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Abstract

We investigate 4D Chern-Simons theory with ADE gauge symmetries in the presence
of interacting Wilson and ’t Hooft line defects. We analyse the intrinsic properties of
these lines’ coupling and explicate the building of oscillator-type Lax matrices verifying
the RLL integrability equation. We propose gauge quiver diagrams Qg encoding the
topological data carried by the Lax operators and give several examples where Darboux
coordinates are interpreted in terms of topological bi-fundamental matter. We exploit
this graphical description (i) to give new results regarding solutions in representations
beyond the fundamentals of sly, so,y and eg 7, and (ii) to classify the Lax operators for
simply laced symmetries in a unified E; CS theory. For quick access, a summary list of
the leading topological quivers QZD r is given in the conclusion section [Figures 29 .(a-e),
30.(a-d) and 31.(a-d)].
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1 Introduction

Integrable two-dimensional field theories and spin models represent a significant area in clas-
sical and quantum physics that still bear several open questions intending to explicitly describe
the interactions between fundamental particles [1-9]. The investigation of special features of
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these low dimensional theories has aroused much interest since the integrable spin chains ad-
vent [10] and the factorisation of many body scattering amplitudes of relativistic QFT [11,12].
In these regards, tremendous efforts have been deployed to deal with the basic equations un-
derlying these systems by following various approaches such as the Bethe Ansatz [13-15],
quantum groups [16] and algebraic methods involving Yangian and graded-Yangian represen-
tations [17-20].

Recently, these efforts gained a big impulse after the setup by Costello, Witten and Ya-
mazaki of a Chern-Simons -like theory living on four-dimensional M, with the typical (ra-
tional) fibration R? x C, and having a complexified gauge symmetry G [21-23]. This topo-
logical gauge theory represents a higher dimensional field framework to approach quantum
integrability and offers a new form of the gauge/Integrability correspondence [24-32]. On
another side, it bridges to N = (1, 1) supersymmetric Yang Mills theory in six and lower di-
mensions [33-36] and to supersymmetric quiver gauge theories [37-40]. It also allows for
an interesting realisation of solvable systems in terms of intersecting M-branes of the 11d
M-theory and, via dualities, in terms of intersecting branes in type II strings with NS5- and
D-branes as the main background [41-44].

The main ingredients of the 4D Chern-Simons theory are line and surface defects [45-
50]; these topological quantities play a fundamental role in the study of this theory and the
realisation of lower dimensional solvable systems. In particular, we distinguish two basic line
operators: (i) Electrically charged Wilson lines which, roughly speaking, are assimilated to
worldlines of particles in 2D space-time with a spectral parameter 2z related to rapidity; they
are characterised by highest weights A of representations R of the gauge symmetry G. (ii)
Magnetically charged ’t Hooft lines characterised by coweights u of G and acting like Dirac
monopoles. The coupling of these lines in the 4D gauge theory is behind important results of
quantum integrability. In these regards, recall that crossing Wilson lines yield a nice realisation
of the famous R-matrix and the Yang-Baxter equation of integrable two-dimensional QFTs [21].

Regarding the magnetically charged line defects to be further explored in this paper, they
have recently been subject to particular interest where they were interpreted in terms of the
monodromy matrix for non compact spin chains, the transfer matrix for compact spin chains
[51,52] and more specifically as the Baxter Q-operator [53]. They have also been implemented
in various contexts as boundaries of surface defects [54], or as type II branes intersecting
along distinguished directions [55]. Moreover, these brane realisations open windows to links
between integrable spin and superspin chains and supersymmetric gauge quiver theories via
correspondences like the so-called Bethe/gauge correspondence [56-59].

In what concerns us here, a quantum integrable XXX spin chain with N nodes can be gener-
ated in the framework of the 4D CS by taking N parallel Wilson lines perpendicularly crossed
by a ’t Hooft line standing for the magnetic field created by the system of the spin chain par-
ticles [53]. In this spirit, one can calculate the Lax operator for each node of the chain as a
coupling of Wilson and ’t Hooft lines in the gauge theory. The power of this construction with
interacting lines in 4D comes from: (i) the topological invariance on the real plane R? that
translates into the RLL integrability equation, (ii) the Dirac -like singularity of the topological
gauge configuration in the presence of 't Hooft line yielding the oscillator realisation of the Lax
operator, (iii) the holomorphy of observables on the Riemann surface C where the complex
parameter z allows for realisations in the Yangian representation. These features constitute
the common thread of the fascinating results derived from this Gauge/Integrability correspon-
dence. In particular, it was shown in [53] that for the special case where the magnetic charge
of the 't Hooft line is given by a minuscule coweight u of the gauge group G, the oscillator re-
alisation of the Lax operator for a spin chain with internal symmetry given by g, the lie algebra
of G, is easily constructed in 4D CS as the parallel transport of the topological field connexion
through the singular ’t Hooft line. This yields a general formula permitting to explicitly realise
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the Lax or the L-operator in the fundamental representation of any lie algebra g having at least
one minuscule representation, in terms of harmonic oscillators.

The main goal of this paper is to deeply analyse the data carried by the Lax operator and
encode it into a simple gauge quiver description unveiling interesting common features of this
quantity. These properties are relevant for both the study of integrable spin chains and of
the gauge fields behavior in the presence of disorder operators. To this end, we investigate
4D Chern-Simons theories on R? x CP! with complex gauge symmetries G =A,,, D,,, Eg 7 by
implementing Wilson and 't Hooft line defects and studying intrinsic topological features of
their coupling. In these regards, notice that the oscillator realisation of Lax matrices for mi-
nuscule nodes of sl and so,y was firstly recovered from 4D CS in [53]; the exceptional Egq
and E, minuscule Lax operators were constructed in details in [60], while a full list of ABCDE
minuscule Lax matrices is collected in [61] where the absence of a Lax matrix for the Eg sym-
metry is because this group has no minuscule coweight. Here, in order to graphically visualise
the effect of the Dirac-like singularity induced by a ’t Hooft line on a deep level of the gauge
configuration, we treat each case separately by demystifying the Lie algebra components ap-
pearing in the construction of the L-operator and derive its action on the internal quantum
states by using a projector basis in the electric representation. Eventually, we can build the
corresponding topological quivers Q‘é where we translate the topological data of the lines’ cou-
pling into quiver-like diagrams with nodes and edges as inspired from supersymmetric quiver
gauge theories (see subsection 3.1 for motivation). This graphical representation allows to
(i) interpret sub-blocks of the L-matrices in terms of topological adjoint and bi-fundamental
matter, (ii) forecast the form of cumbersome Lax matrices without explicit calculation, (iii)
link Levi decompositions of ADE Lie algebras to exceptional symmetry breaking chains of a
unified E; Chern-Simons theory. These results are summarized in the conclusion section, see
Figures 29.(a-e), 30.(a-d), and 31.(a-d).

The presentation is as follows: In section 2, we begin by considering the 4D CS theory with
SLy gauge symmetry as a reference model where we describe in details the implementation of
the electrically and magnetically charged line defects and the calculation of their coupling in
the topological theory. We revisit the oscillator realisation of the A-type minuscule Lax opera-
tors in the fundamental representation and then extend the construction by discussing other
cases where electric charges of the Wilson lines correspond to representations of sl beyond
the fundamental. In section 3, we derive the topological gauge quiver diagrams corresponding
to the A-type L-operators calculated in section 2, and give an interpretation of their nodes and
links in terms of topological matter. Moreover, we yield quiver diagrams describing the form
of L-operators for the symmetric NV NV N and adjoint representations of sl;. In section 4, we
study the minuscule D-type line defects in 4D CS theory with SO,y gauge invariance. Here, we
distinguish two sub-families given by the vector-like minuscule coweight, and the two spino-
rial ones. Focussing on the vector-like family, we calculate the corresponding L-operator and
construct the associated topological gauge quiver. In section 5, we move on to the minuscule
spinor-like D-type L-operators where we also build the associated topological quiver. Other as-
pects concerning fermionic lines and the link with the sl family are also discussed. In section
6 and 7, we similarly treat the 4D CS theories with exceptional E¢ and E, gauge symmetries
in order, we focus on the minuscule topological lines and their associated topological quiv-
ers. The conclusion is devoted to a summary of the results. The appendix section regards the
derivation of a Lax matrix from the corresponding topological gauge quiver in 4D CS.
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2 Wilson and ’t Hooft lines of A- type

In this section, we begin by focusing on the 4D Chern-Simons theory of [23] with sl gauge
symmetry where we introduce the basics of this theory and the implementation of topological
line defects. We consider the various types of minuscule 't Hooft lines for the sly- family
with N > 2 and investigate their interaction with electric Wilson lines. We show how the
symplectic oscillators of the phase space of ’t Hooft lines allow for an explicit realisation of
the Lax operators. We moreover extend the results by considering Wilson lines for different
representations of sl; and investigating their properties according to the nature of their electric
charges.

2.1 Electric/Magnetic lines in s/, Chern-Simons theory

In order to study the A- type electric Wilson lines and magnetic 't Hooft line defects as well as
their interpretation in quantum integrable systems, we begin by briefly recalling some useful
aspects of the 4D Chern-Simons theory with SLy gauge symmetry over complex numbers. This
is an unconventional topological field theory living on a 4D space M, that we take as R x CP*
parameterised by (x, y;z) with real (x, y) for R? and local complex z = Z;/Z, for C = CP!.
The field action of the topological theory was first constructed in [24] and reads as follows

S4dCS = J dz A tng , (1)
R2xCP!

where Qj is the CS 3-form
2
Q3=A/\d.A+§.A/\.A/\.A, (2)

with 1-form gauge potential A = t,.A% where t, stand for the generators of sl and A% is a
partial gauge connection as follows [26]

At =dx A + dyAgl, +dzAf . 3)
The equation of motion of the potential field A is given by the vanishing gauge curvature
Fy=dzAN(dA+ANA)=0. “4)

This flat curvature indicates that the system is in the ground state with zero energy. To deform
this state, we consider observables given by line or surface defects such as the Wilson WX

and ’t Hooft tH‘; , lines that we are interested in here. These are represented by curves in the
topological plane R? and located at positions z in CP!; they can be represented as in the Figure
1.

Regarding the Wilson lines expanding along &, C R? with z € CP!, they are semi-classical line
defects, electrically charged, defined as

Wg =Trg |:Pexp (J A)] . (5)

This shows that they are functions of £, and R which is here a representation of sly charac-
terised by a highest weight state |wg) with wg = Zivz_ll nlfwi. Notice that at the quantum
level, R is lifted to a representation of the Yangian Y (sly) [22,31,61]. Here, to perform ex-
plicit calculations, R is often taken as the (anti-) fundamental N representation of sl with

fundamental weight w;; however this construction can be extended at the classical level to


https://scipost.org
https://scipost.org/SciPostPhys.15.3.078

SciPost Phys. 15, 078 (2023)

|B)

Figure 1: Line defects in the real plane R?. On the left, a horizontal ’t Hooft line
with magnetic charge y expanding along the x-axis (y = 0) at z = 0. On the right, a
vertical Wilson line expanding along the y-axis (x = 0) at z # 0 with electric charge
in some representation R. Notice that the ’t Hooft line is in fact paired to a similar
one located at z = oo with magnetic charge —u [53].
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Figure 2: Four examples of Wilson lines in different representations of sl occupying
vertical lines in R?; they carry different electric charges. The representation R and the
type of incoming quantum states are indicated above each line, while the outgoing
states are given at the bottom of the line. The red cross indicates a local interaction
point.

other sl representations nfcoi such as the family of completely antisymmetric representations
N ~ w,, the family of completely symmetric NY" ~ new; and the adjoint representation
N2—1. As examples, Wilson lines with electric weight charges in the representations N A N
and N V N as well as in the adjoint are depicted in the Figure 2. The interest into Wilson lines
Wé‘; with generic R can be motivated by the two following:

(1) The special sl representation theory where from fundamental objects like R = N and/or
N with weight wy_;, one can construct many composites carrying higher weight charges and
describing higher conserved quantities. For example, the particles’ current running along Wgz

is given by quadratic composites transforming like N ® N =1+ adj. In this regard, notice
that for the fundamental WR =N we have N quantum states |A) traveling along the vertical
blue line of the Figure 1. They couple to the CS gauge field like 7,.A* with 7, ~ (A|t,|B).

(2) Knowing the action of the minuscule coweight u on the fundamental representation of sly;,
we can deduce its action on higher dimensional representations by help of the tensor product
properties. To fix ideas, see eq.(26).

Concerning the 't Hooft lines that we denote like tH YO, they are magnetically charged semi-
classical line defects with magnetic charge given by a minuscule coweight u of the complex
Lie algebra sly. The curve y, belongs to R? and sits at a point z, in the holomorphic plane
that we take at the origin; it is imagined in the 4D CS theory as the intersection U/, N U, of

6
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two patches U/; and U, of the topological plane R2. Following [53], the topological field A
sourced by the magnetic 't Hooft line defect v is generated by a singular gauge transformation
g = g (2) from the patch U/ to the patch U,. By thinking of y, as coinciding with the x-axis in
the topological plane, meaning that

ro=R%_,NR? R*=R2_URZ,, (6)

_y<O y>0 > _y<0

the gauge configuration A in the presence of singularity u is generated by a parallel trans-
port of the gauge field bundles from Rz o towards R? y=o0- 1N this case, the transport path is
then given by the y-axis and the topologlcal gauge conﬁguratlon is given by

AE/M] — glzugz , )

with gauge transformations g (z) and g, (z) singular near z = 0 but regular in the neigh-
bourhood of z = oo with the limit g (00) = g, (00) = I;4. Notice that z" is the operator
exp(log(z)u) with u referring to the adjoint action of the coweight operating as in eqs(10,14).
Using this configuration, one can associate to the tHf , the following gauge invariant observ-
able measuring the parallel transport from y < 0 to y > 0 as follows

LM (z) =Pexp U dy Al (z)) . (8)
y

This LI* is a holomorphic function of z valued in the SLy gauge group; it may have poles and
zeros at z= 0 and z=00 arising from the tH#0 atz = 0 and the mirror tH,, i line atz = oo [53].

The gauge singularity is implemented in this construction by thinking of AE,“ ] as valued in the
Levi decomposition of sl with respect to the minuscule coweight u, namely [62]

sly—-n_el,&n,,

9
AT~ Ay + Ay + Ay, ©)

Notice that this decomposition is due to the fact that the minuscule coweight u acts on the Lie
algebra elements with only three eigenvalues 0; £1. Therefore, a Lie algebra is decomposed
to three subspaces; the [, is a Levi subalgebra, and n. are nilpotent subalgebras constrained
as follows, with Levi charge ¢ = +1:

[‘“> lu] =0, [,u, nq] =qng, [nq>nq:| 0. (10)

In these regards, notice that for the case of the topological sly gauge theory, we can define
N —1 minuscule 't Hooft lines carrying different magnetic charges:
tH" H“N 1, (11)
Yo’ Yay—q
They are in 1:1 correspondence with the N —1 minuscule coweights 1, ..., uy_; of the sl Lie

algebra of the gauge symmetry (as listed in (16)); and eventually with the N — 1 simple roots
ay,..., ay_g of the Dynkin diagram of sl as depicted in Figure 3.

In what follows, we focus our attention on the XXX spin chain construction in the framework
of the 4D CS theory. As described in the figure 4, we need to take N vertical (parallel) Wilson
lines WR in the topological plane R? traversed by a horizontal ’t Hooft line tH¢0 (in red color).

51
The Wgs sit at the position z # 0 in the holomorphic plane while the tHﬁfO isin z = 0. From

the integrable spin chain point of view, every Wilson line presents a node of the chain and the
’t Hooft line is interpreted as the Baxter Q-operator [53]. This way, we have a ’t Hooft-Wilson
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] 7] 3 {¥q s Uy
& 0

Figure 3: The Dynkin diagram for the sly family, it has N — 1 simple roots, all corre-
sponding to minuscule coweights.

Yo

Figure 4: The spin chain configuration in the Chern-Simons theory: N Wilson lines
represented by the blue vertical lines crossed by a ’tH%f represented by the red hori-
zontal line.

coupling in the topological plane at every node as depicted by the Figure. The interaction by
line-crossing is interesting as it allows to define the Lax operator in every node of the spin chain
which plays an important role in the study of integrable systems. Because WX is characterised
by (&,;R) and tHﬁf0 by (y¢; u), the coupling between them should carry all this data and can
be defined as follows

Ly (vo, &) = (eH! WR). (12)

Following [53], this L-operator, denoted from now on like £, is precisely given by (8) such
that the transport path is identified with the Wilson line. Moreover, it can be put into a simpler
form using the Levi-like factorisation

[,1’; (z) = eXrghrelr | (13)

where X5 is a nilpotent matrix valued in the nilpotent algebra n_, and Yy is also a nilpotent
matrix but valued in the nilpotent algebra n_. These matrices are constrained by the Levi
decomposition requiring

[ug,Xgr] = +Xg, [ugr, Y] =—Yzr. (14)

2.2 Interacting tH‘Y‘é-Wf lines in CS theory

For the next step in the study of minuscule tH’;é lines interacting with WX in 4D CS theory,

it is interesting to explore the algebraic structure of the magnetic charges u; of the tH’Y‘é’s. As
these charges are given by the minuscule coweights of the sl Lie algebra, we give below some
useful tools regarding their properties and then turn to study their coupling with W?.
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2.2.1 Minuscule coweights of sl

First, we recall that there are N — 1 fundamental coweights w; for the sl Lie algebra, they

are defined as the algebraic dual of the N — 1 simple roots a;; which means that w;.a; = §;;.
These simple roots of sly are realised in terms of a weight basis vectors (e;) like a; = ¢; —e;; 1.

So, the fundamental coweights solving w;.a; = 6;; read in terms of the e;’s as follows

N —i L
w; = N (91 +"'+ei)_ﬁ(ei+1 +---+3N) . (15)

It turns out that in the case of the sly Lie algebra, the fundamental coweights are all minuscule
[62]. So, the magnetic charges of the (N — 1) lines tH‘Y‘é of the Ay_;- CS theory are given by

—N_le —l(e +...+ey)
Uy = N AT yeeTeTend,
N —1 l
= (e1+...+e)— N (ejp1+..-+ey), (16)
_l(e + +e )_Ee
MN—l—N 1T .. TEeN N N>

with 2 <1 < N—2. Obviously one can treat all these coweights collectively; but it is interesting
to cast them as we have done.

As illustrating examples, we have for the sl, model, one minuscule charge u = %(el —ey).
For the sl; theory, we have two minuscule coweights u; = %el — %(62 +e3) and

Uy = %(el +ey) — %eg; and for the sl, CS theory, we have three minuscule charges given
by

~3, —l(e +eg+ey)
M1—41 g\2TeTe),
1 1
Mz=£(€1+ez)—§(€3+€4): (17)

—l(e +ey+e )—§e
M3—4 1TeTes) T

As far as the sl example is concerned, notice that using the isomorphism sl; ~ sog, these
fundamental weights can be also viewed as the fundamental of sog. Here, the u, corresponds
to the vector of sog while the u; and u5 correspond to the two Weyl spinors of orthogonal
groups in even dimensions, they will be encountered later when we study the L-operators of
D-type.

Notice also that given a minuscule coweight u of sly, one defines its adjoint form by help of
the e;’."s obeying e;? (e;) = 5{. We denote the adjoint form of the coweight u; by the bold symbol

u; and express it as follows

N-—1 l -
-1, ——TI,, 18
M=y TN (18)

with projector II; and co-projector IT; = I;; — IT; as follows

l N
I, = Zeie;", I, = Z eel. (19)
i=1

i=l+1

The use of this projector in the above decomposition is crucial in our modeling; it is at the basis

of our way to approach the coupling between the tH)‘,‘0 and Wg as well as in the construction

of the topological gauge quivers Qﬁ describing the A-type L-operators.
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2.2.2 The tH)' - ngz coupling

To properly define the coupling between WéRz and a given minuscule 't Hooft line tH’;(’)‘ with a

magnetic charge u; in the 4D Chern-Simons theory living in R? x CP!, we follow [53] and
proceed as summarised below:

(1) tH’)f(’)< as a horizontal magnetic defect in R?
We think of the 't Hooft tH%‘ as the curve y, extending in the topological plane R? of the 4D
space. The defect y, is located at a given point z in CP! that we take as z = 0; say the south
pole of S ~ CP!. For convenience, we think of 1 as the horizontal line given by the x-axis of
the plane R? with (x, y) coordinates; see the red line in the Figure 4. Topologically speaking,

this yq can be also imagined as the intersection of two patches like y, = ]Ry <N Rf,>0 Along

with this tH‘)f(’)‘, we also have a tH, i * sitting at z = 0o corresponding to the north pole of S2.
(ii) crosses a vertical Wilson line

The horizontal tHM k crosses a vertical Wilson line Wé{ with &, located at a generic point z of

CP!. We imagine &, as coinciding with the y-axis in R?, i.e. &, = {(x,y)|=x =0,y €R}.
Recall that the quantum states |A) propagating in the electrically charged line WR are in the
representation R which is taken for instance as the fundamental N of sl;. The i 1ncom1ng particle
states are denoted by the bra (A| and the outgoing states by the ket |B) with

(AIB) = &%, (20)

in the case of free propagation. In the presence of interaction, the above 5§ is replaced by a
multi-label vertex object.

(iii) L-operator and phase space
The crossing of the horizontal tH“ “ and the vertical WX lines is thought of in terms of lines’
coupling described by the £- operator (12) represented lz)y the typical matrix operator

(AL B) =) (21)

This operator is equivalent to the usual Lax operator of integrable spin chain systems [18,63].

E(M)

It is a holomorphic function of z and its representative matrix £, is valued in the algebra A

of functions on the phase space of tH’;Z. Formally, we have
Lp €ASEnd (R), (22)

with 2[ generated by Darboux coordinates (b, c) to be commented later on; see eq.(32). The
phase space of the L;. (2) operator is obtained by considering two coupled vertical Wilson lines

Wé‘; and WR crossed by a horizontal tH}* as depicted by the Figure 5.

This topological invariant crossing describes integrability as encoded in the following RLL
relations
LT (2R (2 —2) L] (2) = LL(2) R} (2 —2") L{ (2) - (23)

In this equation, erlg (z —3 ) is the well known R-operator appearing in the Yang- Baxter equa-
tion, it is proportional to the second Casimir C ;f of sly; having the value & ié f For the trigono-
metric case corresponding to the holomorphic line CP!, the structure of this R-matrix as a
series of i has leading terms like er’; (2) = 5:;5;‘ + ’gc;f +0 (hz) .

2.2.3 Levi decomposition of sl

The RLL relations of eq.(23) can be shown to be equivalent to the usual Poisson bracket
{b“, cp } pB = 63 of symplectic geometry with b* and cg as phase space coordinates (Darboux

10
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Gl Gl

(7

L = A

z! Z #l z
(a) 19 (b) |1y 14 12) 15

Figure 5: (a) The operator £ (z) encoding the coupling between a ’t Hooft line at z=0
(in red) and a Wilson line at z (in blue) with incoming (i| and out going |j) states.
(b) RLL relations encoding the commutation relations between two L-operators at z
and z".

coordinates). This equivalence between the L! bracket (eq.(23)) and the {ba,cﬂ } PB follows

from the Levi decompositions of sl that we describe here for different coweights of eq(17).
1) Minuscule coweight u

The Levi decomposition of sl and its fundamental representation N with respect to the mi-

nuscule coweight u, reads as follows

Yy sy —=sli@®sly_1®n,.é&n_,

N - 1o @ (N—1)_ (24)

1,
N

with np = (N — 1), and sl; refers to C. Because of this decomposition of sly;, one can imagine
the Levi subalgebra as the manifest invariance in dealing with the study of the tHﬁé lines in the
CS gauge theory with sl; gauge symmetry. In this view, we use the projectors p; and py_;
of the irreducible parts of the decomposition N = 11% & (N-1)_ 1 as well as the identity
o1+ on_1 = I;4 to think of the adjoint form u; of the minuscule coweight as the sum of two
contributions, one coming from 1,_,,y and the other from (N—1)_,y like

M1 =u101+U10N-1- (25)

The projectors pr appearing in the above relation are as in eqs.(18-19). In this picture the ’t
Hooft line of the sl gauge symmetry gets splitted into two parallel “sub-lines” as represented
in the Figure 6. This is our first result regarding the using the projector basis to understand
the intrinsic properties of the L-operator in the A-series. Clearly, the two 't Hooft “sub-lines”
in the Figure 6-(b) are coincident in the external space R? x CP! of the CS theory, but are
lifted in the sl internal space where the transitions between the two sub-lines are generated
by operators belonging to the nilpotent subalgebras n..

Moreover, the decomposition N — 1;_;,y ® (N —1)_;/y can be extended to higher dimen-
sional representations R of the sl gauge symmetry. This follows with the previous discussion
concerning Wfi beyond the fundamental weight N. For example, the antisymmetric N AN, the
symmetric NV N and the adj representations of sl decompose with respect to the minuscule

11
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”’pl i 1-1/N

sl

: -1/N

R
(a) (b)

S|1x5|N_1

Figure 6: (a) Magnetic 't Hooft with charge u; from the point of view of global sl
symmetry. (b) The same line from the point of view of internal sl; ®sly_;. here, the
line u splits into two sub-lines up; and ppy_; as described in eq.(25).

coweight u,; as follows

|| sly || sly ®sly_4 ||
NAN F1_% ea(F/\F)_%
NVI\_’ 12_% GBFl—% @(FVF)_% (26)
NxN 11_1®11_1+11_1®F1+F_l®11_1+F_l®Fl
- N N - N N N N N N
adj (sly) || Fo1 @ [1o@adj (sly_1)o] ® Fs

where F = N —1. Notice also that compared to N — 1;_;/y & (N—1)_;y, the symmetric
NV N reduces to three sl; ®sly_; representations namely 1,,_ 2 and F_ 2 as wellas (FVF)_ 2;
the same holds for adj (sly). This feature is interesting as it indicates that the correspond-
ing Lax operators Lyyy and L,qj(1,) have a richer intrinsic structure compared to Ly, see
subsection 2.3.

2) Minuscule coweights y; for 2<k <N —2.
Levi decomposition of sl and its fundamental representation with respect to u; leads to

Ur : Sy = sl ®sly_ ®sli®@k(N—k), ®k(N—k)_

N-okyx®(N—k)_k, @7
N N

where the Levi subalgebra is sl; ®sly_, ®sl; and the nilpotents are k (N — k)... For the example
of sl, with k = 2, we have

Ug @ Sly—sl,®sl,®sl; 4, 04_

4—>2+%€B2 (28)

_1.
2

Notice that for this case as well, we have a splitting picture as in the Figure 6-(b) where eq.(25)
should be replaced by

M = UrQxk + UkON—k - (29)

3) Minuscule coweight py_;
The Levi- decomposition of sl with respect to uy_; reads as follows

Un—q1 : SlN —)SIN_l @Sll @F+®F_

N-oly-16(N—1)_ 1. (30)
N N

It has a similar structure to eq.(24), so we can omit the details regarding this uy_; case; it can
also be recovered from the generic y; with k =N —1.
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N k N-k_
(Al (a (il
)
L
£
|B) il%i |b) lj)
(a) sly (b) sl sl

Figure 7: (a) A horizontal minuscule 't Hooft line with magnetic charge u; crossing a
vertical Wilson line with electric charge R = N. The green dot describes the coupling
given by the Lax operator (AILgk |B>. (b) Intrinsic structure of the Lax operator taking
into account the Levi decomposition of sl with respect to uy.

2.3 the L-operators in sl theory

The expression of the £"k-operator in terms of the adjoint form of the minuscule coweight
and the Darboux coordinates b“ and c, is given by

LP () = eXztreY | (31)
with
k(N—k) k(N—k)
X= D1 b%,, Y= Y Y% (32)
a=1 a=1
In eq(31), the minuscule coweight acts like
[nu’]oXa] = +Xa7 [‘u’k:Ya] :_Yaa (33)
with the adjoint action y; = u?{gi where p; = |i) (i| and where the ,u;'{’s are fractions of the

unity given by (16). See also the Figure 7-(a,b) representing our vision regarding the topology
of the L-operators of A-type series. For the expressions of the generators X, and Y¢ solving
the constraints of eq(33), they are constructed below depending on the value of the level k.

2.3.1 ’t Hooft line with magnetic charge yu,

In the case of a 't Hooft line with a magnetic charge u, crossing a Wilson line W?ZN of sly, we
have N — 1 generators X, and N — 1 generators Y¢ in the fundamental representation. These
are N x N triangular matrices solving eq.(33) and given by

Xa:|1)<a+1|;

Y¢=la+1)(1],

N-—-1
N

(34)

1
Uy = Ql_ﬁ(92+--'+QN),

where we have set p; = |i) (i| with Zf’zl i = Iyxn- Moreover, by taking p; = g5 + ... + on
with p; + o7 =1, the adjoint form u; can be written in the following form

N-1 1 35)
N ©1 NQl-

U1 =

These projectors play an important role in the study of the L-operator of the 4D CS theory with
SLy gauge invariance: (1) They single out the Levi charges of the two internal subspaces in
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the Levi decomposition N = 1;_;/y & (N —1)_;,y. For example, by multiplying eq(35) first
by o, and then by pj, we obtain

N-1

1
@1> .U'lgi:_]vgi’ (36)

w01 = N

which describe the two horizontal sub-lines in the Figure 6-(b). (2) They allow to write inter-
esting properties verified by the realisation (34) such as

Xq,01=0, QiY‘l:O, a7
eiXqe=0, Y'e1=0,
indicating that Eﬁlzzv can be presented as a matrix with sub-blocks given in terms of the pro-
jectors p; and pj.
We can check the relations (33) by computing the quantities u,X, and X,u, using the above
realisation, we have

_N-1

1
WXy =——Xq, Xoy = _NXa, (38)

thus giving [u,,X,] = X,; the same can be done for the generators Y.
Now, in order to explicitly calculate the L-operator, we need to evaluate the exponentials e*
and e¥ such that X and Y are given by

N—-1 N—-1
X=>"b1){a+1, Y= cla+1)(1]. (39)
a=1 a=1

These matrices obey the property X2 = Y2 = 0, so we have eX = I +X and ¢! =147,
consequently

Ly (@) =I+X)z" (I+Y)

40
=zMT + Xz 4+ 2y + Xy . (40)
Using u; = %Ql — %Qi with p; =1 —p; and 21 = z“igi, we can express the L-operator in
terms of projectors as follows

E‘“(z)—zl% +2 VX Q7Y +27F i+ o1 ¥ o5
N = p1+2 eiY +z (X91+91Y)+Z e1- (41)

This form of the Lax operator is a result of the projectors basis that we choose above, this
unique writing is particularly significant for the quiver description of the L-operator as well as
for the straightforward extension to other electric charges of the 4D CS gauge theory with sl
gauge symmetry.

2.3.2 Magnetic charge y; with2 <k <N -2

In this generic case, we have k (N — k) generators X, and k (N — k) generators Y“ generating
the nilpotent k (N — k), and k (N —k)_ of the Levi decomposition of sl; with respect to the
minuscule coweight u;. In fact, the X;, and the Y® of n, are N xN triangular matrices realised
as follows

Xig=li){(k+a|, 1<i<k,

) (42)
Y%=lk+a)(il, 1<a<N-—k,
and the y is given by
N —k k
e=—y Hk_ﬁnk: (43)
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with
k N
Hk=ZQz, I = Z o1 - (44)
=1 1=k+1

The generators (42) satisfy the Levi decomposition conditions that read as

N—-1 1
[nu’loXia] = T + = Xia :Xia 5

N
I N—1 (45)
|:,U/k Yla] — (___ )Yla =_yl'a.
’ N N
This interesting realisation also obeys
X, I, =0, L,Y*=0, (46)

which indicates the sub-blocks of the matrix LZ". The commutators [X ias Yia] give the Cartan
generators reading as H;, = p; — 0, while the nilpotency X;,X;s = yiey/P = 0 leads to
e¥ =I+X and e¥ = 1+7Y. Using these features, we obtain

L =T +X)z"(I+Y)

47
= gk + XMk 4+ gy + X gheY . “47
Moreover, using
N—k k
= I, — —TII;, 48
e = —— e — =T (48)

. k k .
with Il = I —1II; and 21 = z"II; + 2" Iz, we can express the operator in terms of the
projectors as follows.

LY (2) =2'F M +2 VI +2 VXTI +2 N ILY +2 VXTI,
N ()= ktz Vg +2 Ptz NIY + 2 v XIILY . (49)

This is the generic form of the L-operator in the 4D Chern-Simons gauge theory with sl gauge
invariance.

2.3.3 Magnetic charge uy_;

In this case, the N — 1 generators X; and N — 1 generators Y are given by

X,=|1+a)(N|, Y*=|N){1+dl, (50)
with1<a <N -1 and
_l __E (51)
MN—l—NQN N On -
The Lax operator reads as
LM (2) = gV o 277 = e = 2
N (@)=zVogx+z ¥ oy+z ¥ Xpoy+2z ¥ oY +2F XopY, (52)

which corresponds to setting k = N — 1 in eq(49).
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3 Topological gauge quivers: A- family

In this section, we want to construct quiver gauge diagrams corresponding to the topological L-
operators in 4D Chern Simons theory with A-type gauge symmetry. This graphical description
was first proposed in [60] for the case of exceptional gauge symmetries Eg 5, and it will be
extended here for the ADE series. First, we begin by defining these quivers and explaining
the procedure of their construction; then we illustrate this for the topological quivers Q%"
corresponding to L-operators Exk of sly -type with uy, 1 < k < N and R = N. This leading
model is exploited to build other quiver diagrams ng in 4D CS with A-type gauge symmetry;
these correspond to L-operators in representations R beyond the fundamental N of sl; and
are collectively given in the Figure 29 at the conclusion section.

3.1 Motivating the topological quivers Qj

The quiver diagrams Ql‘i that we introduce here in the framework of 4D Chern Simons theory
give a unified graphical representation of the data carried by the L-operators Eﬁ' We refer
to these graphs as topological gauge quivers, first because they have a formal similarity with
quiver diagrams ng“;l{ ge N SUpersymmetric quiver gauge theories that we briefly recall here be-
low; and second because the L-operators they illustrate match topological 't Hooft line defects
in the 4D CS [53].
e Gauge quivers in supersymmetric theory
For a supersymmetric quiver gauge theory with unitary gauge symmetry G factorised as

=] vy, (53)

and Lie algebra g = EB?ilu (M;), and where the gauge symmetry factors are imagined in type
II strings as stacks of M; coincident D branes wrapping cycles in Calabi-Yau compactifications
[64], we have a gauge quiver denoted as Qyqug.. This diagram has: (i) ny nodes Ny, ..., Ny,
corresponding to the gauge group factors Gy, ..., G,,, describing ”adjoint matter” in the gauge

theory transforming in the adjoint representations
adju (M;) = M; x M;, (54)

(ii) a number ny;, of links L;; between the nodes (/\/l,/\/]) describing bi-fundamental matter
transforming in the representations

M;x M; €U (M, xU(M;). (55)

e Topological gauge quivers in 4D CS

Based on general aspects of supersymmetric quivers, we introduce our topological gauge
quiver diagrams Ql’é describing the L-operators in 4D Chern Simons theory by focusing in this
section on the A-type symmetry. These have similar features with nglflfge that allow to interpret
the phase space coordinates b* and c, in terms of topological variables and bi-fundamental
matter. As for the L-operator, a topological quiver Qﬁ is defined for a general gauge group G,
by the choice of a minuscule coweight u and a representation R of g. Notice here that only
representations that lift to the Yangian lead to quantum L-operators in the 4D CS, otherwise
the obtained L-operators are to be interpreted semi-classically.

However, the construction presented here is valid for any representation R, where the minus-

cule u that decomposes the Lie algebra g into a Levi subalgebra [, and two nilpotents n.. as
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in (9, 10), splits the R into p irrepresentations R; having charges m; with respect to the SO(2)

of u. We write
p p
R=ZR1‘, M=Zmini: Znile: (56)
i=1 i=1 i

with II; being the projector on the subspace R;. To such data, we associate a topological gauge
quiver Qﬁ having p nodes, each one given by the couple (R;, m;) such that the charge is noted
as a subscript of the irrepresentation. These nodes are ordered such that m; —m;,; = %1, and
we have for two nodes N; and N;, m; —m; = +k where k = 1,...,p — 1 is an integer. This
property comes from the branching rules [65], and is to be observed from the different cases
studied in the present paper. In the (dimR x dimR) matrix representation of the corresponding
EI‘;, we have p diagonal sub-blocks in one to one with the nodes N; = I1; LII; of Qg.

The links connecting different nodes of the quiver are therefore given by off-diagonal blocks
L;; = II;LT1; that indeed allow to transit between the m;’s. These carry charges £k because
they contain polynomials of the form ¢“*!b! and b**!c! with [ =0, ...,p — 2. Here b = b* and
¢ = ¢, are the oscillator vector and co-vector of dimensions n, = n_; they carry charges F1 as
noticed from

a a
X = el Xatn | eV = ety (57)

For simplicity, the link L;_,; from N; to N; with |mj — mi| = k is indexed in the quiver by c¥;
and similarly L;_,; is indexed by bX. Eventually, we should obtain p —k couple of links (bk, ck)
that guarantee the conservation of charges following the circulation of arrows in the quiver.
The topological aspect of such quivers can be visualised from the key ingredients b and c
appearing in the quiver diagram. In fact, the b can be expressed in terms of the topological
line defect using eqs.(31,32) as well as b* = tr (XY“) and X = log (L’“k e_Yz_“k); we have

b* =tr (log (E“ke_yz_“k) Ya) . (58)
Similar calculations for c, yield
Cq = LT (log (z_“ke_xﬁ“k)Xa) . (59)

Concerning the interpretation of the phase space coordinates b* and c, as bi-fundamental
matter, it follows from the decomposition of the gauge potential A in the Lie algebra. For
example, for AlM ~ ad Js1y» we have the following decompositions (eq.(24))

sy — sl ®sly_ ®sly®n, . ®&n_,
adjy, — adjg, ® adjy, , ®adjy, @ (k,N—k)e (k,N—k), (60)
A — Ay @ Ay, @ Ay, @ (b} @ {cg)

Ik
where we see that b and ¢, sit in the bi-fundamental of the gauge symmetry SL; X SLy k-
Therefore, we have a quiver diagram with two nodes corresponding to the adjoints (k X k) -1
and (N—Kk) (N — k) —1, and two links corresponding to the bi-fundamentals (k, N— k) and

(l_c,N—k). This quiver is constructed below by analysis of the elements of the associated L-
matrix (see Figure 9).

3.2 Topological quiver of L}

In this subsection, we want to associate a topological quiver to the Lﬁl calculated before in
the framework of 4D CS theory with SLy gauge symmetry for the first coweight u; and the
fundamental representation R = N. To this end, we exploit the projector basis in the matrix
form of the L-operator to cast its elements corresponding to different representations of the
subalgebras in the Levi [, .
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3.2.1 The L-operator in the projector basis

The expression of Eﬁl involves two projectors p; and g, corresponding the representations of
the Levi subalgebra sl; @ sly_;. The presence of these projectors in the explicit expansion of
Lﬁl is interesting in the sense that it allows to represent it as a four sub-block matrix. We have

N—1 1

g2 N Iy_+XY gz vX

Ly = N s 61)
Z NY 2N

which is obtained from 41 using special projectors features of the realisation of X, and Y¢
(34) like Xp; =0, 01Y =0,X90; =X, 01:Y =Y and Xp,Y = XY. Moreover, we can write

N—-1 1 1

N v XY “NpoXpP5

ch :( o1lz N_jz vXY]o: z _NlQl e1i )’ (62)
z NoiYq z Npipi

to visualize the correspondence with irrepresentations and bi-modules of sly; thus opening a
window on a formal similarity with the structure of supersymmetric quiver graphs. This allows
to think of the topological quiver Qﬁl for the A- type symmetry as having two nodes N; and
two links L;; associated to sub-blocks of E%l as follows

M=(eiLe1), Lii=(eiLlei),
Ni=({piLe1), Ly, =(eiLer) -

Moreover, by replacing with X = b*X, and Y = ¢,Y* as well as XY = (b%c,)p; in the Lax
operator, we end up with the known form of L‘Zl in the literature [17].

(63)

N1 _1
L‘le(ZN +z ¥ble z7W 64)

NI
2|~
(g]
N|
z- o
~
N—

In this oscillator realisation, the b* and c, appear indeed as fundamental quantities.

3.2.2 Formal expression of £%1 and the quiver Qzl

To explicitly match the L-matrix in terms of oscillators 64 with ingredients of the Qxl, we can
use the property p; + 7 = Iy to cast [,%1 in different but equivalent ways: First as Iy£*1 and
LMy giving

Ly =1L + 1L

65
:L:NlQl +E“191 ( )

And second, using the form Iy L1 to express the Lax operator as (Ql + Qi) L (91 + Qi) ,
namely

Ly = 01£M 01+ 01LM 01 + 01£M 01 + 01 £ 07 - (66)
Moreover, by help of Qf = p; and Q% = pj as well as p;p; = 0, we can present Eﬁl in the
operator basis (91, Qi) like a 2x2 blocks matrix as follows

w_ [ e1ifMer e fMer
En _( eilfor 0:1£LMe1 ) 7

This formulation of the Lax operator was behind the construction of the topological quivers
concerning exceptional 't Hooft lines in 4DCS theories with E¢ and E, gauge symmetries. Here,
for the minuscule coweight u,; and representation R = N of sl the topological gauge quiver
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Figure 8: The topological quiver Qﬁl representing Eﬁl of sly. It has 2 nodes and 2
links. The nodes describe self-dual topological matter and the links describe topo-
logical bi-matter.

"+ is depicted in the Figure 8. Its two nodes N} = p;£"1p; and Nj = p;L" p; are inter-

preted as topological adjoint matter of the Levi sub-symmetry group SL; x SLy_; SL;. This
can also be referred to as self dual matter since it is uncharged under the minuscule coweight
operator, like the quantity b” c. The two links L;; = 01 £ o7 and Li; = p1£"1 o, are given in
terms of oscillators b* and c,. They carry charges F1 under u,, and are interpreted in terms
of topological bi-fundamental matter of SL; x SLy_;. This QFT interpretation matches the
supersymmetric gauge quiver description. Finally, notice that using the Killing form, the b*
and c, can be related to the links L, and Lj; as

b* =28 Tr(L1iY%),  cq=2"Tr (L1, X,) . (68)

3.3 Topological quivers: Case 2 <k <N —2

Here, we generalise the construction of subsection 3.2 regarding the minuscule coweight u;
to the generic minuscule coweight y; with 2 <k <N —2.

3.3.1 Generic projectors II; and IIj

In the generic case, the expression (49) involves the projectors II; and II; on the representa-
tions of the Levi subalgebra sl; @ sly_x @ sl;. Using the properties

X, =0, I,y =0, (69)
and the identities

XMy =X, IGY=Y, (70)
leading to XTI;Y = XY, the L- operator L’%" can be presented in block matrices like

g NXY 2vX
2N 27N 27N
ﬁ%"=( x ‘ ) 71)

g NY z N

By exhibiting the dependence into the Darboux coordinates while substituting X = b'*X;, and

Y =cjp YiP as well as XY = bi%,,, we obtain
5N (z + bi%,,) 2 Vbi%X,
ﬁ%k — et “ia k ia , (72)
2 Ncjp yiP 2N

which is also in agreement with [17].
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Figure 9: The topological quiver representing C%" of sly. It has 2 nodes and 2 links.
The nodes describe self-dual topological matter and the links describe bi-matter.

3.3.2 Constructing the topological quivers Q%"

By using the property IT; + IT; = I, we can cast Eﬁ" as follows
Lk = (T + T ) £ (T + 10 (73)

Using I1,IT;; = 0, we can put this L") into the following matrix form

I1, LMeTT,  TI, LMETT;
Uk __ k k k k
LNk - ( H]‘{,C“kl—[k H];,C'ukl—l,‘{ ) ) (74)

The topological gauge quiver ka associated with this L-operator has two nodes NV, N; and
two links L, Li,. It is depicted by the Figure 9.

The two nodes
Ny =T LT, N =TI LV, (75)

describe topological adjoint matter of SL; and SLy_;; and are interpreted as topological self
dual matter. The two links relating the two nodes are given by,

M LM T, T LM, (76)

they describe bi-fundamental matter of SL; x SLy_i. These bi-matters are precisely given by
the Darboux variables b'* and c;, of the phase space of 't Hooft line tHﬁg. To end this section,
notice the following:

(1) the topological quiver QZl of the operator ﬁ%l appears just as the leading quiver of the k-
family Q;" associated with the family 5%". So, the topological quiver QI‘GN ! of the £1‘GN -
turns out be just the last member of the k-family. We omit its description.

(2) the quiver ka given in this section concerns Wilson lines with quantum states in the
fundamental R = N. For Wilson lines in other representations of sl like the completely
antisymmetric N Ak and the completely symmetric NV", we can construct the associated
the L-operators and the corresponding quivers ng. Examples of the topological quivers
Q;lAk and Q;lvn are given in Figure 29. Their Levi charges reported on the nodes can be
read from the decomposition (26). As an illustration, the quiver Q:lvg corresponding to
the representation the symmetric N VN V N is depicted by the Figure 10.
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Figure 10: The topological quiver Ql‘él for the representation R=NV N V N. This
quiver has four nodes and 12 links.

Figure 11: The topological quiver Q"* for the adjoint representation of sly. It

ad;j(sly)
has three nodes Ny =1, and n. =k (N k..

(3) An interesting topological quiver diagram Q"% adj(sly) given by the Figure 11. It is the
one associated with the adjoint representation; that is R = adj (sly). From the de-
composition given by eq.(26), we see that adj(sly) splits as n_ & 1, ® n, with
l, = adj(sl)y+ adj (sly_x)o +sl; and ny = k(N —k).. The second concerns sl;
with the representation 15 = 1_j/y X 1_141n-

4 Vector 't Hooft lines of D, - type

In this section, we study the class of vector-like L-operators E"“t in the 4D Chern-Simons
theory with SO,y gauge symmetry. This is a sub-family of the famﬂy of D- type Lax operators
which contains moreover the Lax operators ESOZN of the spinorial class to be studied in the next
section. Because SO, = SU, x SU, and SOg ~ Dj is isomorphic to SL,, we assume that N > 4
so that the first element of the Dy series is given by SOg.

Notice that the general aspects of the present construction are similar to those introduced in

the previous sections. The 't Hooft line tH , is taken as the horizontal x-axis of R? and the Wg
z

is chosen as the vertical y-axis; the z is a generlc position in the holomorphic line CP?, and R
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Figure 12: (a) A horizontal vector-like 't Hooft line with magnetic charge u; cross-
ing an electrically charged vertical Wilson line in fundamental vector representation
R =2N. The green dot refers to the coupling between the two lines; it is given by
the Lax operator Eg 11\1 (b) Intrinsic structure of the Lax operator which will be inter-
preted as a topological gauge quiver with three nodes and 6 links.

is a given representation of so,y. Moreover, most of the features associated to the derivation
of Lax operators from 4D CS with SO,y gauge symmetry have been considered in [53, 61].
Therefore, we focus here on analysing the internal algebraic structure of this theory allowing to
illustrate the key elements of the quiver gauge QSV;;E associated to ﬁsv(f;s This quiver constitutes
a necessary part in the unified theory chain in the sense that it links the A-type symmetries
to the exceptional ones, and allows to indirectly include the B-type symmetries thanks to its
similarity with the minuscule coweight of the so,y . Lie algebra.

4.1 Vector lines tH’;; and their L-operators

We begin by recalling that minuscule 't Hooft lines within the Dy family of 4D CS theory
are magnetically charged with magnetic charge given by the minuscule coweights u of Dy.
Because there are three minuscule coweights in the Dy, Lie algebras given by uq, y_1, Uy
(see the Figures 13 and 17), we distinguish three types of 't Hooft lines tH’)f0 in the 4D Chern-
Simons theory with orthogonal gauge symmetry SO,y that we can refer to as

tHE = ¢HY! ) tHUY = ¢HP™,  tHUN = cHEOP, (77)
The coweights uq, uy_1, Uy are respectively dual to the vector representation 2N, the spinor
representation ZILV ~! and the cospinor representation Zg ~1. Here, we first focus on the coupling
of the vector-like tHéf; with the Wilson line in fundamental R = 2N ; then we move in the next
section to the study of tH%v ~'and tHﬁéV . To fix the ideas, we illustrate in the Figure 12 the Levi

splitting characterising tH;S”. This intrinsic structure will be derived and commented later
on.

4.1.1 Vectorial tH;SCt line: Magnetic charge

The fundamental coweight u; is the dual to the simple root a; of the so,y Lie algebra. By
taking the N simple roots of SO,y as a; = e; —e;; fori € [1,N —1] and ay = ey_; +ey; it
follows that the value of the minuscule coweight constrained as u; a; = 6;; can be solved like
w1 = 7. In terms of the simple roots, we have

1
Up=a;+..+ay_o+ 3 (ay_1+ay). (78)

Notice that by setting N=3 in this relation, the resulting u; takes the value a; + %(az +as3)
which can be compared with the fundamental weight (i, = a, + %(dl + as) of the sl Lie
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Figure 13: Dynkin diagram of Dy Lie algebras where the N simple roots a; are ex-
hibited. The Levi decomposition of soy — 50, ® s09y_, using the vector coweight is
given by cutting the simple root a;.

algebra which is isomorphic to sog. Here, the @;’s stand for the simple roots of sl,.

From the Dynkin diagram of the Dy, Lie algebras given in Figure 13, we can see that the Levi
decomposition I, ® n, ® n_ of so,y with respect to the vectorial coweight u; is given by
l,, = so; ®s0yy_p and ny = (2N —2); with the charge symmetry so, ~ sl;. As such, the
dimensions of the so,y and its vector 2N split as follows

N@2N-1)=1+(N—-1)(2N—-3)y+ (2N —-2), + (2N —2)_, 79)
2N =25+ (2N —-2),,

where we have also exhibited the charge of so,. To construct the L-operator of the tH"e“ line
represented graphically by the Figure 12-(a), we need the adjoint action of the cowelght Uy
and the explicit expressions of the generators of the nilpotent subalgebras n..
The 2N —2 generators of n, are denoted by X; and their homologues generating n_ are denoted
like Y, their realisation should solve the Levi decomposition constraint [u;,ny] = *n, and
[nq, nq] Owithg=+
To get this solution, we consider (i) an electric vertical Wilson line as in the Figure 12-(a)

Wi, g ={(x,y) |[x=0;—00 <y < oo}, (80)

with incoming vector-like states (A| (A=1,..., 2N) and outgoing |B) ones propagating along the
line &,. (ii) a horizontal ’t Hooft line defect tHx” with the magnetic charge uq;

NR?

y=>0" (81)

vect 2
tHro ’ To IRy<0
In this case, we can split the vector representation |B) of SO,y as a direct sum |f3) @ |j) where
|B) is a vector of so, and |j) a vector of so,y_5. Moreover, we use the isomorphism so, ~ sl;

to split |3) as |+) and |—) . Eventually, we have

|0) |+)
B =1 |=| » |. 1<j<m, (82)
0) -)
where we have set M = 2N — 2 and considered the splitting of the 2N vector as

1, ® (2N—2), @ 1_ such that the Levi subalgebra is sl; ® soyy_5. In this vector states basis
(82), the operators X; and Y' generating the nilpotent subalgebras are given by

Xl = |+> <l| - |l> <_| P

Vi = Ji) (+] = ) (] %)
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1, (2N-2), 1

Figure 14: A graphic representation of the splitting of the vector 2N representation
under the vectorial Levi decomposition. The projectors on these three blocks are

o+ =I+) (+], 2oi =2i) (il and o_ = |-) (.

The action of these operators X; and Y' on the vector representation of so,y can be visualized
in the the Figure 14 describing the splitting of the 2N vector. As for the adjoint action of
the minuscule coweight, it is given by a particular linear combination of projectors pi on the
irreducible representations 1. and (2N — 2), of the so, & so,y_5 Levi subalgebra as follows

U =p04+—0Q-, (84)

with o, =[+) (+/ and o = |-) (.
Because of the vanishing so, charge of (2N — 2),, the minuscule coweight has no dependence
on the projector

Iy = Z Q> (85)

with p; = [i) (i|. Notice that X; and Y/ satisfy some characteristic relations like for example
XY = 5;Q+ + |i) (j| indicating that

Tr(X;v') =257, (86)

From the realisation of eqs(83-84) we can deduce that [u,X;] = +X;, [,ul, Yi] =—Y! and
[X 0> Yi] = u,. Other useful and simplifying relations are listed below

XX =0y L, XXX =0, 7)
YiYI=—8U|-)(+|, Yiviv'=o0,
and
erizo, v
as well as
XiQ—'=_|i> -, Q-.t-Xi=|+> (il 89)
o-Y'=—I=)(l, Y'o,=Ii)(+l.
By considering the linear combinations
X=bX;€n,, Y=c¢Yien_, (90)

where b’ and ¢; are the phase space coordinates, we can calculate their powers X" and Y";
and then eX and e¥. We find that X? = —b?E, Y2 = —c?F and X° = Y°® = 0 where we have set
b® = b'6;;b/ and ¢* = ¢;6'¢; as well as E = |+) (—| and F = |-) (+| satisfying [E,F] =y, and
Tr (EF) = 1. We also have

b= %Tr (xy"), b*=-Tr(X?F),

1 (91)
¢ = 5Tr X;Y), > =—Tr(Y%E).
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Moreover, we have

0 X=0, o X=Db+)(il, Xo_=-bli){-,

_ , (92)
0¥ =0, o Y=—c|)l, o ¥=—ql)(l.

4.1.2 Vector- like tH)‘jz“ line: Building the L-operator

Using the properties X3 = Y3 = 0 indicating that eX =T+ X + %X 2 and equivalently for eY;
then putting back into the expression of the L-operator namely £ = e*z"1e¥, we obtain

1 1 1 1 1
Lyet =zt +Xz“1+z“1Y+§z“1Y2+£Xzz“1 +XzMY + EXZ“1Y2+§X22“1Y+ZXZZ“1Y2, (93)
with higher monomial given by X2z*1Y2. Replacing z*1 = zp, + 2z 'po_ and using eq.(88)

indicating that
Xz =57 1x o_, ZMy =z71 o Y, 94)

the above L-operator reads as follows

1 1
Ly =z0 +25 o +2 X +5 o Y + 52_1 oY+ Ez_lXZQ_ +z7Xp_Y

1 1 1
+ -2 X Y24+ -2 1X2%0_ Y + -z 1X?%p_Y2. (95)
2 2 4
This operator has a remarkable dependence on the projector p_. Using the non vanishing
0+ XiXjo_ = —6;;E and o_Y'Y/p, = —8F as well as Q+XinQ_YkYZQ+ = 5ij5klg+, we
have

1 _
0+Lor =704+ 3 lo X%p_Y?0,,

1
0. LIy = EZ_IQ+X29_YHO, (96)

1
orle- =570 X 0,

and
1 _
MoLe, = 3% MeXo_Y%0,,

Mo LIy =z 'MpXp Yy =2"" biE{cj , (97)
MyLo_ =2 MyXo_,

with E] = |i) (jl, and

1 _
o-Lo. =570V 0.,

o_LTy=z""g_YTI,, ©8)
o Lo_=z1o_.
Substituting Xp_ = —b'x; and p_Y = —¢;y" as well as X?p_ = —b%E and p_Y? = —c?F by

help of eqs.(89,91,92), we obtain
vect 1 1122 -1 —1pi 1. i 1 12 1 12
Loy = z+£—}z b°c® |o, +2 p_—z "b'x;—3z ¢y +—§z CF_EZ b°E
. .1 - 1 i
+z71 (b’cj)xiyj + 52_1 (blcz) x;F + Ez_lbzciEy’ . (99)
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Figure 15: The topological quiver representing £35°. It has three nodes and 6 links.
The nodes describe self-dual topological matter and the links describe topological
bi-matter.

4.2 Topological quiver Q)=‘: Case of the vector 't Hooft line

From the realisation eqs.(83-84) and the diagram of the Figure 12, we learn that the Lax
operator £3%°" has an intrinsic structure that can be represented by a topological gauge quiver
Qyx". To draw this topological quiver diagram, we use the projectors o, 0_ and Iy = > 0i,
singling out the representations of the Levi subgroup SO, xSO,y,_, of the orthogonal symmetry

SO,y , to cast eq(95) as follows
o+Lo+ ©+LIy o4Lo-
Lygt=| Moley TMoLlly MoLo- |. (100)
o-Loy oL po_Lo_

In this decomposition, we have used the relation o, + 1+ po_ =I;4 and p.Ily = p,po_=0.
Finally, we recover the matrix representation in agreement with [66]

22+ 3b%c® 3b%c; —1b?
cret =z 1| lpi b, —b . (101)

The topological gauge quiver Q%" representing the above vector like £

Figure 15. The Q,%* has three nodes N, , Nyy_, and N_ given by

vect

5y is given by the

Ny =(e+Loy), Non—z = (T LTT) N_=(o_Lo_). (102)
It has 3 + 3 links L;; with i,j = 0,% interpreted as topological bi-fundamental matter

SO, x SO,y _, reading as

Lo =(04+LI), Loy =(oLoy) » L, =(o_Lo4),

(103)
L,_={o:Lo-), Lo_=(oLo-) , Ly =(o_LI) .

Notice that The Darboux coordinates can be expressed in terms of the operator £)5* and the
generators X;, Y' and the minuscule coweight u, as follows:

b =2Tr (u YL, c; =2Tr (L5 Xuy) - (104)

While b and ¢; sit respectively in the vector representation of SO,y_, and its transpose, they
carry opposite unit charges under the minuscule coweight u.
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M~

magnetic charged

. 't Hooft line

electric charged Wilson line

Figure 16: A horizontal 't Hooft line of D- type with spinor-like magnetic charge given
by the minuscule coweight uy of SO,y couples to a vertical Wilson line characterized
by a representation R of so,y.

As for the Darboux, we also have their composites that appear in the expression of the L-
operator, they are scalars of SOyy_, and carry non trivial SO, charges. They are given by

b?=—2zTr (FLYS'), & =—2zTr(ELYS'), (105)

where E and F are related to the minuscule coweight operator as [E,F] = u;. Interesting
composites of the Darboux coordinates that transform non trivially under SO, are given by

b%c; = 22Tr (U FLYS'X;),  b'e® =22Tr (u Y LIK'E). (106)

5 Spinorial ’t Hooft lines of Dy - type

This section is a continuation to the previous one, it concerns the operators £.,". Here, we
introduce the two spinorial like 't Hooft lines of Dy type denoted as tHﬁ(’)H and tH‘)f(’)v and con-
struct associated Lax operators. We cast their special properties in the associated topological
quivers Q;fm. We also treat exotic cases where the electric charges are given by representations
beyond the (anti)fundamental of the so,y Lie algebra.

5.1 ’t Hooft line with magnetic charges u,_; and uy

Besides the vectorial u; = e; given by eq.(78), the SO,y has moreover two other minuscule
coweights uy_; and uy. These coweights yield the magnetic charges of the two spinorial-like
't Hooft lines:
tHYN—1 tHUN |
Yo Yo

These line defects are represented similarly to the vector-like line tH’}fé of previous section as
depicted in Figure 16 where the tH’;éV couples to a vertical Wilson line WR carrying internal

states |A) belonging to some representation R of so,y. Interesting candidates for R are given
by the vectorial and the spinorials, namely

R=2N, R=2"' R=2]"'  R=2V. (107)

So depending on the electric charge of the Wilson line Wg, one distinguishes various kinds of
L-operators that generally speaking, can be labeled as follows

Egs = eXrghsetr (108)
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Figure 17: Dynkin diagram of Dy Lie algebras where the two Levi decompositions
with respect to the spinorial coweights are illustrated by: (a) removing the simple
root a for the minuscule coweight uy. (b) removing the simple root ay_; for the
minuscule coweight py_;.

with a spinor-like minuscule coweight u, of SO,y . For an electric representation R, we have a
Lax operator L’ﬁ described by a dimg x dimg matrix whose entries are functions of the Darboux
coordinates. These phase space coordinates labeled as (b[ij 1, Cri j]) appear in the expression of
the Xz and Yy as follows

Xp=bxf,, Ye=cqute” (109)

R

where the X® . and YR[ij Iare generators of the nilpotent subalgebras nf issued from the Levi

[if]
decomposition of so,y. In fact, for the spinor-like coweights u, = uy—_; or uy, we have the
following Levi decomposition of soqy

sooy =1, ®n, én_, (110)

with I, = gly. This can be directly read from the Figure 17 where we see that the funda-
mental coweight uy_; is the dual of the simple root ay_; = ey_; — ey, While uy is the dual
of ay =ey_1 +ey-

Notice that by cutting the root ay_; from 17-a, we end up with the Dynkin diagram of an sl
Lie algebra with the following simple roots:

A1y, AN_95 AN - (111)

And if instead, we cut the root ay as in 17-b, we also end up with the Dynkin diagram of an
sly, Lie algebra having the simple roots:

Aq; ey ON—2; AN-T - (112)

The two sly and sl}; are isomorphic, they are related by the exchange ay <= ay_;. We can
therefore focus our analysis on the minuscule tH‘;éV since the calculations are similar for tH‘;é" -
Notice however that the expressions of the coweights in terms of the e; weight vector basis are
given by

1
Un—1 = 5 (e1+...+exy—1—en),

1
Uy = E(el +...+ey_1+ey).

(113)
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5.2 Magnetic charge uy and the link between SO, and SLy

Here, we study the Levi decomposition of so,y with respect to uy in order to explore intrinsic
aspects of the coupling between the minuscule tH’;é" and the Wilson line in a representation
R of so,y that is usually taken as the vectorial 2N. Particularly, we extend the results here for
Wilson lines in the spinorial representation 2V where we build the graphic representation of
their remarkable coupling with ’t Hooft lines; see Figure 18-(a).

5.2.1 Spinorial ’t Hooft line tH‘;éV

As shown by the Figure 17-a without ay, there is a close relationship between SO,y and SLy.
It is given by the Levi decomposition sooy — 1, @ n, @ n_ with respect to the coweight uy
of the SO,y gauge symmetry of the CS theory. In this decomposition, we have the following
dimension splitting

1 1
N(2N—1):N2+5N(N—1)+§N(N—1), (114)
and the subalgebra structures
l:u'N =Sll @SZN,
ng=N,1AN,1, (115)

n_=N_i1AN_1,
2 2
with sl; @ sly ~ gly and [sl;,n.] = n. indicating that
[st.N.1 = I (116)
DS 2 *3”

We also have the Ry, representations’ splitting

repres Ry,, | repres Ry,

2N N+% @N_%

2N A2N adjOGB(N_'_%/\N_'_%)GB(N_%/\N_%) 117)
2N V2N adj0®(N+%vN+%)®(N_%vN+%)

2N ®_oN)*

where 2N describes vector- like states, 2N A 2N the antisymmetric (adjoint) and 2N V 2N the
symmetric. The 2V states describe a Dirac-type spinor reducible into left handed and right
handed Weyl spinors as follows

V=212, (118)
Notice that the wedge product AKN is the k-th anti-symmetrisation order (for short N*) of
the tensor product of k representation N. Its dimension is equal to ﬁ As illustrating
examples of the degrees of freedom described by such wedge products, we give below the
reductions associated with the leading gauge symmetry groups

| sooy | 2N [ 2V | 21 [ 21|
sog | 6 8 | 4; 45
sog |8 |16 |8, |8 (119)
so;p | 10 | 32 | 16; | 164
so1p | 12 | 64 | 32; | 324
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Figure 18: On the left, a horizontal spinorial like ’t Hooft line crossing a vertical
Wilson line carrying internal fermionic states ¥ = (v ;,4z) . On the right, the struc-
ture of the coupling under the Levi decomposition showing chiral and antichiral Weyl
states traveling along vertical lines.

where we have also given the sog which is isomorphic to sl4 with no Levi charge operator sl;.
The Levi decompositions with respect to uy of the above spinorial representations 2V are given
by the sum of two blocks: (i) the first block involving the even powers N2, it corresponds to
Weyl spinor; say ZILV ~1. (ii) the second block having the odd powers N*?*1 and corresponding
to 271, So, we have:

| S0an | 21 2N-1
s0s | 4y =1+3" 4p =3/ 4373
sog | 8, =1+4"2+4M 8 =4 +4M (120)
5019 | 16, =1+5"2+5M 165 = 5" + 53 4+ 5/
s01p | 32, =1+6"+6M+6"° | 32, =6" +6"% + 6/

By assuming the ZILV ~! and the Zg ~1 as traceless, we can exhibit the Levi charges in the above
relations leading to

‘ SO | oN-1 oN-1
$0 | 4L | =1ligjat3_1/4 4r | = 341741 34
sog | 8, | =1,,+60+1 4 8r | =441/0+4 1) (121)
019 | 16, | = 15,4410, /4+5_3/4 16g | = 513/4+10_1/4+1 5/4
5012 | 321 | = Tya/0+15,1/5+15_ 1,2+ 3/ | 32 | = 6,1+20,+6_4

Thanks to the reduction of so,y representations in terms of gl ones like in eqs.(117), one can
construct various kinds of spinorial-like Lax couplings depending on the electric representation
R hosted by the Wilson line Wé crossing the tH’YLg’ line. Two of such couplings are studied here
below:
e Case of electric R, = 2N

In this case, the coupling is given by the interaction between the spinorial tH“ V and a Wilson
WR line with electric representation R, = 2" as illustrated by the Figure 18- (a) The quantum
states propagating along the vertical Wilson line form a Dirac spinor ¥ = ¥; & ¥y. By using
the projector IT; on the left handed spinor and the projector IT; on the right handed one, we
can use the properties IT; + 1y = I;4 and I1; T = 0 to decompose the action of the minuscule
coweight on 2V like

p =T u+ TRy - p=pr +Ug. (122)
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2N, N, _ N
JA !-14. ¥ VJ‘
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Jg By v

Figure 19: On the left, a horizontal spinorial like ’t Hooft line crossing a vertical
Wilson line carrying a bosonic current J4 = WI*¥. On the right, The splitting of the
current into two currents u; = ¥Y;® and ¥' = WY'® traveling along the vertical lines.

This splitting is illustrated by the Figure 18-(b) where the states propagating in the two vertical
Wilson lines are given by the left handed ¥; and the right handed ¥, Weyl spinors. In this
case, the L-operator decomposes into four blocks as follows

I, £I1; 11, LI
Un _ L L L R
ERS _( HR‘C’HL HR’C’HR ) ) (123)

Notice that in this expression of £5", we have not yet implemented the Levi decomposition;
we have only exhibited the chiral and anti-chiral structure of the Dirac spinor. To implement
the effect of the Levi decomposition, we introduce other types of projectors

Pyne = [N ) (N

, (124)

that give the reduction 2V = @&,N"* and eqs.(117-121). This leads to a more complicated
structure of this specific type of coupling; we will come back to this case later for further
development.

e Case of electric R, = 2N
In this case, the spinorial tHﬁéV crosses a Wilson Wg line with electric representation R = 2N
as shown by the Figure 19-(a). This representation can be related to the previous R, = 2N
because it can also be viewed as an so,y electric current J, given by the Dirac bi-linear like

Ja=(Y|T,1®) , (125)
where the 2N Gammas Ty are 2" x 2 Dirac matrices. To deal with this so,y Wilson lines, it is
interesting to use the new basis

1
V2

Then by putting back into (125), we find that the so,y electric current J, decomposes as two
(covariant and contravariant) gly currents given by

1 . . .
1= Wi (I + Ty, = — (0 —ilys) - (126)

U =vTd, P =0Te. (127)

The u; transforms in the fundamental N, of the Levi subalgebra gly; and the #' transforms in
the anti- fundamental N_. Using the projector o, on the N, and the projector p_ on the N_,
we can express the L-operator as follows, see also Figure 19-(b)

un _ [ e+Lor o+Lo-
Eon _( e-Lo. e-Lo- ) (128)
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5.2.2 Levi and nilpotent subalgebras within so,y

To model properties of the spinorial 't Hooft lines in 4D Chern-Simons theory with SO,y sym-
metry characterized by the following Levi decomposition with respect to u,

sooy > (N_AN_)ogly®(N,.AN,), (129)

where N stand for N ,, it is interesting to recall some useful tools concerning the euclidian
Dirac spinors in higher dimensions and the algebra of Gamma matrices.

In even 2N dimensions, the Dirac spinor [ p;,q.) has 2¥ components and decomposes as a
sum of two Weyl spinors like [¢;) + |1)) where

|¢L> = 1_[L h/JDirac) >

(130)
h:bR) = HR |¢Dirac> >
and
1
I, = 2 (I +Ton41) s
1 (131)

I, = > (I —Tony1) -

The 1; and v i are Weyl spinors transforming in ZILV ! and Zg ~! while the IT; and the II are
the spin projectors encountered earlier reading as follows

I 0 00

The identity and the zeros appearing in these matrices live in 2Y~! dimensions. The I,y is
the chiral operator given by

N
Lp, Doy e Doy = ()7 €a,agy Tonss (133)

where €4 4, is the completely antisymmetric tensor with &; oy = 1 and I, obeying the
Clifford algebra of a 2N dimension euclidian space.

FAFB + FBFA == 26AB . (134)

The relations (129) and (133) allow to split the 2N Gamma matrices Ty into two subsets that
will be used later to construct a new basis for the Gammas that is compatible with gly,

F.
L ) i=1,..,N. (135)
Inyi

Recall also that the generators Jp,p of the so,y spinor representation are defined by the com-
mutators

1
Tpp = 5 [Ta,T] . (136)

As for sly & sly, the so,y algebra also has N commuting diagonal generators H; realised in
terms of the Gamma matrices as

1 .
Hy=[TpTva] ==y,  [=1,..,N. (137)

To exhibit the realisation of the sl; @ sly representations within the so,y orthogonal symmetry
group, we substitute the spliting Iy = (I}, Iyy,;) into the N (2N — 1) generators [yz of so,y and
we obtain the following antisymmetric 2 x 2 block matrix

T I
Ths :( M s ) (138)
J

32


https://scipost.org
https://scipost.org/SciPostPhys.15.3.078

Scil SciPost Phys. 15, 078 (2023)

This decomposition contains:

(a) the N2 operators lA“l.j generating N, ® N_ of the Levi subalgebra sl; @ sl .

(b) the %N (N —1) operators Ij;;) generating the N, A N, nilpotent subalgebras.

(c) the %N (N — 1) operators 'Vl generating the N_ A N_ dual nilpotent subalgebra.

5.3 Nilpotent subalgebras and L-operator

In order to explicitly realise the generators [j;;, i and lA“l.j appearing in the decomposition

(138) and consequently the generators X;; and Yk of the nilpotent subalgebras n,, we first
think of the set of the 2N Dirac matrices Iy = (I}, [y,1) as follows,

1 . - 1 .
Tl = E (Fl + lFN+1) B Tl = E (Fl - lFN+1) . (139)

This new Gamma matrix basis satisfy the Clifford algebra
T+ TITk =0.
Then, we consider the two gly vector currents u; = (£|Y;|+)) and ¥' = (1/)|Ti|§> of eq(127)

constructed out of bilinears of the Dirac fermions and use them to construct Ij;;j, Il and fiJ .
These two currents transform in the N, and N_ representation of sl; & sly.

5.3.1 Realising the nilpotent generators of n..

First, using the N+N complex variables u; and ¥, we build the translation operators 8! = 3 /du;
and J; = 9 /dv" as well as the rotations

X[ij]=u~3~—u‘ai, Zil:uiél—l_/lai,

. . 1 (141)
vyl =557 —5i3t,  H=—-Tr(Z}).
2 4
In these relations, the operator
1 _ .
H:EZ(uial—vlai) (142)
is the charge generator of sl;. It acts on the complex variables like
]. —i 1 —i
Hu; =+—-u;, HV'=—=v". (143)
2 2

We also have X[l-j]ﬁl = 5§.ul~ — 5fu]~ and Yy, = 5{'i - 5;?1 as well as Zl.juk = ui5]]; and
zZ 1.1171 = —17155. The above operators (141-142) obey interesting commutation relations such
as

[Xpij3, YHU] = (5?21'1 - 552}) - (5§‘Zik - 55211'{) ’
(X3, X)) =0, (144)
[Y[ij], Y[kl]] =0
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For particular values of the labels, we obtain

X, YU = (N —2) 2! + 25H,
[ij] i i
[Zf:sz] = (5{<X[i11 - 5{X[ik]) , (145)
I:Zl-j: Y[kl]] - _(5lﬁy[ﬂ] _ 5ﬁy[]'k]) ,
and
[H, X1 ] = Xy
[H,yk]] = —ylk],

In order to introduce similar notations to the ones used in the previous sections, we associate
to the variables u; and V' the kets

(146)

u; —

1 i 1
+—,i> , - ——,i> , (147)
2 2

and to the translation operators ' = 3 /du; and 9, = 8 /27 the following bras

. 1 1
o' — <——,i , 0; — <+—,i . (148)
2 2
We use moreover the following notation
<_>J|+:l):5]’ <+aJ|+:l>:0:
e (149)
<+’J|_Jl>:5i) <_JJ|_Jl>:0:

to realise the operators Xj;;j, YU and Zl.l as
Y[kl] = |_> k) <_)l| - |_: l) <_)k| 5 (150)
L, .
Zi - |+:l> <_:l| - |_:l> <+:l| .

We also have X{; j]Y[kl] = U[[l.]j.l]] with
kl . . . .
as well as
g=lo+_1 - (152)

where
H+:ZQ:’_’ Q:_:H_:l)(_;lla
i

(153)
M => o7, o =l-i){+il,
i

with the properties IT"X; ;) = X[;;; and v+ = yIkl Notice also that using (149), we have
XXy =0, YWlyll=o, (154)

and _
XpgYU =1+,i) (= 1|+ &l (155)
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o1 12 u
5.3.2 Building the Lax operator £,y

Now, we are finally able to explicitly calculate the expression of the spinorial Lax operator of
the 4D CS theory with SO,y gauge symmetry. This operator UZ‘]’(, describing the coupling of
Figure 19-(b) is generally given by

'CZIA\]I — erectz:uN eYvect , (156)
where the X ,..; and Y, are 2N x 2N matrices given by the following linear combinations

Xvect = b[ij]XveCt Yvect = C[ij]Y[ij] (157)

[ij] » vect >

such that the antisymmetric b/} and cfij are Darboux coordinates satisfying the Poisson
Bracket - o
{1, ey} pp = 5160 — 5153 (158)

The adjoint form uy of the minuscule coweight in (156) is given by

1 1
Uy = EH+—£H_, (159)

where the projectors IT* are as given in (153) with the properties [Tt +I1~ = I,; and IT"IT~ = 0.
This allows us to write ) X
gV = 22T 427211 . (160)

Moreover, because of the properties (154), the matrices X and Y (157) are nilpotent with
degree 2, that is X2 = Y2 = 0. Therefore, the L-operator expands as

Eg% = gUN f XgUN 4 oPNY 4 XgMNY | (161)

By substituting 2z~ by its expression (160) and using the properties XTI = 0 and [1*Y = 0,
we end up with

v Lo 1o 1o 1 1o
Loy =227 +27 211 +272XTTT +272I17Y +2 2XITY . (162)
And by putting X = b[ij]X[ij] and Y = c[kl]Y[kl], this operator can be also expressed like
1 S L Tik] i 1.7 _1
LNZ2 Y + 27211 + 827 2(BUME iy jp) + (2272 INX i + (22 20 VY, (163)

where Elk = |+,1) (—, k| . Moreover, using

Tr (X ) = 2(8l6k — 5L6%)
Tr (Xyll) = —2pli] (164)
Tr (XpY) = —2e153,

we have 1 1
b[l]] :—ZZ%TT' (Y[l]][,'uN) 5 C[ij] :—ZZ%TT’ (X[U],CHN) . (165)

The expression of the L-operator in the basis |+,1),|—, j) defined in eq(138) reads as follows

i ik
2C[ij] Z5}+8b[l ]C[kj] ) (166)

uy _ _—1
Lo =52 ( 5i 2b[i]
j
This is equivalent to spinor solutions in [66] by change of basis.
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by

C+1)

Figure 20: The topological quiver le" representing the operator EﬁN . It has 2 nodes
N1, Ny; and 2 links L5, Ly;. The nodes describe self-dual topological matter and the
links describe topological bi-matter.

5.4 Topological quiver Q.Y of £,

In order to construct the topological gauge quiver Q;% associated to the spinor coweight and
the fundamental representation of the D-type symmetry, we begin by rewriting the ng\’, in the
projector basis (H*, H_) of the representation 2N = N, & N_.
Using the properties of the gl projectors on N, @ N_, in particular (H+)2 =TI, (H_)2 =1II"
and

nt+1 =1, I =o, (167)

aswell as IT"X =X and YII" =Y, we can rewrite the Lax operator (162) as follows

22T + 2 2ITTXIYITT 2 2XT1-
gg% = . (168)

1 1
z 2[I"Y z 2I1™
Moreover, by using the remarkable properties XII™ = X and II"Y =Y that can be checked with

the explicit realisations Xj;;; = [+,1) (+, j| — [+, j) (+,i| and Y = |— k) (=, 1| — |-, 1) (—, k|,
the term XII"YTI" reduces to XYIT* and the eq(168) becomes

+ + -
I (z +XY)IIT XII ) (169)

Lo =53
2N nmy I

The nodes N; and N, of the topological gauge quiver Q‘;R’, representing E’;I"(, as depicted in
Figure 20 are given by the diagonal entries of the matrix (169)

N, =T LI, , N, =TI_LII_. (170)

They are interpreted in terms of topological self-dual matter in the sense that they have no
sl; Levi charge. This feature is manifestly exhibited by their dependence into the monomi-
als b[ik]c[kj] that are neutral under sl; because the Darboux coordinates bl*] and crkj] have
opposite charges. On the other hand, the two links are given by

L ,=M,L0_, Ly, =I_[LI,. (171)

They are remarkably equivalent to the Darboux coordinates b'/! and cfij; and are interpreted
in terms of topological bi-fundamental matter of sl; @ sly. The sl; charges data for the ng is
collected in the following table

Quiver | N7 | Ny | L1y | Loy
sly | +3 | -2 -1 | +1

(172)
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@6

aq (09) aq as
O

a3
Figure 21: The Dynkin Diagram of eg having six nodes labeled by the simple roots

a;. The cross (x) indicates the cutted node in the Levi decomposition with respect
to u;, the Levi subalgebra in this case is given by so(10) & so(2).

where we remark that the transition from the topological quiver node N; to the N is given
by the link L,_,, carrying a Levi charge —1; while the reverse transition is given by the link
L,_,; with Levi charge +1.

6 Exceptional E; ’t Hooft lines

This section is dedicated to the 4D Chern-Simons having as gauge symmetry the E¢ group. This
case is characterized by two minuscule 't Hooft lines tH’;; and tHﬁg, and therefore two types of
minuscule Lax operators L’ﬁ; and 426 that we need to study in order to build the associated
topological gauge quivers. In particular, we focus here on R,, = 27; other possibilities are
considered in the conclusion section (31).

6.1 Minuscule coweights and Levi subalgebras of E

We begin by describing the interesting properties of the finite dimensional exceptional Lie al-
gebra eg that are useful for our construction. This is a simply laced Lie algebra with dimension
78 and rank 6; its algebraic properties are described by the root system &, generated by six
simple roots a;. The intersection between these simple roots is represented in the Dynkin di-
agram D, depicted in the Figure 21 and having the symmetric Cartan matrix K,, = @;.a;
given by:

0
0 (173)
0

O 0 -1 o0 0 2

The root system @, contains 72 roots generated by the simple root basis {a;};<;<, it has 36

positive roots a € @;‘6 and 36 negative ones —a € e, . All of these roots have length a? = 2
and are realised in the Euclidean R® generated by the unit vector basis {€i}1<i<g as follows

1
Eg : (Xl:5(61—62—63—64—65—66—€7+€8),

A =€ —€i_1, i:1,2,3,4,5, (174)

a6=61+€2.

From the Figure 21, we learn that the Dynkin diagram D,, is invariant under a manifest zg't
outer- automorphism symmetry exchanging four simple roots and leaving invariant a; and

37


https://scipost.org
https://scipost.org/SciPostPhys.15.3.078

Scil SciPost Phys. 15, 078 (2023)

ag. It acts like a; — a¢_; with i = 1,...,5, by exchanging a, with a4 and a; with as. In
permutation symmetry language, the Z5"' is generated by the double transposition (15) (24),
ie:

784 = {I4,(15) (24)} . (175)

The 36436 roots a of the eq Lie algebra can be organised as follows

root realisation labels number

},;; +%(qiei—e6—e7+eg) Hf’zlqizl 16
a

L

—% (qiei—66—€7+68) H?:]qi =1 16

where the five g; can take the values £1 with the constraint I1g; = 1.

Regarding the fundamental coweights w; of the six fundamental representations of the Lie
algebra of Eg, they are given by the duality relation wi.aj = 6; ; this equation can either be
solved in terms of roots, or by using the weight unit vectors €;. The w; read in terms of the

simple roots as follows

fund- w; in terms of roots height | Repres

wq §a1+§a2+2a3+§a4+%a5+a6 8 27,

wy %a1+%az+4a3+§a4+%a5+2a6 15 351,

(OF} 2a1 + 4(12 + 6(13 + 4(14 + 2a5 + 3a6 21 29250 (177)
Wy §a1+§a2+4a3+%a4+§a5+2a6 15 351_

g %a1+%a2+2a3+ga4+%a5+a6 8 27_

wg g +2ay + 303+ 204 + as + 20,4 11 78¢

From these expressions, we see that the outer-automorphism symmetry Z3** discussed above
can be manifestly exhibited as follows,

w1+w5=2(a1+a5)+3(a2+a4)+4a3+2a6,

Wy +wys=3(y +a5)+6(a2 +a4)+8a3 +4ag, (178)
w3 :2(a1 +a5)+4(a2+a4)+6a3+3a67

w6=(a1+a5)+2(a2+a4)+3a3+2a6.

Moreover, by using (174) and a; — ag_; with ag = ag, one can write down the action of the
outer-automorphism symmetry Z3"* on the weight vector basis €;. In what follows, we will
be particularly interested into: (1) the representation 78, associated with the simple root ag,
and (2) the 27, associated with a; and as.

The two minuscule coweights p; and u; that are dual to the a; and a5 of the eq are respectively
associated with the fundamentals 27, and 27_ as shown in table (177). Being related by Z3",
we focus below on one of the two minuscule coweights, say yu = w;; Similar results can be
derived for us.

6.1.1 The e4 algebra and the representation 78

There are different ways to decompose the root system of the eq Lie algebra. The interesting
Levi decomposition with respect to charges of the minuscule coweight u = u, considered here
reads as follows

eg — S0, ®s010® 16, ®16_. 179
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From this splitting, we learn that the Levi subalgebra [, = s0, ® s0,¢ and the nilpotent subal-
gebras n. = 16... The root system ¢, containing the 72 roots of eg is therefore decomposed
in terms of two subsets: a subset @, , and a subset given by the complement &, \®;, ; they
are described here below as they play an important role in the construction of the Lax operator
u
Le, .
® Roots within &,

The subset @, ~contains 40 roots f3, , 20 positive and 20 negative; they define the step
operators Ziﬁsow generating so;y within e¢. It is generated by the simple roots

oo, as, a4, as, Qg (180)

and has the usual symmetry properties of the root system of s0,o. The root subsystem &, < &,
can be defined as containing the roots f;, A with no dependence into a,, formally

6 Bso,,

=0. 181
Sa (181)

This can be noticed by cutting the node a; in the Dynkin diagram of the Figure 21, where
we recover the Dynkin diagram of so;y and a free node a; associated with the so;, spinor
representations 16, charged under so,.

® Roots outside @y,
This is the complementary subset of &, ~within @, ; it is given by &, \&,, and reads directly
from the root system of eq by considering only the roots ., with a dependence into a,:

5/‘35010
5(11

£0. (182)

This subset contains 32 roots of spinorial type as they linearly depend on the simple root a;
which is spinorial-like. The importance of these roots is that they define the 16 step operators
X, p generating the nilpotent 16, and 16 step operators X_g = YP generating the 16_.

6.1.2 Decomposing the representation 27

As for the adjoint representation of eg, the fundamental representation also decomposes in
terms of representations of so,®s01o. This representation is interesting in our study as it will be
taking as the electric charge of the Wilson line Wé where R = 27... Generally speaking, given a
representation R, of the algebra eg, it can be decomposed into a direct sum of representations
of 505 ®501(. such as
R, = > m (R"°,R), (183)
1

where n; are some positive integers. In the case of R, = 27, we have the following reduction

[67]
4 2 1
27 = (1,—§)+(10,+§)+(16,—§), (184)

that we can simply write as 27 = 1_,/3+ 10,3 +16_; 3. Notice that by cutting the simple root
a; in the Dynkin diagram, the SO, representations get charged under SO,; these charges play
the role of a “glue” between these representations within the 27. This property is manifested
by the constraint that the sum (or the trace) of the charges of the 27 states with respect to
S0, ~ E¢/S0;, must vanish. Notice moreover that these charges can be also observed in the

following relation

1 1 2
wl—w5=§a1+§a2—§a4—§a5, (185)
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Figure 22: The weight diagram of the representation 27 of the exceptional Lie algebra
e Where every state |£,) is simply represented by the node carrying its number. The
states 14+16+10 of the SO, sub-representations of eq are represented by different
colors.

where a, stands for the spinorial of SO, and a5 for the vectorial.

In order to understand the structure of the 27 states in the fundamental representation of eg,
we refer to the weight diagram of the Figure 22 where we have a top state |£;) with weight
&1 = w; and a bottom state £,, = —ws. The other 25 states in between can be generated

either by starting from the |£;) and successively acting on it by the step operators (E B )T =E g

where f3 a positive root of eg, or by acting on the bottom state \5 27) with (E_/j )T = Ep.
The subspaces of the 27 representation correspond in the figure 22 to:

|1) 5 |§1>—4/3 = |0)1) 5

)

116) , 1€a)+1/3 5 (186)
l

110) , |&i)_a/3»

such that the top state |&;) is an SOy, singlet, the 16 states |£,), ..., \5 17) constitute a chiral
spinor of SO;, and the ten states |&;g), ..., {527> form a vector of SO;.

6.2 Minuscule E; ’t Hooft operator

We can now use the collected mathematical tools concerning the exceptional Lie algebra eg
to calculate the Lax operator L5 . describing the coupling of an exceptional minuscule 't Hooft
line tH§f , With magnetic charge u = u, interacting with a Wilson line Wi with electric charge
R =27.

6.2.1 Realizing the generators of the nilpotent subalgebras

To construct the 't Hoof line operator 557 of the exceptional E¢ Chern-Simons theory in 4D,
we begin by building the generators of the nilpotent subalgebras that appear in the Levi fac-
torisation -based formula [53] where u = w; and the nilpotent matrix operators are given
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1 i 16 10

Figure 23: A graphical illustration of the Levi decomposition of the representation
27 of eg in terms of representations of soq.

16 16
X=>1b"Xg, Y= VP (187)
p=1 p=1

In these expansions, the sixteen b? and the sixteen cp are the 16+16 Darboux coordinates
of the phase space of the exceptional E¢ 't Hooft line tH‘;o. They satisfy the Poisson bracket

{bY, cﬁ} = 5% that must be promoted to a commutator in the study of interacting quantum

lines. Xz and YP are the generators of the nilpotent subalgebras 16, and 16_. The charge
operator u of the Levi subalgebra associated with the minuscule coweight can be presented as

4 2 1
=——p0p1+-010— =C16> 188
u 301150107 5016 (188)
where 01, 019 and 16 are projectors on the so, @501, representation subspaces making the 27
fundamental of E¢ as given by eq.(184). By denoting the 27 states |£,) of this representation
as

Groups | Eg 5070 X SOy

States | [E4) | |vi) | Isa) o) (189)
Repres 270 10+2/3 16_1/3 1_4/3

following the splitting formally represented in the picture 23,
we can write the projectors pr on the fundamental representation of eq as

e10= ) (' . e1=1e)(el. (190)

=1

16
) Q16 = Z |5/5><5/3
B=1

Using the state basis kets |v;), |s/3> and |p) satisfying the orthogonality properties

Vi) = (@lsg) = (vilsg) = 0, we realise the generators an of the nilpotent sub-
plvi) = (plsp 1lsg) = 0 lise th Xg and YP of the nil b
algebras like

Xp=vi) (), (571 + ls) (el ,
o+ )P

where the I;’s are Gamma matrices satisfying the usual Clifford algebra in ten dimensional
space, namely [T} + I;I; = 25;;. Moreover, if we adopt the short notations |1), |10) and
|16) to refer to the singlet state |¢), the vector |v;) and the spinor |s/5 ), we can express the
projectors more simply like p; = |1) (1], and p;9 = |10) (10| as well as p;6 = |16) (16|. Then,
we also end up with the following expressions for the nilpotent generators (191):

(191)

J

Xg =110) (16| +[16) (1] ,
YP =|1) (16| +|16) (10| , (192)

2 1 4
m=3 110) (10|—§ 16) (16|—§ 1) (1] .

41


https://scipost.org
https://scipost.org/SciPostPhys.15.3.078

Scil SciPost Phys. 15, 078 (2023)

We can check that this realisation solves the Levi decomposition constraints, namely

[wXp]=Xg, [wYP]=-YP. (193)

We have for example uXg = % [10) (16| — % 116) (1] and Xgu = —% 110) (16| — 2 |16) (1], thus
leading to [,u,X /5] = Xp. Notice that this realisation leads to

XaX[j = |Vi> (Fi)aﬁ <(P| 5

_ (194)
YerP =) (P (v,
and
X XpX,=0, Y*YPyr=o0. (195)
We also have as interesting properties X010 =0 and g mYﬂ =0, as well as
Xpo1=Xp, 0, YP=YF,
- T 5 (196)

From these relations and the linear combinations X = bﬁX B andY = g Y# given by (187), we
learn that X3 = Y3 = 0 while

xX2=2viy) (0],  vZ=2w;0)(v'

) (197)

where we have set 1 1
vi= b (M) 0", W= Eca(n)“ﬁ cp - (198)

In terms of the short notations, we have X,Xg ~ [10) (1| and Y2yP ~ |1) (10| as well as
X?=2V|10) (1| and Y2 = 2W|1) (10| where V and W are the vectors appearing in (197).

6.2.2 Constructing the operator L;,

For the final step, we use the nilpotency feature of X and Y yielding the finite expansions
X =1+X+3x2ande¥ =1+Y + 3¥?2 as well as z#e’ = z# +z*Y + 32#Y2. Moreover, by
replacing with

gt = z_ggl+zégm+z_%gﬁ, (199)

and p19Y = 0, we obtain

2/3

1
zhel = 2_4/391+Z_1/39E+z QE+Z_4/3Q1Y +Z_1/SQEY + Ez_4/3QlY2. (200)

Substituting this into eXz#e¥ and using the property X o 10 = 0, we finally find the expression
of the L-operator we are looking for:

_4 _ . _
Ly, =z 301+3 1/39E+22/39m+z 4/391Y+z 1/3QEY (201)
+275X 0y +2 X016 +5 X 01 (202)
1 1
LR G E CIN ST P G (203)
1 1 1
+ Ez_%ngl+ Ez_%XZQlY + ZZ_%ngle. (204)

Notice that each one of the z*, eX and e! has 3 monomials leading in general to 81 monomials
for the E’;T However, The above expression was simplified thanks to useful properties such
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as Xpy0 =0 and p;oY = 0 and the other ones mentioned above. It can be further expressed
in terms of Darboux ccordinates by substituting the following relations

Xp,=bF, X?0y = bPTy b7, (205)
01Y =cq, XthY2 = bo‘c/jFiﬁyc, (206)
Xe,Y = bPc,, XZQle = bﬁl“/gybycﬁl“iﬁycy, (207)
and
Xp16=b"T}5,
QEY = Fl.mcy,
X016Y = byryi/j 1"17/3 ¢, (208)
Qle = cﬂl“iﬂycy
and

Xp16Y* =0, X’016Y*=0. (209)

6.3 Topological gauge quiver for E

In this subsection, we construct the topological gauge quiver Q‘2L7 associated with the operator
5‘57 (204). First, we give the matrix form of the L-operator in terms of the phase variables b?
and cg to underline their field theory interpretation in terms of topological bi-matter. Then,
we derive the quiver representation Q‘;7 using the projectors ©;, 010 and Q3¢ on the sub-
representations of so; within the 27 of Eg.

By ordering the above mentioned projectors like (Qm, O16 Ql) and thinking of them as rep-

resenting the sub-blocks of the matrix; the operator E o7 is put as follows

2 2 2 -1 —352 1,452
z3010 +z 3X916Y+4z 3X QIY Z 3XQ16+§Z 3X°01Y 52 3X €1

u _1 1 _% _1 _4

Ly,=| = 3§&Y+§z 3X0,Y?2 P4 jg 16 +2° 3XQIY Z iXQl s
1 _4 _4 _4
52 SQle 2 3QlY P 391

(210)
which is also obtained in [60]. By substituting eqs(191) and (197) into the expansions X = b'x B
and Y =cp YP as well as into their squares X2 and Y2, we obtain

234273 bﬂcﬁ + 12_§V"Wi z73 bﬁI‘/gY + %z_%Vicﬂ %z—%‘vi
557 = z_%cﬂ rPr +5 1,-3pb W, g5 4573 b/jcﬁ 23 bB , (211)
% _%W z_gcﬁ b4 3

where V! = 1bl“'b and W; = %cl“l-c. This is the most convenient expression of the coupling

between ’tH, 86 and W§7 in the Eg CS theory allowing to derive the associated topological

quiver Q27. In fact, by writing the L-operator like <Q&_ |,C“|QBJ_ >, which is
L}, = or L'og,- (212)
We have in terms of the projectors:

010£"010 €10L"016 ©010£701
01L010 ©1£Y016 01L%01
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bz(_z) b(—l)

N3
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Figure 24: £g7 as a topological quiver with 3 nodes and 6 links. The nodes are
given by the self-dual R; ® R; and the links by bi-matter R; ® R;. In addition to SO,
representations, the Darboux coordinates b®, c, carry SO, charges given by q = %1.
The fundamental vector-like matter V! and W; carry —2 and +2.

This directly indicates that the topological gauge quiver Q. has three nodes N;, N, A3 and
six links, three L;; and three L;; with i > j = 1,2, 3, as depicted by the Figure 24.
The N; nodes are associated with the diagonal enties of (213), namely

N =e10L"010, Ny =p016L" 016 N3 =p.LVp;q. (214)
We will refer to them in terms of the SO, x SO, representations as follows
Ny 10,53,
Nyt 1645, (215)
Ng . 1_4/3 .

The L;; links of the quiver Q’;7 are given by the off diagonal terms OR, L* O, with i # j. These
links transform in the fundamental representations of SO, x SO;, knowing that 10 and 16 and
their duals are fundamental representations of SO;q. The explicit expressions of these links
are given in the following table

link Repres bi-matter || link Repres bi-matter

Ly, | 16.1x10_z | b, b%c || Ly, 10; x 161 | ¢, bc? 216
Ly 3 1_43_; X 16+% b Ly 16_% X 143_; c

Liog | 1.4x10_; b2 Ly | 103 x 1,4 c?

7 Minuscule line defects in E, CS theory

In this section, we complete the study undertaken in this paper regarding the minuscule L-
operators of ADE type by investigating the case of 4D Chern Simons theory with exceptional
E, gage symmetry. Just as before, we treat this theory by studying the properties of interacting
minuscule 't Hooft and Wilson lines, and construct the Lax operators qu and the associated

topological gauge quivers Qg by focusing on the fundamental R, = 56.
€7
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o O
a3

>
O

Figure 25: Dynkin Diagram of E; having seven nodes labeled by the simple roots
a;. The cross (x) indicates the root cut by the Levi decomposition where the Levi
subgroup is SO, x Eg.

7.1 Levi subalgebra of E; and weights of the 56,

First, we begin by recalling the useful aspects of the e, Lie algebra that will play an important
role in our construction. In particular, the root system &, containing 126 roots is generated
by seven simple roots a; realised as follows

E;, 0 a= (61—62—63—64—65—66—67+68),

1

2
;=€ —€;i1, i=2;3;4;63 (217)
a7 = 61 + 62 .

The Dynkin diagram underlying the gauge symmetry of the 4D CS theory with E,; symmetry

is given by the Figure 25 where the seven simple roots a; are exhibited.
The associated Cartan matrix K, reads as

[ 2 -1 0 0 0 0 O \
-1 2 -1 0 O 0 O
0 -1 2 -1 0 0 -1
K., = 0o 0 -1 2 -1 0 O (218)
0o 0 0 -1 2 0 O
o 0 O O 0 2 O
\ 0o 0 -1 0 O 0 2 }

It describes the intersection matrix a;.a; while its inverse gives the fundamental coweights of
E,. One of these coweights is particularly interesting for our present study; the u dual to ag is
the only minuscule coweight of e.

7.1.1 Minuscule coweight of E,

From the Cartan matrix K, , we can learn useful informations regarding the Lie algebra e; and
its representations, in particular the expressions of fundamental weights ; in terms of simple
roots:

fund- w; in terms of roots

w1 209 +3ay +4as+ 304 + 205 + ag + 20y

Wy 3a; +6a, +8as + 60,4 +4as + 206 +4a,

w3 4aq +8ay + 1203 + a4 + 605 + 306 + 60

Wy 3a; +6ay+9a3 + %a4+5a5+%a6+%a7 (219)
ws 2a; +4ay + 603 + 504+ 4as + 206 + 3y

wg oq +2a2+3a3+§a4+2a5+%a6+%a7

Wy 204 +4a2+6a3+§a4+3a5+%a6+%a7
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The exceptional Lie algebra e, has one minuscule coweight p given by wg, thus the corre-
sponding Levi decomposition n_ @ [, ® n, for this algebra is given by

l,= N & €6 n,= 27:!: . (220)

u

The dimensions of n. can be calculated by dispatching the algebraic dimensions of e, with
respect to so, @ eg, in fact we have 133 = 1 4+ 78 + 27 + 27. This Levi decomposition with
respect to the minuscule coweight y requires the following adjoint actions

[u,ni]==+n., [n,n_]=0. (221)

These constraints show that the 27 generators Xg of the nilpotent algebra n, and the 27

generators YP of the algebra n_ have opposite so, charges £1, which is important to consider
when realising the action of Xg and Y? on the electrically charged quantum states |A) that we
take in the fundamental representation of E.

7.1.2 Representation 56 of the e, Lie algebra

The fundamental representation of the e, algebra has 56 dimensions, it is self dual and pseudo-
real [68]. Its weight diagram is given by the Figure 26 where the weight &, of the top state
|Eo) corresponds to the minuscule coweight wg while the weight &55 of the bottom state |£55)
is precisely —wg, meaning that we have §g + 55 = 0.

Under the Levi decomposition associated to the minuscule u, the fundamental representation
56 decomposes as a reducible sum of so, ® eg representations as follows

56, =28, ®28_,

(222)
28+ (5] 28_ - 13/2 &) 27+1/2 @ 27_1/2 (&) 1_3/2 s

where we have four eq representations, two singlets 1.3/, and two fundamentals 27 5.

In the diagram of Figure 27, the 28 weights of 28, are labeled by the subset W, = {|&;)}o<i<27
and the 28 weights of the 28_ by W_ = {|&;)},g<i<55. Weights &; in the set W, U W_ obey
some special features that characterize this exceptional algebra and that will be helpful for the
construction of the operator Ei, they are listed below

&27 = &0~ Prax> Ea7t &3 =80+ Ess,
&8 = &55 * Prmax» Eit&ssi =&yt E&ss, (223)
=& —7is Es5—i = Es5+7is

for a generic root y; in the nilpotent 27, and where ., is given by
Bmax = 21 + 3ay + 4as + 3a, + 2as + ag + 2a;. (224)

We also have
Eo— &s5 = 2ws, &i—Es5-1 = 206 — 27 - (225)

The list of the ten weights £4,,A = 1,...,10 represented by blue dots in the Figure 26 is given
in the following table in terms of the seven w;’s,

&1 = w5 —wg, £ =wy—wy,

§2 = wy—ws, §7=w+w3—w;—w,,

$3 = w3 —wy, £g=w +w,— w3, (226)
$4=w7+twy— w3, Eo=w + w5 —wy,

Ss=witwy—wy, §p=w;+ws—ws,
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Figure 26: The decomposition of the 56 representation of e, in terms of representa-
tions of es. We have 56 = 28, @ 28_ where 28, are reducible like 1.3/; ® 27 5.
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Figure 27: The decomposition of the 56 representation of E, in terms of representa-
tions of E¢. We have 56 =28, @ 28_ with 28, reducible like 1.3/5 ® 27.1/5.

while the next sixteen states (8+8) represented in the Figure 26 by yellow and magenta colored
dots (from &9 to &,¢) are listed here

¢ = wy—wy, E15 = w5+ Wy —wg—wy,
1o =—w;—wq, §16 = Ws + W3 — Wy — Wy,
C13=wy+wg—w3—wy, €17 = w7+ ws — w3,
$14 = W4 — Wy, 18 = ws —wy,
(227)
and
E10 =Wy + wg—wi — ws, a3 = w7+ we— wy,
20 = W3 + W — W5 — Wy, o4 = W3+ We— W4 — w7,
Eg1 = Wy + Wy + wg— w5 — w3, &5 = Wy + W — w3,
a2 = W4+ we— W5 — w7, €26 = w1+ we— Wy
(228)

The last 27-th weight is equal to £,; = wg — w1.

7.2 Constructing the L},

Now, we consider the minuscule 't Hooft line embedded in the E, CS theory crossing a Wilson
line We’: with electric weight given by the representation 56. To construct the L-operator £‘;6
describing these topological lines’ coupling, we follow the same approach adopted before for
the study A-, D- and Eg¢ type theories.

7.2.1 Realising the generators of the n.,, subalgebras

We begin by recalling that in the L-operator formula for the E, symmetry, namely
E‘;s = eXzMe", the u is the minuscule coweight given in (25) and X and Y are nilpotent matrices
expanding as

27 27
X=Y1b'Xs, Y= VP (229)
p=1 p=1

Here, the twenty seven b? and twenty seven cp are the Darboux coordinates of the phase space
of the E;-type 't Hooft line. The realisation of the nilpotent generators Xz and YP can be first
written using simple representation language like

Xp =11 (27, +127,) (27_| +|27_) (1], (230)
YP=110) (27| +127-) (27,1 +127,) (14]
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where we dropped the charges from 1.3/, and 27, for simplicity. The explicit form of these
generators in terms of the weight states |£4) and their duals (£,| is given by

Xp =0, )(€p, |+ |86, )T (&, | + €6 ) (80|

(231)
P =g J(EP-| +1m) Tl 5 (€%|+ [P+ ) (&,

J

where Fg 7= and Ff 5, are couplings between states in the 27 representations of E¢; these
tensors are allowed by the tensor product of E¢ representations [65]. The adjoint form of the
minuscule coweight used is given by

3 1 1 3
=— + = —= - = s 232
U 291+ 2.927+ 21927_ 5 O1_ (232)

where the four pg’s are projectors on the eg representations R; within the 56 of e;, they read
as follows

01, = ‘50q><€0q ) (233)

) Q27, = ‘§27q><£27q

with ¢ =+ and <§oq |§oq> = <527q 13 27q> = 1. They can also be written in formal notations as

e, = |1q><1q ) Q27, = \27q><27q| . (234)

Now, we need to compute the powers of the generators Xz and YP that will appear in the
expansion of the L-operator. We find using the realisation (230-231) that the non vanishing
monomials are

XoXp =110 271 +127,) (1], XXpX, =11,) (1],

ayf — avBvy — (235)
YovP =) 27,0+ 127) (14, YerPyT =) (1],

while the fourth order powers vanish identically. For the powers of the linear combinations
X= bﬁXﬁ and Y = cﬁYﬁ, we find

x%=25P-|g,, )£ | +25P+ |5, ) (€0
Y2=2R,, |Eo ) (E%|+2R,_|E%) (&,

B

(236)

b
and

B

X3 =6¢ |§o+><§0,
Y3 =678 ){&,

(237)

B

and of course, X* = Y* = 0. The realisation (230-231) does also obey the commutation
relations [,u,X ﬂ] =Xp and [M,Yﬂ] = —YP from which we deduce that

(uX]=X, (uw,Y]=-Y, (238)

as required by the Levi decomposition with respect to u.

u
7.2.2 The L-operator L

Finally, to obtain the expression of £‘;6 in terms of the 27427 Darboux coordinates b” and CBs
we use the nilpotency properties mentioned above to write

1 1 1 1
ch =(1+X+—X2+—X3) “(I+Y+—Y2+—Y3), 239
56 2 6 4 2 6 ( )
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and substitute with

3 1 1 3
gt =220, +2209y, +2 2007 +2 20 . (240)
We moreover need to take into account the special properties of the X and Y matrices, like for

example Xp,, =0 and g, Y = 0, to reduce the monomials of this L-operator down to 30 as
given below

u 3 1 _1 _3
Log=2201, T2%027, +2 2027 +2 201
JrZ%Xé?zm +Z_%X927, +273 X0y
+z%927+Y +z_%gz77Y +z_%gLY
+ lez_% + 1:z_%X2 + 1z_%X3
5 Q27_ D) Q1_ 6 Q1_
I NI I PGS PR
-z -z -z
5 Q27_ 5 Q1_ 6 Q1_
+ Z%XQZL_Y + z_%XQ”_Y + Z_%XQI_Y
1 1 5 1 _s 2
+ EZ 2X0q97 Yo+ EZ 2Xo1 Y
+ EZ 2X“097 Y + EZ 2X“01 Y + +€Z 2X01 Y
+ 1z_%XBQ Y + i:z_%XZQ Y3+ iz_%X‘gg Y2
6 =T 12 =012 -
1 1 1
+ Zz_%XZQZKYz + Zz_%XZQLYZ + %Z_%XBQLYB . (241)

The explicit form of Ug() given in [60] is obtained by replacing X = bfX g Y =c¢p YP and u by
their explicit realisations (231,232,236). This is clearly a cumbersome expression, that’s why
we use the quiver gauge description to exhibit the interesting information encoded in [,’;6 and
help visualize the key role of the Darboux coordinates.

7.3 Topological gauge quiver Q,

The shape of the gauge quiver Q‘;6 associated to the 556 operator can be directly deduced
from properties of the e, algebra by comparison with the previously built quivers for sly, sooy
and eg. Firstly, we can say that the Q‘;6 has four nodes ; in 1:1 correspondence with the four
projectors ©q, and Q,7,, and 12 links L;; connecting the pairs (M,AG) Therefore, we can
begin by visualizing this Q‘;G as given in the Figure 28 , and then move on to explicitly derive
it and extract its features.

We represent the L’;B in the projector basis using the OR, ordered like (Ql+, 027,027 > Ql_)

Ql+£91+ 191+5927+ 91+£Qz7_ 91+591_
rh = @2%}@1+ 1927+E@27+ Qz7+5927_ Qz7+591_ (242)
56 1927_5191+ 927_51927+ 027 LO27 @27 L1 '
91_£Ql+ 191_51927+ 01 Loy o1 Leo1

u

s> While the off diagonal

The diagonal terms og. Log, are depicted by the four nodes Ny, of Q
terms QRiEQRj with i # j are associated to the twelve links L;;.

Ng, = 0r, L0k, s Lij = or,LOR, - (243)

As the explicit calculation of these quantities is cumbersome, we decompose the matrix E‘;6
(242) into four blocks A%, By, C and Dy, as follows

56° 56’ 56

A4 B¢

re z( 36 36 ) (244)
56 C56 D56
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Figure 28: The topological quiver Q§6 representing E’;ﬁ. It has 4 nodes and 12
links. The nodes describe self-dual topological matter. The links describe bi-matter

in (Ri,Rj) of E¢ charged under SO (2) with charges +1,+2, +3.

* the block A: concerns the sector 28, of 56:

o1, Lo, e1,Le2, )z( 4 A ) (245)

AL = 1 i1
A Ap

56 _( 4927+££21+ Q27+£4927+
with
Al =23 0; 423X 00 Y + 223X 20y, Y2+ 5 3X%0, Y7
1 =2%%01, Qa7, 4 Q27_ 36 (S5 TR S
1 1
A? = Z%X927++§z_%X2927_Y + EZ_%XBQLYZ 5
(246)
Al =230y Y4i5 X0, Y24+ S5 3X20, Y3
11— %%Qa7, 22 Qa7_ 122 1 17,
m_ i -1 1 3 5 9
Ajp=22097, 12 2X09; Y + Zz 2X“p1 YY",
The A} and A]] are associated to the nodes Ny, , and Ny, ,, while the sub-blocks Ajf
and Ag ; describe links between these nodes.

* the block D: concerns the sector 28_ of the representation 56:

_1 _3 _3
DE _( 272097 +272X0, Y 2 iXQL ) (247)

—_— 3
56 27201 Y Z 201

where D/ and Dj] are associated to Ny;_
links between them.

I I :
2 and NLW and D;" and Dy, are associated to

* the blocks B and C: Describe couplings between sectors 28, and 28_:

1x2572 l73x30, ¥ 1z72X3
p _ | 2X7%2 2027+ g2 Q1_ 62 O1_ 9
56 | -1 1342 1 3.9 ) (248)
272X 09y +52 2X°01 Y 5% 2X°0q1_
1,1 2 1,3 3 -1 1 -3 2
u [ 322027 Y+ 522X Y® 272097 YH+3272Xp0, Y
Cse =| 1 -3 3 1,-3 2 ‘
g% 201 Y 52 201 Y
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Entries of these matrices give 444 links between the nodes’ pairs (./\fl3 /2,./\/271 /2) and
(N27—1/2’N1—3/2)'

And so indeed, the topological gauge quiver Q‘;G associated with E’;G has four nodes N;
corresponding to the eg representations
Nl . 1+3/2, NB . 2_1/2,

(249)
Ny 27172 Nyt 1,

and describing self-dual topological gauge matter. It also has 12 links L;; describing topological
bi-fundamental gauge matter <Ri,Rj> as collected in the following tables

link Repres bi-matter || link Repres bi-matter
Loy | (143/2,27_172) b Ly s | (2711/2,2741)2) b* (250)
Lo | (143/2,2711/2) B* Lyss | (274172, 143s2) B¢
Lisa | {132, 1is0) Bob® || L3g | (27-1/2,1i3/2) b,
and
link Repres bi-matter || link Repres bi-matter
Licp | {1.3/2,2741)2) Ca Ly 3 | {27_1/2,27 1) c* (251)
L3 <1+3/2, 27+1/2> Co Ly 4 <27—1/2: 1—3/2) c*
Lic g | (Lig/o1igp) c2C || Lyeq | (271172, 13p2) Cq

In these tables, B" stands for b“l"gﬁ bP having charge —2, and C, refers to c, T}’ P cg having
charge +2. The composites B, b® and c;,C have charges —3 and +3 respectively.

8 Conclusion and comments

The results presented in this paper are based on the correspondence between two dimensional
integrable models and four dimensional Chern-Simons gauge theory as formulated in [23].
In the M, = R? x CP! of the gauge theory, one can build an integrable lattice model by
implementing a set of line defects looking like curves on R? and points on CP!. In such
construction, the integrability of the corresponding low-dimensional system constrained by
the Yang Baxter or RLL equation is a direct result of the mixed topological-holomorphic nature
of the line defects and the diffeomorphism invariance in four dimensions. The RLL equation
for example, corresponds to the graphical equivalence of the intersections in different orders
of two electric Wilson lines with one magnetic ’t Hooft line, see Figure 5. In this image, the
explicit Feynman diagrams calculation for the intersection of two Wilson lines in 4D CS yields
the first order expansion of the R-matrix acting on the two quantum spaces carried by the
electrically charged lines [21-23]. The L-operator is realised as the intersection of an electric
Wilson line with a magnetic 't Hooft line whose oscillator phase space acts as an auxiliary
space [53].

This Wilson/’t Hooft coupling in the 4D CS theory is the particularly interesting ingredient
of our current investigation, it allows to realise the Lax matrix as a building block of the transfer
matrix generating conserved commuting quantities of the spin chain. This important quantity
is calculated in the integrability literature using Yangian representations based techniques that
can be cumbersome and inefficient in cases with complicated symmetries. Surprisingly, it was
shown in [53] that the oscillator realisation of these L-operators for an XXX spin chain having
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the internal symmetry g can be recovered from the analysis of solutions to the equations of
motion of the 4D CS theory with gauge symmetry G, in the presence of interacting Wilson and
’t Hooft lines. A general formula describing the coupling of a Wilson line with electric charge
in a representation R of G and a ’t Hooft line with magnetic charge given by a minuscule
coweight u of G reads as El‘i = eXrgle'®r, This yields a matrix representation in terms of
harmonic oscillators in X and Yz with sub-blocks following from the Levi decomposition of R
with respect to u.

The first part of our contribution concerned the exploitation of this formula to explicitly
calculate this coupling for different types of 't Hooft and Wilson line defects in 4D Chern-
Simons theories with SLy, SO,y, E¢ and E, gauge symmetries. In particular, we investigated
the splitting of various representations under the action of minuscule coweights as a first step
towards the construction of L-operators in representations beyond the fundamental for ADE
Lie algebras. Therefore, a better understanding of the effect of the Dirac-like singularity on
the gauge field bundles behavior and the internal quantum states of a spin chain.

We remarked that the L-operators have unified intrinsic features that can be represented
by topological quiver diagrams QZ having a formal similarity with the well known graphs
QSGusy of supersymmetric quiver gauge theories embedded in type II strings. This formal link
gives an interesting interpretation of the Darboux coordinates (b“, cﬂ) of the phase space of
the L-operators in terms of topological bi-fundamental matter. In this regard, we gave several
examples to (i) explain the strong aspects of this diagrammatic approach, and (ii) to show
how it can be used to forecast the general form of the matrix representation of L-operators by
indicating the action of its sub-blocks and their charges in terms of combinations of Darboux
coordinates.

In particular, For the A-type Chern-Simons theory, all fundamental coweights are minus-
cule, and therefore we give in Figure 29, for a generic magnetic charge u; of sly, four quiver
diagrams describing L-operators classified by representations R of the Wilson line.

In the case of D-type symmetry, we have two types of minuscule 't Hooft lines associated
to the vectorial and spinorial coweights of the SO,y gauge symmetry. In the figure 30, we
give quiver diagrams describing four possibilities of Wilson/’t Hooft couplings: a magnetic
charge u, with electric R = 2N and with R = ad jso,y, and magnetic uy ~ uy_; with electric
R=2N"1and withR=adjso,y.

The Figure 31 represents quiver gauge diagrams of exceptional type where we gave for
each one of the E¢ and E, 4D CS theories the graphical descriptions for the coupling of the mi-
nuscule 't Hooft line with Wilson lines in the fundamental and in the adjoint representations.
Notice however, that not all the representations studied here for the three types of symme-
tries lift to the Yangian; the corresponding L-operators are interpreted semi-classically in the
integrability language.

Moreover, this construction can be extended for the investigation of other L-operators that
are still missing in the spin chain literature; and the interpretations associated to the compo-
nents of the L-operator can also be used to link the diagrammatic description presented here to
quiver diagrams associated to the realisation of 't Hooft line defects in supersymmetric quiver
theories; in particular the ADE quiver gauge theories describing the phase spacse of t” Hooft
lines as the Coulomb branches as in [53].

Another exquisite property of this graphical quiver description in the 4D Chern-Simons
topological theory is the natural appearance of a unified theory structure where the minuscule
L-operators can be connected and classified in a larger E- 4D CS theory. In fact, the Lie algebras’
decompositions with respect to minuscule coweights link the E, symmetry to the E¢ and then
to the family of Dy symmetries with N < 5 and/or the Ay with N < 4. These chains of Levi
decompositions lead to different possible paths for the E, symmetry breaking as described in
Figure 32 [69]. To visualize this from the quiver descriptions of L-operators, we can focus
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Figure 29: Leading elements of topological quiver diagrams for the L-operators of

A- type. These quivers are classified by the magnetic charge u; of the 't Hooft line

and the representation R. (a) Wilson line with charge R = N. (b) Wilson line with

R = Nk (¢) Wilson line with R = NV2. (d) Wilson line with R = NV3. (e) Wilson

line with charge R = adjsly.
on those corresponding to the fundamental representations and notice that the Q’;Z has a
node corresponding to the 27 of Eg; this node can be therefore imagined as including the
Qg;(’ which in turn includes the ‘{%Céow)
minuscule L-operators in 4D CS theories with SO,y and SP,y symmetries having each only

one minuscule coweight, shows that for R = fundamental, the E;eé;m 9 matrix is very similar
+

and so on. Finally, notice that the calculation of
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Figure 30: Leading elements of topological quiver diagrams for the L-operators of
D- type. The first two quivers correspond to the Levi decomposition with respect
to the (vectorial) minuscule coweight u,: (a) Wilson line with charge R = 2N. (b)
Wilson line with R = ad jso,y. The other two quivers correspond to the Levi decom-
position with respect to the (spinorial) minuscule coweight uy: (c) Wilson line with
R =2N"1, (d) Wilson line with R = adjso,y.

to £t while the £  is similar to ££™  [61]. This means that the corresponding
R(s02n) R(span) R(sozy)

quivers look like nglv and ng which allows to include the B and C -type symmetries into this

unified classification.

A Appendix

In this appendix, we give complementary tools regarding the construction of the Lax matrix
from the associated graphical quiver description introduced in section 3. Recall that a topo-
logical quiver diagram in the 4D CS gauge theory is defined by the data (g, R, u); g is the Lie
algebra of the gauge symmetry G, having a Levi decomposition under a minuscule coweight
u reading as g = n_@ 1, ® n,. The R is some representation of g decomposing under u as
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Figure 31: Leading elements of topological quiver diagrams for the L-operators of
E- type. The first two quivers for the Eg gauge theory. (a) for the fundamental
27 of Eg; and (b) for the adjoint representation. The last two quivers regard the
E, Chern-Simons theory. (c¢) for the fundamental 56 of E; and (d) for the adjoint
representation.

follows
p—1

R=> R, (A1)
i=1
The m,;’s are Levi charges appearing in the adjoint action of u reading in terms of projectors
as u =Y. m;I1;. We begin by elaborating the general derivation of £ using a quiver Q; then we
i

illustrate the construction through the particular example of EZ fij for g =sly.

In fact, given a topological gauge quiver with p nodes NV; (1 < i < p) where sit representations
R, , and links L;; (i # j) interpreted as the bi-fundamentals <Rmi,ij>; the corresponding
Lax matrix is obtained as follows. The contributions of the nodes having no Levi charge are
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Figure 32: Breaking chains of E; symmetry as given by Levi decompositions with
respect to minuscule coweights. The bold arrows describe the exceptional sequence
leading to the Standard model-like group. The minuscule coweights u correspond to
the Lie algebra at which the arrow starts.

given by the polynomials P, (x) with argument x =: be : and order 0 < n < p —1 as follows

L’% =ay12™ + ajpz™be+ ..+ oclpzmpbp_lcl"_1 ,
L:=a;2™ + a;pz"be + ..+ g™ bP T e, (A.2)

— m
L) =a,z™,

where a;; are some real numbers.
The contributions of the links carry non-trivial integer Levi charges; they are given by polyno-
mials in b and ¢ such as

Ll =zMnb+zMezblet... + M bP P

LI = gMinie 4 gMiszbe?... + M bP~(F )P
i )

. . . . ) A.3

L’; =2Mb T 4 gMinb T e+ g™ PP j>i, (A-3)

[,{ =gMiel 4 gMmbe/ T 4 4 g™ bP TP j>i.
However, since the phase space coordinates b and ¢ can be given by vectors or tensors de-
pending on the realisation of X and Y generating n,, these terms could be accompanied with
metrics to contract indices, thus homogenizing the tensor structure of each block.
The Lax matrices associated to the topological quivers in Figures 29,30 and 31 can be con-
structed using these general expressions and by mimicking the example given below.
0 .

Example of [’afij for sly:

. . I_,L . . .
In Figure 29-e, we drawn the gauge quiver Qafi]. in the 4D Chern-Simons theory with A- type
gauge symmetry. It corresponds to the Levi-decomposition (27) of adj (sly) with respect to a
minuscule coweight u = u; with 2 < k < N — 2, it has three nodes N7, N,, N3 and six links
L;; with i # j. The nodes correspond to the representations

adj (sly) =Ry, ®R,,, ®R,y, ,
Ry, =[k(N—-K)]-,
R,, =[N®—2kN +2k*—1] ,
Ry, = [k(N —K)], ,

(A4)
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where Levi charges m; are as given by the sub-labels 0, £1.

The Lax operator associated to the quiver 29-e is represented by (N 2 1) X (N 2_ 1) matrix
divided into three sub-blocks of dimensions d; = d3 = k(N —k) and dy = N2 —2kN + 2k?—1.
The contributions of the nodes are given by

Node Contribution
M (L)d,xd, = (z+bec+2z71b%e?) 11, (A5)
NZ (E)dzxdz = (1 + Z_le) I1,, )
N3 (L)dyxd, =2 3.
And the contributions of the links are as follows
Link Contribution Link Contribution
L1y (L)d,xa, =b+ z b, Lo (L)dgyxa, =€+ z71be?, (A.6)
Nos (L)gyxa, =2 D, N3, (L)ayxa, =2 '€, '
Nis (L), xd, =2 'b?, N (L)g,xa, =2 2.
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