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Abstract

The presence of scalar fields with non-minimal gravitational interactions of the form
ξ|φ|2R may have important implications for the physics of the early universe. We pro-
pose a procedure to solve the dynamics of non-minimally coupled scalar fields directly
in the Jordan frame, where the non-minimal couplings are maintained explicitly. Our
algorithm can be applied to lattice simulations that include minimally coupled fields
and an arbitrary number of non-minimally coupled scalars, with the expansion of the
universe sourced by all fields present. This includes situations when the dynamics be-
come fully inhomogeneous, fully non-linear (due to e.g. backreaction or mode rescatter-
ing effects), and/or when the expansion of the universe is dominated by non-minimally
coupled species. As an example, we study geometric preheating with a non-minimally
coupled scalar spectator field when the inflaton oscillates following the end of inflation.

Copyright D. G. Figueroa et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 29-09-2022
Accepted 01-06-2023
Published 04-09-2023

Check for
updates

doi:10.21468/SciPostPhys.15.3.077

Contents

1 Introduction 2

2 Continuum dynamics in the Jordan frame 4

3 Lattice formulation 8

4 Example: Geometric preheating 10
4.1 Initial conditions via linear analysis 11

1

https://scipost.org
https://scipost.org/SciPostPhys.15.3.077
mailto:daniel.figueroa@ific.uv.es
mailto:adrien.florio@stonybrook.edu
mailto:toby.opferkuch@cern.ch
mailto:bestef@physik.uzh.ch
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.15.3.077&amp;domain=pdf&amp;date_stamp=2023-09-04
https://doi.org/10.21468/SciPostPhys.15.3.077


SciPost Phys. 15, 077 (2023)

4.2 Non-linear lattice analysis 14

5 Summary and conclusions 18

A Curvature in α-time 19

B Energy-momentum tensor of a non-minimally coupled scalar 20

C Time evolution and low-storage RK methods 21

D Numerical convergence 23

References 24

1 Introduction

The dynamics of fields with non-minimal gravitational interactions may have important im-
plications for the physics of the early universe. In the case of scalar field φ (either singlet or
charged), one can add to the action an operator of the form ξ|φ|2R, where R is the Ricci scalar
and ξ is a real coupling constant controlling the strength of the interaction. The presence
of such term is actually required by the renormalization properties of a scalar field in curved
spacetime [1, 2], where it is a running parameter that cannot be set to zero at all energy
scales.1 In the case of the Standard Model (SM) Higgs field Φ, the operator ξ|Φ|2R is actually
the only missing operator of dimension-4 that respects all symmetries of the SM and gravity.
The coupling ξ can therefore be considered as the last unknown parameter of the SM. How-
ever, due to the weakness of the gravitational interaction, current particle physics experiments
provide only extremely weak constraints on this coupling, ξ ≲ 1015 [3]. It is therefore likely
that only early universe phenomena involving much higher energies than those accessible to
particle colliders can allow us to probe the non-minimal gravitational interaction of the SM
Higgs field, see e.g. [4–13].

Other fundamental (yet speculative) scalar fields may also have non-minimal interactions
with gravity. For instance, an early phase of accelerated expansion in the Universe, known as
inflation, is often assumed to be driven by a scalar field called the inflaton, with an appropriate
potential and initial conditions (for reviews on inflation see e.g. [14–18]). Indeed, a scalar
field with a non-minimal coupling to gravity can actually serve as a good inflaton candidate,
as any non-minimally coupled scalar theory can be mapped via a conformal transformation
to a minimally coupled theory with an effective potential that can sustain inflation. Another
popular realization of inflation lies in modified gravity f (R) theories, where f is an arbitrary
function of R (for a review on f (R) theories, see e.g. [19]). If f ′(R) ̸= 0 and f ′′(R) ̸= 0,
there always exists a mapping between the f (R) theory and a scalar-tensor theory with a
propagating scalar degree of freedom non-minimally coupled to gravity with a scalar potential
purely of gravitational origin. As previously mentioned, this setup can then be mapped onto
a minimally coupled theory with an effective potential suitable for inflation. A paradigmatic
example of this is Starobinsky inflation [20], defined by f (R) = R + αR2 with α > 0. After
a conformal transformation to obtain a minimally coupled theory, there is a scalar field –
the scalaron – with a potential that plateaus at large field amplitudes, naturally leading to

1Exceptionally, the running vanishes for the conformal value ξ= 1/6.
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inflation. Scenarios where the inflaton has a non-minimal gravitational coupling ξ|φ|2R lead
to inflationary predictions in excellent agreement with current observational constraints [21,
22]. This is independent of whether the inflaton is of gravitational origin (as in Starobinsky
inflation) or elementary origin as in Higgs-Inflation, where the inflaton is identified with the
SM Higgs [23]. It is very interesting that data from cosmological observations clearly favours
plateau-like potentials that naturally emerge in these scenarios [21].

Non-minimally coupled inflaton scenarios can also lead to very interesting phenomenology
during the period after inflation. If the inflaton oscillates around the minimum of its poten-
tial following inflation, particle species coupled with sufficient strength are typically created
in energetic bursts. This non-perturbative process of particle production is known as preheat-
ing, and it often leads to an exponential transfer of energy into particle sectors (for reviews
see [24–27]). This can occur in non-minimally coupled inflaton χ scenarios, where preheat-
ing into other degrees of freedom, e.g. scalar fields {φ}, can be realized very efficiently when
couplings of the form g2χ2φ2 or ξφ2R are considered. Preheating scenarios considering a
simple monomial inflaton potential and a preheat scalar field non-minimally coupled to grav-
ity ξφ2R were first considered in [28] and later on in [29], where an inflaton-preheat field
coupling g2χ2φ2 was also included. The excitation of the non-minimally coupled preheat field
due to the oscillatory behavior of the curvature R (dictated by the oscillations of the inflaton
field) was coined as Geometric preheating in Ref. [28], and we keep that terminology here.
Preheating following inflation due to higher order curvature terms f (R) = R+αnRn has been
studied considering geometric preheating effects in [30,31]. Preheating after Higgs-Inflation
was originally studied in [32–34], considered in more detail in [7,35], and lastly for modified
setups, like R2-Higgs inflation, in [36]. Preheating in multi-field inflationary scenarios with
N scalar fields {φ j} and couplings ξ jφ

2
j R has also been extensively studied [37–41]. Finally,

preheating with a non-minimal gravitational coupling f (φ)R with f a general function of φ,
has been also considered, see e.g. [42]. All of the above instabilities due to the presence of
non-minimal gravitational couplings can be generically regarded as “gravitational reheating”
mechanisms,2 as they lead to very efficient preheating, often exhibiting a violent transfer of
energy among fields. A different type of gravitational reheating mechanism was originally
put forward in [43] (see also [44]). Namely, a massless scalar field φ non-minimally coupled
to gravity is excited towards the end of inflation.3 The inflaton potential is chosen such that
there is a sustained kination dominated era with stiff equation of state 1/3 < w ≤ 1 after
inflation. As a consequence, the energy stored in φ (initially suppressed compared to the
inflaton energy) eventually becomes the dominant energy component of the Universe. This
idea is perhaps best exemplified in so-called Quintessential inflation [46–54]. The original
gravitational reheating mechanism, however, was shown in Ref. [55] to be inconsistent with
BBN/CMB constraints [56, 57] due to an excess amount of gravitational wave production.4

More relevantly, it has been also shown that a massless spectator field with a non-minimal
coupling to gravity does actually not scale as a radiation degree of freedom during kination
domination (as originally assumed in [43,44,46]), but rather experiences a tachyonic instabil-
ity due to the change in sign of R∝ (1−3w) for a stiff equation of state w> 1/3. If the field is
also self-interacting, its energy grows due to the tachyonic instability until the self-interaction
eventually compensates the tachyonic mass. This was first considered in Ref. [63], with the
SM Higgs as a spectator field with a non-minimal coupling to gravity. There the universe is

2This terminology does not apply to scenarios like Higgs-inflation, where only the inflaton is non-minimally
coupled to gravity, while the preheat fields are directly coupled (non-gravitationally) to the inflaton.

3In [43] a non-conformal coupling was considered, i.e. ξ ̸= 1/6, but assuming a quasi-conformal window
0 < |6ξ− 1| ≪ 1. Ref. [45] showed later on that the (6ξ− 1)2 suppression of the energy density there is lifted to
O(1) away from the quasi-conformal window.

4In these scenarios the gravitational wave background from inflation develops a large blue-tilt at high frequen-
cies, see e.g. [58–62].
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reheated into relativistic SM particles after the Higgs experiences tachyonic growth during a
period of kination domination and then decays. The same mechanism was later studied in
more detail and extended to generic scalar fields non-minimally coupled to gravity in [61],
see also [64, 65]. In [61], this mechanism was coined as Ricci reheating and we stick to that
nomenclature here.

All of the above scenarios exemplify the relevance of understanding the dynamics of scalar
fields non-minimally coupled to gravity in the early universe. The form of the action where the
non-minimal coupling to gravity is maintained explicitly is known as the Jordan frame. In this
frame, the resulting equations of motion are difficult to solve in full generality due to the non-
linear feedback among them. Consequently, most studies rely on a conformal transformation
of the metric that brings the gravitational action to the canonical Einstein-Hilbert form. This
defines the so-called Einstein frame, where the non-minimal coupling is absent and instead the
kinetic terms and scalar potentials of the matter fields are multiplied by a conformal factor
depending on the non-minimal coupling. Most of the studies cited above have worked out
the dynamics of non-minimally coupled scalar fields in the Einstein frame, or in the linear
regime in the Jordan frame, where analytic calculations can be employed. The two frames are
equivalent at the classical level, as long as the map between them is non-singular. However,
explicit examples exist where the conformal map does not exist for all field values, such as in
the transformation from a non-minimally coupled theory to a minimally coupled theory. In this
case, the conformal map is given by Ω2 = 1−ξ(φ/mp)2 which appears to be non-invertible for
φ2 = m2

p/ξ and ξ > 0 (here mp ≃ 2.4× 1018 GeV is the reduced Planck Mass). Furthermore,
it is not known to what extent the two frames are equivalent at the quantum level, as the
conformal factor to change from the Jordan to the Einstein frame is a local function of the
non-minimally coupled field Ω2(φ(x)), with φ(x) often treated as a quantum field. Some
works evaluate the map using the vacuum expectation value 〈φ2〉, but then it is not clear that
the Einstein frame description fully captures the physics of the theory originally written in the
Jordan frame, especially in the case where the initial conditions are determined purely through
quantum fluctuations.

In this paper, we introduce a technique for solving the system directly as written in the orig-
inal Jordan frame, avoiding the need to perform any conformal transformation. In particular,
we are able to solve the dynamics of an arbitrary scalar field φ with a non-minimal coupling
to gravity ξφ2R in an expanding background sourced by all fields present, even when the
dynamics become fully inhomogeneous and/or fully non-linear due to backreaction of the ex-
cited species, including when the expansion of the universe is dominated by the non-minimally
coupled species. We can self-consistently evolve the expansion of the universe while fully cap-
turing field inhomogeneities and non-linearities in the system, both of which typically develop
very rapidly when there are exponential instabilities like those typically arising in the presence
of a non-minimally coupled scalar field. As a working example, we study geometric preheating
effects involving a real scalar spectator field non-minimally coupled to gravity, excited via an
oscillatory effective mass from R that is sourced by oscillations of an inflaton with monomial
potential around its minimum.

2 Continuum dynamics in the Jordan frame

In this section we derive the equations of motion in the Jordan frame for a theory with a
non-minimally coupled scalar field. We consider a flat Friedmann-Lemaître-Robertson-Walker
(FLRW) background described by

ds2 = −a(η)2αdη2 + a(η)2δi jd x id x j , (1)
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with η an “α-time” variable related to cosmic time by d t = a(η)αdη. Here α is a (real number)
parameter to be conveniently chosen to suit each particular problem. Given the metric in
Eq. (1), the Ricci scalar R can be computed as (see Appendix A)

R=
6

a2α

�

a′′

a
+ (1−α)
�

a′

a

�2�

, (2)

where primes indicate derivatives with respect to η. We emphasize that the Ricci scalar is a
spatially homogeneous function, only depending on time, as expected from consistency with
Eq. (1). Let us consider a generic matter sector {ϕm} minimally coupled to gravity, together
with a scalar field φ non-minimally coupled to gravity. Without loss of generality, the action
of this system reads

S =
∫

d4 x
p

−g
�

1
2

m2
pR−

1
2
ξRφ2 −

1
2

gµν∂µφ∂νφ − V (φ, {ϕm}) +Lm

�

, (3)

where 1
2 m2

pR is the standard Hibert-Einstein term, 1
2ξRφ2 represents a non-minimal gravita-

tional interaction of φ, and V (φ, {ϕm}) encompasses both the self interactions of φ as well
as its non-gravitational interactions with the minimally-coupled matter sector. The term Lm
characterizes the dynamics of the minimally-coupled fields, including their interactions and
self-interactions (which we do not specify explicitly here since they are irrelevant for our
discussion). Varying the action with respect to φ, we obtain the following equation of mo-
tion for φ

□φ − ξRφ −
∂ V
∂ φ
= 0 , (4)

where□= gµν∇µ∇ν and∇µ is the covariant derivative. We see that the non-minimal coupling
introduces a term proportional to R in the equation of motion that acts a time dependent
effective mass for φ. Using the α-time metric given in Eq. (1), the above equation becomes

φ′′ + (3−α)
a′

a
φ′ − a−2(1−α)∇2φ + a2α

�

ξRφ +
∂ V
∂ φ

�

= 0 . (5)

Equivalently, we can think of this gravitational interaction as part of an effective potential

Veff(φ, {ϕm}, R)≡ V (φ, {ϕm}) +
1
2
ξRφ2 , (6)

that includes all together the non-minimal coupling to gravity, the non-gravitational inter-
actions with the minimally-coupled matter sector, as well as the self-interactions of φ. For
convenience, we can then think of a Lagrangian for φ given by

Lφ ≡ −
1
2

gµν∂µφ∂νφ − Veff(φ, {ϕm}, R) . (7)

The Einstein equations are obtained by varying Eq. (3) with respect to gµν

Gµν = Rµν −
1
2

gµνR=
1

m2
p

Tµν , (8)

with

Tµν = −
2
p
−g
δ(
p
−gLm)
δgµν

−
2
p
−g

δ(
p
−gLφ)
δgµν

≡ Tm
µν + Tφµν , (9)
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where Tm
µν and Tφµν have been defined as the energy-momentum tensors of the minimally-

coupled matter fields and the non-minimally coupled scalar field φ, respectively. In particular,
one finds (see Appendix B) the energy-momentum tensor of the non-minimally coupled field
to be

Tφµν = ∂µφ∂νφ − gµν

�

1
2

gρσ∂ρφ∂σφ + V
�

+ ξ(Gµν + gµν□−∇µ∇ν)φ2 . (10)

The trace of Tφµν, defined as Tφ = gµνTφµν, takes a simple form and will prove very useful for
simplifying the equations determining the evolution of the scale factor. In d + 1 spacetime
dimensions, we find

Tφ = (1− d)
1
2
∂ µφ∂µφ − (d + 1)V + ξGφ2 + d ξ□φ2 , (11)

where G = gµνGµν = (1− d)R/2 is the trace of the Einstein tensor with respect to the back-
ground metric. Taking d = 3 and using Eq. (4), we obtain

Tφ = (6ξ− 1)
�

∂ µφ∂µφ + ξRφ2
�

+ 6ξφV,φ − 4V , (12)

where V,φ = ∂ V/∂ φ. Notably, if ξ = 1/6, then for V = 0 or V ∝ φ4 we find that Tφµν is
traceless, i.e. Tφ = 0, as a consequence of the conformal invariance of Sφ =

∫

d4 x
p
−gLφ

in these cases. Given the FLRW metric in Eq. (1), the consistency of the Einstein equa-
tions requires that Tµν takes the form of the energy-momentum tensor of a perfect fluid
Tµν = diag {−ρ(η), p(η), p(η), p(η)}. We note that while fields can develop large spatial in-
homogeneities, the homogeneous and isotropic pressure and energy density p(η) and ρ(η)
should be understood as the result of a volume average over the inhomogeneous local field
expressions. When the averaging volume is sufficiently large compared to the excitation scales
of the fields, this procedure leads to a well-defined notion of a homogeneous and isotropic pres-
sure and energy density within the given volume. In this case, taking spatial averages over
the off-diagonal elements of Tµν leads to vanishing results, consistent with homogeneity and
isotropy within the considered volume. Under these conditions, the Einstein equations reduce
to the Friedmann equations in α-time

H2 ≡
�

a′

a

�2

=
a2α

3m2
p
ρ(η) , (13)

a′′

a
= −

a2α

6m2
p

�

(1− 2α)ρ(η) + 3p(η)
�

, (14)

where we defined H = a′/a, which is related to the cosmic time Hubble rate H as H =H/aα.
We define the energy density and pressure as

ρ(η) = ρφ(η) +ρm(η)≡ a−2α〈Tφ00〉+ a−2α〈Tm
00〉 , (15)

p(η) = pφ(η) + pm(η)≡
1

3a2
δi j〈Tφi j 〉+

1
3a2
δi j〈Tm

i j 〉 , (16)

with 〈. . . 〉 denoting volume averages. With these definitions, the explicit expressions for the
energy density and pressure of the non-minimally coupled field ρφ and pφ are found to be5

5The volume averages of the total divergence terms ∇2φ2 = ∇ · ∇φ2 can be converted into surface integrals
that vanish in the case of an infinite volume with well-behaved fields or in the case of a finite volume with periodic
boundary conditions.
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ρφ(η) =
1

2a2α
〈φ′2〉+

1
2a2
〈(∇φ)2〉+ 〈V (φ)〉+

3ξ
a2α

H2〈φ2〉+
6ξ
a2α

H〈φφ′〉 − ξ
a2
〈∇2φ2〉 ,

(17)

pφ(η) =
(1− 4ξ)

2a2α
〈φ′2〉 −

(1− 12ξ)
6a2

〈(∇φ)2〉 − 〈V (φ)〉+
2ξ
a2α

H〈φφ′〉 − ξ

3a2
〈∇2φ2〉

+ 2ξ〈φV,φ〉+
ξ

a2α

�

H2 + 12
�

ξ−
1
6

��

a′′

a
+ (1−α)H2
��

〈φ2〉 . (18)

In principle, one can solve for the scale factor a(η) from either Eq. (13) or Eq. (14). However,
it is difficult in practice to solve these equations due to their non-linear dependence on the
derivatives of the scale factor. An alternative approach is to relate the evolution of the scale
factor to the trace of the energy-momentum tensor, which only includes terms involving R and
the fields. An expedient way to do this is by computing the trace of Eq. (8), which gives

R= −
1

m2
p

gµν
�

Tφµν + Tm
µν

�

= −
1

m2
p

�

Tφ + Tm

�

. (19)

Inserting the expression for Tφ given in Eq. (12), taking the volume average of both sides, and
solving for R, we find an expression only in terms of the fields

R=
F(φ)
m2

p

�

(1− 6ξ) 〈∂ µφ∂µφ〉+ 4〈V 〉 − 6ξ〈φV,φ〉 − 〈Tm〉
�

,

F(φ)≡
1

1+ (6ξ− 1)ξ〈φ2〉/m2
p

.
(20)

This expression for R can be directly related to the evolution of the scale factor using Eq. (2).
This leads to the differential equation6

a′′

a
+ (1−α)
�

a′

a

�2

=
a2αF(φ)

6m2
p

�

(1− 6ξ) 〈∂ µφ∂µφ〉+ 4〈V 〉 − 6ξ〈φV,φ〉 − 〈Tm〉
�

, (21)

that together with the equation of motion forφ in Eq. (5), will allow us to spell out a simple and
concise numerical scheme to evolve this system. To start, it is convenient write the equations
in terms of natural variables, by rescaling fields and coordinates as

φ̃ =
1
f∗
φ , dη̃=ω∗dη , d x̃ i =ω∗dx i . (22)

with f∗ some typical field amplitude andω∗ a characteristic (inverse) time scale of the problem
to be studied. The choice of f∗ and ω∗ depends entirely on the scenario at hand (we will
provide an explicit example in Section 4. We also need introduce an appropriate rescaling of
the matter sector (see Ref. [67] for examples). If the matter sector simply comprises of a set of
scalar fields {ϕm}, these are normalized as in Eq. (22). We note that rescaling the coordinates
by ω∗ naturally induces the following rescaling in R

R̃=ω−2
∗ R . (23)

It is also natural to introduce rescaled energy densities and pressure

eV =
1

f 2
∗ ω

2
∗

V , ρ̃ =
1

f 2
∗ ω

2
∗
ρ , p̃ =

1
f 2
∗ ω

2
∗

p . (24)

6We note that this matches Eq. 12 of Ref. [66] in the case of a quartic potential and α = 1 (corresponding to
conformal time).
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Next, we reduce the order of the equation of motion for φ̃ by introducing a conjugate momen-
tum variable as

π̃φ = a3−αφ̃′ . (25)

The matter sector is treated in a similar way, with the rescaling of the conjugate momenta
variables depending on the spin of the species, see [67]. If the matter sector is comprised of
scalar fields, we simply introduce a set of conjugate momenta {π̃ϕm

}, analogously to Eq. (25).
In the new variables, the evolution of the non-minimally coupled scalar field is governed by
a system of coupled first-order differential equations, in terms of a kernel functional K̃φ , as
follows






φ̃′ = aα−3π̃φ ,

π̃′
φ
= K̃φ[a, φ̃, {ϕ̃m}, R̃] , with Kφ[a, φ̃, {ϕ̃m}, R̃]≡ a1+α ∇̃2φ̃ − a3+α

�

ξR̃φ̃ + ∂ eV
∂ φ̃

�

.

(26)
Similarly, to evolve the scale factor we use Eq. (21) as derived from the trace of the energy-
momentum tensor. Defining the conjugate momentum of a(η) as

πa = a1−αa′ , (27)

we arrive to a system of coupled first-order differential equations depending on another kernel
functional,

�

a′ = aα−1π̃a ,

π̃′a = K̃a[a, R̃] , with K̃a[a, R̃]≡ a2+α

6 R̃ .
(28)

To close the system, an expression for R̃ is needed in both kernels Kφ , Ka. Using Eq. (20), we
can write

R̃=
f 2
∗

m2
p





2 (1− 6ξ)
�

Ẽφ̃G − Ẽφ̃K
�

+ 4〈Ṽ 〉 − 6ξ〈φ̃ Ṽ,φ̃〉+ (ρ̃m − 3p̃m)

1+ (6ξ− 1)ξ〈φ̃2〉 f 2
∗ /m

2
p



 , (29)

where we have used 〈Tm〉 = 3pm − ρm and introduced the volume-averaged kinetic Ẽφ̃K and

gradient Ẽφ̃G energy densities

Ẽφ̃K =
1

2a6
〈π̃2
φ̃
〉 , Ẽφ̃G =

1
2a2

∑

i

〈∂̃iφ̃∂iφ̃〉 . (30)

In summary, Eqs. (26) and (28), together with the expression for R̃ in Eq. (29) (plus the equa-
tions of motion of the unspecified matter sector), represent a set of equations that completely
characterizes the dynamics of a system with a scalar field non-minimally coupled to gravity
in the Jordan frame. Generalization to multiple non-minimally coupled scalars is obtained
straight forwardly by summing over the terms with non-minimal coupling ξiφ

2
i in Eq. (29).

3 Lattice formulation

In order to evolve our system of equations Eqs. (26), (28) and (29) in a way that fully cap-
tures the spatial dependence of the fields, we need to choose a time evolution scheme and
to introduce a spatial discretization prescription. We use a lattice with N sites per dimension
with periodic boundary conditions. We will consider the lattice sites to represent comoving
coordinates. If the (comoving) length of the grid is L, the resulting (comoving) lattice spacing
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between sites is δx = L/N . We work with finite differences and use the following notation for
the forward and backward derivatives

∇±i f (n) =
± f (n)∓ f (n± î)

δx
, (31)

where f is an arbitrary scalar function defined on the lattice sites n = (n1, n2, n3), and î
represents a displacement vector of one unit in the i-th direction. We discretize the gradient
terms using forward differences and the Laplacian using a symmetric discretization

∑

i

〈∂iφ∂iφ〉 −→
∑

i

〈∇+i φ∇
+
i φ〉 , (32)

∇⃗2φ −→
∑

i

∇−i ∇
+
i φ . (33)

We are now in a position to define the evolution equations by introducing the discrete kernels

K̃φ
�

a, φ̃, {ϕ̃m}, R̃
�

= a1+α∇̃−i ∇̃
+
i φ̃ − a3+α

�

ξR̃φ̃ +
∂ eV

∂ φ̃

�

, (34)

K̃a

�

a, R̃
�

=
a2+α

6
R̃ , (35)

which we have already written in terms of natural field and spacetime variables, c.f. Eq. (22).
We have also introduced dimensionless discrete derivatives ∇̃ given by Eq. (31) in terms of
the dimensionless lattice spacing δ x̃ = L̃/N =ω∗δx , with L̃ =ω∗L.

At this point, it is important to realize that R̃ = R̃[φ̃, π̃φ , {ϕ̃m}, {π̃ϕm
}] depends on all

fields and conjugate momentum variables, and hence the kernel for the non-minimally cou-
pled field φ̃ depends on its own conjugate momentum. Because of this, preferred symplectic
algorithms such as staggered Leapfrog, velocity- or position-Verlet, cannot be used (see Ref. [67]
for a discussion on this). We can instead use Runge-Kutta (RK) methods, in particular explicit
RK algorithms. We have adapted the well known mid-point method to our set of equations,
corresponding to a second order RK method. To account for situations where a high time-
accuracy may be required, we have also implemented a particularly interesting family of ex-
plicit low-storage RK methods of higher order following Refs. [68,69]. These present multiple
advantages: they are easy to implement, the memory cost does not increase when increasing
the accuracy order, and in some cases an adaptive time-step scheme is allowed. The interested
reader can find more information and an explicit description of all these RK algorithms applied
to our system of equations in Appendix C.

One last important point is to have a discrete version of the Hubble constraint given in
Eq. (13). Verifying that this constraint is preserved by our numerical evolution scheme provides
an important check of the method (the resulting convergence is shown in Appendix D). In terms
of rescaled variables, it reads

�

a′

a

�2

=
a2α f 2

∗

3m2
p

�

ρ̃m + Ẽφ̃K + Ẽφ̃G + 〈eV 〉+
3ξ
a2α

�

a′

a

�2

〈φ̃2〉+
6ξ

aα+3

�

a′

a

�

〈φ̃ π̃φ̃〉
�

, (36)

where we have dropped the 〈∇2φ2〉 term of Eq. (17) because it is a total derivative whose
volume average vanishes due to the periodic boundary conditions of the lattice. We now have
all the tools to evolve our system of equations on the lattice. In the next section, we present
an explicit example in the context of geometric preheating. Lastly, note that all numerical
algorithms presented above have been implemented in the package CosmoLattice [67, 70],
which can perform user-friendly and versatile field theory simulations. These new algorithms
will be made publicly available in a future update of CosmoLattice.
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Figure 1: Time evolution of the effective potential of the non-minimally coupled field
φ as a function of the Ricci scalar. Oscillations between an unbounded and bounded
potential occur once the Ricci scalar begins oscillating at around one e-fold.

4 Example: Geometric preheating

We now study an example of geometric preheating directly in the Jordan frame, using the for-
malism developed in the previous sections. By geometric preheating, we refer to the excitation
of a light spectator field φ non-minimally coupled to gravity. This occurs due to the oscilla-
tory behavior of the spacetime curvature R that follows after inflation, when a homogeneous
inflaton field oscillates around the minimum of its potential [28] illustrated in Fig. 1. The fact
that R becomes oscillatory can be seen from the traced Einstein equations, assuming that the
homogeneous inflaton field χ initially dominates the energy density of the universe, such that
T = Tφ + Tinf ≈ Tinf = −∂ µχ∂µχ − 4Vinf(χ). This leads to

R= −
T

m2
p
≈

1
m2

p

�

∂ µχ∂µχ + 4Vinf(χ)
�

=
1

m2
p

�

4Vinf(χ)−
1

a2α
χ ′2
�

. (37)

One illustrative example is the case where Vinf(χ) =
1
2 m2χ2, in which case R can be approxi-

mated in cosmic time (α= 0) as

R=
1

m2
p

�

4Vinf(χ)− χ̇2
�

≈
R0

4

�a0

a

�3
[1+ 3cos(2mt)] . (38)

In this expression, it is manifest that R oscillates between positive and negative values due to
the harmonic oscillations of χ. In general, for an inflaton potential with a minimum around
the origin and an arbitrary power law behavior Vinf(χ)∝ |χ|p (p > 1), (or even for a linear
combination of various power laws) the oscillations of the inflaton will not be harmonic. This
does not change the fact that R, and hence the effective mass squared of the spectator field
m2
φ,eff = ξR, will still alternate periodically between positive and negative values. As a conse-

quence of the periodic tachyonic stages (m2
φ,eff < 0), initial quantum vacuum fluctuations of

the spectator field φ can be exponentially amplified if the strength of its non-minimal coupling
ξ is large enough. The amplification may persist until the effective tachyonic mass of φ is fully
screened by its own self-interactions, or until the energy of φ grows to the same order as the
energy available in the system. In either case, a detailed lattice study is required due to the
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non-linearity of the system. We present first in Section 4.1 a linear analysis of the initial insta-
bility of the mode functions of φ, then in Section 4.2 we present an analysis of the evolution
of the system once the dynamics become non-linear.

4.1 Initial conditions via linear analysis

Our procedure will consist of computing the power spectrum of the φ fluctuations induced
during inflation and the subsequent transition period via a linear analysis, which we then
use as the initial condition for the lattice evolution before the dynamics enter the non-linear
regime. To proceed, we consider a theory involving an inflaton field χ and a light spectator
field φ with a non-minimal coupling to gravity, similar to Refs. [28,30,31,71]

S =
∫

d4 x
p

−g

�

m2
p

2
R+Lφ +Linf

�

, (39)

with

Lφ = −
1
2

gµν∂µφ∂νφ −
1
2
ξRφ2 − V (φ) , (40)

Linf = −
1
2

gµν∂µχ∂νχ − Vinf(χ) . (41)

In this theory, the inflaton χ and the spectator field φ interact only gravitationally through
the non-minimal coupling ξRφ2. During slow-roll inflation, we have a quasi de-Sitter phase
where R ≈ 12H2 and H ≈ constant (its time derivative is slow-roll suppressed). This means
that for ξ > 0, the spectator field has a heavy effective mass m2

φ,eff ≈ 12ξH2 during inflation.
We assume that this effective mass dominates over V ′′(φ), such that the potential V (φ) can be
neglected during inflation. This, combined with the fact that the non-minimally coupled spec-
tator field φ is energetically subdominant during inflation, justifies the use of a linear analysis.
It will be convenient to work in conformal time (α = 1) where the metric is conformally flat
and quantization proceeds as in Minkowski space. In that case, we can write the action for φ
in terms of the canonically normalized field ϕ = aφ

Sϕ =
1
2

∫

dτd3 x
�

(ϕ′)2 − (∇ϕ)2 − a2
�

ξ−
1
6

�

Rϕ2
�

. (42)

We then canonically quantize ϕ as

ϕ̂(x ,τ) =

∫

d3k
(2π)3
�

ϕk(τ)âkeik·x +ϕ∗k(τ)â
†
ke−ik·x� , (43)

where [âk, â†
k′] = (2π)

3δ(k− k′) and the modes are normalized such that ϕkϕ
′∗
k −ϕ

′
kϕ
∗
k = i.

The mode functions ϕk(τ) obey the equation of motion given by Eq. (42) in momentum space

ϕ′′k (τ) +
�

k2 + a2
�

ξ−
1
6

�

R
�

ϕk(τ) = 0 . (44)

We assume that the evolution of each mode starts far inside the Hubble radius, namely
−kτ ≫ 1, where the curvature is negligible. In that case, the modes should approach the
Bunch-Davies vacuum

ϕk(kτ→−∞) =
1
p

2k
e−ikτ . (45)
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Figure 2: Resulting power spectrum of the non-minimally coupled spectator field
from the linear analysis performed in Section 4.1. Colored lines illustrate the spec-
trum at the indicated number of e-folds post inflation.

We are interested in the power spectrum ∆ϕ(k,τ), which in terms of the two-point function
is defined as

〈ϕ2〉= 〈0|ϕ̂(τ, x)ϕ̂(τ, x)|0〉=
∫

dk
k
∆ϕ(k,τ) . (46)

The power spectrum of the original field φ is then related as

∆φ(k,τ) =
1
a2
∆ϕ(k,τ) =

k3

2π2a2
|ϕk(τ)|2 ≡

k3

2π2
Pφ(k,τ) . (47)

For our numerical results (which involve integrating over many e-folds of inflaton), it proves
easier to solve Eq. (44) in cosmic time (α= 0), where it reads

ϕ̈k +Hϕ̇k +

�

k2

a2
+
�

ξ−
1
6

�

R

�

ϕk = 0 , (48)

with the Bunch-Davies initial condition now expressed as

ϕk(k/(aH)≫ 1)≈
1
p

2k
e

ik
aH , (49)

where we have used τ ≈ −1/(aH), given that H changes very slowly. As previously men-
tioned, the non-minimally coupled spectator field φ is initially energetically subdominant by
assumption, so we neglect its contribution to the background evolution for the linear analy-
sis. In this case, all modes evolve independently and the background evolution is completely
determined by the homogeneous energy components of the inflaton

H2 ≡
�

ȧ
a

�2

=
1

3m2
p

�

1
2
χ̇2 + Vinf(χ)
�

, (50)

with the evolution of the homogenous inflaton governed by the standard Klein-Gordon equa-
tion of motion in cosmic time

χ̈ + 3Hχ̇ +
∂ Vinf

∂ χ
= 0 . (51)
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In our numerical analysis we consider an observationally viable inflationary model inspired by
α-attractors [72], with inflaton potential parametrised as [21]

Vinf(χ) = Λ
4 tanhp

�

cχ
mp

�

, with p = 4, 6 , (52)

which flattens out for |χ| ≫ mp/c (where c is a dimensionless parameter), and takes a power-
law form V ∝ χ p for |χ| ≪ mp/c. We take c = 0.1 which reproduces the observed value of
the scalar perturbations at CMB scales for Vinf(χCMB) = (1.6 × 1016 GeV)4 and saturates the
upper bound on the scale of inflation [21] corresponding to Λ= 1.79× 1016 GeV.

We solve Eq. (48) numerically by discretizing k on a grid of 512 log-spaced modes. We
begin evolving each mode considering the Bunch-Davies initial condition when k/(aH) = β ,
with β ≫ 1 a penetration factor. Larger values of β better approximate the Bunch-Davies
initial condition, but also increase simulation time, so as a compromise we choose β = 103.
At the end of inflation, we would like to have a superhorizon power spectrum of simulated
modes spanning at least three orders of magnitude in k-space. Since the lowest k mode starts
a factor β inside the horizon, we require approximately ∆N ≃ log(103β) ≈ 14 e-folds of
simulated inflation for all modes of interest to exit the horizon. We therefore choose the initial
conditions of the homogeneous inflaton field χi such that we obtain 14 e-folds of inflation (this
corresponds to χi = 9.23(10.87)mp for p = 4(6), respectively). Following this procedure, we
numerically integrate Eqs. (48), (50) and (51) for 14 e-folds of inflation and through the
transition to the post-inflationary stage. We show the resulting power spectrum in Fig. 2 for
ξ= 50.

For comparison, our numerical results for φ can be compared to the predicted power spec-
trum during inflation in pure de-Sitter space, which was computed analytically in Ref. [61]
as

H−2
∗ ∆φ(z) =

z3

8π
|H(1)iµ (z)|

2e−πµ ≈
1

4π2

(

z3

µ , z≪ 1 (superhorizon) ,

z2 , z≫ 1 (subhorizon) .
(53)

Here z = k/(aH∗), µ2 = 12(ξ − 3/16), and H∗ is taken to be the Hubble rate at the end of
inflation. The approximate equality holds for ξ > 3/16. According to this expression, we see
that the superhorizon fluctuations during inflation follow a k3 power law. This is expected as
after Hubble radius exit the modes are damped because of the heavy effective mass induced by
the non-minimal coupling. On the other hand, the subhorizon modes deep inside the Hubble
radius remain in the Bunch-Davies vacuum∝ k2, indicating that they are not excited. The
transition between power laws occurs around k/(aH∗) ≈ µ, where we have µ ≈

p

12ξ for
ξ ≫ 1. We see that this analytic approximation explains well the behavior of the power
spectrum shown in Fig. 2 at the end of inflation.

After inflation ends, the inflaton begins oscillating around the minimum of its potential,
which also induces oscillations in R, as shown in Fig. 1. This allows for tachyonic growth of
the non-minimally coupled field during the periods when R < 0, leading to the emergence of
a peak in its power spectrum after inflation. That fact that the peak is stationary when the
power spectrum is plotted in terms of k/(aH) can be obtained from inspecting Eq. (48), as the
tachyon is regularized (on a per mode basis) when k/(aH) ≈

p

|ξR/H2| ≈ O(1)
p

ξ ≲
p

6ξ,
where we used that tachyonic growth happens for −6 ≤ R/H2 < 0 and assumed ξ ≫ 1.
Correspondingly, the peak in the power spectrum, which clearly emerges about ∼1 e-fold
after the end of inflation, is observed at k/(aH) ≈ O(1)

p

ξ. It is at this moment when we
introduce the power spectrum from our linear analysis, in order to initialize the non-minimally
coupled field in the lattice simulation. The shape of the peak of the power spectrum determines
the range of comoving momenta we need to consider on the lattice. In terms of comoving
momenta, the peak shifts to smaller values of k while its amplitude grows during the linear
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Figure 3: Power spectra of the non-minimally coupled spectator field φ at the end
of inflation defined by N = N∗ and N − N∗ e-folds thereafter. The solid/dashed lines
are the results of the lattice/linear simulations. Left: Power spectrum for the case
of ξ = 50 where the spectator field has no potential, V = 0. Initially the spectrum
is well described by the linear analysis until the growth becomes large enough that
backreaction occurs at approximately N − N∗ = 1.75. Right: Power spectrum for
ξ= 100 where the spectator field has a small quartic coupling λ= 10−5. Deviations
from the linear analysis begin almost immediately where we see the non-linear effect
of the quartic term transferring power to higher k-modes.

regime. Hence, the most important scales to capture in the lattice are those spanned by the
peak itself and its infrared tail to some extent, so there is room for the peak to shift further to
the infrared as we simulate the dynamics in the lattice.

4.2 Non-linear lattice analysis

After a clear peak in the power spectrum emerges in the linear analysis, but still before any
interactions of φ or its backreaction onto the background dynamics are relevant, we move to
solving the system on the lattice. In particular, we treat φ as a classical field whose initial
fluctuations are drawn randomly from a Gaussian distribution with power spectrum given by
∆φ that we computed in the linear analysis up to one e-fold after the end of inflation. We now
fully include all interactions as well as a self-consistent evolution of the expanding background
including contributions by all fields present. The relevant equations of motions to solve are

φ′′ + (3−α)
a′

a
φ′ −

∇2φ

a2(1−α) + a2αξRφ = −a2α ∂ V
∂ φ

, (54)

χ ′′ + (3−α)
a′

a
χ ′ −

∇2χ

a2(1−α) = −a2α ∂ Vinf

∂ χ
, (55)

a′′

a
+ (1−α)
�

a′

a

�2

=
a2α

6
R , (56)

where Eq. (56) determines the background evolution as discussed in Section 2 and R is defined
as

R=
F(φ)
m2

p

�

(6ξ− 1)
�

1
a2α
〈φ′2〉 −

1
a2
〈(∇φ)2〉
�

− 6ξ〈φV,φ〉+ 4〈V + Vinf〉 −
1

a2α
〈χ ′2〉+

1
a2
〈(∇χ)2〉
�

, (57)
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Figure 4: Left: Evolution of the Ricci scalar normalized to Hubble squared H(t)2.
The dashed-black line is the evolution of the linear free-field analysis which is used
as an input to the lattice simulation. The colored lines ξ = {10, 50,100}, {yellow,
blue, green} are the lattice simulation results which illustrate a strong deviation once
the energy density of the non-minimally coupled field is comparable to that of the
inflaton. Note that the two peaks extend to values outside the range of the figure,
R/H2 = 20.8 (49.1) for ξ= 50 (100), respectively. Shaded in red is the region where
the Ricci scalar is negative, driving tachyonic growth of the spectator field. Right:
Expectation value 〈φ2〉, see Eq. (46), of the non-minimally coupled spectator field
for the same values of ξ as before.

with F(φ) given in Eq. (20). We adapt the continuum equations to the lattice following Sec-
tion 3 and Appendix C. All simulations with λ= 0 are run on lattices of size N = 240 points per
spatial dimension and evolved with the RK2MPmethod described in detail in Appendix C. In the
lattice, we use natural variables as defined in Eq. (22), with f∗ = mp andω∗ = Hi , where Hi is
the Hubble rate at the start of the linear analysis ≃ 14 e-folds before the end of inflation. Note
that we are using time-steps of Hiδt = 0.01 in the evolution with kIR/Hi = 2.5×10−3 (4×10−3)
for ξ = 10 (50 or 100). In the case λ = 1 × 10−5, we used lattices of size N = 512 and
kIR/Hi = 1× 10−2.

Let us first consider the case where V (φ) = 0. The resulting evolution of the Ricci scalar in
the p = 4 case for the inflaton potential is illustrated by the dashed-black line in the left-hand
panel of Fig. 4. Here we see that shortly after the end of inflation the value of R/H2 tends
to negative values before oscillating in the range −6 ≤ R/H2 ≤ 12. While R is negative, the
non-minimally coupled field has a tachyonic effective mass and can experience exponential
growth. The structure of this growth can be seen in the power spectrum of the left-hand
panel of Fig. 3, where different line colors indicate the number of efolds post inflation. Here
we see the growth of the peak agrees well between the linear (dashed) and lattice (solid)
results so long that the energy density in the NMC field is sub-dominant. Departure from the
linear analysis can be more easily seen in the right-hand panel of Fig. 4 where we see the
expectation value 〈φ2〉 growing exponentially when R takes negative values, as expected. For
comparison purposes, the dashed lines show the results of the linear analysis, where the field
grows unbounded when the tachyonic growth is strong enough to overcome the expansion of
the universe (as in the ξ= 50,100 cases) since there we neglected the contribution of φ to the
background evolution. This is not the case in the lattice analysis, where for these large values
of ξ the backreaction of φ on the background evolution asymptotically drives ξ〈φ2〉/m2

p to a
constant value below unity, and R ends oscillating around zero with a damped amplitude, as
shown by the solid lines in Fig. 4. More specifically, at the onset of backreaction the kinetic
term (6ξ−1)〈φ′2〉 drives initially R to a large positive value, as represented by the green (blue)
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Figure 5: Evolution of the total equation of state as a function of e-folds post inflation.
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from Eq. (17) and Eq. (18) plus the standard minimally coupled contributions from
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Figure 6: Time evolution of the energy density of both the inflaton (red) and non-
minimally coupled spectator field (black). Parameter values for the inflationary po-
tential are c = 0.1, Λ ≃ 1.79× 1016 GeV, while the energy density is normalized as
in Eq. (24). We show the absolute value of the energy density but change the line
style to dashed to illustrate when the energy density turns negative. Top row: Three
values of the non-minimal coupling ξ for the inflationary potential with p = 4. In
the top-right panel we also show the effect of a Hubble scale mass (thin purple) and
a small quartic coupling of the spectator field (thin gray). Bottom row: Same three
values of ξ but for p = 6, where the energy density of the inflaton redshifts faster
than radiation.
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spikes for ξ= 100 (50) in the left panel of Fig. 4. This results in a large positive effective mass
squared ξR, that induces a restoring force for φ, opposing its growth. The field velocity φ′ is
then suppressed causing R to start a rapid descent down to a small negative value, after which it
begins oscillating around zero. After the spike, R oscillates with a small damped amplitude, so
the successive tachyonic mass stages cannot overtake anymore the expansion of the universe,
and ξ〈φ2〉/m2

p approaches asymptotically a constant value. Returning to the power spectrum
(left-hand panel of Fig. 3) at N = 2 differences in both the peak and also the UV tail of the
spectrum arise. The origin of the additional structure in the peak of the lattice results is simply
resultant from the Ricci scalar remaining positive once the backreaction occurs. Subsequently
the NMC just behaves as a free oscillator and is no longer driven. If we define the equation of
state in terms of the total pressure and energy densities w= p(η)/ρ(η), then w can be written
in terms of R by combining Eqs. (2), (13) and (14)

w=
p(η)
ρ(η)

=
1
3

�

1−
R

3H2

�

, (58)

where H = H/aα. We see that the large positive spikes where R/H2 > 12 when the non-
minimally coupled field backreacts correspond to periods where the equation of state spikes
below w = −1, as shown in the left-hand figure of Fig. 5. Since ρ is always constrained to
be positive definite by Eq. (13), it can be seen from Eq. (58) that R/H2 > 12 corresponds to
a large negative pressure, namely p < −ρ, which violates the classical energy conditions due
to the non-minimal interaction of φ with the gravitational field. In particular, the dominant
contribution to the pressure during these spikes comes from the (1−4ξ)〈φ′2〉 term in Eq. (18),
which is always negative for ξ > 1/4.

Before turning to the evolution of the energy density, a comment on the effect of a quartic
interaction term in the scalar potential is in order. In the right-hand panel of Fig. 3 we show the
power spectrum for the case where ξ= 100 with a quartic λ= 10−5. As expected re-scattering
of modes leads to additional power in the UV spectrum while also screening the effect of the
tachyon, namely the growth of the peak is diminished already at N = 1.1.

Finally, in Fig. 6 we show the evolution of the energy density of both the inflaton χ (red)
and the non-minimally coupled spectator field φ (black). In the top (bottom) row we consider
the hypertangent inflaton potential with p = 4 (p = 6), while in the three columns we again
consider the three benchmark values of ξ = {10, 50,100}. In the p = 4 case, the inflaton
energy density drops like radiation since the potential is quartic around the minimum, while
in the p = 6 case the inflaton energy density decays faster than radiation. Though the total
energy density is always positive, it is well known that the energy density of the non-minimally
coupled field as defined in Eq. (17) is not positive definite and we indicate when it becomes
negative using dashed lines. In the cases where V (φ) = 0, the energy density of the non-
minimally coupled field scales as radiation at late times, as can be seen in Fig. 5. In the
upper right-hand panel of Fig. 6 we also show the behavior when the non-minimally coupled
field has a non-zero potential V (φ). We consider the cases of V (φ) = m2φ2/2 with mass
m/Hi = 0.02 (thin purple line) as well as V (φ) = λφ4/4 with a quartic λ = 10−5 (thin gray
line). The case V (φ) = m2φ2/2 exhibits similar behavior to the V (φ) = 0 case until around
2 e-folds where bare mass term begins to dominate over the effective mass induced by R and
the energy density of the non-minimally coupled field begins to scale like matter. This allows
the energy density of the non-minimally coupled field to dominate over that of the inflaton,
providing an efficient reheating mechanism. The effect of the quartic is much more drastic
because it acts to regulate the tachyonic growth occurring when R is negative, preventing the
non-minimally coupled field from reaching large field values. After a transition period where
the energy density dilutes faster than radiation due to the ξ dependent terms in Eq. (17),
the energy becomes dominated by the field oscillating in its quartic potential which leads to
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radiation scaling of the energy density. This case does not result in the non-minimally coupled
field fully reheating the universe unless the inflaton energy drops faster than radiation. This
is precisely what occurs in the p = 6 case, shown in the bottom row of Fig. 6. In this case, the
energy density of the non-minimally coupled field can quickly come to dominate over that of
the inflaton.

5 Summary and conclusions

The presence of at least one fundamental scalar field in the SM raises the question of the role
non-minimal couplings to gravity may play in the evolution of the early Universe. Any scalar
φ in curved spacetime, be it the SM Higgs or otherwise, inevitably acquires a non-minimal
coupling to gravity of the form ξ|φ|2R through renormalization group evolution. Typically,
the dynamics of non-minimally coupled scalars are not studied directly in the original Jordan
frame, but rather in the Einstein frame via a conformal transformation of the metric that brings
the action to the canonical Einstein-Hilbert form. This approach allows for a more intuitive
interpretation of the dynamics, however, the equivalence of these two frames in situations
where the initial conditions are set by quantum fluctuations is unclear.

In contrast, in this work we have developed an approach to solve the dynamics of non-
minimally coupled scalars in an expanding universe directly as written in the original Jordan
frame, where the non-minimal couplings are maintained explicitly. In the Jordan frame, the
equations of motion describing the background evolution are typically non-linear in the deriva-
tives of the scale factor, making them difficult to solve in practice. We tackle this problem by
considering the trace of the energy-momentum tensor, a simpler object that can be related to
the background evolution. This admits a simple system of coupled first-order differential equa-
tions for the background evolution that can be straightforwardly numerically integrated. In
Section 3, we demonstrate how this method can be implemented in the CosmoLattice [67,70]
package by specifying the discrete evolution kernels. There, we see that the resulting kernel
for the non-minimally coupled field evolution depends on its own conjugate momentum, pre-
venting the use of symplectic algorithms typically employed. We have therefore implemented
explicit “low-storage” Runge-Kutta methods that allow for high-order methods while keeping
memory usage constant and permitting adaptive time-steps, see appendix C for further details.

To demonstrate the viability of our method, we study geometric preheating as an illustra-
tive example in Section 4. The model involves a real spectator scalar field φ that is excited
through its non-minimal coupling to gravity when the inflaton oscillates around the minimum
of its potential following the end of inflation. The oscillations of the inflaton source oscilla-
tions in R, inducing a time-dependent effective mass for φ. While the effective squared mass
is negative, tachyonic growth of the non-minimally coupled field can occur if the value of ξ
is large enough to overcome the friction due to the expansion of the universe, as shown in
Fig. 6. In this case, the growth of the non-minimally coupled field is highly efficient and the
energy density of φ reaches an O(1) value of the total energy density within an O(1) number
of e-folds, representing an extremely efficient preheating mechanism. We find that if there is
no explicit scale in the potential of the non-minimally coupled field, then its energy density
scales as radiation at late times. Therefore, in the cases where ξ is large enough, whether the
inflaton or non-minimally coupled field dominates the energy density at late times depends
on the choice of potential for both fields.

To conclude, we have introduced a robust method to solve the dynamics of non-minimally
coupled scalar fields directly in the original Jordan frame with the expansion sourced by all
fields present, even when the dynamics becomes fully inhomogeneous and/or non-linear due
to the backreaction of the excited species. This will provide an important tool to study the
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equivalence of the Einstein and Jordan frame, in particular when the initial conditions of
the fields are set by quantum vacuum fluctuations in both frames. All numerical algorithms
presented in this paper will be made publicly available in a future update to the package
CosmoLattice, which will allow anyone to perform user-friendly and versatile cosmological
simulations involving non-minimally coupled scalar fields.
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A Curvature in α-time

Given a flat “α-time” FLRW background described by the metric

ds2 = −a(η)2αdη2 + a(η)2δi jd x id x j , (A.1)

the Christoffel symbols can be computed from

Γσµν =
1
2

gσρ
�

∂νgµρ + ∂µgνρ − ∂ρ gµν
�

. (A.2)

The non-vanishing Christoffel symbols are found to be

Γ 0
00 = α
�

a′

a

�

, Γ 0
i j = δi j

�

a′

a

�

a2(1−α) , Γ i
0 j = Γ

i
j0 = δ

i
j

�

a′

a

�

, (A.3)

where primes indicate derivatives with respect to η. From this, the components of the Ricci
tensor

Rµν = ∂ρΓ
ρ
µν − ∂νΓ

ρ
µρ + Γ

ρ
µνΓ

σ
ρσ − Γ

ρ
µσΓ

σ
νρ (A.4)

are found to be

R00 =
3

a2α

�

a′′

a
−α
�

a′

a

�2�

g00 , Ri j =
1

a2α

�

a′′

a
+ (2−α)
�

a′

a

�2�

gi j . (A.5)

From this, the Ricci scalar R= gµνRµν can be computed directly. We find

R=
6

a2α

�

a′′

a
+ (1−α)
�

a′

a

�2�

. (A.6)
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B Energy-momentum tensor of a non-minimally coupled scalar

The energy momentum tensor for the non-minimally coupled φ is defined in Eq. (9) as

Tφµν = −
2
p
−g

δ(
p
−gLφ)
δgµν

= −2
δLφ
δgµν

+ gµνLφ . (B.1)

The remaining variation reads

δLφ
δgµν

= −
1
2
∂µφ∂νφ −

1
2
ξ
δ(φ2R)
δgµν

. (B.2)

A useful identity one can show by explicit computation from the expression of R in terms of
the metric is the following

δ( f R)
δgµν

= f Rµν + (gµν∇σ∇σ −∇µ∇ν) f , (B.3)

for any scalar function f and ∇ν is the covariant derivative associated to gµν. Applying this
to Eq. (B.2), we obtain

δLφ
δgµν

= −
1
2
∂µφ∂νφ −

1
2
ξφ2Rµν −

1
2
ξ(gµν∇σ∇σ −∇µ∇ν)φ2 ,

and putting it altogether we get

Tφµν = ∂µφ∂νφ− gµν

�

1
2

gρσ∂ρφ∂σφ + V (φ)
�

+ξ
�

Rµν −
1
2

Rgµν + gµν□−∇µ∇ν
�

φ2 , (B.4)

where we have defined □ ≡ ∇σ∇σ = gρσ∇ρ∇σ. We would like to compute the trace of this
energy-momentum tensor for φ. For a moment, let us write down the result working in d + 1
dimensions. Then, we find

Tφ = (1− d)
1
2
∂ µφ∂µφ − (d + 1)V + ξGφ2 + d ξ□φ2 , (B.5)

where G = gµνGµν = (1− d)R/2 is the trace of the Einstein tensor with respect to the metric.
This expression can be further simplified using □φ2 = 2φ□φ+2∂ µφ∂µφ and the equation of
motion Eq. (5) for φ which gives φ□φ = ξRφ2+φV,φ . This leads to the following expression

gµνTφµν = 2d
�

ξ−
(d − 1)

4d

�

�

∂ µφ∂µφ + ξRφ2
�

− V
�

(d + 1)− 2ξdφ
V,φ

V

�

. (B.6)

Note that the coefficient of
�

∂ µφ∂µφ + ξRφ2
�

vanishes for ξ= (d −1)/(4d), which is indeed
the conformal value of ξ in d + 1 dimensions. Now setting d = 3, we get

gµνTφµν = (6ξ− 1)
�

∂ µφ∂µφ + ξRφ2
�

−
�

4V − 6ξφV,φ

�

, (B.7)

which indeed leads to Eq. (12) for Tφ = gµνTφµν quoted in the main text. Let us comment on
some specific cases of Eq. (B.7) which reproduce known results. Consider the conformal value
for ξ in d + 1= 4 dimensions, ξ= 1/6. Then, we find

gµνTφµν = −
�

4V −φV,φ

�

, (B.8)

which vanishes identically in the scaleless cases of V = 0 or V ∝ φ4, as expected. For a
quadratic potential V = m2φ2/2, we get

gµνTφµν = −m2φ2 , (B.9)

which reproduces the result of Ref. [73].
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C Time evolution and low-storage RK methods

In this appendix, we present the implemented ‘low-storage’ Runge-Kutta (RK) methods . We
also write down an explicit algorithm to evolve our system of equations using these methods.
We begin by recalling the reader some facts about RK methods, following Ref. [67]. Consider
a vector x⃗(t) of M -variables x⃗(t) = (x1(t), . . . , xM (t))T and a system of first order differential
equations of the type

˙⃗x(t) =K [ x⃗(t)] . (C.1)

Then, a RK method of order s is characterized by a one-step iteration of the type

x⃗n+1 = x⃗n +
s
∑

i=1

cik
(i) , (C.2)

with

x (i) = x⃗n +
s
∑

j=1

bi jk
( j) , (C.3)

k(i) =K
�

x⃗ (i)
�

, (C.4)
s
∑

i=1

ci = 1 , ci < 1 . (C.5)

This iteration effectively split the time interval δt into s subintervals δt =
∑s

i=1 ciδt. Note
also that, after having introduced conjugate momenta, this is precisely the type of equations
we are dealing with. These methods are often represented in terms of Butcher tableaux

b11 b12 · · · b1s
b21 b22 · · · b2s
. . . . . . · · · . . .
bs1 bs2 · · · bss

c1 c2 · · · cs

(C.6)

Explicit RK methods have the property bi j = 0 for all j ≥ i. Well known methods of order two
are the modified Euler-method (RK2ME) and the midpoint method (RK2MP). For comparison
we also show the Butcher tableau of the widely used RK4 algorithm below:

RK2ME :
0 0
1 0

1/2 1/2
RK2MP :

0 0
1/2 0
0 1

RK4 :

0 0 0 0
1/2 0 0 0
0 1/2 0 0
0 0 1 0

1/6 1/3 1/3 1/6
(C.7)

In cases where the limiting factor is memory, such as when solving a system of partial differen-
tial equations on large lattices, the memory cost of using higher-order RK methods can become
prohibitive. Indeed, generically, one needs to storelve (almost) all of the k(i) coefficients. For a
method with s-stages, the required additional memory is analogous to simulating s new fields
per field and momentum.

Interestingly, there exists a subclass of RK methods which eludes this memory requirement;
they are referred to as ‘low-storage’ RK methods [68] (see also Ref. [69] for a recent application
in lattice QCD). This method hinges on rewriting of Eqs. (C.2) to (C.4) as

x⃗n+1 = y⃗(s) , (C.8)
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with

y⃗(0) = x⃗n , (C.9)

y⃗(i) = y⃗(i−1) + Bi∆ y⃗(i) , (C.10)

∆ y⃗(i) = Ai∆ y⃗(i−1) +δt ,K
�

y⃗(i−1)
�

, (C.11)

with the further requirement A1 = 0. Note that all second-order, and some third-order RK
methods can be put in this form; we refer the interested reader to Refs. [68, 69] and those
therein for more information. It is easy to see that the second order methods introduced
above can be recast in this form using the following coefficients:

RK2ME :
Ai Bi

0 1
− 1 1/2

RK2MP :
Ai Bi

0 1/2
−1/2 1

(C.12)

We have also implemented the following third order method from Ref. [74] which is argued
to have desirable stability properties. The coefficients below are the rational form of the ones
presented in Section 3. of this reference, for c3 = (2+ 101/3)/6:

RK3_4 :

Ai Bi

0 0.06688758201974097
−0.7825460361923583 2.876554598956719
−2.042914325731225 0.5534657361343982
−1.799337253940777 0.3912730180961791

(C.13)

Finally, fourth order 2N -storage schemes also exist, we refer the interested reader to Refs. [69,
75] for examples.

Before writing down explicitly the 2N -storage method applied to our problem, we note
that the scheme RK3_4 has the additional property that the third iteration y⃗(3) is already at
second order accuracy in δt. At the extra memory cost of saving the previous solution x⃗n in
case the update fails, one can then easily turn it into an adaptive time-step RK scheme. As
reviewed in Refs. [69, 74], this can be achieved by estimating the distance ∆ in some norm
between y⃗(3) and y⃗(4). If this distance is smaller than some requested tolerance ε, the update
is accepted; if not it is rejected and the step is repeated. In both situation, the time step is
updated to

δtnew = 0.95 ·
� ε

∆

�1/3
δtold . (C.14)

This updated always decrease δt when the time step needs to be repeated and almost always
increases it when the error is below the requested tolerance. The factor 0.95 and the power
1/3 are empirical determined based on performance. A practical way to define∆ is to compute
the Euclidean distance between the solutions

∆= | y⃗(3) − y⃗(4)|= B4|∆ y⃗(4)| , (C.15)

with | y⃗|=
Ç

∑L
i=1 y2

l for the L-component vector y⃗ = (y1, . . . , yL)T . Note that the efficiency of
such an adaptive scheme varies from model to model and needs to be studied on a case-by-case
basis.

We are now in a position to present a concrete algorithm to evolve the equations presented
in Section 3. For every field, momentum and scale factor, we introduce associated auxiliary
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variables: ∆φ̃,∆π̃φ̃ , {∆ϕ̃m}, {∆π̃ϕ̃m
},∆a,∆πa. We can then implement a generic s-stage 2N -

storage RK method as follows

π̃
(0)
φ̃
≡ π̃φ̃(n, n0)

φ̃(0) ≡ φ̃(n, n0)

π(0)a ≡ πa(n0)

a(0) ≡ a(n0)
¦

π̃
(0)
ϕ̃m

©

≡
�

π̃ϕ̃m
(n, n0)
	

�

ϕ̃(0)m
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The final piece involves implementing Eq. (36), this can be explicitly checked at every time step
and provides a robust way to check the stability of the algorithm. To implement the adaptive
time step, one proceed as explained above. In particular, the error ∆ is computed as a sum
over all the fields and all lattice points of the type

∆= B4

∑

x∈Λ

∑

f ∈
¦

π̃φ̃ ,φ̃,ã,π̃ã ,
¦

ϕ̃
(p)
m

©

,
¦

π̃
(p)
ϕ̃m

©©

|∆ f (x)| . (C.17)

D Numerical convergence

As detailed in Section 3, we have used Eq. (21) to evolve the scale factor, leaving Eq. (36) to
allow us to access the numerical convergence of our system of equations. In Fig. 7 we show the
resulting convergence using this Hubble constraint equation. We observe good convergence
across all scenarios, however we note that there is a larger drift in the integrator when con-
sidering larger values on the NMC, and therefore larger field excursions. This is independent
of whether or not there are additional terms in the NMC fields’ scalar potential (both the grey
and purple lines in the left-hand panel of Fig. 7 show similar convergence).
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Figure 7: Numerical convergence accessed using the Hubble constraint equation
Eq. (36). Left: shows the cases we considered for p = 4 for the inflationary po-
tential, see Eq. (52). Right: same as left, except we consider the steeper potential,
p = 6.
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