
SciPost Phys. 15, 080 (2023)

A universal approach to Krylov state and operator complexities

Mohsen Alishahiha1 and Souvik Banerjee2,3

1 School of Physics, Institute for Research in Fundamental Sciences (IPM),
P.O. Box 19395-5531, Tehran, Iran

2 Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,
Am Hubland, 97074 Würzburg, Germany

3 Würzburg-Dresden Cluster of Excellence ct.qmat

Abstract

We present a general framework in which both Krylov state and operator complexities
can be put on the same footing. In our formalism, the Krylov complexity is defined in
terms of the density matrix of the associated state which, for the operator complexity,
lives on a doubled Hilbert space obtained through the channel-state map. This unified
definition of complexity in terms of the density matrices enables us to extend the notion
of Krylov complexity, to subregion or mixed state complexities and also naturally to the
Krylov mutual complexity. We show that this framework also encompasses nicely the
holographic notions of complexity.
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1 Introduction

Quantum mechanics provides us with two apparently different yet natural ways to understand
the complexity of a system through time-evolution. In the Schrödinger picture which allows
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the state to be time-dependent, complexity measures the mixing of the initial state with other
states through the time-evolution, which for a time independent Hamiltonian H takes the form

|ψ(t)〉= eiH t |ψ(0)〉=
∞
∑

n=0

(i t)n

n!
|ψ(n)〉 , (1)

where |ψ(n)〉 ≡ Hn|ψ(0)〉. Thus, in this notation, complexity of the final state amounts to
understanding the spread of the corresponding wavefunction in a fixed basis. The choice of
an optimal basis here is a bit tricky. One interesting way proposed in [1] where the minimiza-
tion of the spreading of the wavefunction determines the optimal basis. This notion of state
complexity was coined as the “spread complexity”.

Alternatively, one may wish to switch to the Heisenberg picture where the time evolution
is attributed to the operator instead. This is realised by noting the expectation value of an
operator in the complexified state,

〈ψ(t)|O|ψ(t)〉= 〈ψ(0)|e−iH tOeiH t |ψ(0)〉 , (2)

and immediately recognizing the time dependent operator

O(t) = e−iH tOeiH t =
∞
∑

n=0

(i t)n

n!
O(n) , (3)

where O(n) are understood as nested structures of operators, O(n) ≡ [H, · · · , [H,O] · · · ] and
provide the notion of operator complexity by interpreting O(t) as the operator wave function
evolved by a Liouvillian superoperator L

O(t) = eiLtO , (4)

with L = [H, ·]. In this notation, O(n) ≡ LnO which determines the mixing of operators. In
order to compute complexity corresponding to the growth of the operator, one uses the Lanczos
algorithm [2] to construct an optimal basis [3], known in literature as the Krylov basis. The
corresponding operator complexity is termed as the Krylov complexity [4].

Last but not the least, in the present decade there has been one more entry in the world
of complexity in form of the holographic complexity. As its name suggests, this notion of
complexity arose out of the curiosity to understand the interior of a black hole spacetime in
the light of AdS/CFT correspondence [5–7]. In particular, the fact that the volume the interior
of the black hole keeps growing even after attaining thermal equilibrium [8, 9] is very much
reminiscent of the nature of complexity of a finite entropic fast-scrambling system.

Motivated by this striking similarity, a holographic definition of complexity was proposed
as the volume of the maximal slice in the interior of the black hole. This proposal is celebrated
in the name “Complexity = Volume” (CV) conjecture [8, 10]. An efficient formalism to study
this interior volume in two dimensional theory of gravity was developed in [11–13] which
produces the expected behaviour of the late-time linear growth and eventual saturation of
complexity.

This observation was formalized in a more general context in [14], which, based on the
Eigenstate Thermalization Hypothesis (ETH) [15, 16], classified the possible candidates for
complexity which exhibit a linear growth at late time. It was also shown that this class of
observables naturally includes the expectation value of the quenched length operator defined
in [11–13].

It is a daunting task to bring all these apparently different notions of complexity under the
same umbrella. And this is precisely the motivation of the present work.
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In the process of doing so, we will first present, in section 2, a general framework to study
complexity of a given state. This state can either be a given autonomous state or could as well
be a state evolved under the evolution by a general Hermitian operator which is not necessarily
the Hamiltonian of the system. In either case, for a given orthonormal and ordered basis, we
can define a label operator and subsequently a number obtained by tracing the former over the
density matrix corresponding to the given or the evolved state. This number is minimized over
the space of operators used to generate sets of the orthonormal basis through Gram-Schmidt
process, to define the complexity of the state.

These operators can be identified as different quantum gates in accordance with the quan-
tum informatic definition of circuit complexity [17]. When the state is created through a
unitary evolution, this definition of complexity naturally yields the Krylov complexity.

We show that, for the Hamiltonian evolution, the class of observables identified in [14],
with the desired pole structure to produce the late-time linear growth of complexity, can be
identified, naturally, with the expectation value of the label operator mentioned above. We
further show that our formalism also naturally provides the late time saturation of complexity
following the linear growth.

In section 3, we develop the formalism to study operator complexity. The structure of
the label operator dictates a mapping of the space of operators to a doubled Hilbert space
endowed with a inner product structure. This enables us to recast the operator complexity
associated with any given operator to the complexity of a state in the doubled Hilbert space.
This definition is also consistent with the Liouvillian evolution for operator complexity.

From the perspective of quantum information, the mapping to the doubled Hilbert space
is a realisation of the channel-state map. However, we demonstrate that it has a beautiful in-
terpretation in axiomatic quantum field theory and reveals a deeper structure of entanglement
in the Hilbert space which turns out to be pivotal in understanding the holographic notion of
complexity.

In section 4 we discuss a novel biproduct of our generalized formalism for studying the
state and the operator complexities. Since we defined complexity in terms of density matrices,
it fits in as the ideal candidate to study subregion complexity using reduced density matrix of
a given subregion. Definition of subregion Krylov complexity reveals some more interesting
and fundamental aspects connecting quantum entanglement and the growth of complexity.

Finally, we conclude in section 5 with some interesting open questions and some works
in progress.

2 Complexity: The general framework

Be it for a state or for an operator, the general strategy to compute complexity comprises of
the following steps - i) start with an initial state (operator), ii) allow it to spread over some
state (operator) basis via an evolution generated by a time-independent Hermitian operator,
iii) define a quantity that could probe the spreading while iv) the most efficient spreading is
quantified by the minimization of the afore-mentioned quantity which is equivalent to finding
a basis for the state (operator) so that the spreading becomes minimum.

In this section we will develop this general framework for state complexity. In the section
to follow, we will extend this algorithm to study operator complexity.

Complexity of a generic given state: Let us consider a quantum system described by a
time independent Hamiltonian whose eigenstates and eigenvalues are denoted by |Ea〉 and
Ea, respectively. Here a = 1,2, · · ·D with D being the dimension of the associated Hilbert
space H.
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For a given Hermitian operator, A : H→H, one can construct an orthonormal and ordered
basis associated with any state of this Hilbert space. Denoting the corresponding state by |ψ〉,
the ordered orthonormal basis {|n〉, n= 0,1, 2, · · · ,Dψ−1} can be constructed using the Gram-
Schmidt process. The first element of the basis is the given state of the Hilbert state |0〉= |ψ〉
which we assume to be normalized. Then the other elements are constructed recursively as
follows

|Ön+ 1〉= (A− an)|n〉 − bn|n− 1〉 , (5)

where |n〉= b−1
n |n̂〉 and

an = 〈n|A|n〉 , bn =
Æ

〈n̂|n̂〉 . (6)

This recursive procedure stops whenever bn vanishes which occurs for n = Dψ defined as
the dimension of subspace Hψ expanded by the basis {|n〉}. The dimension of Hψ is in gen-
eral smaller than the dimension of the full Hilbert space: Dψ < D. Note that this procedure
produces an orthogonal basis together with coefficients an and bn known as the Lanczos coef-
ficients [2].

Since the basis of the subspace Hψ is an ordered basis by construction, one can label any
element of the subspace by a number which amounts to defining a label operator as

ℓ=
Dψ−1
∑

n=0

cn|n〉〈n| , (7)

for arbitrary functions cn which is the “label” associated with the state |n〉. Note that for
n > n′ one assumes cn > cn′ . Since the basis {|n〉} is already ordered, a natural choice for the
coefficient cn is cn = n.

By construction, the basis {|n〉} defines a complete basis for the subspace Hψ. Therefore,
any state |φ〉 ∈Hψ can be expanded as

|φ〉=
Dψ−1
∑

n=0

φn|n〉 , with
Dψ−1
∑

n=0

|φn|2 = 1 . (8)

The expectation value of the label operator in this state |φ〉 is given by

〈φ|ℓ|φ〉= Tr(ℓρφ) =
Dψ−1
∑

n=0

n|φn|2 , (9)

where ρφ = |φ〉〈φ| is the density matrix associated with the state |φ〉.
Using this expression, one can assign a “spreading number” to a given state |φ〉 in terms

of its density matrix as
Cφ = Tr(ℓρφ) . (10)

As its name suggests, (10) can be thought of as a quantity that measures the spreading of
state |φ〉 in the orthogonal basis {|n〉}. Note that, in this notation, the spreading of the state
|m〉 ∈ {|n〉} is m. Since the above definition of spreading number is given in terms of the
density matrix, it can be naturally extended for mixed states as well. We will come back to
this point later in this paper.

For large Dψ one would expect that for a typical state given by (8) with maximum spread-
ing, the spreading is distributed statistically over all elements of the basis with equal proba-
bility: |φn|2 ∼

1
Dψ [18]. From this argument, the maximum value for spreading of a state can

be estimated as

Tr(ℓρφ)∼
Dψ
2

. (11)
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Although already evident from our construction, it is worth emphasizing that the spreading
number we have associated with the state |φ〉 ∈ Hψ ⊂ H depends on two ingredients: the
original state |ψ〉 and the operator A by which the ordered basis is constructed. This is very
reminiscent of the computational complexity in quantum information theory [17] in the sense
that the original state |ψ〉 plays the role of the reference state while operator A, or equivalently
the ordered basis {|n〉}, can be thought of as quantum gates.

Endowed with this interesting identification, we can go ahead to define complexity using
(10) as follows. After fixing the reference state, |ψ〉, one can construct the ordered basis
using different Hermitian operators which can be thought of as considering different gates. If
one can find a Hermitian operator among all possible operators, the basis constructed from
which minimizes the spreading number (10), then the corresponding spreading number we
will define as the complexity of the state. Therefore, in this context, finding complexity of a
state boils down to the problem of finding the optimal operator, Aopt.

We note, however, that in general, for given reference and target states, this minimization
procedure to find Aopt is a complicated program. However, we will show now that for partic-
ular cases in which the state is obtained by a unitary transformation from the reference state,
this can be successfully achieved.

Complexity following a unitary evolution: So far we considered a typical autonomous state
|φ〉 without knowing apriori whether this state was obtained through any dynamical process
from an initial reference state. We will now focus on the case where the desired (target) state
is obtained from a reference state via a unitary transformation. In this case it is straightforward
to generalize the notion of spreading number as follows.

Let us consider the following state

|φ〉 ≡ |ψ(s)〉= U(Ã, s)|ψ〉 , (12)

whose evolution in the parameter space s is governed by the Schrödinger- like equation

i
d
ds
|ψ(s)〉= U(Ã, s)|ψ(s)〉 , (13)

with U(Ã, s) = i d
ds U(Ã, s)U−1(Ã, s). Here the unitary operator U which evolves the state

from an initial reference state |ψ〉 ≡ |ψ(0)〉, is a function of the Hermitian operator Ã and the
parameter s which defines the flow through (13). The latter can be chosen such that at s = 0
one has U = 1. Following its definition given in (10), the spreading number at any arbitrary
point s on the flow is then given by

C(s) = Tr(ℓρ(s)) =
Dψ−1
∑

n=0

n 〈n|ψ(s)〉〈ψ(s)|n〉 , (14)

where ρ(s) = |ψ(s)〉〈ψ(s)| is the density of state at s and the label operator ℓ is constructed
using a set of orthonormal basis {|n〉} which is complete in Hψ. This basis can in principle be
constructed from any Hermitian operator A acting on the Hilbert space Hψ using the Gram-
Schmidt procedure as in (5). One can expand the target state in the same basis, the coefficients
of this expansion being functions of s as

|ψ(s)〉=
Dψ−1
∑

n=0

ψn(s) |n〉 , (15)

which yields, from (14),

C(s) =
Dψ−1
∑

n=0

n|ψn(s)|2 . (16)
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In principle, the coefficients ψn(s) can be recursively read off from the equation (12) if one is
equipped the full knowledge of Lanczos coefficients an and bn.

Let us now denote the eigentstates and eigenvalues of the operator Ã by {|αi〉}1 and αi ,
respectively. Since Ã is Hermitian, these eigenstates form a complete set of states in Hψ. Using
this fact, the spreading number (14) can be recast into the following form

C(s) =
∑

α1,α2

U(α1, s)U∗(α2, s)ρ0(α1,α2)〈α1|ℓ|α2〉 , (17)

where ρ0(α1,α2) = 〈α1|ψ(0)〉〈ψ(0)|α2〉 is the density matrix in the α-basis. 〈α1|ℓ|α2〉 are the
matrix elements of the label operator in eigenvectors of the Hermitian operator Ã given by

〈α1|ℓ|α2〉=
Dψ
∑

n=0

n〈α1|n〉〈n|α2〉 . (18)

It is worth noting here that these matrix elements can be computed directly in the contin-
uum limit using the recursion relation given in (5). Expanding |n〉 in the basis of eigenvectors
of the operator Ã

|n〉=
∑

i

cn(αi)|αi〉 (19)

the equation (5) reads

αcn(α) = ancn(α) + bncn−1(α) + bn+1cn+1(α) , (20)

where cn(α) = 〈α|n〉, |α〉 being a particular eigenstate of Ã with non-degenerate eigenvalue
α. This equation can be thought of as a time independent Schrödinger equation for which one
can find the wave functions cn(α) recursively. Using these wave functions, one can further
compute the matrix elements (18).

In order to obtain an expression for the matrix elements in the continuum limit, one
can first rescale cn(α) → (i)ncn(α) and then set x = nε, b(x) = 2εbn, a(x) = an and
cn(α) = c(x ,α). Thereafter, expanding (20) upto the leading order in ε yields a much simpler
equation

−i(α− a(y)) f (y,α) = ∂y f (y,α) , (21)

where ∂y = b(x)∂x and f (y,α) =
p

b(x)c(x ,α). The equation (21) can be readily solved to
obtain

f (y,α) = f (0,α) e−iαy+i
∫ y

0 a(y ′)d y ′ . (22)

Using this solution, finally one arrives at an expression for the matrix element (18) as

〈α1|ℓ|α2〉=
1
ε2

∫

d y x(y) e−iα12 y , (23)

where α12 = α1 − α2. As its form suggests, to evaluate the matrix elements explicitly, one
needs to know x as a function of y which can be obtained from the relation d x

b(x) = d y . Given
b(x), the integral can be performed to find x(y) and subsequently, the explicit expression for
the desired matrix elements which determine the spread in the continuum limit.

1{|αi〉} do not in general form an ordered basis.
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Minimising the spreading and complexity: Since the flow itself is generated in terms of
a particular Hermitian operator Ã, it is natural to consider a special case when Ã = A that
is when ordered basis is constructed using the same Hermitian operator that generates the
unitary flow (12). One can show that in this case the spreading number is minimum compared
to any other choice of Hermitian operator or equivalently, for any other choice of basis. This
follows directly from theorem 1 of [1], by setting n= 1.

Therefore the resultant spreading number obtained with the choice of Ã=A can be consid-
ered as the complexity of the s-evolved target state. Indeed, looking at equation (14) one finds
that the minimum of this with {|n〉} being the orthonormal basis generated by the Hermitian
operator A is of the same form as that of the Krylov complexity [4,18–20] (see also [21–23]).

It is worth mentioning that due to the property of the trace, the complexity defined above
at given s may also be given by

C(s) = Tr(ℓ(s)ρ) , (24)

that means, we keep the initial reference state fixed and construct the ordered basis using the
Hermitian operator A appearing in the evolution operator U(A, s).

The time-evolution as an example: As a particularly interesting and rather physical exam-
ple of the generalized framework developed above, let us consider the case where the Hermi-
tian operator A is the Hamiltonian of the quantum system. This is the example mainly studied
in the literature to compute Krylov complexity. In this case, starting with an initial state |ψ(0)〉,
the dynamics is given by the Schrödinger equation

|ψ(t)〉= eiH t |ψ(0)〉 . (25)

Then the density matrix associated with this state at any time t is given by

ρ(t) = |ψ(t)〉〈ψ(t)|= eiH t ρ(0) e−iH t , (26)

where ρ(0) = |ψ(0)〉〈ψ(0)|, by which the complexity is

C(t) = Tr(ℓρ(t)) =
Dψ−1
∑

n=0

n |ψn(t)|2 , (27)

where ψn(t) is given by the following expression where the state is expanded in terms of the
ordered basis {|n〉} (known as Krylov basis in this case)

|ψ(t)〉=
Dψ−1
∑

n=0

ψn(t)|n〉 . (28)

Using the Schrödinger equation, one can deduce an equation for ψn(t) that can be solved
recursively using the knowledge of Lanczos coefficients an and bn. Actually for a chaotic
system these coefficients, as functions of n, follow a universal behavior that includes a linear
growth [4] followed by a saturation [18–20]. These behaviors give an early-time exponential
and the late times linear growths for complexity respectively [18–20].

In order to proceed further to explore the complexity associated with the Hamiltonian evo-
lution, let us assume that the Hamiltonian of the system has a continuous spectrum. Therefore,
using the energy eigenstates, the Krylov complexity (27) may be recast into the following form

C(t) =
∫

dEa dEb ei(Ea−Eb)tρ0(Ea, Eb)A(Ea, Eb) , (29)
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where
ρ0(Ea, Eb) = 〈Ea|ρ(0)|Eb〉 , A(Ea, Eb) = 〈Ea|ℓ|Eb〉 , (30)

which is the same expression proposed for complexity in [14]. In [14], the left hand side of
(29) was identified as complexity provided the function A(Ea, Eb) had a double pole structure
at late-time, i.e. in the coincident limit Ea → Eb, thereby restricting the function A(Ea, Eb) to
a class of quantum expectation values which violates the ETH. We shall argue below that this
is naturally the case when we consider the expectation value of the label operator which turns
out to be the atypical non-local operator existence whereof was postulated in [14].

As we have already mentioned the saturation of Lanczos results in a linear growth at late
times. In the notation of (29) this behavior at late times imposes a condition on the function
A(Ea, Eb) to have a double pole structure

A(Ea, Eb) = −
a(E)
ω2

+ local terms , for ω→ 0 , (31)

where ω= Ea − Eb and 2E = Ea + Eb, in agreement with the proposal of [14]. We can derive
the surprising connection between the double pole structure of the function A(Ea, Eb) and
the saturation of Lanczos coefficients from the expectation value of the label operator in the
continuous limit given in (23). When the Lanczos coefficient b(x) saturates to a constant, one
gets x = y . This yields, from the expression (23),

〈Ea|ℓ|Eb〉=
1
ε2

∫ Λ

0

d y x(y) e−iωy = −
1
ω2
(1− e−iωΛ) , (32)

where Λ is a cutoff. This is the double pole structure we expect to get from A-function that
generates linear growth for complexity at late time. For Λ →∞ the above integral may be
recast into the following form

〈Ea|ℓ|Eb〉=
1
ε2

∫ ∞

0

d y x(y) e−iωy =
1
ε2

i
d

dω
δ(ω) . (33)

On the other hand, in the regime when the Lanczos coefficient b(x) exhibits a linear growth,
say, b(x) = 2λx , one obtains the relation x = e2λy , which upon inserting in equation (23)
yields

〈Ea|ℓ|Eb〉=
1
ε2
δ(ω+ 2iλ) . (34)

Plugging this result in (29) one finds early time exponential growth C(t)∼ e2λt as the case for
chaotic system.

For a more general case of x = ym for m> 1, one gets

〈Ea|ℓ|Eb〉=
1
ε2

im dm

dωm
δ(ω) , (35)

which can happen at early times in a non-chaotic system. Therefore, from (29) one gets
C(t)∼ tm which can be interpreted as the early time power-law growth for complexity.

An advantage to study the matrix elements of the label operator is that the universal be-
havior of Lanczos coefficients associated with a Hermitian operator may be studied without
refereeing to a particular dynamics by which a state evolves.

To explore the significance of the label operator better, we note that for an arbitrary oper-
ator Λ =
∑

a λa|λa〉〈λa| where λa and |λa〉 are its eigenvalues and eigenstates, respectively,
one can compute Tr(Λρ(t)) which has the same form as that of (29), though in this case it
is not guaranteed that the functions A(Ea, Eb) = 〈Ea|Λ|Eb〉 exhibit double pole structures at
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late times. Actually we would expect that for a typical operator Λ this satisfies the ETH ansatz
and thus Tr(Λρ(t)) gives a time independent quantity interpreted as the average of the oper-
ator Λ. Therefore in order to have the notion of complexity it is important to compute (29)
specifically for the label operator of an ordered basis. This justifies further the uniqueness of
our definition of complexity in terms of the label operator.

The other important element of the formula given in (29) is the density matrix ρ0(Ea, Eb).
At the leading order in the dimension of the Hilbert space, the density matrix ρ0(Ea, Eb) is
factorized, though in general it has a form

ρ0(Ea, Eb) = ρ(Ea)ρ(Eb) +ρc(Ea, Eb) . (36)

Here ρc represents the connected term meaning that it cannot be written in a factorized form
of g1(E1)g2(E2) with g1,2 being arbitrary functions of energy. While this object remains a
silent spectator in the discussion of the late time linear growth of complexity above, we will
now argue that it plays a pivotal role in understanding saturation phase of complexity at later
times.

On the saturation of complexity at late time: In what follows we would like to present a
general form of complexity in τ scaling limit in which we take {t,Dψ} → ∞ while keeping
τ= t D−1

ψ
fixed.

We proceed by rescaling ρ0(Ea, Eb) = D2
ψ
ρ̃0(Ea, Eb) and switching to the (E,ω) coordi-

nates. The latter is convenient for studying the coincident limit Ea → Eb relevant for the late
time limit t →∞. With this, the complexity (29), up to an appropriate normalization, reads

C(t) =
∫ ∞

0

dE

∫ ∞

−∞
dω eiωt ρ̃0(E,ω)A(E,ω) . (37)

As we have already demonstrated above, the saturation phase of the Lanczos coefficients,
which corresponds to the τ scaling limit, results in a double pole structure for A(E,ω). As-
suming to have an expression for complexity growth at leading order consistent with Lloyld’s
bound one arrives at [14]

A(E,ω) = −
p

E
ρ̃(E)ω2

+ local terms . (38)

On the other hand, at the τ scaling limit, the physics is dominated by correlations between
nearby energy levels. In this limit, the connected part of the matrix elements of the density
matrix denoted by ρc(Ea, Eb) in (36), are described by the universal sine-kernel formula [24].
More precisely, one has

ρ̃0(E,ω) = ρ̃(E)2 +
ρ̃(E)
Dψ

δ(ω)−
sin2(Dψρ̃(E)ω)
(Dψω)2

. (39)

Putting everything together, one arrives at

C(t) = C0 −D−1
ψ

∫ ∞

0

dE
p

E

∫ ∞

−∞
dω

eiωt

ω2
δ(ω)

∫ ∞

0

dE
p

Eρ̃(E)

∫ ∞

−∞
dω

eiωt

ω2

×
�

1−
sin2(Dψρ̃(E)ω)
(Dψρ̃(E)ω)2

�

, (40)

where C0 is a constant. It is exactly the same expression which was obtained for (super)JT
gravity in which the density ρ̃ is known explicitly [11–13]. In this equation, the first line
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which is divergent in general and needs to be regularized by a cutoff, is nevertheless time
independent and does not contribute at late times. Therefore, in what follows we only need
to consider the last term. Setting ωt = ξ, this term yields

C(t) = −Dψτ
∫ ∞

0

dE
p

Eρ̃(E)

∫ ∞

−∞
dξ

eiξ

ξ2

�

1−
sin2( ρ̃(E)τ ξ)

( ρ̃(E)τ ξ)2

�

, (41)

which vanishes for τ > ρ̃(E) for any density function ρ̃ [11]. This behaviour is quite universal
in the sense that the saturation phase does not depend on the details of the model. On the
other hand, for τ < ρ̃(E) one can expand the sine function in terms of exponential functions
and performing the complex integral over a contour excluding the poles in the lower half plane
one obtains [11,12]

C(t)≈ −
2πDψ

3

∫ ∞

Eτ

dE
p

E ρ̃2(E)
�

1−
τ

2ρ̃(E)

�3

, (42)

where Eτ can be read off from the equation τ = ρ̃(Eτ). Although to perform the integration
over E one needs to know the explicit form of the density ρ̃, one can still extract certain
universal behavior for the complexity. In particular for τ≪ 1 one gets C(t) ∼ −α0Dψ + α1 t
with α0,1 being order one constants. Although the saturation phase occurs at τ∼ 1 limit is also
universal, the actual way the complexity approaches the saturation phase is model dependent
and is fixed as soon as the density is fixed.

To conclude, we note that for a chaotic system, the complexity has a universal behavior
starting with early times exponential growth and linear growth at late times followed by a
saturation. It is worth noting that while the early exponential and the late times linear growths
are described by the behavior of the A(E,ω) function, already at leading order, the saturation
phase is the consequence of the contribution of the connected part of the density-density short
range correlation known as sine-kernel.

This has to be compared with the numerical computations done e.g. in [25], where the
saturation of complexity was due to the descent phase of the Lanczos coefficients. It would be
interesting to understand and compare these two different approaches by which the complexity
reaches the saturation phase. An early saturation of complexity due to the breaking of ETH
might actually signal the chaotic nature of the system. Work in this direction is in progress [26]
and we hope to report on this soon.

3 Complexity: The operator-state correspondence

In this section we will extend the algorithm elaborated in the previous section, to the study of
complexity corresponding to growth of an operator. To achieve this, generally, one starts with
a reference operator and constructs an ordered basis of operators using a Hermitian operator.
Then one looks for the spreading of the desired operator over this ordered basis.

Typically, in order to go through this procedure, one needs to define a proper inner product
in the space of operators. However, in what follows, we will take a different approach so that
the inner product will arise naturally.

The doubled Hilbert space: To compute complexity associated with the growth of an op-
erator we will essentially use the same procedure as that of the state complexity simply by
making use of the channel-state map [17] which maps an operator to a state.

Let us consider a quantum system described by the Hamiltonian H with eigenstates and
eigenvalues |Ea〉 and Ea respectively. The corresponding Hilbert space is also denoted by H
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with dimension D. In this set up, we will consider a generic operator O : H→H and a com-
plete basis spanning the Hilbert space, denoted by {|i〉, i = 1,2, · · ·D}. The matrix elements of
the operator in this basis is Oi j = 〈i|O| j〉. Following the channel-state duality, one can then
define an associated state, through a linear bijection,2 in an auxiliary doubled Hilbert space
Hd =H⊗H as follows

|ψO〉=
N
∑

i, j=1

ϱi j |i〉 ⊗ | j〉 ≡
N
∑

i, j=1

ϱi j |i, j〉 . (43)

Here the density of stateϱi j is proportional to the matrix elementsOi j such that
∑

i, j |ϱi j|2 = 1.
More precisely, one has

ϱi j =
Oi j
q
∑

i′, j′Oi′ j′Oi′ j′
. (44)

This map would naturally define an inner product between two operators

O1 ·O2 ≡ 〈ψO1
|ψO2
〉 . (45)

Once we have the state in the doubled Hilbert space, we can simply adopt our previously devel-
oped formalism for state complexity, now for a state in the doubled Hilbert space. For a given
Hermitian operator A : H → H one can then readily construct an orthonormal and ordered
basis in the doubled Hilbert space with the identification of the first state as |0, 0〉 = |ψO〉.
All other elements are obtained using the algorithm given in (5), though, now in the doubled
Hilbert space

|Ön+ 1,Ön+ 1〉= (Ad − an)|n, n〉 − bn|n− 1, n− 1〉 , (46)

where |n, n〉= b−1
n |n̂, n̂〉 and

an = 〈n, n|Ad |n, n〉 , bn =
Æ

〈n̂, n̂|n̂, n̂〉 , (47)

where Ad = A⊗A is an operator acting on the doubled Hilbert space Ad : Hd → Hd . The
resulting ordered basis defines a subspace of the doubled Hilbert space denoted by Hd,ψO

,
DψO

being the dimension of this sub Hilbert space.
For a given operator O, the spreading is now defined as

CO = Tr(ℓρO) , (48)

where ℓ =
∑DψO

n=0 n|n, n〉〈n, n| and ρO = |ψO〉〈ψO| is the density matrix of the state |ψO〉
associated with the operator O.

Following this definition, it is then a straightforward task to compute complexity of an
operator that is obtained from a reference operator O via a unitary evolution. Let us consider
the following unitary transformation for an operator

O(s) = U(A, s)O U−1(A, s) , (49)

so that

ρO(s) =
D
∑

i, j=1

D
∑

i′ j′=1

ϱi j(s)ϱ
∗
i′ j′(s) |i, j〉〈 j′, i′| , (50)

where ϱi j(s) = 〈i|O(s)| j〉/
q
∑

|Oi j|2.

2This is known in literature as the Choi-Jamiolkowski isomorphism [27].
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From this, using the definition of spreading in (48), one gets

C(s) = Tr(ℓρO(s)) =
DψO−1
∑

n=0

n|On(s)|2 , (51)

where

On(s) =
D
∑

i, j

ϱi j(s)〈n, n|i, j〉 , (52)

which implies to have the following expansion for the state in terms of ordered basis in the
doubled Hilbert space

|ψO(s)〉=
DψO−1
∑

n=0

On(s) |n, n〉 . (53)

One can also take the basis {|i〉} to be the eigenstates of the Hermitian operator A. Note that,
here we considered the evolution of the operator by the same operator A used to construct the
ordered basis in the doubled Hilbert space. Following our argument in the case of state com-
plexity, this ensures that (51) represents minimum spreading and therefore can be interpreted
as the complexity of the target operator Os.

The time evolution revisited: As before, our main interest lies in the study of growth of an
operator following the evolution with the Hamiltonian of the system

O(t) = eiH tOe−iH t . (54)

In this case, it is natural to use the energy eigenstates for the channel- state map by which the
corresponding reference space is given by (43) with the replacement |i, j〉 → |Ea, Eb〉

|ψO〉=
D
∑

a,b

ϱab |Ea, Eb〉 , (55)

where ϱab is the normalized matrix elements of the operator in the energy basis. At a given
time t, the corresponding matrix elements are

ϱab(t) = ei(Ea−Eb)tϱab , (56)

so that the associated state in doubled Hilbert space is transformed as follows

|ψO(t)〉= eiH− t |ψO〉 , (57)

where H− = H ⊗ 1 − 1 ⊗ H. In order to compute the complexity through minimizing the
spreading, following our earlier discussion, one needs to construct the ordered basis, specif-
ically using the Hermitian operator A = H−. In this case, the general algorithm mentioned
above, yields the operator complexity

C(t) = Tr(ℓρO(t)) =
DψO−1
∑

n=0

n|On(t)|2 , (58)

where On(t) =
∑

a,b ϱab(t)〈n, n|Ea, Eb〉.
In the case when the Hamiltonian possesses a continuum spectrum, one can write down

an expression for complexity similar to (29) in the doubled Hilbert space. This will lead to a
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late time saturation of complexity followed by a linear growth. The saturation will be guar-
anteed through the perturbative contact terms and non-perturbative contributions appearing
in the density correlation 〈Ea, Ea′ |ρO(t))|Eb, Eb′〉 in the coincident limits Ea − Eb → 0 and
Ea′ − Eb′ → 0.

To summarize, we note here that in order to study operator complexity for an operator
evolving with the Heisenberg equation, one can equivalently run the algorithm developed to
compute the state complexity, but in the doubled Hilbert space with the Hamiltonian H−.

It is worth noting that, in this case, the ordered basis, generated using the particular ef-
fective Hamiltonian H− which governs the time evolution of the state, renders the Lanczos
coefficients an to be zero. This is of course expected due to the fact that the evolution of an
operator here is given by the Liouvillian which amounts to have vanishing an.

Let us now discuss one interesting subtlety of this construction. For quantum system de-
fined on the doubled Hilbert space Hd whose dynamics is given by H−, the average energy
H+ = H ⊗ 1+ 1⊗ H is a conserved charge. This follows from the fact that [H−, H+] = 0. In
other words, for an operator whose associated state is defined by (55), one should impose the
following condition

H+|ψO(t)〉= E|ψO(t)〉 , (59)

where E = Ea + Eb is the average energy which is kept fixed.
The average energy should remain constant during the state evolution (57) and therefore

it does not mix states with different energies. In other words the complexity can be computed
for each individual sector with fixed average energy [28].

Precisely due to this particular dynamics of the operator growth, the diagonal part of the
matrix elements Oab does not contribute to the operator growth. In other words, restricting
ourselves to an operator whose corresponding state in doubled Hilbert space is given by

|ψ(0)O 〉=
∑

a

ϱa|Ea, Ea〉 , (60)

one gets trivial dynamics under a unitary time evolution given by H−. Here the index (0)
indicates that this state belongs to a subspace with constant H− (which could be zero).

Actually this defines rather atypical states whose dynamics are, rather naturally, given
by H+,

|ψ(0)O (t)〉= eiH+ t |ψ(0)O 〉 . (61)

Note that for ϱa = e−βEa/2/
Æ
∑

a e−βEa this state corresponds to a thermofield double state
with inverse temperature β . In general ϱa could be a complex function having a phase
ϱa = |ϱa|eiαa which could be thought of the generalized thermofield double state [29,30].

This apparently confusing role reversal of H±, mentioned above in the context of the atyp-
ical state, is actually not that surprising. In fact, in the construction of the doubling of the
Hilbert space in (55), it is assumed that energy eigenstates of the Hamiltonians participat-
ing in the doubling are also eigenstates of the time reversal operators, as is the case of most
quantum mechanical system. This is, however, not generically true. Taking this into account,
explicitly, (55) can be rewritten as

|ψO〉=
D
∑

a,b

ϱab T |Ea, Eb〉 , (62)

where T is the time-reversal operator, which being an anti-linear operator, results in the nor-
malized matrix elements

ϱab(t) = ei(Ea+Eb)tϱab . (63)
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Then the associated evolution of the state in the doubled Hilbert space is given by

|ψO(t)〉= eiH+ t |ψO〉 . (64)

When |ψO〉 is the TFD state, such time evolutions give rise to phase-shifted thermofield dou-
bled states mentioned above.

Therefore, we note that there are two different ways to arrive at the same generalized TFD
states, either as a simple one-sided time evolution (61), preserving the time-reversal symmetry
of the basis states, or in terms of the doubled Hilbert space structure using energy eigenstates
which are not time-reversal symmetric as we derived in (64).

These two points of view correspond to the boundary and bulk perspectives, respectively,
in the context of AdS/CFT. The former approach remains faithful to the time-reversal symme-
try of the CFT while creating an enlarged phase space of complexified quantum states with
asymptotic charges [31], and the latter creates a complexified bulk states through evolution
with H+ identified as the bulk Hamiltonian. Accordingly, the additional phase appearing in the
generalized TFD state assumes interpretations either due to boundary charges or as topological
quantum phases arising as a consequence of bulk non-locality.

This non-locality is quantified through the symplectic structure in the bulk, which although
can have local interpretation of time evolution with H+, are globally non-exact, thereby giving
rise to the additional phases appearing in the generalized TFD states [32,33].

A little more on doubling and the holographic interpretation: Our construction of dou-
bled basis follows a secret rendition of the Reeh-Schlieder-Theorem. By construction, the
domain Γψ of any initial given state |ψ〉 is dense in the full Hilbert space of the theory once
we are successfully able to construct the ordered basis using an algebra of operators Ω that
minimize the spreading. Therefore, this state can be dubbed as a cyclic vector. Furthermore,
to have a non-vanishing complexity, one needs to start with a state which is not an eigenstate
of the operator, which means there cannot be an annihilation operator in the small algebra of
operators, Ω. This makes the initial state |ψ〉 a separating vector.

With these two defining conditions of the Reeh-Schlieder Theorem [34], one can visualize
the full algebra of operators acting on the Hilbert space Γψ as an entangled algebra Ωd = Ω⊗Ω̄
where Ω̄ is the commutant algebra which can be obtained using modular automorphism via the
Tomita- Takesaki theorem [34]. Furthermore, given the emerging structure of entanglement, it
is natural to invoke a doubled basis as in (43) to expand the state and consequently, a doubled
ordered basis as in (46) to analyse the growth of the state.

This justifies why the doubling, introduced in (43) using the channel- state map, is essential
to cast the operator complexity as a corresponding state complexity.3

In the context of holography, such constructions were instrumental in understanding the
state-dependent reconstruction of black hole interior [36].4 We note here, following our uni-
fied interpretation of the state and the operator complexities, that the same construction is also
pivotal to connect to the the notion of holographic complexity which measures the growing
volume of the interior of a black hole.

It is worth mentioning that in the holographic context, there can actually be an infinitely
many quantities which possess the same late time behaviour in terms of a linear growth fol-
lowed by a saturation and in principle, all of them can be dubbed as complexities [14, 37].

3The realisation we achieve through this unification is quite in line with the Gelfand-Naimark-Segal (GNS)
construction discussed in the context of studying operator growths in large N theories [35].

4However, in this case the small algebras were only approximate algebra at largeN with edge effects which were
important to realize the existence of the black hole interior. In the language of Lanczos, it would corresponding to
only approximate breaking of the algorithm when bn becomes smaller to a given hierarchy scale, as N is, in the
case of holographic CFT’s.
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Identifying the A-functions in terms of the matrix elements of the label operator potentially
removes this ambiguity. Therefore, the interpretation of both, in terms of operator growth,
should follow from the same doubling algorithm.

An alert reader might wonder about the identification of the matrix elements of the label
operator with the expectation values of a non-local holographic position operator. However,
we would like to emphasize that the entanglement between two spacelike separated regions
can have an equivalent description in terms of entangling algebras of operators defined on the
Hilbert space. While the previous description is more geometric and visually pleasing, the lat-
ter one provides a more general notion of entanglement independent of spacetime. Following
the interpretation of the doubled Hilbert space in terms of the modular automorphism men-
tioned above, this generalized notion of entanglement justifies the matrix elements of the label
operator being identified with the holographic non-local operator. More details regarding this
identification will be elaborated in [26].

4 Subregion Krylov complexity

Entanglement entropy or other measures of entanglements are given in terms of the reduced
density matrix. This is unlike the complexity the usually is defined for a pure state or an opera-
tor in entire space. Nevertheless, subregion complexity and complexities for mixed states have
also been studied in the context of holographic complexity [38–41]. The circuit complexity
for mixed states in open systems has been also studied in [42–47].

Since the approach used in the literature to study complexity, mainly relied on the state, its
generalizations to mixed states or to subregions are not straightforward. On the other hand,
in this paper, our construction for complexity (of pure state) is given in terms of a particular
trace over the density matrix. An advantage to define complexity in terms of density matrix is
that it may be extended for the cases where we are dealing with subregion or mixed states. In
these cases one would expect that the definition would be the same and we just need to use
reduced density matrix.

Let us consider a quantum system whose Hilbert space can be decomposed into two parts
H =HA⊗HB. The dynamics of the system is given by a Hamiltonian which, in general, may
not be decomposed into two parts acting on HA and HB separately. Therefore, even if we
start with a reference state which is separable, as times goes the state spreading makes it very
complicated.

Let us start with a reference state |ψ〉 and construct the orthonormal, ordered basis using
the Hamiltonian of the system. Then it is rather straightforward to compute the reduced label
operator by taking trace over subsystem B ℓA = TrB(ℓ). One may also compute reduced density
matrix at given time ρA(t) = TrB(ρ(t)). Then the subregion Krylov complexity is defined by

CA(t) = TrA(ℓAρA(t)) . (65)

It is important to note that although the time evolution of the density matrix is simple and
follows from the Schrödinger equation

ρ(t) = eiH tρ(0)e−iH t , (66)

for the case of reduced density matrix it is rather involved even for an initial density matrix
which is factorized ρ(0) = ρA(0)⊗ρB(0) [48]. More precisely, using the fact that the density
matrix is positive and normalized, one may write ρB(0) =

∑

µλµ|µ〉〈µ| which yields [48]

ρA(t) =
∑

µ,ν

Kµν(t)ρA(0)K
†
µν(t) , (67)
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where Kµν(t) known as the Kraus operators are

Kµν(t) =
Æ

λν〈µ|eiH t |ν〉 . (68)

In general it is not an easy task to compute complexity for reduced density matrix, though
for a special cases where the dynamics of the two subsystem is separable, one can expect to
make some progress.

More generally, motivated by the operator-state mapping of the previous section, let us
consider the following time dependent density matrix

ρ(t) =
∑

a,b,a′,b′
ϱab(t)ϱ

∗
a′b′(t) |Ea, Eb〉〈Eb′ , Ea′ | , (69)

whose initial density is found by setting t = 0. Then the reduced density matrix at given time
reads

ρr(t) =
∑

a,a′,c

ϱac(t)ϱ
∗
a′c(t) |Ea〉〈Ea′ | , (70)

by which the complexity is

C(t) = Tr(ℓrρr(t)) =
∑

a,a′,c

ϱac(t)ϱ
∗
a′c(t)A(Ea, Ea′) . (71)

For the case of ϱab(t) = ei(Ea±Eb)tϱab one finds

C(t) =
∑

a,a′
ei(Ea−Ea′ )tρ(Ea, Ea′)A(Ea, Ea′) , (72)

which has essentially the same form as that we have found for pure state complexity. Here
ρ(Ea, Ea,) =
∑

c ϱacϱ
∗
a′c . Note that in this expression, the functions A(Ea, Ea′) are matrix ele-

ments of the reduced label operator.
For the maximally entangled case, given by the state

|ψ〉=
∑

a

ϱa|Ea, Ea〉 , (73)

ϱa being a function of Ea with a possible phase, one can assume to have a separable dynamics
as follows

|ψ(t)〉= f1(H1, t) f2(H2, t) |ψ〉 , (74)

where fi ’s are unitary transformations representing the time evolutions of each subsystem.
Then the reduced density matrix turns out to be independent of time and is given by

ρ1(t) = Tr2(ρ(t)) =
∑

a

|ϱa|2|Ea〉〈Ea| . (75)

Clearly, even though the subsystem specified by the reduced density matrix are complex, the
complexity remains constant

C(t) =
∑

a

ρ(Ea)A(Ea, Ea) , (76)

where ρ(Ea) = |ϱa|2. Therefore one may conclude that having non- zero entanglement en-
tropy is not enough to crate complexity under unitary separable time evolutions and a direct
interaction is needed. In other words to get complexity growth for subsystem the dynamics of
entanglement is matter (see (67)).

This feature of complexity demonstrated above hints at the interesting fact that in order to
have a growth of complexity, it is not sufficient to be content with the factorized structure of
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the density matrix, but rather it needs some interaction. This can alternatively be attributed
to a fundamentally non-factorized structure of the Hilbert space as well. In the context of the
entanglement structure of a generic quantum system, this connection was discussed in [32,33].

This underlines the precise realization of the ER = EPR paradigm [49]. In the context
of complexity, one can expect a very similar conclusion following the discussion above. This
opens up the possibility of describing the growth of complexity in terms of connected saddles
like replica wormholes which in turn could in principle provide the precise geometric interpre-
tation of the modified replica trick for complexity advocated in [12,13]. Work in this direction
is in progress and we hope to report on this soon.

As a final comment, we note that the holographic subregion complexity for a time-
dependent geometry, given by the Vaidya metric, has been computed in [50–52]. In the context
of gauge-gravity duality, the Vaidya metric provides a holographic description for a thermal
quench. It was then possible to explore the time-dependence of holographic subregion com-
plexity in this context. It was shown that the holographic subregion complexity exhibits linear
growth up to a maximum value after which it shows a decreasing phase and finally saturates
to a constant.

Intuitively, one can see that the Krylov subregion complexity should exhibit similar fea-
tures. In fact, from equation (72) one can note that the linear growth can indeed be under-
stood from the pole structure of the A-function, much similar to what we studied in the context
of Krylov complexity. On the other hand, since the information about the Lanczos coefficients
is encoded in the A-function, the saturation phase can be understood from the fact that the
Lanczos coefficients vanish at late times.

It would, of course, be interesting to study Krylov subregion complexity more rigorously
and compare it with that of holographic one explicitly.

5 Conclusions

To summarize our progress in this paper, we developed a unified formalism to study the state
and the operator complexities. The key observation towards the unification is to realize that,
within the realm of quantum mechanics, one can think of a channel-state correspondence
which helps us to cast the the problem of studying operator complexity, to a corresponding
state complexity obtained through the evolution of the dual state living on a doubled Hilbert
space.

While this connection itself is quite interesting and thought-provoking, it reveals, on its
way to development, a couple of more surprises. First, it connects very naturally to the notion
of complexity discussed in the context of holography following two routes - i) realizing the
doubling of the Hilbert space for a more generic quantum system in terms of the entangle-
ment structure arising from the Reeh-Schlieder theorem in an axiomatic quantum field theory,
thus connecting this procedure to the state-dependent bulk reconstructions [36]. This shows
that the state-channel map which connects the state and operator complexities through a dou-
bling of the Hilbert space, does secretly exploit the entanglement algebra imposed through the
Lanczos algorithm. This hidden structure of entanglement underlying the Krylov construction,
to our knowledge, had not been spelt out in the literature; ii) through a direct identification of
the matrix elements of the label operator in the energy basis defined to quantify the spreading
in a generic quantum system to the expectation values of the holographic position operator
appearing in the quenched geodesic length as in [12–14]. This provides a support for a general
definition of complexity in terms of the pole structure of the A-function as advocated in [14].
Our construction establishes that this definition of complexity is universally applicable for any
quantum system, with or without gravity, so long as the complexity has a late time linear
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growth. Such behaviour of complexity is indeed expected for a large class of physical sys-
tems, both integrable and chaotic and unlike the saturation phase, it is solely governed by the
saturation of the Lanczos coefficients, captured by the pole structure of the A-function.

While these two routes lead to a further unification, now also incorporating the holographic
complexity along with the state and the operator complexities, there is also a second but very
important practical advancement in terms of developing a formalism to study subregion com-
plexity and complexity for mixed quantum states, which had so far been quite illusive in the
existing literature. In our formalism, this appears, rather naturally, since our universal defini-
tion of complexity is given in terms of a particular trace over the density matrix. In particular,
the subregion complexity can be obtained simply by replacing the density matrix with the
reduced density matrix corresponding to any given subregion. Furthermore, while generaliz-
ing the notion of complexity for a mixed state, we realise that this naturally hints at having
a replica wormhole saddles in the dual gravitational spacetime, in line with the expectation
coming from the modified replica trick proposed in [12,13].

Following this short summary let us now conclude with a few ongoing progresses.

The mutual complexity: Since we are dealing with subregion complexity, one can naturally
define the Krylov mutual complexity for two subregions A and B as follows

MAB = CA+ CB − CA∪B , (77)

where C ’s are the Krylov subregion complexities associated with the mentioned regions. In the
context of the holographic complexity, the mutual complexity has been defined in [41,53].

Complexity in open quantum systems: Our universal formalism for state and operator
complexities is applicable as well for open quantum systems which lack a Hermitian Hamilto-
nian which in turn means that the ordered basis defined in (5) does not span the full doubled
Hilbert space Hψ. In this case, one needs two independent sets of basis vectors, |n〉 and 〈n̄|
which are not in general orthogonal to each other. Nevertheless, given a non-Hermitian oper-
ator A, in many cases,5 it is possible to construct an anti-linear operator L such that L−1AL
is Hermitian with respect to the inner product 〈n|n̄〉L ≡ 〈n|L n̄〉. One example of such an anti-
linear operator is the CPT operator. Adopting this formalism for computing complexity due to
a non-Hermitian operator A amounts to a generalization of the definition of complexity (10)
as

Cφ = Tr(ℓρφ)L , (78)

for any state |φ〉 ∈Hψ. Here the subscript L reminds us that the trace operation here should
be performed taking into account the modified inner product 〈n|n̄〉L.

The transition matrix As an aside comment, let us mention that there is an other operator,
beside the density matrix, which plays an important role in this context that is known as the
transition matrix

τ= |ψ〉〈φ| . (79)

It is natural to consider the case where the state |φ〉 is given by (12). Although
the information of Lanczos coefficients is encoded in the trace of the transition matrix
Tr(τ) = 〈ψ|U†(A, s)|ψ〉 = ψ∗0(s), its evolution does not lead to any spreading as defined
by (14). More precisely one has

Tr(ℓτ) = 0 . (80)

5Although this formalism was used and tested for pseudo-Hermitian Hamiltonians with real eigenvalues [54,
55], we expect this procedure to work for more general non-Hermitian operators.
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It is important to note that the vanishing of the above equation is a direct consequence of our
definition of the label operator in which we set cn = n that is zero for n= 0. If one assumes a
general cn for c0 ̸= 0 one has Tr(ℓτ) = c0Tr(τ).

Transition matrix is used to define the pseudo-entropy which is the generalization of en-
tanglement entropy with post-selection [56, 57]. Taking into account that the fact that the
autocorrelation can be re-expressed in terms of the the Lanczos coefficients, one would expect
that the pseudo-entropy exhibits certain universal behavior, at least for chaotic systems. We
hope to report on this soon.
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