x ,ω j) ∈ D(Da)

splitting as ex m j ⊕ e−x m− j . The possible autoequivalences of D(Z/a) are computed in
[9, 55]. Because each (r x ,ω j) only tunnels to itself through each Wk, the autoequiva-
lence Φ : D(Z/a)→ D(Z/a) must be either the identity, or the autoequivalence Ψ which
maps e→ e, m→ m. However, because B ∼= CDn/〈r〉 ∼= CZ/2, there is a nontrivial automor-
phism ψ of B, which acts as 1 on the 1 component and −1 on the (1,ε) component. This
automorphism ψ induces the automorphism Ψ of D(Dn)loc

B , so as explained in Remark
3.6, L(B, B, id) and L(B, B,Ψ) are isomorphic Lagrangian algebras, meaning that the two
possible autoequivalences id and Ψ give equivalent domain walls.

(5) Anyons of the form (1,σk) where n
a does not divide k are confined to the middle D(Dn)

strip. From the half-braiding (C.1) on D(Dn) and the idempotents in C(A→ A) computed
above, we can see that the operator Lσk

that inserts an extended (1,σk)-string operator
in the middle strip satisfies Lσk

w0 = wk Lσk
, meaning that Lσk

maps the W0 sector onto
the Wi sector. More generally, Lσk

maps the Wi sector onto the Wi+k and Wi−k sectors.

One might interpret this by saying that the idempotents wi count (up to sign) the number
of extended m-strings in the uncondensed bulk region running parallel to the domain walls
region in an appropriate non-Abelian sense, where m ⊕ m−1 := (1,σ1). Of course, just
as we saw in the toric code example of § 5.1, the exact number of m-strings in a partic-
ular superselection sector is not well-defined (even up to sign), because of the possibility
of different microscopic realizations of the condensation domain walls. This is again re-
flected mathematically by the fact that the summands Wi for i ̸= 0 are equivalent X −X
bimodule categories, even though they are different as summands of W .

The description of point defects between different summands in terms of D(Dn) bulk
anyons is exactly analogous to the examples discussed above: the anyon (1,σk) becomes
a point defect between Wi and Wi+k ⊕Wi−k. When an (r x , 1) particle from one of the
condensed regions with D(Da) topological order is brought into the bulk, braids around
a (1,σk) anyon, and returns to the boundary, it acquires a phase of ω±kx , with the sign
determined by the choice of superselection sectors above and below the defect.

Similar to the previous examples, we can view an ( f , 1) anyon near a region where A is con-
densed as having a configuration space corresponding to the object ( f , 1)A∈D(Dn). When
an ( f , 1) anyon braids around a (1,σk) anyon, summands of
(( f , 1)A)(1,σk) ∼= (1,σk)(( f , 1)A) acquire different phases, so that the summands of
( f , 1)AA are permuted. One of these summands becomes the anyon ( f , 1)A in the con-
densed phase D(Da), while the others are confined excitations on the domain wall. Thus,
the ( f , 1) particle in the D(Da) condensate is unable to tunnel through at least one of the
wall segments adjacent to a (1,σk) point defect, and hence its braiding with such defects
cannot be defined.

6 Conclusions and outlook

In this article, we introduced enriched UFCs as a new categorical framework of for describ-
ing (2+1)D topologically ordered phases and topological domain walls between them. We
propose that particle mobility through domain walls is characterized by tunneling operators,
which appear as higher morphisms in a 3-category of (2+1)D topological orders. We used the
action of tunneling operators on spherical ground states to identify the superselection sectors
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of composite domain walls, analyzing each sector from a particle mobility perspective, and
explicitly demonstrated our methods in several examples.

In particular, we saw that when performing anyon condensation in the complement of a
strip, the composite domain wall between condensed bulks has several distinct superselection
sectors. If our condensate is associated with deequivariantization, then different superselec-
tion sectors of the domain wall act differently on anyons in the condensed phase which arise
from the splitting of an anyon in the uncondensed phase. In examples which go beyond dee-
quivariantization, such as the dihedral example of § 5.4, summands of the composite boundary
may differ in terms of particle mobility: anyons from the condensed phase may become con-
densed or confined at the domain wall in some superselection sectors and not others.

We also saw that, when two parallel domain walls are placed on a sphere, non-contractible
loop operators in the uncondensed strip exchange the superselection sectors for the domain
wall. One direction for future investigation would be to uncover the general story of non-local
operators in the middle strip which map between superselection sectors of the composite do-
main wall. Loop operators associated with confined anyons act transitively on superselection
sectors, and point defects between the domain walls which arise as summands of a composite
domain wall come from confined anyons in the middle bulk region, but such point defects may
also have a simpler description in terms of wall excitations on the original domain walls.

Another possible direction involves using a more general notion of boundary between
(2+1)D topological orders. In this article, we considered only (1+1)D domain walls which
live on the boundary of Walker-Wang models, which do not extend into the (3+1)D bulk. One
could also consider domain walls which do extend into the bulk, i.e., (1+1)D domain walls on
the boundary which are attached to a (2+1)D domain wall between Walker-Wang bulks. This
could potentially include gapless domain walls between topological orders with a different
Witt class as the anomaly, which were studied extensively in [92,93].

The ground state degeneracy associated with domain walls in (2+1)D which we have
analyzed has potential uses in quantum computation [13]. Also, there has been much re-
cent work on the machinery of fusion 2-categories [40, 45] and nondegenerate braided fu-
sion 2-categories [72], which provide a mathematical description of (3+1)D topological or-
der [88, 89, 98]. Some of the theory of condensable algebras which underlies our results has
already been lifted to this setting [38, 39, 60], and further lifting our results to the case of
fusion 2-categories would be a natural approach to understanding the composition of (2+1)D
domain walls between (3+1)D topological orders.
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A Fusion and modular categories

Recall that a multifusion category X is a finite semisimple tensor category where all objects
are dualizable [48, Def. 4.1.1]. If the tensor unit 1X is a simple object then X is called a
fusion category. As noted in the introduction, we will omit the tensor product symbol and
simply write ab for the tensor product of two objects in X . We denote by Irr(X ) a set of
representatives for the simple objects in X , so that every object is isomorphic to one of the
form

⊕

f ∈Irr(X ) N f f . The associator is a natural isomorphism

αa,b,c : (ab)c→ a(bc) ,

which will be suppressed whenever possible. For the description in terms of F -matrices, we
refer the reader to [124].

Given a fusion category X , one can construct the fusion category Xmp where the order of
tensor product is reversed, i.e. x ⊗Xmp y := y ⊗X x , replacing α with α−1.

By [115], if a fusion category is unitarizable, then it is uniquely unitarizable. This means
being unitary is a property of a fusion category, which manifests as the existence of a set Irr(X )
such that the F -matrices are unitary.

In particular, a UMTC is a unitary fusion category equipped with a unitary nondegenerate
braiding, where nondegenerate means that the S-matrix is invertible. If C is a UMTC, objects
in Irr(C) classify anyon types in a C topological order.

We make heavy use of the graphical calculus for UMTCs [7, 68]. Strings are labelled by
objects in a UMTC, and correspond to the worldlines of direct sums of anyons [21,26,78,124].
We denote the braiding of C by β , which we depict graphically by a crossing:

βc,d = dc : cd → dc . (A.46)

For the description of the braiding in terms of unitary R-matrices, we refer the reader to [124].
In general, the objects c and d in the above diagram can be direct sums of simple objects;
the braiding between two direct sums is determined by the braidings between each pair of
summands.

By [63, 73], the collection of fusion categories forms a 3-category named UFC, whose
objects are fusion categories, 1-morphisms are finitely semisimple bimodule categories, 2-
morphisms are bimodule functors, and 3-morphisms are bimodule natural transformations.
We refer the reader to [46] for more details. This 3-category has a symmetric monoidal struc-
ture given by Deligne tensor product ⊠. Given fusion categories X ,Y , the simple objects of
X ⊠Y are exactly f ⊠ g such that f ∈ Irr(X ) and g ∈ Irr(Y), with the obvious tensor product
fusion rules.

A braided fusion category C can act on a fusion category X via a braided tensor functor
Φ : C → Z(X ) into the Drinfeld center of X . A fusion category X equipped with such a C-
action is called a module tensor category for C [67,90]. If U : Z(X )→ X is the functor which
forgets the half-braiding, then the action C ⊠ X → X given by c ⊠ f 7→ U(Φ(c)) f makes X
an ordinary module category for the underlying fusion category of C. The full data of Φ can
be thought of as compatibility between this action, the braiding in C, and the tensor product
in X . Given two braided fusion categories C,D, a bimodule tensor category is a module tensor
category for the Deligne product C ⊠D, where D denotes taking the reverse braiding.41

Similarly, braided fusion categories form a symmetric monoidal 4-category called UBFC,
whose objects are braided fusion categories, 1-morphisms are bimodule multifusion cate-
gories, 2-morphisms are finitely semisimple bimodule categories with appropriate coherences,

41We use the same labels for objects in D and D, so that d denotes the dual of an object d, rather than the
corresponding object in D.
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3-morphisms are bimodule functors, and 4-morphisms are natural transformations. We refer
the reader to [14,74] for more details. Again, UBFC is symmetric monoidal under the Deligne
product. Physically, the Deligne product C ⊠D corresponds to stacking two decoupled layers
of (2+1)D phases. The composition of 1-morphisms will be discussed in § 3.1 below.

B Condensable algebras

In this appendix, we recall the mathematical notions necessary to understand anyon conden-
sation, most of which appear in [42], along with their physical interpretation, which mostly
follows [85]. The basic idea of anyon condensation is that some collection of anyons, the con-
densate, becomes identified with the vacuum. In order to consistently identify a condensate
with the vacuum, the condensate must come equipped with additional data: the structure of a
condensable algebra, also known as a unitarly separable étale algebra. We also define the cat-
egory of modules over a condensable algebra, which can be used to describe the topological
order in and at the boundary of regions where the condensable algebra has been condensed.

An algebra object A in the UMTC C consists of the data (A, mA, iA), where A is an object in C,
i.e. a direct sum of anyons, the multiplication operator mA : AA→ A is denoted by a trivalent
vertex, and the unit operator iA : 1C → A is denoted by a univalent vertex, and mA and iA satisfy
the identities below. In the remainder of this subsection, unlabelled black strings refer to the
object A.

=
︸ ︷︷ ︸

associative

= =
︸ ︷︷ ︸

unital

.

We denote the adjoints of mA and iA by their vertical reflections. By composing mA with mem-
bers of an orthonormal basis for

⊕

x∈Irr(C) C(x , A) (or
⊕

x∈Irr(C) C(A, x)) on each strand, one
can see that the choice of mA is equivalent to the choice of vertex lifting coefficients [51] for
the condensate A.

An algebra (A, mA, iA) ∈ C is called condensable if it is also:

• commutative: = mA ◦ βA,A = mA =

• unitarily separable: m†
A is an A− A bimodule map and mA ◦m†

A = idA.

= = =

Typically, we also assume A is connected, i.e., dim(C(1C → A)) = 1. In this case, by [110,
Rem. 5.6.3], we get standard duality pairings for A by

evA := coevA := .

Explicitly, as an important consequence of unitary separability of a condensable algebra A,
the multiplication map mA determines an orthogonal projection m†

AmA, selecting specific fusion
channels between the objects in the direct sum A. Likewise, the unit map selects the unique
vacuum channel. The physical interpretation of all these conditions is that, when the images
of these projections are energetically favored, strings labelled by A behave like the vacuum
string [51], so that any 2D network of A-strands only depends on the connectivity, and not the
genus. Thus, we may replace a single A-strand by an ‘A-strand mesh’ which behaves like a 2D
foam/defect [35,36,60,85], making A the new vacuum in this 2D region.
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Given a condensable algebra A ∈ C, we would like to define the UMTC describing excita-
tions in a (2+1)D bulk region where A is condensed. However, it is more convenient to first
define the UFC CA, which describes wall excitations at the boundary between a region with
C bulk region, and a region where A has been condensed. This CA is the category of right
A-modules MA = (M , rM ) in C [57] (see also [24] and [42, §3.3]).

The category CA is a UFC derived from C with fusion rules consistent with the identification
of A with the vacuum. To a first approximation, modules MA = (M , rM ) are the equivalence
classes of anyons which are identified by condensing A. More precisely, M is a direct sum of
anyons and the right action rM : MA→ M , is a choice of fusion channels between M and the
condensate A, allowing M to absorb A. We denote MA by a green string and the right action
rM by a green trivalent vertex. The choice of rM must make M stable under repeated fusion
with the condensate, leading to the following associativity and unitality conditions.

M

=
M

︸ ︷︷ ︸

associative

M
=

M
︸ ︷︷ ︸

unital

.

Remark B.1. Note that this graphical definition of a category of A-modules makes sense much
more generally: if X is a (multi)fusion category, A is an algebra in X , and M is a right X -
module category, the same diagrams define a notion of right A-module in M, and hence a
category MA of such modules. Such a category appears in the definition of Notation 3.7.

Since A is a condensable algebra, the category CA of A-modules has a tensor product ⊗A,
which describes the fusion of two excitations living on the domain wall. The tensor product
of two A-modules is the image of the projection

pM ,N := ∈ EndC(MN) ,

where the orange string denotes N , and the crossing is the braiding in C. One can interpret
the tensor product on CA as being defined by embedding CA→ ACA, where each right A-module
is equipped with a left action defined via the right action and the half-braiding on A. The
category ACA of A−A-bimodules has a natural monoidal structure for any algebra A in a fusion
category [48, 7.8.25].

The image of the projection pM ,N is the largest subobject of MN where the effects of fusing
a copy of A into the M strand agrees with the effect of fusing A into the N strand. Thus, fusion
channels in MN which are preserved by pM ,N are stable under fusion with the condensate,
whereas fusion channels which are killed by pM ,N are also killed when fusing with the con-
densate. In particular, AA is the tensor unit of CA; when A is condensed, A becomes the new
vacuum.

The condensed region has topological order described by Cloc
A , the subcategory of CA which

consists of wall excitations which braid trivially with the condensate, and hence can be pulled
off the wall into the bulk region where A is condensed [85, § 2.4]. The UMTC Cloc

A consists of
the local right A-modules [42, Def 3.12], which satisfy

• local: = rM ◦ βA,M ◦ βM ,A = rM = .

The braiding on Cloc
A is inherited from C, and one checks that it is compatible with the ten-

sor product in CA. It is known that Cloc
A is again a modular tensor category [83, Thm 4.5] [42,
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Cor 3.30]. Since local modules braid trivially with the condensate, they can still move adiabat-
ically about the system where A is condensed; modules that do not satisfy the locality condition
braid nontrivially with A, and are therefore confined to the domain wall. In the special case
where Cloc

A
∼= Hilbfd, i.e. the condensed region has trivial topological order, we say that A is a

Lagrangian algebra.
Often, we also consider inclusions A ⊆ B of condensable algebras in C. Restricting the

multiplication map BB→ B to BA gives B the structure of an A-module, and the commutativity
of B implies that this A-module is local. Hence, condensable algebras B which contain A as
a subalebra are condensable algebras in Cloc

A . Conversely, if BA is a condensable algebra in
Cloc

A , then forgetting the module action makes B a condensable algebra in C, with the unit map
AA→ BA giving an inclusion of algebras A→ B [42, 3.6].

Categories of modules over an algebra also play an important role in understanding anyon
condensation from the perspective of enriched fusion categories, as outline in Example 3.2.
Observe that the definition of the tensor product ⊗A does not use the fact that C is braided,
but only that A can half-braid under objects in C, i.e. that A∈ Z(C). Therefore, given a unitary
fusion category X and a condensable algebra A ∈ Z(X ), we can define the unitary fusion
category XA of right A-modules in X . We then have Z(XA) ∼= Z(XA)loc [42, Thm. 3.20], so
that XA provides the data for a lattice model realization for both the domain wall and the bulk
region where A is condensed. As we outlined in Example 3.2, this generalizes straightforwardly
to the case where X is A-enriched and A∈ ZA(X ).

C D(Dn)

In this appendix, we provide some background on the UMTC D(Dn), where Dn is the dihedral
group with 2n elements, with presentation Dn = 〈r, f |rn, f 2, (r f )2〉. We begin in § C.1 by
establish general facts and notation for D(G), where G is a finite group. In § C.2, we describe
a commuting projector lattice model for D(G) topological order. Finally, in § C.3, we work out
the specific case G = Dn in detail.

C.1 D(G) for a non-Abelian group G

Anyons in D(G) correspond mathematically to irreducible G-graded G-representations [16,
§3.2] Explicitly, a G-graded Hilbert space is a Hilbert space V together with a decomposition
V =

⊕

g∈G Vg . The subspace Vg is called the g-graded component of V , and states v ∈ Vg
are said to be g-graded. Maps between G-graded Hilbert spaces must preserve the grading,
sending g-graded vectors to g-graded vectors. A G-graded G-representation consists of a G-
graded Hilbert space V , together with an action φ : G → End(V ) of G by unitary operators,
satisfying φhVg

∼= Vhgh−1 .
This algebraic description comes from the fact that D(G) ∼= Z(Hilb[G]), the center of the

category of finite-dimensional G-graded Hilbert spaces. The tensor product on Hilb[G] is the
usual tensor product of Hilbert spaces, and the grading is defined by

(V ⊗W )g =
⊕

h

Vh ⊗Wh−1 g

the grading of a pure tensor is the product of the two gradings. A half-braiding amounts to
the data of a G-representation. Explicitly, if Ch is the 1-dimensional h-graded Hilbert space
spanned by eh, then the half-braiding Ch ⊗ V → V ⊗Ch is given by

eh ⊗ v 7→ φh(v)⊗ eh .
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The requirement that the half-braiding preserves the G-grading means the representation φ
must conjugate the grading, as described above. Thus, if V and W are objects in D(G), and
vg ∈ V and wh ∈W are graded vectors, then the braiding has the form

βV,W : vg ⊗wh 7→ φW
g (w

h)⊗ vg . (C.1)

An irreducible G-graded G-representation is determined by a pair (g,ρ) where g ∈ G and
ρ ∈ Irr(Rep(StabG(g))) is an action of StabG(g) on a Hilbert space Vρ. Consequently, we will
generally label simple objects in D(G) by such pairs. (Often, we just speak of the action ρ
and suppress the Hilbert space Vρ.) We can define a G-graded G-representation W by setting
Wg := Vρ, which gives an irreducible G-graded StabG(g)-representation, and inducing to get
a G-representation. The final Hilbert space W will still have Wg

∼= Vρ, Whgh−1
∼=Wg for every

h ∈ G, and Wk
∼= 0 if k is not conjugate to g. For completeness, we give an explicit description

of the construction of the G-graded G-representation (g,ρ). Suppose {vi} is a basis for Vρ.
Then the induced representation will have the basis

�

vh
i

�

�h ∈ [g]
	

, where [g] is the conjugacy
class of g. Choose R ⊆ G so that each h ∈ [g] satisfies h= r gr−1 for precisely one r ∈ R. Then
every h ∈ G can be written as rs for some r ∈ R and s ∈ StabG(g). Setting eρs(v

g
i ) := (ρh(vi))g

and eρr(v
g
i ) := (vr gr−1

i ) completely determines the representation eρ.

Example C.1. For an Abelian group A, the theory of A-graded A-representations is straightfor-
ward: an A-graded A-representation is just a pair (a,ρ) where a ∈ A and ρ ∈ Rep(A), with the
entire representation graded by a. As a fusion category, D(A)∼= Hilb[A]⊠Rep(A).

We now provide a fully explicit example of a G-graded G-representation where G is not
Abelian. The theory of dihedral groups will be analyzed in much more generality in Appendix
C.3 below, but we still use the dihedral group G = D3

∼= S3 here, because it provides the
simplest possible non-Abelian example.

Example C.2. Consider
G = D3 = 〈r, f |r3 = 1, r f , f r−1〉 .

Another way of understanding G is that G ∼= S3, with r = (123) and f = (23). The group D3
has a single 2-dimensional representation σ given by

σ : r 7→
�

e2πi/3 0
0 e−2πi/3

�

, f 7→
�

0 1
1 0

�

.

Here, σ acts on the Hilbert space V ∼= C2; a basis of V is {e1 = (1,0)T , e2 = (0,1)T }.
There are 3 possible ways to define a D3-grading on σ. First, we could set V1 := V (and

Vg := 0 for g ̸= 1). Since D3 = StabD3
(1), this is the representation (1,σ).

Second, we could set Vr := span e1 and Vr−1 := span e2. Since r−1 = f r f −1, the D3-grading
is compatible with the D3-action. Since StabD3

(r) = 〈r〉, this is the representation (r, e2πi/3).
Here, we denote a representation of the cyclic group 〈r〉 by the eigenvalue of r, which uniquely
determines the action of 〈r〉 on the r-graded component, since all irreducible representations
of Abelian groups are 1-dimensional. The formulae for the induced representation described

above then force áe2πi/3 ∼= σ. This representation could also be called (r−1, e−2πi/3). In gen-
eral, whenever g /∈ Z(G), we should expect (g,ρ) to have multiple equivalent labels in this
way. Finally, we could set Vr−1 := span e1 and Vr := span e2. This is the representation
(r, e−2πi/3)∼= (r−1, e2πi/3).

We also make some preliminary observations about anyons which must braid trivially with
each other. If g ∈ Z(G), then (g, 1) is a pure flux excitation. Since g ∈ StabG(h) for every
h, the anyons (g, 1) and (k, 1) braid trivially for every k. Anyons of the form (1,ρ) are pure
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charge excitations, which braid trivially since ρ(1) = 1 for every ρ. Other anyons, including
(g, 1) for g /∈ Z(G), are dyonic, and determining whether they braid trivially involves actually
computing the braiding (C.1). In general, the double braiding between representations (g,λ)
and (h,ρ) is

vk ⊗wℓ 7→ eλkℓk−1

�

vk
�

⊗ eρk

�

wℓ
�

,

where e· refers to the induced representation, k ∈ [g], and ℓ ∈ [h]. In particular (g,λ) and
(1,ρ) commute precisely when ρg = id, since the double braiding simplifies to

vg ⊗w1 7→ ρg(v
g)⊗w1 .

We now briefly describe some condensable algebras over D(G), along with the categories
of modules; full details, as well as a description of all condensable algebras in D(G,ω), appear
in [37]. We make use of the modified quantum double construction [18].

Definition C.3. If L and K are finite groups, and L is equipped with a K-actionφ : K → End(L),
then the modified quantum double D(L, K) is the category of L-graded K-representations,
where the action of k ∈ K takes ℓ-graded vectors to (φ(k)(ℓ))-graded vectors.

Example C.4. If G is a finite group, H is a normal subgroup of G, and K is any subgroup of G,
then we have the fusion category D(G/H, K), where K acts on G/H by conjugacy.

In particular, the usual quantum double D(G) is a modified quantum double, namely
D(G, G). The category D(G/H, K) then becomes D(G)module tensor category, with the action
simply applying the quotient map G→ G/H to the grading and restricting the representation
from G to K .

If H Ã G is a normal subgroup, then the group algebra A := C[H] is a condensable al-
gebra in D(G). This algebra is spanned by H, and the generator h is an h-graded vector; as
an object in D(G), we have A ∼=

⊕

r∈R(r, 1), where R is a set containing one representative
of each conjugacy class in G which is contained in H. We have D(G)A ∼= D(G/H, G), and
D(G)loc

A
∼=D(G/H).

If K ⊆ G is any subgroup, then the algebra B := CG/K of functions on G/K (which need
not be a group, but carries a left action of G) is a condensable algebra in D(G). This algebra
is a G-representation, and so can be viewed as an object of D(G) which is entirely graded by
1. We have D(G)B ∼=D(G, K), and D(G)loc

B
∼=D(K).

C.2 String-net realization

We now describe a string-net model adapted to the special case of D(G). We begin with a
model dual to Kitaev’s quantum double model [77], built on a square lattice. This model can
also be viewed as a variant of [103], taking advantage of the fact that Hilb[G] is multiplicity
free. The special case of D(S3)∼=D(D3), appears explicitly in [114, § 5.4].

To produce the D(G) bulk, we assign to each link the Hilbert space CG . An orthonormal
basis of this Hilbert space is {|g〉 : g ∈ G}, i.e. 〈g|h〉 = δg,h. We define the operators λg and
ρg by λg |h〉 = |gh〉 and ρg |h〉 = |hg〉. Notice that λ†

g = λg−1 and ρ†
g = ρg−1; also, for every g

and h, we have [λg ,ρh] = 0.
For each plaquette p, we define the operator

Bp =
1
|G|

∑

g∈G

ρg

ρg

λ†
g

λ†
g

p .
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For each vertex v, we define

Av

�

�

�

�

�

�

�

�

a c†

b

d†

v

+

= −11−χ1(abc−1d−1)

�

�

�

�

�

�

�

�

a c†

b

d†

v

+

,

where χ1(1) = 1 and χ1(x) = 0 for x ̸= 1. The Hamiltonian

H = −
∑

v

Av −
∑

p

Bp ,

is then a sum of commuting projectors.
We can describe a model for a ‘rough’ boundary, where A = C[H] ∈ D(G) is condensed,

by replacing a strip of black links with red ones, where each red link carries a Hilbert space
spanned by G/H = {gH : g ∈ G}.

We redefine the operators Av and Bp at vertices and plaquettes with red links as follows.

Av

�

�

�

�

�

�

�

�

a

bH

dH

v
cH

+

= (−1)1−χH (abc−1d−1H)

�

�

�

�

�

�

�

�

a

bH

dH

v
cH

+

,

Av

�

�

�

�

�

�

�

�

aH

bH

dH

v
cH

+

= (−1)1−χH (abc−1d−1H)

�

�

�

�

�

�

�

�

aH

bH

dH

v
cH

+

,

Bp =
1
|G|

∑

g∈G

ρg

ρg

λ†
g

p λ†
gH , or

1
|G|

∑

g∈G

ρgH

ρgH

λ†
gH

λ†
gH

p .

Again, χH(H) = 1 and χH(xH) ̸= 1 if xH is not the identity coset H.
For h ∈ H, we have χH(hH) = χH(H) = 1. Consequently, anyons in D(G) of the form

(h,ρ) for h ∈ H will not excite Av terms at vertices v incident to a red link, explaining why A
becomes condensed.

We can also create a horizontal ‘smooth’ boundary, where B = CG/K is condensed, by
replacing a strip of black links with blue ones, where each blue link carries a Hilbert space
spanned by K .

We then redefine the operators Av and Bp at vertices and plaquettes with blue links as follows.

Av

�

�

�

�

�

�

�

�

a k

b

v

d
+

= (−1)1−χ1(abk−1d−1)

�

�

�

�

�

�

�

�

a k

b

v

d
+

,

Av

�

�

�

�

�

�

�

�

i k

j

ℓ

v

+

= (−1)1−χ1(i jk−1ℓ−1)

�

�

�

�

�

�

�

�

i k

j

ℓ

v

+

,
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Bp =
1
|K |

∑

k∈K

ρk

λ†
k

λ†
k

ρk

p , or
1
|K |

∑

k∈K

ρk

ρk

λ†
k

λ†
k

p .

C.3 Dihedral groups

We begin with a brief discussion of the UMTC D(Dn), the quantum double of the dihedral
group, where n is odd. The dihedral group Dn has 2n elements and is given by the presentation

Dn = 〈r, f |rn = f 2 = 1, r f = f r−1〉 .

If n is even, we have Dn
∼= Dn/2 × Z/2, and hence D(Dn) ∼= D(Dn/2) ⊠D(Z/2). We are

interested in behavior specific to non-Abelian topological orders, so we always choose n to
be odd in order to avoid the unnecessary complication of keeping track of one or more extra
layers of toric code.

The one dimensional irreducible representations of Dn are the trivial representation 1 and
the sign representation ε : r 7→ 1, f 7→ −1. The 2-dimensional irreducible representations of
Dn are given by

σ j : r 7→
�

ω j 0
0 ω− j

�

, f 7→
�

0 1
1 0

�

,

where ω = e2πi/n and j ranges from 1 to ⌊ n
2 ⌋. We sometimes also mention the reducible

representation σ0
∼= 1⊕ ε, or irreducible representations σ− j

∼= σn− j
∼= σ j .

The conjugacy classes in Dn are [1] = {1}, [rk] = {rk, r−k} for each k ̸= 0, and
[ f ] =

�

rk f
�

�0≤ k < n
	

. The stabilizer of rk is 〈r〉 ∼= Z/n, with irreducible representations
determined by an eigenvalue ω j of r, while the stabilizer of rk f is 〈rk f 〉 ∼= Z/2, with two
possible irreducible representations ±1. We have

IndDn
〈r〉(ω

j)∼= σ j ,

IndDn

〈rk f 〉(1)
∼= 1⊕

 

⌊ n
2 ⌋
⊕

k=1

σk

!

,

IndDn

〈rk f 〉(−1)∼= ε⊕

 

⌊ n
2 ⌋
⊕

k=1

σk

!

.

The fusion rules of D(Dn) are abelian, and are summarized in the following table.

X Y X ⊗ Y
(1,ε) (1,ε) (1,1)
(1,ε) (1,σk) (1,σk)
(1,σk) (1,σ j) (1,σk+ j)⊕ (1,σk− j)
(ra,ωk) (r b,ω j) (ra+b,ω j+k)⊕ (ra−b,ω j−k)
(1,ε) ( f , 1) ( f ,−1)

(ra,ωk)k ̸= 0 ( f , 1) ( f , 1)⊕ ( f ,−1)

( f , 1) ( f , 1) (1,1)⊕
�

⊕⌊ n
2 ⌋

a=1

⊕n−1
k=0(r

a,ωk)
�

We note the isomorphisms (ra,ωk)∼= (r−a,ω−k) and define by convention (r0,ωk) := (1,σk).
Most entries of the table involving ( f ,−1) are omitted, but since ( f ,−1) ∼= ( f , 1)⊗ (1,ε) and
(1,ε) is an Abelian anyon, they can be easily computed.
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The fusion graph for D(Dn) with respect to ( f , 1) is given by

1 ( f ,+1)

(1,σ1)

...

(r⌊n/2⌋,ωn−1)

( f ,−1) ε
,

where the middle vertices range over all remaining simple objects.
Observe that Dn has the index 2 normal subgroup Z/nZ = 〈r〉, and thus Hilb(Dn) is a

Z/2Z= 〈 f 〉-graded extension of Hilb(Z/nZ). By [61], the relative center ZHilb(Z/nZ)(Hilb(Dn))
is a Z/2Z-crossed braided extension of D(Z/nZ), and the Z/2Z-equivariantization of this rel-
ative center is D(Dn). Physically, this tells us that anyons with a flux other than [ f ] can be
thought of as direct sums of the abelian anyons in Z/nZ-toric code, resulting from the inclusion
of loops labelled f in the ground state. If we condense the algebra (1, 1)⊕ (1,ε) ∼= C[Z/2],
confining f , we end up with D(Z/n) topological order, and the 2-dimensional anyons
in D(Dn) all split. Explicitly, (1,σk) ∼= mk ⊕ m−k, (ra, 1) ∼= ea ⊕ e−a, and in general,
(ra,ωk) ∼= eamk ⊕ e−am−k. Since f r f −1 = r−1, lines labelled by f correspond to the au-
tomorphism e 7→ e−1, m 7→ m−1 of Z/n-toric code.

Thus, D(Dn) is an 〈 f 〉-graded tensor category, with D(Dn)1 ∼= D(Z/n)〈 f 〉 as the trivial
graded component, and ( f ,±1) as the simple objects in the f -graded component. As a D(Dn)1
module, the component D(Dn) f is the category of modules over the algebra C[〈r〉]⊗CDn/〈 f 〉.

Note that CDn/〈 f 〉 ∼= 1⊕
�

⊕⌊n/2⌋
k=1 σk

�

is isomorphic to the standard representation of Dn, where
Dn acts on (a vector space spanned by) the vertices of a regular n-gon.
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