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Abstract

We derive BM-like continuum models for the bands of superlattice heterostructures
formed out of Fe-chalcogenide monolayers: (I) a single monolayer experiencing an ex-
ternal periodic potential, and (II) twisted bilayers with long-range moire tunneling. A
symmetry derivation for the inter-layer moire tunnelling is provided for both the Γ and
M high-symmetry points. In this paper, we focus on moire bands formed from hole-
band maxima centered on Γ , and show the possibility of moire bands with C = 0 or ±1
topological quantum numbers without breaking time-reversal symmetry. In the C = 0
region for θ → 0 (and similarly in the limit of large superlattice period for I), the system
becomes a square lattice of 2D harmonic oscillators. We fit our model to FeSe and argue
that it is a viable platform for the simulation of the square Hubbard model with tunable
interaction strength.
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1 Introduction

The 2018 discovery of nearly flat bands in twisted bilayer graphene (tBG) marked the genesis
of a new era of highly tunable devices which combine strong coupling physics with non-trivial
topology [1,2]. Characteristic of such devices is the existence of a superlattice potential with a
period orders of magnitude larger than the atomic scale, which drives long-wavelength inter-
layer tunneling, and produces a mini Brillouin zone (mBZ) orders of magnitude smaller than
the BZ of the original graphene monolayer [3–11].

In tBG and other moire heterostructures, the superlattice forms as an emergent moire
pattern from the overlapping crystal bilayers, giving rise to bands whose bandwidths are con-
trolled by the angle of the twist [3,4]. For an appropriately chosen twist angle, the bandwidth
of the lowest energy bands shrinks to the order of the interaction energy, effectively engineer-
ing strong interactions [4].

This stack-and-twist approach to creating moire superlattices has been used to engineer
flatbands in other materials, including the transition metal dichalcogenides [12–21] and
chirally-stacked graphenes atop hexaboron nitride [22, 23], to name a few. Additionally, su-
perlattice potentials have been engineered in monolayers through spatially periodic dielectric
screening (SPDS), where the Coulomb potential is spatially modulated via a dielectric sub-
strate, producing a mBZ for the renormalized bands [24,25].

Here we propose a new class of superlattice materials composed of monolayer Fe-
chalcogenides [26–65]. Such monolayers are interesting on their own, combining multi-band
physics with spin-orbit coupling to produce a variety of phenomena [59–63, 66–69], such as
unconventional high-temperature superconductivity in monolayer FeSe upon doping, with Tc ’s
reported as high as 65 K [26] and even 109 K [27].

Unlike graphene however, the low-energy properties of the iron-chalcogenides cannot be
accurately captured from a tight-binding model with less than 5 bands [70,71]. This picture is
further complicated by the moderate renormalization of the bands due to interactions, which
is stronger than what can be predicted within the assumptions of ab initio methods like den-
sity functional theory (DFT) [72–80], thus placing a barrier on the accurate determination of
microscopic parameters.

Despite these difficulties, an accurate minimal low-energy model for the modes near the
Fermi level can still be constructed on the basis of symmetry. This is because the iron-
chalcogenides are known for having low-energy bands which disperse sharply in the vicinity
of high symmetry points – two hole-band maxima at Γ , and four electronic-like bands at M
– and in the case where those bands cross the Fermi level, produce Fermi surfaces which are
small relative to the atomic Brillouin zone [59]. Therefore, those electronic states which are
most relevant to the low-energy physics can be described within a k ·p effective theory for the
fields at Q, where Q ∈ {Γ , M}.

From a microscopic perspective, these slowly varying effective fields, which we write as
ψQ,a(x), are the low energy contribution to da(x), the annihilation operator for the atomic
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Figure 1: (a) The continuum bands about Γ , fit to photoemission data for FeSe [58].
The inset represents an example of the energy contours at a non-specific energy in-
dicated by the dashed line. (b) Twisted Fe-Fe planes. The chalcogenide atoms have
been suppressed in this drawing for clarity, and instead non-equivalent Fe’s within
the same unit cell are drawn as closed/open circles. The dashed blue lines connect
equivalent moire lattice sites. (c) The superlattice Brillouin zone centered on its
corner Mm = (qS/2, qS/2), and showing the neighboring zones at q1 = (qS , 0) and
q2 = (0, qS).

orbital a at discrete lattice site x:

da(x) =
∑

Q
eiQ·xψQ,a(x) + higher energy states. (1)

However, no microscopic information is actually needed to derive the general form of the
effective theory, only how the relevant fields at Q transform under space group symmetries
– of which they are guaranteed to be eigenstates because Q is a high symmetry point. For
instance, noting α ∈ {↑,↓}, the effective theory for the relevant fields at Γ ,

hαβΓ (−i∇) =
�

εΓ −µ∇2 − a∂x∂y −b(∂ 2
x − ∂

2
y )

−b(∂ 2
x − ∂

2
y ) εΓ −µ∇2 + a∂x∂y

�

δαβ +λ

�

0 −i
i 0

�

sαβz , (2)

was derived previously by Cvetkovic and one of us [70], using only the fact that those fields
transform as the doubletψΓ ∼ (dY z ,−dXz), which is an irreducible representation of the space
group at Γ . We fit its invariants directly to photoemission data in bulk FeSe above its structural
transition [58] (see Fig 1-a): (µ, a, b) = (−2830,−3440.93,−a/2.5) meVÅ

2
and λ= 10 meV.

The fitted theory fully accounts for the renormalization due to the interactions at sufficiently
long wavelengths and accurately describes the observed bands.
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Therefore, we work within the effective theories for the fields about Γ and M , and propose
two classes of materials: (I) a single FeSe monolayer experiencing an external periodic po-
tential (say via SPDS); and (II) uniformly-rotated small-angle twisted bilayers of FeSe, which
experience a moire inter-layer tunneling. In both cases, we derive a continuum description
for the superlattice potential (or tunneling) using the irreducible representations (irreps) of
the space group at Γ and M [70,81,82] – the details for which can be found in the following
sections. We work within the assumption that the superlattice potential is dominated by scat-
terings with the smallest wavevectors; are spin independent; and, in the case of (II), leading
order in the twist angle θ .

In particular, we focus on chalcogenide monolayers with hole-band maxima centered at
Γ , such as is true for thin films of FeSe [28, 29, 36, 49] as well as the underdoped variant
of monolayer FeSe/SrTiO3 [28], where a hole band maximum lies 10 meV below the Fermi
level. We generally refer to “hole-band maxima” (plural) as opposed to “maximum” (singular)
because the upper hole band is expected to arise from a quadratic-band touching described by
Eqn 2, but one where the presence of µ forces both bands to disperse downward. These bands
are then gapped due to the spin-orbit λ (= 10 meV reported in the bulk [59]).

The effective Hamiltonian for case (II) about Γ describes two relatively rotated and coupled
copies of Eqn 2,

Hmoire,Γ =

∫

d2xψ†
Γ ,1,α(x)h

αβ
Γ (−i∇)ψΓ ,1,β(x) +ψ

†
Γ ,2,α(x)h

αβ
Γ (−iR−1

θ ∇)ψΓ ,2,β(x)

+ 2(w0,osδ
l l ′ +w0,tσ

l l ′
1 )ψ

†
Γ ,l,α(x)

�

1 0
0 1

�

�

cos(q1 · x) + cos(q2 · x)
�

ψΓ ,l ′,α(x)

+ 2(w1,osδ
l l ′ +w1,tσ

l l ′
1 )ψ

†
Γ ,l,α(x)

�

0 1
1 0

�

�

cos(q1 · x)− cos(q2 · x)
�

ψΓ ,l ′,α(x)

+ t ψ†
Γ ,1,α(x)

�

1 0
0 1

�

ψΓ ,2,α(x) + h.c. (3)

The invariants w0,os, w1,os reflect the long-wavelength component of the symmetry-allowed
variations in the on-site energy due to the presence of the moire pattern [12,13,17]. The form
of the tunneling invariants t, w0,t, w1,t follows consistently from both a microscopic calculation
[83, 84], as well as from the leading order part of the effective tunneling T (u) within the
elasticity theory for displaced bilayers [5], where u(x) ≡ r1(x) − r2(x) is the displacement
between the two layers l ∈ {1,2} as a function of the lab coordinate x. (WLOG, we choose our
lab coordinates to be the unrotated frame of one of the layers r1 = x.) The (qa) j = qSδa, j are
the reciprocal lattice vectors, whose size qS = 2π/lS is set by the superlattice period lS = lFe/θ ,
where lFe is size of the Fe unit cell.

Notice that the intra-layer Hamiltonian only depends on the twist angle through
hαβΓ (−iR−1

θ
∇), and that no term exists which relatively shifts the quadratic band touchings be-

tween different layers in k-space. This is unlike the case for the fields about a non-zero crystal
momentum – such as for the K point in graphene or the M point in FeSe – and is a consequence
of the fact that the twist in k-space is taken around Γ . The remaining hΓ (−iR−1

θ
∇)−hΓ (−i∇)

term is the analog to the particle-hole symmetry breaking term in the BM model for tBG [7],
and is likewise suppressed by a factor O(θ ). If we drop this term in Eqn 3 by approximating
hΓ (−iR−1

θ
∇) ≃ hΓ (−i∇), the resulting Hamiltonian gains a new symmetry U = exp(i π4σ2),

where σ2 is a Pauli matrix in the layer space. The action of ψΓ ,l,α = Ul l ′ψ
′
Γ ,l ′,α admixes the

two layers into a decoupled basis,
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Hmoire,Γ =
∑

±

∫

d2xψ′†Γ ,±,α(x)h
αβ
Γ (−i∇)ψ′Γ ,±,β(x)∓ t ψ′†Γ ,±,α(x)

�

1 0
0 1

�

ψ′Γ ,±,α(x)

+ 2(w0,os ∓w0,t)ψ
′†
Γ ,±,α(x)

�

1 0
0 1

�

�

cos(q1 · x) + cos(q2 · x)
�

ψ′Γ ,±,α(x)

+ 2(w1,os ∓w1,t)ψ
′†
Γ ,±,α(x)

�

0 1
1 0

�

�

cos(q1 · x)− cos(q2 · x)
�

ψ′Γ ,±,α(x)

≡H+ +H− . (4)

Either copy (H±) of Eqn 4 is a layer bonding/anti-bonding sector which are each mathemati-
cally equivalent to a problem of a single monolayer experiencing an external superlattice, i.e of
the aforementioned case (I) – see independent derivation in Sec 2.1. The copies are separated
in energy by 2t, where t corresponds to the average moire tunneling over the entire system.
Any mixing of these copies comes from the neglected hΓ (−iR−1

θ
∇) − hΓ (−i∇) contribution,

which we found to be insignificant compared to t, the dominate contribution to the tunneling.
Likewise, the problem is further decoupled in spin, seeing that λ only reduces the spin

symmetry to U(1). Therefor our purposes, it will be sufficient to focus on H− in the ↑-spin
sector, with the understanding that H+ is equivalent up to taking w0/1,t → −w0/1,t; λ → −λ
flips the spin; and the remaining constant t can be removed by a constant shift in energy. We
redefine w0/1 ≡ (w0/1,os +w0/1,t) and the 2-component spinor ψ≡ψ′

Γ ,↑, then write

H−,↑ =

∫

d2xψ†(x)h↑↑Γ (−i∇)ψ(x) + 2w0 ψ
†(x)

�

1 0
0 1

�

�

cos(q1 · x) + cos(q2 · x)
�

ψ(x)

+ 2w1 ψ
†(x)

�

0 1
1 0

�

�

cos(q1 · x)− cos(q2 · x)
�

ψ(x) . (5)

A key feature of this Hamiltonian is the aforementioned quadratic band touching, which occurs
in the limit λ = 0 [70]. In this limit, turning on a small w1/(aq2

S) opens a gap everywhere in
the mBZ except for the quadratic band touching at Γ . Since the Hamiltonian is everywhere real
valued in the absence of spin-orbit, turning on non-zero λ, and therefore gapping the node at
Γ , guarantees a Chern number 1 (or −1 depending on the sign of λ) for the upper superlattice
band. Because λ only reduces the SU(2) spin-symmetry down to U(1), opposite spin sectors
decouple within degenerate bands, which are necessarily degenerate and have opposite Chern
number due to time-reversal [85].

As sketched in Fig 2a, keeping λ ̸= 0 while tuning the ratio w0/w1 results in a transition
into a C = 0 state, which occurs through a Dirac cone at the mBZ corner (k =Mm) [86]. The
topological phase boundary between C = 0 and 1 occurs when

q

(1+ 2w̃1)2 + λ̃2 =
q

1+ (λ̃+ 2w̃0)2 , (6)

for dimensionless λ̃ ≡ λ/(|a|q2
S/4), w̃0/1 ≡ w0/1/(|a|q2

S/4). Thus this transition can be tuned
via the superlattice period lS = 2π/qS .

Close to the phase boundary on the trivial side, the system is best described in terms of
nearly free holes. However, spin-orbit coupling flattens the bands in the vicinity of Γ (at which
the Fermi velocity is zero), and since the gradients of the hole fields are cutoff by qS , smaller
qS guarantees flatter bands. In fact, if the free-hole bandwidth (set by qS) is much smaller
than the 2λ splitting of the continuum bands, i.e if

2λ̃≫ λ̃+ 2
�

�

�

µ

a

�

�

�−
Æ

1+ λ̃2 , (7)
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(a)

(b)

Figure 2: (a) Phase diagram for the upper moire hole band at fixed w̃1. The boundary
between the spin Hall and trivial phase corresponds to the black line in the 3D dia-
gram (shown as inset). The charge center winding within the unit cell, as a function
of mBZ momentum ky ∈ {0,2π}, is shown for the two phases. The quadratic-band
touching at Γ is preserved along the λ̃ = 0 line. The red × indicates a triple-band
touching at Mm, beyond which becomes a quadratic-band touching (shown as a red
line). The diagram for w̃0 < 0 is equivalent, except for the absence of the dashed
blue line, because the gap at Xm does not close there. (b) Density of the Wannier
state for the band in the trivial phase, calculated via the projection method [87].
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Figure 3: Lowest energy bands in the trivial phase. The top band corresponds to the
Wannier functions shown in Fig 2b. The dashed line shows the fit to nearest-neighbor
square lattice hopping dispersion Ek = −ε

�

cos(2π
qS

kx) + cos(2π
qS

ky)
�

.

we can safely project onto the upper continuum band. This amounts to seeking eigenstates of
Eqn 5 of the form ψ(x) = φ(x) (1, i)T/

p
2:

−µ∇2φ + 2w0

�

cos(qS x) + cos(qS y)
�

φ = Eφ . (8)

The potential of Eqn 8 has minima arranged in a crystal with period lS ,

−µ∇2φ − 2w0
1
2

q2
S(x

2 + y2)φ ≃ (E − 2w0)φ . (9)

Thus we can exactly calculate Wannier functions in this limit, being the eigenstates of a 2D
harmonic oscillator with a frequency and mass defined by mω2/2≡ |w0|q2

S and ħh2/(2m)≡ |µ|.
Their density is localized over a lengthscale

l =
1
p

qS

�

�

�

µ

w0

�

�

�

1
4

, (10)

which is either centered on the middle or corner of the unit cell, depending on the sign of w0.
The existence of localized Wannier states suggests a tight-binding description of the system,
which is appropriate given a majority of the density lies within the unit cell, i.e l ≪ lS , or
equivalently

1
p

qS

�

�

�

µ

w0

�

�

�

1
4
≪

2π
qS

. (11)

This is guaranteed for sufficiently small θ .
The two equations Eqn 7 & 11 set conditions on the validity of a tight-binding description

of the system, beyond which the system is better described as nearly free holes:

θ ≪min
�

5.4o,
�

31.9
Æ

w0[meV]
�o�

, (12)

for w0 given in units of meV. The numbers for Eqn 12 have been fixed using our fits of the
k ·p invariants to photoemission [58]; as well as the experimentally determined 2-Fe unit cell
lattice spacing lFe = 3.77 Å [33], which determines lS = lFe/θ for a given θ .

In Fig 2b, we plot the Wannier function for the trivial band (Fig 3), calculated numerically
via the projection method [87], and find that they are well localized even away from the exact
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θ → 0 limit. As θ → 0, the bands become increasingly flat, and their degeneracy structure
approaches that of the 2D harmonic oscillator (Fig 4) with energy spacing

ħhω= 2qS
Æ

|µ|
Æ

|w0| ≃ 3.1× θ
Æ

w0[meV] , (13)

where θ here is taken in degrees. By comparison, the on-site Coulomb energy follows

VCoulomb =
p
π

2
p

2

e2

εl
≃

211 meV
ε

×
p

θ |w0[meV]|
1
4 , (14)

the prefactor for which becomes comparable to the 3.1 of Eqn 13 when we consider
εSrTiO3

≥ 300 [88,89].
Lastly, we fit
�

w0,os, w0,t, |w1,os +w1,t|, |w1,os −w1,t|, t
�

= (3.4,−.9, .3, .6, 32.3) meV ,

with the aid of DFT [72–80] by studying the spectrum of bilayer FeSe at k = Γ for three
stacking configurations: uAA = (0,0), uAB = (lFe/2, lFe/2), and u 1

2
= (lFe/2,0). This is done

with an inter-layer distance c = 5.345 Å, which we found minimized the energy of AA stacked
bilayers.

It should be pointed out however, that due to the renormalizations in the real material,
DFT-determined values for the invariants may not be accurate. As such, we have tried to con-
strain ourselves to experiment as much as possible, and report the values of w’s determined
via DFT with the understanding that they at best reflect an estimate of their order of magni-
tude. Nevertheless, the sizeable λ reported by experiments, in combination with large w0/w1
expected from DFT, favours Hubbard-type physics for the moire bands about Γ .

It has been shown that pressure facilitates the moire physics in tBG [90, 91], which is
generally expected since pushing the layers closer together increases the inter-layer tunneling
strength. Since the trivial bands described here flatten with decreasing θ ∝ l−1

S , interaction-
driven phases are not tied to a specific magic angle. Therefore the combination of both θ
and pressure provides a tunable multidimensional space of achievable device configurations,
which could be used to explore strong-coupling physics.

Likewise, it remains to be seen what role moire ferroelectrics will have in engineering su-
perlattice substrates [92, 93]. For example, twisted hexaboron nitrides have been shown to
produce a triangular superlattice potential larger than 200 meV [92], which if placed atop an
electron/hole-carrying layer, would modulate the on-site energy of those carriers, and there-
fore act as an external superlattice. As we have pointed out, small twist-angle moire physics at
Γ (type II) is equivalent to a system of a single monolayer experiencing a square superlattice
(type I). Such devices may be easier to construct and tune, and are not constrained by the
natural size and ratios of the tunnelings between relaxed homobilayers. One possible route to
a square superlattice would be to twist (or misalign) FeSe against ultra-thin films of BiFeO3,
which are by themselves ferroelectric [94].

The purpose of this manuscript is two fold: lay down the general theoretical framework
necessary for future investigations into a new class of moire heterostructures, as well as pro-
vide a clear proposal for immediate experimental exploration of a specific device composed
of either FeSe/SrTiO3 [26, 95–97] or FeTe/SrTiO3 [52, 55] monolayers. To this end we have
organized this paper in such a way as to prioritize the experimental proposal laid out in this
Intro, starting first with details specific to moire bands at Γ . This includes a from-microscopics
derivation of the moire tunneling in Eqn 3 in Sec 2.1, which is followed by a detailed analysis
of the superlattice band structure in Sec 2.2. (In the appendix we analyze a second exact
mathematical limit of the model, which may be achievable in materials with a quadratic-
band touching, but where the particle-hole asymmetry is not too large.) We then pivot in
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Figure 4: Energy of the bands in the tight-binding limit, which occurs deep in the
trivial phase of Fig 2a. The degeneracy structure approaches: 1,2, 3, ..., n, ... for the
nth set of bands.

the following sections into an in-depth discussion of space group symmetries, starting with
the irreducible representations at Γ and M in Sec 3.1. In Sec 3.2, we derive a general form
for both the moire superlattice tunnelings and superlattice potentials, and discuss how they
transform under space group symmetries. In sections 3.3-3.6 we use symmetry to derive said
tunnelings/potentials at both high symmetry points. Our discussion of bilayer FeSe ends with
a detailed explanation of how we fit our tunnelings/potentials using DFT in Sec 3.7. Finally,
we conclude with a discussion of the theoretical and experimental possibilities that this work
opens by tying together the fields of moire physics and Fe-based superconductivity.

2 Moire bands at Γ

2.1 Microscopic derivation of the inter-layer tunneling for the fields near Γ

Let us consider two stacked infinitely-large monolayers, which are relatively (and uni-
formly – see Ref [83] for a more general derivation in graphene) rotated by an angle
θ ≪ 1. For what follows, let a index the combination of sublattice and orbital (e.g
a = (Xz, A) for an dXz-orbital at sublattice A). WLOG, we consider an unrotated lab coor-
dinate x ∈ {n(lFe, 0) +m(0, lFe)|(n, m) ∈ Z2} in which one layer is fixed r1 = x, and the other
rotated r2 = Rθx; and similarly for the loci of their sublattices δa. The general form for our
uniformly rotated bilayers in the tight-binding limit looks like

Ht.b =
∑

x,x′

∑

a,b

d†
a,1(x)tab(x− Rθx′ +δa − Rθδb + cẑ)db,2(Rθx′) + h.c. (15)

Note that the overlaps tab are computed for bilayers which are separated in the z-direction by
an inter-layer distance c. Since we do not consider corrugation effects, c is constant. We also
consider the indices a & b to span the same basis of atomic orbitals defined with respect to the
unrotated frame. As a consequence, tab has an implicit θ dependence necessary to account
for the shape of the tilted Wannier functions. However, at small angles, the rotated Wannier
functions can be understood to be perturbatively connected to their unrotated counterparts
by O(θ ), and therefore, the correction to the tunneling due to this tilt in their anisotropy is
likewise O(θ ). Since we work within the assumption where O(θ ) tunneling is sub-leading, as
it will be for small enough θ , we suppress it here.
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We will henceforth proceed toward the effective theory for the fields about the high sym-
metry points. Because the system is infinitely large, there are uncountably many single-particle
states in the atomic Brillouin zone, which is reflected as an integral

∫

k ≡
∫ d2k
(2π)2 . Moving into

momentum space has the caveat that the rotated layer’s Brillouin zone is likewise rotated, due
to the tilted axis of its periodicity. Rather than integrate over a rotated Brillouin zone, we
choose to Fourier transform the second layer like

da,2(Rθx′) =

∫

k

eiRθx′·Rθkda,2(Rθk) , (16)

and span the k integral over the unrotated zone. (Note that Rθx ·Rθk= x ·k.) For consistency,
for the rest of this calculation, we continue with this practice of summing/integrating over the
unrotated frame.

Moving into the effective theory amounts to a projection not only onto the relevant bands,
but also onto the states which are in the vicinity of the high symmetry points. I.e keeping only
those da(k+Q) from the expansion of da(x) where |k| ≪ 2π/lFe and Q ∈ {Γ , M}:

≃
∑

Q,Q′

∫

k,k′

∫

p∈R2

d†
a,1(k+Q)tab(p)db,2(Rθk′ + RθQ′)

∫

x

eix·
�

p−k−Q
�

∫

x′
e−ix′·
�

R−1
θ

p−k′−Q′
�

+ h.c. (17)

Where “≃” here reflects the fact that the terms lost in the projection are at higher energy
(and therefore less relevant to the low energy theory we are interested in constructing). The
transition from

∑

x →
∫

d2x ≡
∫

x reflects the move into the continuum limit, which is valid
for |k| ≪ 2π/lFe. However, we should remember that the integral over x originates from a
sum over atomic lattice points, and therefore eirl ·Q(l) = 1 for Q(l) ≡ δl,1Q + δl,2RθQ; where
Q ∈ {n(2π/lFe, 0) +m(0,2π/lFe)|(n, m) ∈ Z2}. Thus
∫

x

eix·(p−k−Q)
∫

x′
e−ix′·(R−1

θ
p−k′−Q′) =
∑

Q,Q′
δ(p− k−Q−Q)δ(p− Rθk′ − RθQ′ − RθQ′) (18)

demands k+Q+Q= Rθk′+RθQ′+RθQ′ for some (unrotated) reciprocal lattice vectors Q,Q′.
Since |k−Rθk′| ≪ 2π/lFe and θ ≪ 1, then individually both Q′ =Q and Q′ = Q. The prior has
the meaning that the scattering between different high symmetry points is suppressed. What
remains is the scattering within a high symmetry point,

=
∑

Q

∫

k

d†
a,1(k+Q)
∑

Q

tab(k+Q+Q)db,2(k+Q+Q− RθQ) + h.c. (19)

The tunneling tab(k+Q+Q) is analytic in k. The k = 0 part tab(Q+Q) is the leading order
term of the expansion in small |k| ≪ 2π/lFe. We keep only the k-independent tunneling:

Ht.b ≃
∑

Q

∫

k

d†
a,1(k+Q)
∑

Q

tab(Q+Q)db,2(k+Q+Q− RθQ) + h.c≡ Heff . (20)

Recognize that q= Q−RθQ are the moire reciprocal lattice vectors. The map between Q and
q is reversible, such that there is one Q for every q, and thus we can relabel our tab in terms
of q: tab(Q)→ tab(q).

Generically, in order to construct an effective theory for FeSe, we would need to consider
Xz, Y z, x y orbitals at both sublattices in the 2-Fe unit cell. However, this construction is
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greatly simplified if we are only interested in Q= Γ – then only Y z and Xz orbitals at a single
sub-lattice are necessary.

HΓ =

∫

k

d†
a,1(k)
∑

q

tab(q)db,2(k+ q) + h.c. (21)

We further constrain ourselves to |q| ≤ |q1|, which correspond to the longest wavelength scat-
tering. This can be understood intuitively as being the constraint that the inter-layer tunneling
is dominated by the slowest variations in the moire pattern. But the specific reason for this is
due to tab(r) being a function of the 3D displacement r =

Ç

r2
∥ + c2, which varies in r∥ as

d tab(r)
dr∥

=
dr
dr∥

d tab(r)
dr

=
r∥
Ç

r2
∥ + c2

d tab(r)
dr

, (22)

and hence changes slowly on the scale of r∥ < c. In other words, the hopping function is less
sensitive to variations on length scales below c. This in turn means that the in-plane gradient
of the tunneling, and therefore the scattering momenta q, are suppressed for q > 1/c [4].

Despite the expectation that the tunneling falls off for large q, nothing a priori tells us to
keep only |q| ≤ |q1|. Higher order contributions to the tunneling may play a sub-dominate
roll, however, we have no way of knowing how much at this time. Since the superlattice
band gap (discussed in main text) is set by the leading order tunneling, any introduced sub-
leading terms would have to overcome that energy scale, and thus close the gap, in order to
fundamentally restructure the bands. Therefore, we expect that the |q| ≤ |q1| tunneling is
sufficient to capture the topological nature of the bands.

Along this line, one should expect the zeroth order term tab(0)≡ tδab to be the dominate
contribution from the tunneling – we confirmed this using DFT. It represents the average tun-
neling over the entire moire crystal, and by itself preserves the translational symmetry of the
continuum theory. The leading order “pattern part” of the potential are those with |q|= |q1|:

HΓ =

∫

k

d†
a,1(k)
�

tda,2(k) + tab(q1)db,2(k+ q1) + tab(−q1)db,2(k− q1)

+ tab(q2)db,2(k+ q2) + tab(−q2)db,2(k− q2)
�

+ h.c. (23)

Because a ∈ {Y z, Xz}, each tab is a 2×2 matrix. We wish to know which of these 16 hopping
processes between the stated d orbitals are not allowed by the symmetry of the Y z/Xz orbitals,
and if any could be related. We illustrate the relationship between the orientation of the orbital
and the direction of the scattering in Fig 5, from which one can deduce that all ta,b(q j) where
a = b are equal – we called this w0,t in the main text. And tY z,Xz(q1) = tY z,Xz(−q1), but
tY z,Xz(q1) = −tY z,Xz(q2) – which we call w1,t . Additionally, time reversal guarantees both
tY z,Y z(q1)≡ w0,t and tY z,Xz(q1)≡ w1,t are real valued:

HΓ =

∫

k

d†
a,1(k)
�

tda,2(k) +w0

�

da,2(k+ q1) + da,2(k− q1) + da,2(k+ q2) + da,2(k− q2)
�

�

+w1

�

d†
Y z,1(k)
�

dXz,2(k+ q1) + dXz,2(k− q1)− dXz,2(k+ q2)− dXz,2(k− q2)
�

+ d†
Xz,1(k)
�

dY z,2(k+ q1) + dY z,2(k− q1)− dY z,2(k+ q2)− dY z,2(k− q2)
�

�

+ h.c. (24)

We can then produce Eqn 3 by defining the Fourier transform

d̂a,l(x) =

∫

k

da,l(k)e
ix·k . (25)
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Figure 5: Tunelling between orbitals in neighboring superlattice BZ’s: T (q j)Y z,Y z
(left) and T (q j)Y z,Xz (right). The red/blue teardrops represent the d-wave symmetry
of the atomic orbitals, as seen from above.

The additional “hat” implies that d̂a,l(x) has all modes away from the Γ point projected out,
and are therefore not the original localized orbitals da,l(x). They do however share their
anisotropic character, transforming like Y z/Xz orbitals, such that the only overlaps which
survived are those which combined with the plane waves to produce invariants.

2.2 Folding bands and opening gaps in the superlattice Brillouin zone

The effective kinetic energy Eqn 2 has an emergent continuous translational symmetry, such
that its Fourier transform

hΓ (p)ψΓ (p) =
�

εΓ +µp2 + apx pyτ3 + b(p2
x − p2

y)τ1 +λτ2

�

ψΓ (p)

≡
�

h0(p) + h3(p)τ3 + h1(p)τ1 + h2τ2

�

ψΓ (p) (26)

is defined over the domain p ∈ R2
�

For later convenience, we define h(p) ≡
q

h2
1 + h2

2 + h2
3

�

.
WLOG due to time-reversal symmetry, let λ ≥ 0. In moving to the superlattice picture, we
relabel p = k+ q, where q = {nq1 +mq2|(n, m) ∈ Z2} and k ∈ mBZ. The inter-layer term in
Eqn 27 is translationally invariant under superlattice shifts, and thus the full Hamiltonian is
labelled by crystal momentum k:

Hkψ(k− q) =hΓ (k− q)ψ(k− q) (27)

+
∑

q′

∑

±

��

w0 w1
w1 w0

�

δq′±q1,q +

�

w0 −w1
−w1 w0

�

δq′±q2,q

�

ψ(k− q′) . (28)

The superlattice is square, so any mBZ centered at q shares a boundary with the adjacent mBZ’s
at q±q1 and q±q2. In the absence of w0,1, band crossings exists at these boundaries due to the
folding of the continuum bands into the superlattice zone: along MmXm and MmYm, as well as
a four-band crossing at the mBZ corner Mm. It is these band crossings that the action of w0,1
needs to open in order for the upper band to be separated from the remote bands everywhere
except at Γ . The quadratic band touching at Γ is gapped by λ.

2.2.1 Gap between adjacent mBZ’s: XMm and YMm

The plane wave basis is infinite, giving rise to an infinite number of bands at every k. As a prac-
tical matter, one can approximate Eqn 27 about a given k0 by truncating the number of plane
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waves to a chosen subset of q which minimize |q− k0|. In the limit of small tunnelings, this
truncation can be made accurate for a given band, so long as the energy difference between
that bands and the truncated bands is finite when w0 = w1 = 0. In other words, we can approx-
imate the top band about point k0 ∈MmXm, accurately for small

p

(w0)2 + (w1)2/|aqS2 | ≪ 1,
by truncating to that subset of bands with which at k0 it is degenerate in the absence of tun-
neling.

We start by expanding Eqn 27 in the basis of the two bands which cross along XmMm, i.e
(kx , ky) = (qS/2, ky) and ky ̸= qS/2. Since Eqn 26 is non-diagonal at X, we need to start with
the four component spinor

ΨX (k) =
�

ψΓ (k),ψΓ (−q1 + k)
�T

, (29)

in which basis Eqn 27 along XMm becomes

H
�qS

2
, ky

�

ΨX

�qS
2

, ky

�

=

�

hΓ
� qS

2 , ky

�

δ̂

δ̂ hΓ
�

− qS
2 , ky

�

�

ΨX

�qS
2

, ky

�

, (30)

where

δ̂ ≡
�

w0 w1
w1 w0

�

. (31)

Rotating Eqn 30 into the band basis would produce two doubly degenerate pairs of bands,
which are the eigenvalues of hΓ with energies

ε±(ky) = εΓ +µ(q
2
S/4+ k2

y)±
Ç

(aqSky/2)2 + b2(q2
S/4− k2

y)2 +λ2.

We do not yet know if the entire XMm line is gapped for small w’s. We can determine
this by projecting onto the upper degenerate pair. Note the following symmetry of Eqn 26:
hΓ (

qS
2 , ky) = τ1hΓ (−

qS
2 , ky)∗τ1. It then follows that the upper two bands have the following

wavefunctions:

|ε+, qS〉=

�

h1 − ih2, h− h3

�T

p

2h(h− h3)
, (32)

|ε+,−qS〉= τ1|ε+, qS〉∗ . (33)

We use these to define a projector onto the band basis Pε+ = diagonal
�

|ε+, qS〉, |ε+,−qS〉
�

.
Eqn 30 becomes

P†
ε+

H(
qS
2

, ky)Pε+ =
�

ε+(ky) δ(ky)
δ∗(ky) ε+(ky)

�

. (34)

Even though δ̂ was real-valued and constant, it picks up a ky -dependence upon projection,

δ(ky) = 〈ε+, qS |δ̂|ε+,−qS〉 (35)

= w0
h1

h
−w1

�

1−
h2

2

h(h− h3)

�

+ i
�

w0
h2

h
−w1

h1h2

h(h− h3)

�

. (36)

In order for the gap to close, both the real and imaginary parts of δ must equal zero simulta-
neously. This leads us to the set of equations

w0

w1
= −

h3

h1
+

h1

h− h3
=

h1

h− h3
, (37)
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which only holds true when ky = 0, in other words, at the high symmetry point k = Xm.
This is expected, because δ(ky) inherits its momentum dependence from the bands of hΓ , the
components of which only have nodes along the high symmetry lines which cross Γ .

We can now return to k= Xm and re-solve for the eigenvalues of the four bands of Eqn 27.
The Hamiltonian for which has the form

HX =
�

εΓ +µ
q2
S
4

�

+ b
q2
S
4
τ1 +λτ2 +
�

w0 +w1τ1

�

Σ1 , (38)

where both τ j and Σ j are Pauli matrices. Because HX depends on no other Σ j save Σ1,
choosing a basis for which Σ1 is diagonal decouples the Hamiltonian into simpler subsectors:

HX,± =
�

εΓ +µ
q2
S
4

�

+ b
q2
S
4 τ1+λτ2±
�

w0+w1τ1

�

. It then follows that the four eigenvalues at
X are

EX,++ = εΓ +µ
qS2

4
+w0 +

√

√�

b
qS2

4
+w1

�2
+λ2 , (39)

EX,+− = εΓ +µ
qS2

4
−w0 +

√

√�

b
qS2

4
−w1

�2
+λ2 , (40)

EX,−+ = εΓ +µ
qS2

4
+w0 −

√

√�

b
qS2

4
+w1

�2
+λ2 , (41)

EX,−− = εΓ +µ
qS2

4
−w0 −

√

√�

b
qS2

4
−w1

�2
+λ2 . (42)

Note that the set of four eigenvalues is invariant under (w0, w1)→ (−w0,−w1), but not nec-
essarily under the change of the sign of either w individually. Therefore considering w1 > 0,
the gap to the upper band occurs when

w0 +

√

√�

b
qS2

4
+w1

�2
+λ2 = −w0 +

√

√�

b
qS2

4
−w1

�2
+λ2 . (43)

Or equivalently,

2w0 =

√

√�

b
qS2

4
+w1

�2
+λ2 −

√

√�

b
qS2

4
−w1

�2
+λ2 , (44)

which is valid only when w0 > 0 & w1 > 0, or w0 < 0 & w1 < 0. If we take w1 → −w1,
the right hand side of the equation changes sign, which is to say that the gap only closes in
diagonal quadrants of the (w0, w1) plane.

The gap along YmMm is identical to that along XmMm, being related by the mirror symmetry
mX . It should be noted that the gap at Mm (discussed in the following section) and the gap at
Xm only precisely close together when spin-orbit is the dominate scale; otherwise, there exists
a small window between their closing. Since the gap at Xm closes and opens in the absence
of spin-orbit, i.e when the Hamiltonian is everywhere real-valued, it cannot be of topological
origin. We additionally verified this via a numerical Wilson loop calculation: that the closing
of the gap at Xm and Ym produces no change in the Chern number of the lowest energy band.
Thus only the quadratic band touching at Γ , and the four-fold band crossing at Mm play a role
in the topological transition.
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2.2.2 Gap at mBZ corner: Mm

Eqn 30 is not valid at ky = qS/2 (i.e at Mm) due to the larger degeneracy there. Thus we need
to expand our truncated basis in order to account for the degeneracy.

ΨMm
=
�

ψΓ ,+(Mm),ψΓ ,−(Mm),ψΓ ,+(−q1 − q2 +Mm),ψΓ ,−(−q1 − q2 +Mm),

ψΓ ,−(−q1 +Mm),ψΓ ,+(−q1 +Mm),ψΓ ,−(−q2 +Mm),ψΓ ,+(−q2 +Mm)
�T

. (45)

The Hamiltonian in this expanded basis becomes

HMm
ΨMm

=























ε −iλ 0 0 w1 w0 −w1 w0
iλ −ε 0 0 w0 w1 w0 −w1
0 0 ε −iλ −w1 w0 w1 w0
0 0 iλ −ε w0 −w1 w0 w1

w1 w0 −w1 w0 ε iλ 0 0
w0 w1 w0 −w1 −iλ −ε 0 0
−w1 w0 w1 w0 0 0 ε iλ
w0 −w1 w0 w1 0 0 −iλ −ε























ΨMm
+ (ε0 − ε)14×4ΨMm

,

(46)
where ε0 ≡ εΓ +µq2

S/2+ aq2
S/4 and ε ≡ aq2

S/4. Dropping the term proportional to 14×4, the
Hamiltonian takes the form

HMm
= ετ3 +λτ2Σ3 +w1(1−σ1)Σ1 +w0τ1(1+σ1)Σ1 . (47)

Of the Pauli matrices σ j , the Hamiltonian HMm
depends only on σ1, which means we can

rotate into a basis in which it is diagonal. This decouples the Hamiltonian into two sectors:

HMm,± = ετ3 +λτ2Σ3 +w1(1∓ 1)Σ1 +w0τ1(1± 1)Σ1 , (48)

or written less succinctly,

HMm,+ = ετ3 +λτ2Σ3 + 2w0τ1Σ1 , (49)

HMm,− = ετ3 +λτ2Σ3 + 2w1Σ1 . (50)

We can determine the four eigenvalues of HMm,+ by first squaring it to show

H2
Mm,+ − (ε

2 +λ2 + 4w2
0) = −4w0λτ3Σ2 ,

the right hand side of which is readily diagonalizable −4w0λτ3Σ2 → ±4|w0|λ. Writing
ξ,η ∈ {+1,−1}, the eigenvalues are

E+,ξ,η = ξ
Æ

ε2 + (λ+η2|w0|)2 . (51)

The same procedure can be applied to solve for the remaining four eigenvalues of HMm,−, which
are

E−,ξ,η = ξ
Æ

(|ε|+η2|w1|)2 +λ2 . (52)

WLOG, let us consider ε, w0, w1 ≥ 0 (and remember λ ≥ 0). The highest eigen-
values are
p

ε2 + (λ+ 2w0)2 &
p

(ε+ 2w1)2 +λ2. The spin Hall phase occurs when
p

(ε+ 2w1)2 +λ2 >
p

ε2 + (λ+ 2w0)2, else we are in the trivial phase. There exists the
quadratic-band touching at Γ when λ = 0; while at the Mm point, there is a gap so long
as
q

ε2 + 4w2
0 < ε+2w1, which becomes a triple-band touching at

q

ε2 + 4w2
0 = ε+2w1, and

then a quadratic-band touching for
q

ε2 + 4w2
0 > ε+ 2w1. In this latter region, with both a

quadratic-band touching at both Γ and Mm, turning on finite λ produces a trivial band, which
requires the two quadratic-band touchings to be of opposite chirality. At finite λ, where the Γ
point is gapped, passing from the trivial phase into the spin Hall phase occurs through a Dirac
cone touching at Mm.
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Figure 6: The integrated Berry curvature as a function of the fraction of the total
mBZ for the two phases. The bounds of the integrated fraction is defined within a
square with side length rqS , where r ∈ {0, 1

4 , 1
2 , 3

4 , 1}, centered at Γ . As r approaches
1, the integrated Berry curvature approaches C [98].

Figure 7: Dirac touching at Mm occurs along the boundary of the spin Hall and trivial
phase for finite λ. The inset shows a zoom on the Mm point.

3 Derivations of general continuum theories for the fields at Γ
and M

3.1 Irreducible representations at atomic Γ and M

A complete study of the space group symmetry of Fe-based superconductors was worked out
by Cvetkovic and one of us [70]. We follow similarly here, and work within the proper crys-
tallographic representation, which has two Fe’s per unit cell. We write the spacing between
Fe’s of the same unit cell as aFeFe, and the spacing between identical atoms in neighboring unit
cells as lFe =

p
2aFeFe. This gives us the lattice vectors a1 = lFe(1, 0) and a2 = lFe(0, 1), which

span our Bravais lattice r ∈ {na1 +ma2|(n, m) ∈ Z2}. Additionally, it is necessary to define a
half-translation t = lFe(1/2, 1/2), which when combined with an out-of-plane mirror mz is a
(non-symmorphic) crystal symmetry.
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(a)

(b)

Figure 8: Winding of the charge centers as a function of the mBZ momentum ky in
the (a) trivial and (b) spin Hall phase for both spins.

The reciprocal lattice vectors Q1 =
2π
lFe
(1, 0) and Q2 =

2π
lFe
(0, 1) define our Fe BZ, which

has two relevant high symmetry points at k = Γ and M = π
lFe
(1,1). Other BZ’s are labelled

by Q ∈ {nQ1 + mQ2|(n, m) ∈ Z2}. In order to assist the reader, we list here all irreducible
representations (irreps) at the Γ -point and those representations at the M -point essential to
this paper (i.e. M1 and M3). There are three generators of symmetry, defined to act at an Fe
site: two mirrors followed by a fractional translation tmX and tmz , and one mirror mx . With
respect to representations of the group PΓ, it is sufficient to consider all three mirrors without
fractional translations: mX , mz , and mx . This is because PΓ is isomorphic to D4h [70].

We write the annihilation operator for the fields of an irrep µ about high symmetry point
Q as ψQ,µ,n,σ(k); where dim(n) is equal to the dimension of the irrep (which is dim(n) = 2
for all the irreps in this paper), and σ ∈ {↑,↓} labels spin. This is the so-called Kohn-Luttinger
(KL) representation of the fields [99]. For the purpose of this paper, we are only interested
in spin-orbit coupling which reduces the SU(2) spin symmetry down to U(1), such that the
spin decouples into sectors which are necessarily degenerate due to time-reversal. As such, we
fix ourselves to a spin-sector (say σ =↑), and note that the other spin-sector can be acquired
via time-reversal T . It is to be thus understood that ψQ,µ = (ψQ,µ,+,ψQ,µ,−)T is an orbital
doublet in that fixed spin-sector. The doublet transforms as ψQ,µ −→g Ωµ(g)ψQ,µ, where
Ωµ(g) is the unitary representation of generator g acting on irrep µ. At Γ , µ = Eg ; and at M ,
µ ∈ {M1, M3} – which are detailed in Tables 1-2. We write the Pauli matrices acting in the
space of the dim(n) = 2 irreps as τ3, τ1, and τ2.
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Ultimately, we are interested in defining an analogous operator for the fields in real space,
i.eψQ,µ(r). Intuitively, one would expect this to be the Fourier transform of the fieldsψQ,µ(δk)
in the limit |δk| ≪ π/lFe; thus, even if one does not know the exact form of the wavefunctions
at Q, one does know how the fields transform, which is all that is needed to derive a Hamil-
tonian for the effective field theory of those fields. Nonetheless, we will delve a little deeper
here, and show how the effective fields arise within the context of a tight-binding model.

We start by defining the operator which annihilates an electron at an atomic orbital, da(r).
In the 2-Fe picture, a labels both the type of orbital (here d-orbitals) and the sublattice. First
expand it in the basis of energy bands ξ,

da(r) =

∫

k

∑

ξ

eik·rua,ξ(k)bξ,k , (53)

where k is a momentum in the BZ, and
∫

k ≡
∫ d2k
(2π)2 . We are interested in an effective field

theory for the fields at Q. For the purpose of this demonstration, we introduce a projector PµΥ
which projects onto the states within the cutoff |δk| ≤ Υ ≪ π/lFe, as well as the set of bands
Mµ containing the irrep µ, i.e ξ ∈Mµ.

PµΥ da(r)PµΥ = eiQ·r
∫

|δk|≤Υ

∑

ξ∈Mµ

eiδk·rua,ξ(Q+δk)bξ,Q+δk . (54)

Naively, one might try to expand the Bloch states as

ua,ξ(Q+δk) = ua,ξ(Q) +δk ·∇kua,ξ|k=Q + · · ·

However, because of the gauge due to translational invariance, the difference
ua,ξ(Q)− ua,ξ(Q+ δk) is in general not small, such that the gradient |∇kua,ξ| is generically
large, and therefore ua,ξ(k) is non-analytic. While a resolution may exists in fixing the phase
of the Bloch states for a single band, where higher dimensional representations are concerned,
the presence of a degeneracy implies a larger gauge freedom at Q.

One can avoid this problem by using the symmetry of the KL fields ψQ,µ,n(δk) to derive
a k · p-Hamiltonian hQ

n,n′(δk), to a desired order in δk, which is valid in the vicinity of Q.
The weights in the KL representation uKL

a,n(Q) depend on our choice of definition of the fields
ψQ,µ,n(δk), which is arbitrary so long as they transform as the irrep µ. Let unitary Cξ,n(δk)
diagonalize hQ

n,n′(δk). The desired weights ua,ξ(δk) are then the linear combination

ua,ξ(δk) =
∑

n

Cξ,n(δk)uKL
a,n(Q) . (55)

Plugging this into Eqn 54 gives us

PµΥ da(r)PµΥ = eiQ·r
∑

n

uKL
a,n(Q)
∫

δk

eiδk·r





∑

ξ∈Mµ

Cξ,n(δk)bξ,Q+δk



 . (56)

The part in parenthesis is the rotation of the Bloch states into the KL representation, which is
just our chosen definition of the fields

ψQ,µ,n(δk) =
∑

ξ∈Mµ

Cξ,n(δk)bξ,Q+δk . (57)
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It can be seen from what remains that the real-space representation of the fields is the Fourier
transform of the KL representation,

ψQ,µ,n(r) =

∫

δk

eiδk·rψQ,µ,n(δk) . (58)

Thus
PµΥ da(r)PµΥ = eiQ·r

∑

n

uKL
a,n(Q)ψQ,µ,n(r) . (59)

Since hQ
n,n′(δk) is derived to a chosen order in δk, it is important to have pre-specified

sufficient Υ ≪ π/lFe so that Eqn 55 is valid. But having projected out all non-relevant states,
we can get rid of our cutoff by taking Υ −→∞, with the caveat that our effective theory is
only accurate in the region specified by our original cutoff, i.e |δk| ≪ π/lFe.

We may not a-priori know the overlaps of the atomic orbitals with the KL state, uKL
a,n(Q); nor

is it necessary to know them to derive an effective theory for the tunneling. Having made clear
how the fields transform through Eqn 58, we can proceed with a derivation of the tunneling
within the effective theory unhindered. Nonetheless, it may be useful to at least know the
ratios between differing uKL

a,n(Q), from which we can deduce the orbital composition of our
fields. We do this in the following subsections.

3.1.1 Γ

At Γ , eiΓ ·r = 1, thus we only need to consider the generators mX , mz , and mx acting at an Fe
site. Additionally, the only irrep at the Γ -point transforms identically to an in-plane axial vector
(see Eg in Table 1), which is odd under the in-plane mirror mz . Thus we know immediately
that ψΓ ,n must be composed of dY z and/or dXz orbitals. Expanding Eqn 59 for index a = Y z
takes the generic form

PEg
dY z(r)PEg

= aψΓ ,+(r) + bψΓ ,−(r) ,

with undetermined constants a, b ∈ C. From transforming under mX , dY z −→mX
dY z and

ψΓ ,± −→mX
±ψΓ ,±, we deduce that b = 0, which tells us ψΓ ,+ is dY z . Finally, because

dY z −→mx
dXz and ψΓ ,± −→mx

−ψΓ ,∓, we can conclude that at every Fe site

ψΓ ,+ ∼ dY z ,

ψΓ ,− ∼ −dXz . (60)

3.1.2 M

The irreducible representations at the corner of the BZ (PM) are not guaranteed to be isomor-
phic to a 3D point group if the space group is non-symmorphic [70]. As a consequence, both
the action of half-translations, which take an orbital at sublattice A(B) into sublattice B(A), as
well as odd integer translations, which accompany a sign change through eiM ·a1 = eiM ·a2 = −1,
play a key role in the transformation properties of M1 and M3.

We start with the derivation for M3. At this point, we do not yet know which of the 5 d-
orbitals per 2 sublattices constitute the spinors ψM3,±(r). However, ψM3,±(r) is odd under the
product tmX tmz , which preserves sublattice. This tells us that dXz,A and dXz,B cannot make up
either component of ψM3,n(r). Another sublattice-preserving operation, mx , which exchanges
Y z and Xz, likewise exchanges ψM3,+ and ψM3,− (up to a translation). It then follows that
ψM3,n(r) can only be orbitals of the X Y -type. Thus we have

PM3
dX Y,A(r)PM3

= eiM ·r�a′ψM3,+(r) + b′ψm3,−(r)
�

,

PM3
dX Y,B(r)PM3

= eiM ·r�c′ψM3,+(r) + d ′ψm3,−(r)
�

,
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Table 1: Irreducible Representations of group PΓ [70].

PΓ tmX = {mX |
1
2

1
2} tmz = {mz|

1
2

1
2} mx = {mx |0}

A1g/u ±1 ±1 ±1
A2g/u ∓1 ±1 ∓1
B1g/u ∓1 ±1 ±1
B2g/u ±1 ±1 ∓1

Eg/u







±1 0

0 ∓1













∓1 0

0 ∓1













0 ∓1

∓1 0







with a generic a′, b′, c′, d ′ ∈ C. Because dX Y,A(r) −→tmX
dX Y,B(r)

and dX Y,B(r) −→tmX
dX Y,A(r + a1 + a2), in order for the M3-projected orbitals to transform

properly under tmX , we need c′ = −a′ and d ′ = b′.

PM3
dX Y,A(r)PM3

= eiM ·r�a′ψM3,+(r) + b′ψm3,−(r)
�

,

PM3
dX Y,B(r)PM3

= eiM ·r�− a′ψM3,+(r) + b′ψm3,−(r)
�

.

Lastly, dX Y,A(r) −→mx
dX Y,A(r) tells us a′ = b′. This is consistent with its action on

the B site, due to the fact that mx shifts B into itself up to an odd translation, i.e.
dX Y,B(r) −→mx

dX Y,B(r− a1). Thus we are left with

PM3
dX Y,A(r)PM3

= a′eiM ·r�ψM3,+(r) +ψM3,−(r)
�

,

PM3
dX Y,B(r)PM3

= a′eiM ·r�−ψM3,+(r) +ψM3,−(r)
�

, (61)

or more casually
ψM3,±(r)∼ e−iM ·r�dX Y,A(r)∓ dX Y,B(r)

�

. (62)

We now leave it up to the reader to verify that M1 is composed of Y z/Xz orbitals, and that

PM1
dY z,A(r)PM1

= a′′eiM ·rψM1,−(r) ,

PM1
dY z,B(r)PM1

= −a′′eiM ·rψM1,−(r) ,

PM1
dXz,A(r)PM1

= a′′eiM ·rψM1,+(r) ,

PM1
dXz,B(r)PM1

= a′′eiM ·rψM1,+(r) . (63)

From which it follows the M1 field transforms like the following composition of orbitals:

ψM1,+(r)∼ e−iM ·r�dXz,A+ dXz,B

�

, (64)

ψM1,−(r)∼ e−iM ·r�dY z,A− dY z,B

�

. (65)

3.2 Continuum limit of iron monolayers with a twist

We derive our models within the effective field theory of the Fe high symmetry points Γ and
M . Let us consider first the theory of a single monolayer experiencing an external superlattice
potential (I). Within the framework of the effective field theory atQ, a low-energy fieldψQ,µ(r)
experiences a unique potential UQ,µ(r), which is a matrix whose dimension is equal to the
dimension of the irrep µ. If more than one irrep exists at Q, then additional terms UQ,µµ′ which
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Table 2: Irreducible Representations M1 and M3 of group PM [70].

PM tmX tmz mx

M1







−1 0

0 −1













−1 0

0 1













0 1

1 0







M3







1 0

0 −1













−1 0

0 1













0 1

1 0







account for the scattering between differing irreps due to the potential need be included. The
superlattice part of the Hamiltonian therefore takes the general form

HS,Q =
∑

µµ′

∫

d2rψ†
Q,µ(r)Uµµ′(r)ψQ,µ′(r) . (66)

In the case of twisted bilayers (II), the Moire potential is generated from the relative dis-
placement of the two planes, which we label l ∈ {1, 2}. We work with a representation of the
displacement vector ul(x), for a monolayer l displaced from a mutual fixed frame (see Fig 9),
which is a function of the coordinates x of that frame. In other words,

x= r1 + u1 = r2 + u2 . (67)

Thus the relative displacement can be defined as

u(x) = u1(x)− u2(x) . (68)

However, Eqn 68 is only the definition of the relative displacement, and does not tell us how it
varies in x. Ultimately we want to consider small-angle rigid rotations, for which the relative
displacement takes the form

u(x)≃ θ ẑ× x , θ ≪ 1 . (69)

But first it will be educational to instead consider cases in which u is constant, which corre-
spond to non-twisted stacking configurations of the bilayers. For these cases, the tunneling
potential between the two layers can be written as a functional of the choice of displacement
u away from the AA stacking configuration (at uAA = 0), i.e T (u). More specifically we write

Hm,Q =
∑

µµ′

∫

d2xψQ,µ,1(x)
†Tµµ′(u)ψQ,µ′,2(x) + h.c. , (70)

where ψQ,µ,l(x) describes the field of irrep µ in layer l; and m indicates “moire”. In order to
determine invariant T (u), we treat Eqn 70 as a system of an AA-stacked bilayer in the presence
of fluctuating u, such that both ψQ,µ,l and necessarily u (a polar vector) are transformed.
Therefore, the action of Eqn 70 under a given mirror operation g follows from:

ψQ,µ,l(rl) −→ Ωµ(g)ψQ,µ,l(r
′
l) , (71)

u −→ gu , (72)

where x′ = gx, andΩµ(g) is the unitary spinor representation for the action of g on the irrep µ.
(This process is not unlike determining the invariant coupling of a spin vector to a fluctuating
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magnetic field B⃗ ∈ R3, i.e Hexample∝ S⃗ · B⃗, and then setting B⃗ = ẑB0 to get its coupling to a
fixed field.)

Now in the case of small angle twists, Eqn 69, as θ → 0 the bilayers approach the AA
stacking. This is to say that the effective inter-layer tunneling, which is an analytic function
of θ (i.e an analytic function of the gradients of u) [5], can be expanded in powers of small θ .
The leading order term in that expansion is just Eqn 70 with u(x) equal to Eqn 69. Sub-
dominate higher order terms exists, and become more important at larger θ , but we do not
include them in this work.

Unlike the case where u is constant however, there are two important caveats to consider
due to the relative rotation of the fields. The first of which is that the action of the fields under
the generators of symmetry outlined in Table 1 & 2 are defined for the fields in their respective
rotated plane ψQ,l(rl), and are not valid for the fields ψQ,l(x). In other words, the d orbitals
which constitute those fields at a microscopic level are rotated. As discussed in Sec 2.1, any
effect from this shows up at sub-leading order θ .

The second effect comes from the fact that the atomic BZ’s are relatively rotated between
different layers, such that the high symmetry point Q from different layers are located at
different momenta. Conveniently, the displacements provides us a map between these two
coordinate frames and the fixed lab frame [5]:

eiQ·xψQ,l(x) = eiQ·rlψQ,l(rl) ,

ψQ,l(x) = e−iQ·
�

x−rl

�

ψQ,l(rl) ,

ψQ,l(x) = e−iQ·ulψQ,l(rl) . (73)

Because Eqn 73 depends on u(x), for |Q| ≠ 0, it contributes an additional phase under g due
to u(x) −→ gu(x′). Thus

Tµµ′(u(x
′)) = Ωµ(g)

†ei(gQ−Q)·u(x′)Tµµ′(gu(x′))Ωµ′(g) , (74)

must hold if we wish for Eqn 70 to be preserved under the mirror operation.
But what about the combination of a mirror followed by a fractional translation? If we

return to the definition of our fields in terms of the atomic orbitals Eqn 59, we see that r cor-
responds to the location in the Bravais lattice, and does not specify sublattice. The fields are
a linear combination of the sublattices, and thus the action of fields under a half-translation
t = {0|t} is generally a unitary transformation on the fields, i.e ψQ,µ(r+ t) = Ωµ(t)ψQ,µ(r).
Since we are considering the crystal planes to be rotated relative to a fixed frame, their
fields actually transform as ψQ,µ,l(rl +R−1

−2l+3
2 θ

t) = Ωµ(t)ψQ,µ,l(rl). This implies a shift of

x −→ x + t, which appears as an order twist-angle contribution from the displacement, i.e
u(x+ t) = u(x) + θ ẑ× t. Such a contribution is sub-dominate, being of the order of the twist
angle, and therefore does not show up at this order in the derivation. For a combined operation
of mirror g followed by fractional translation t, it is sufficient to modify Eqn 74 to

Tµµ′(u(x
′)) = Ωµ(t g)†ei(gQ−Q)·u(x′)Tµµ′(gu(x′))Ωµ′(t g) . (75)

Lastly, we will write mz,l when referring to the action of a mirror in the plane of layer l,
while leaving the other layer fixed, and without switching the two layers. We then write the
combined operation mz = mz,1⊗mz,2 to imply that the two stacked monolayers are separately
but simultaneously inverted about their respective layer planes, without switching the two
layers. Separately, we introduce an operation S which switches the two layers [100], i.e taking
ψQ,µ,1 −→ ψQ,µ,2, u1 −→ u2, and visa-versa. Since the two layers are identical, symmetry
demands

T †
µ′µ
(−u) = Tµµ′(u) , (76)
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Figure 9: A point in a rotated monolayer r and its corresponding point in a fixed
(unrotated) coordinate plane x=Rθ r.

which for µ = µ′ is automatically guaranteed by hermiticity. The layer switching mirror
Mz ≡ mzS is not a symmetry of the AA stacking, unless it is followed by a fractional trans-
lation tMz – the latter which is automatically guaranteed to be a symmetry because S and tmz
are individually symmetries.

3.3 Derivation of monolayer+superlattice at Γ

The fields at the Γ -point transform as the two-dimensional irreducible representation Eg . Fol-
lowing from Eqn 66, the superlattice potential is in general a 2× 2 matrix,

HS,Γ =

∫

d2xψ†
Γ (x)

�

UAA(x) UAB(x)
UBA(x) UBB(x)

�

ψΓ (x) , (77)

which can be more conveniently represented in terms of the Pauli matrices

=

∫

d2xψ†
Γ (x)
�

U0(x) +τ3U3(x) +τ1U1(x) +τ2U2(x)
�

ψΓ (x) . (78)

Since the potential is quadratic in fields which transform like Eg , each τξ necessarily trans-
forms as an irreducible representation coming from the product Eg ⊗ Eg [70]. More precisely,
τ3, τ1, and τ2 transform as B2g , B1g , and A2g respectively. Technically, there are no necessary
symmetry constraints to an external potential applied to a monolayer, simply because we have
not yet specified what that potential physically is; however, for the purposes of this paper,
we constrain ourselves to those potentials which leave the monolayer effective Hamiltonian
invariant. The exception being translational symmetry, which is continuous for the effective
monolayer Hamiltonian, and is broken down to periodic by the superlattice. Because the po-
tential is periodic under superlattice shifts, each Uξ(x) can be Fourier decomposed as

Uξ(x) =Ũξ,0 + Ũξ,q1
eiq1·x + Ũξ,−q1

e−iq1·x + Ũξ,q2
eiq2·x + Ũξ,−q2

e−iq2·x

+ Ũξ,(q1+q2)e
i(q1+q2)·x + Ũξ,−(q1+q2)e

−i(q1+q2)·x

+ Ũξ,(−q1+q2)e
i(−q1+q2)·x + Ũξ,−(−q1+q2)e

−i(−q1+q2)·x

+
∑

|q|≥2|q1|

Ũξ,qeiq·x , (79)

where q1 = qS(1, 0) and q2 = qS(0, 1) are the superlattice reciprocal lattice vectors, with
size qS = 2π/lS ; and q ∈ {nq1 + mq2|(n, m) ∈ Z2}. The first term in the expansion is a
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constant corresponding to the spatial average of the potential over the entire superlattice. For
ξ = 0, this is just a shift in the Fermi energy, while ξ ̸= 0 terms can be understood to be the
constant symmetry breaking terms in the continuum effective field theory. We continue within
the assumption that the superlattice potential varies slowly relative to the atomic scale, which
means that the Fourier expansion is dominated by its smallest wavevector terms. Thus the
largest terms are those with wavevectors which connect adjacent mBZ’s (terms 2-5), followed
by those which connect next-nearest-neighbor mBZ’s along their corners (terms 6-9). We drop
all terms with wavevectors satisfying |q| ≥ 2|q1|.

Since PΓ is isomorphic to the point group D4h, we need only classify the plane waves by
their action under the mirrors (without the fractional translation). The action of a mirror g
on the plane wave at q is to map it into another plane wave at gq, where |gq|= |q|. Thus the
irreducible representations can be classified within a given shell of momenta; and the goal of
finding the invariants reduces to finding all products fξ(x)τξ which transform like A1g , where
we define

fξ(x)≡
∑

q

cξeiq·x , (80)

for all momentum q which lie within a given shell (i.e |q| = |gq|). There are only two such
plane-wave representations per shell of momenta, which we classify here:

fA1g
(x) =
�

�

eiq1·x + e−iq1·x
�

+
�

eiq2·x + e−iq2·x
�

�

, (81)

fB1g
(x) =
�

�

eiq1·x + e−iq1·x
�

−
�

eiq2·x + e−iq2·x
�

�

, (82)

for |q|= |q1|, which multiply the identity and τ1 respectively; and

f ′A1g
(x) =
�

�

ei(q1+q2)·x + e−i(q1+q2)·x
�

+
�

ei(−q1+q2)·x + e−i(−q1+q2)·x
�

�

, (83)

f ′B2g
(x) =
�

�

ei(q1+q2)·x + e−i(q1+q2)·x
�

−
�

ei(−q1+q2)·x + e−i(−q1+q2)·x
�

�

, (84)

for |q| = |q1 + q2|, which multiply the identity and τ3. (We introduced a prime – fξ and f ′
ξ

– in order to make clear that the representations are from different shells.) It then follows
that there are likewise only two spin-independent invariants per shell of momenta – labelled
w0, w1, w′0, and w′1 – which are real numbers due to time-reversal. The symmetry derived
potential has the final form:

HS,Γ (x) =w0

�

�

eiq1·x + e−iq1·x
�

+
�

eiq2·x + e−iq2·x
�

�

+w1 τ1

�

�

eiq1·x + e−iq1·x
�

−
�

eiq2·x + e−iq2·x
�

�

+w′0
�

�

ei(q1+q2)·x + e−i(q1+q2)·x
�

+
�

ei(−q1+q2)·x + e−i(−q1+q2)·x
�

�

+w′1 τ3

�

�

ei(q1+q2)·x + e−i(q1+q2)·x
�

−
�

ei(−q1+q2)·x + e−i(−q1+q2)·x
�

�

. (85)

Typically, chalcogenide monolayers are grown atop a substrate, such as SrTiO3, which nec-
essarily violates inversion symmetry; however, for FeSe atop SrTiO3, if such inversion breaking
exists, it exists at a scale unresolved by the experiments [26]. Nevertheless, if our external su-
perlattice potential arises from a substrate placed atop the chalcogenide monolayer, then it
will contribute to the inversion symmetry breaking, and may do so with equal weight to the
part of it which is inversion non-violating. Therefore, for the case of a monolayer plus exter-
nal superlattice, it makes more physical sense to consider all terms which do not preserve tmz .
However convenient, for the effective field theory at Γ , no such inversion breaking terms exists
at leading order, which follows from the fact that all irreps coming from Eg ⊗ Eg are inversion
even.
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3.4 Derivation of monolayer+superlattice at M

The derivation for the superlattice potential within the effective field theory at the M -point is
near-identical to that for Γ (see Sec 3.3). Again we consider the fields of a single monolayer,
for M which there are two, coupled to a single-particle potential with square lattice period
lS . We write these fields ψM1

(x) and ψM3
(x), such that the general form for the superlattice

potential is

HS,M =

∫

d2xψM1
(x)†
�

UM1,0(x) +
3
∑

µ=1

UM1,µ(x)τµ
�

ψM1
(x)

+

∫

d2xψM3
(x)†
�

UM3,0(x) +
3
∑

µ=1

UM3,µ(x)τµ
�

ψM3
(x)

+

∫

d2x
∑

±
ψ†

M1
(x)UEu,±(x)
�

τ0 ±τ3

�

ψM3
(x) + h.c.

+

∫

d2x
∑

±
ψ†

M1
(x)UEg ,±(x)
�

τ1 ± iτ2

�

ψM3
(x) + h.c. (86)

However, unlike the fields at Γ , the fields at M do not transform as an irrep of a 3D point
group [70, 71], and thus we need necessarily consider the action of fractional translations in
our symmetry analysis. Nonetheless, since the superlattice is assumed to be much larger than
the Fe-Fe spacing, i.e aFeFe/lS ≪ 1, its action on the plane wave eiq·x only produces a small
O(aFeFe/lS) phase correction, which can be ignored in this limit.

Notice at this most generic level Eqn 86, we need not only consider the contributions
coming from M1 ⊗ M1 and M3 ⊗ M3, which are 1D representations of the space group at Γ ,
but additionally two 2D representations of PΓ coming from M1 ⊗ M3 = Eu + Eg . However,
because there are no 2D representations in the plane wave basis described here, and since we
are considering only spin-independent terms: UEg ,± = UEu,± = 0.

Following similarly to Sec 3.3, we consider only terms which preserve the symmetry (except
translation) of the effective Hamiltonian for the free fields of the monolayer, and additionally
those which violate inversion due to the breaking of tmz . For M1 ⊗ M1 and M3 ⊗ M3, this
process is a generalization of that used to derive Eqn 85: (1) classify all possible fξ for a given
shell of momenta, then (2) find the products fξτξ which transform like A1g or A2u. Since the
plane wave representations per shell are the same as in Sec 3.3, we need only classify each τξ
within M1 ⊗M1 and M3 ⊗M3 which satisfy criteria (2) for a some fξ(x). For M1 ⊗M1, these
are the identity (A1g) and inversion-violating τ1 (A2u); and for M3 ⊗ M3, these are likewise
the identity (A1g) and inversion-breaking τ1 (B2u). One can then check that the potential

HS,M =

∫

d2xψ†
M1
(x)ν0,M1

�

eiq1·x + e−iq1·x + eiq2·x + e−iq2·x
�

ψM1
(x)

+

∫

d2xψ†
M3
(x)ν0,M3

�

eiq1·x + e−iq1·x + eiq2·x + e−iq2·x
�

ψM3
(x)

+

∫

d2xψ†
M1
(x)ν1,M1

τ1

�

eiq1·x + e−iq1·x − eiq2·x − e−iq2·x
�

ψM1
(x)

+

∫

d2xψ†
M3
(x)ν1,M3

τ1

�

eiq1·x + e−iq1·x − eiq2·x − e−iq2·x
�

ψM3
(x) , (87)

with real invariants ν0,M1
,ν0,M3

,ν1,M1
,ν1,M3

∈ R satisfies our symmetry criteria plus time-
reversal.
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3.5 Γ -point derivation of moire tunneling for twisted monolayers

When two monolayers are relatively twisted at an arbitrary angle, the resulting moire pattern
is generally not periodic. However, in the limit of small twist angle θ , one can see by inspection
(Fig 1) the emergence of a long-wavelength variation in the pattern with period lS∝ θ−1. In
other words, we expect such a potential is approximately periodic under a shift of x by R j , i.e
x −→ x+R j . Therefore, in building an effective field theory for slowly varying fields, we might
start with the assumption that the effective potential T (u(x)) is dominated by its periodic part,
and thus can be written as a periodic function. Being periodic in x, it would then have the
Fourier decomposition

T (u(x)) =
∑

q

eiq·x T̃q , (88)

where the superlattice vector qk is a moire reciprocal lattice vector satisfying qk ·R j = 2πδk j .
While such a picture of emerging periodicity is intuitive, it falls short in providing a precise

connection between the geometry of the microscopic Fe lattices and the emergent moire one.
Without which, for instance, we would need to measure R j and assume periodicity. However,
we need not assume that the moire lattice is periodic in order to guarantee its periodicity, only
that the twist angle is sufficiently small as to guarantee the dominate part of the tunneling
potential satisfies

T (u+ a j) = T (u) , (89)

for a microscopic monolayer lattice vector a j . This symmetry Eqn 89 is a statement that the
variation due to the displacement is sufficiently small at the atomic scale, that the two layers
can be relatively shifted by an atomic unit cell without producing a noticeable change in the
inter-layer tunneling. Remembering we label the atomic reciprocal lattice using Q, with basis
vectors satisfying Qk · a j = 2πδk j , then Eqn 89 implies the Fourier expansion

T (u) =
∑

Q

eiQ·u T̃Q . (90)

Substituting Eqn 69 into Eqn 90, taking note that Qk ·u= Qk ·
�

θ ẑ×x
�

=
�

θQk× ẑ
�

·x= qk ·x,
then

T (u(x)) =
∑

q

eiq·x T̃q ,

which is Eqn 88. Thus we have a connection between the microscopic reciprocal lattice vectors
and the moire lattice vectors, in terms of the small twist angle [5]:

qk = θQk × ẑ . (91)

We can therefore infer the moire lattice basis vectors through the relation qk ·R j = 2πδk j .
Having now precisely established periodicity through Eqn 91, we can proceed with de-

riving the tunneling potential (see general form Eqn 70). Specifically, we treat the tunnel-
ing as a functional of u, and consider symmetries of the AA-stacked bilayers (tmX , mx , and
time-reversal T are sufficient), but where we additionally transform u. Note that because
Q = Γ = 0, the dependence on u coming from the phase in Eqn 73 drops out. This greatly
simplifies the form of the tunneling:

Hm,Γ (x,u(x)) =ψΓ ,1(x)
†T (u(x))ψΓ ,2(x) + h.c.=ψΓ ,1(r1)

†T (u(x))ψΓ ,2(r2) + h.c. (92)

Consequently, the symmetry analysis follows similarly to Sec 3.3. The tunnelling invariants
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have the final form

Hm,Γ =

∫

d2x w0ψ
†
Γ ,1(x)
�

�

eiq1·x + e−iq1·x
�

+
�

eiq2·x + e−iq2·x
�

�

ψΓ ,2(x)

+w1ψ
†
Γ ,1(x)τ1

�

�

eiq1·x + e−iq1·x
�

−
�

eiq2·x + e−iq2·x
�

�

ψΓ ,2(x)

+w′0ψ
†
Γ ,1(x)
�

�

ei(q1+q2)·x + e−i(q1+q2)·x
�

+
�

ei(−q1+q2)·x + e−i(−q1+q2)·x
�

�

ψΓ ,2(x)

+w′1ψ
†
Γ ,1(x)τ3

�

�

ei(q1+q2)·x + e−i(q1+q2)·x
�

−
�

ei(−q1+q2)·x + e−i(−q1+q2)·x
�

�

ψΓ ,2(x)

+ h.c. (93)

Lastly, w0, w1, w′0, and w′1 are real numbers due to T .
Here w0 and w1 are equivalent to the tunnelings of Eqn 3, which we derived from a tight-

binding picture in Sec 2.1. In that derivation, only the symmetry of the microscopic atomic d
orbitals was used to determine non-zero independent tunnelings, i.e without any explicit refer-
ence to the irreducible representations of the chalcogenide space-group symmetries. However,
since those irreducible representations have a specific orbital composition dictated by symme-
try (see Sec 3.1), any difference between these two derivations is a bit of an illusion. The
major difference being that the microscopic approach requires microscopic information, i.e
which specific atomic orbitals; whereas the derivation here uses only the fact that the fields at
Γ transform like Eg , without any mention of atomic orbitals.

3.6 M -point derivation of moire tunelling for twisted monolayers

The precise action of a generator of symmetry on the fields at M depends on whether the field
is a function of the fixed (ψM ,l(x)) or rotated (ψM ,l(rl)) coordinate basis. This is because the
fields at the M -point carry non-zero crystal momentum, and thus ψM ,l(x) ̸=ψM ,l(rl), instead
following Eqn 73. This makes the derivation of the inter-layer tunneling at the M -point most
similar to that at the K-point in tBG [5]. However, unlike the K-point in tBG, which maps
into the (−K)-point under T , the M -point is a time-reversal invariant momentum (TRIM),
and therefore maps into itself. Thus in addition to Eqn 74, time-reversal symmetry for Q= M
demands

e−2iu·M T (u)∗ = T (u) . (94)

We will now proceed with a symmetry derivation of the tunnelling invariants. However, there
are two relevant irreps at the M point, M1 and M3, so that we necessarily label our fields
ψM ,l,µ with the additional index µ ∈ {M1, M3}. Even though we are working with fields which
are irreps of M , their self products M1 ⊗ M1 & M3 ⊗ M3 are guaranteed to be 1D irreps of Γ .
Therefore each Uµ(u) decomposes into a sum over irreps of Γ :

Tµ(u) = Tµ,0(u) +
3
∑

ξ=1

Tµ,ξ(u)τξ . (95)

Letting τξ with ξ= 0 represent the identity, the Fourier transform is

Tµ,ξ(u) =
∑

Q

eiQ·u T̃µ,ξ,Q . (96)

We choose to label M = l−1
Fe (π,π), Q1 = l−1

Fe (2π, 0), and Q2 = l−1
Fe (0,2π). However, an im-

portant consequence of the non-zero crystal momentum at M is that the tunneling at Q= 0 is
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related to that at Q ̸= 0 due to phase in Eqn 75, and therefore the various irreducible repre-
sentations of the plane waves no longer lie within a shell of momentum (as was the case for
Γ ). Combining Eqn’s 75 and 96 gives the symmetry condition

τξ

∑

Q

eiQ·u T̃µ,ξ,Q = Ωµ(t g)†τξΩµ(t g)
∑

Q

ei(gM−M+gQ)·u T̃µ,ξ,Q . (97)

Because of the orthogonality of the plane waves, each T̃µ,ξ,Q for a given Q is related to another
Q′ ̸= Q. This can be thought of as a recursive relation, starting with a given gQ, and shifting
it by the change in the crystal momentum due to the generator, i.e gM −M . We explicitly list
the latter for each g and T below:

mX M−M= −Q1 −Q2 , (98)

mzM−M= 0 , (99)

mxM−M= −Q1 , (100)

T M−M= −Q1 −Q2 . (101)

The dominated scattering terms are those which are connected recursively to the Q= 0 term.
These correspond to the momenta 0,−Q1,−Q2,−Q1−Q2. It is thus sufficient to approximate
the tunneling to

T̃µ,ξ(u)≃ T̃µ,ξ,0 + T̃µ,ξ,−Q1−Q2
ei(−Q1−Q2)·u + T̃µ,ξ,−Q1

ei(−Q1)·u + T̃µ,ξ,−Q2
ei(−Q2)·u . (102)

Ultimately, there are only two independent invariants per M1 ⊗ M1 and M3 ⊗ M3. We call
them v(m,M1)

0 , v(m,M1)
1 , v(m,M3)

0 , and v(m,M3)
1 . All other invariants T̃ξ,µ,Q are related to them by

symmetry, or else are equal to zero, following

T̃µ,0,0 = T̃µ,0,−Q1
= T̃µ,0,−Q2

= T̃µ,0,−Q1−Q2
≡ v(m,µ)

0 ∈ R , (103)

T̃µ,3,0 = −T̃µ,3,−Q1
= −T̃µ,3,−Q2

= T̃µ,3,−Q1−Q2
≡ v(m,µ)

1 ∈ R , (104)

Else T̃µ,ξ,Q = 0 . (105)

In addition to products of the type M1⊗M1 & M3⊗M3, we need to consider tunneling which
mixes the representations, i.e per the product M1 ⊗ M3. There are two possible representa-
tions which we can form from this product: Eu & Eg . Notice that because of the non-trivial
transformation of the plane waves due to the phase factor eiM ·u, the doublet

¦�

1− e−i(Q1+Q2)·u(x)
�

,
�

e−iQ1·u(x) − e−iQ2·u(x)
�©

, (106)

transforms like Eu, and is even under tmz (which we previously defined to act within a layer
and not switch layers – Sec 3.2). By combining this doublet with Eu from M1⊗M3, we can form
an additional invariant v(m,13) ∈ R. However, it is not possible to similarly form an invariant
for Eg coming from M1 ⊗M3. This is because Eu ⊗ Eg is odd under tmz .
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The symmetry preserving part of the leading-order moire tunneling at M has the complete
form

Hm,M =

∫

d2xψ†
M1,1(x)

�

�

v(m,M1)
0 + v(m,M1)

1 τ3

��

1+ e−i(Q1+Q2)·u(x)
�

+
�

v(m,M1)
0 − v(m,M1)

1 τ3

��

e−iQ1·u(x) + e−iQ2·u(x)
�

�

ψM1,2(x)

+

∫

d2xψ†
M3,1(x)

�

�

v(m,M3)
0 + v(m,M3)

1 τ3

��

1+ e−i(Q1+Q2)·u(x)
�

+
�

v(m,M3)
0 − v(m,M3)

1 τ3

��

e−iQ1·u(x) + e−iQ2·u(x)
�

�

ψM3,2(x)

+i

∫

d2xψ†
M1,1(x)v

(m,13)

�

(1+τ3)
�

1− e−i(Q1+Q2)·u(x)
�

+ (1−τ3)
�

e−iQ1·u(x) − e−iQ2·u(x)
�

�

ψM3,2(x)

−i

∫

d2xψ†
M3,1(x)v

(m,13)

�

(1+τ3)
�

1− e−i(Q1+Q2)·u(x)
�

+ (1−τ3)
�

e−iQ1·u(x) − e−iQ2·u(x)
�

�

ψM1,2(x) + h.c. ,

where the last two lines are related by Eqn 76.

3.7 Fitting the moire potential at the Γ point

The invariants w0/1,os, w0/1,t, and t not only parametrize a system of twisted bilayers, but in
the limit θ = 0, also parametrize the AA-stacking configuration of the bilayer system. More
generally, w0/1,os, w0/1,t, and t are the leading order invariants of the effective theory within
the more general theory of elasticity for the displacement u between the two layers. If the
gradients of u – which equal θ in the case of a rigid twist – are small, then the dominate
part of the tunneling is a functional of u and not its gradients [5, 83], i.e T (u). The same
functional T (u) is valid if u is chosen to be a constant, which physically corresponds to a non-
rotated shift away from the AA stacking configuration. The displacement can be chosen to be
simple stacking configurations, which produce effects on the spectrum that can be compared
with DFT.

In particular, the change in the energies of the bands at k = Γ for three different stacking
configurations are needed in order to fit the five invariants: uAA = (0,0), uAB = (lFe/2, lFe/2),
and u 1

2
= (lFe/2,0). To start, let us observe the Hamiltonian for the AA-stacked bilayer system:

HAA − εΓ =







4w0,os −iλ t + 4w0,t 0
iλ 4w0,os 0 t + 4w0,t

t + 4w0,t 0 4w0,os −iλ
0 t + 4w0,t iλ 4w0,os






(107)

= 4w0,os +λτ2 + (t + 4w0,t)σ1 . (108)

The Pauli matrices τ j and σ j represent the orbital and layer pseudo-spin sectors respectively.
Because no cross terms of the type τ jσk exists which could mix these two different pseu-
dospins, the Hamiltonian can be decoupled into independent subsectors in which τ2 and σ1
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are diagonal. This fully diagonalizes the Hamiltonian, which has energies

EAA,±,+λ = εΓ + 4w0,os +λ± (t + 4w0,t) , (109)

EAA,±,−λ = εΓ + 4w0,os −λ± (t + 4w0,t) . (110)

The spectrum for the AB-stacking configuration is identical but with w0,os/t→−w0,os/t,

EAB,±,+λ = εΓ − 4w0,os +λ± (t − 4w0,t) , (111)

EAB,±,−λ = εΓ − 4w0,os −λ± (t − 4w0,t) . (112)

The on-site potential w0,os is determined as the difference in the average band energy (within
a spin-orbit sector) between the two stackings,

8w0,os =
� EAA,+,+λ + EAA,−,+λ

2

�

−
�EAB,+,+λ + EAB,−,+λ

2

�

, (113)

and the tunneling w0,t sets the variation in the band splitting between the two configurations,

8w0,t =
� EAA,+,+λ − EAA,−,+λ

2

�

−
� EAB,+,+λ − EAB,−,+λ

2

�

. (114)

The leading-order tunneling t is the average splitting,

2t =
� EAA,+,+λ − EAA,−,+λ

2
+

EAB,+,+λ − EAB,−,+λ

2

�

. (115)

In order to properly label the bands outputted by DFT, we start with out-of-plane distance
between the layers such that the two layers do not see each other. In this limit, the observed
bandstructure is that of a monolayer with a layer degeneracy. We then lower the top layer in
steps until we reach the out-of-plane distance which minimizes the total DFT energy for the
AA stacking.

Having established t, we can use the final stacking u 1
2
= (lFe/2, 0) to fit w1,os/t. Starting

again with the Hamiltonian at k= Γ ,

H 1
2
− εΓ =







0 −iλ+ 4w1,os t 4w1,t
iλ+ 4w1,os 0 4w1,t t

t 4w1,t 0 −iλ+ 4w1,os
4w1,t t iλ+ 4w1,os 0






(116)

= 4w1,osτ1 +λτ2 + (t + 4w1,tτ1)σ1 . (117)

Again, we can rotate into a basis which diagonalizes σ1,

H 1
2 ,± − εΓ = 4(w1,os ±w1,t)τ1 +λτ2 ± t ,

which correspond to the layer bonding/anti-bonding sectors discussed in the main text. The
eigenvalues are therefore

E 1
2 ,±,+ = εΓ ± t + 4

q

(w1,os ±w1,t)2 + (λ/4)2 , (118)

E 1
2 ,±,− = εΓ ± t − 4

q

(w1,os ±w1,t)2 + (λ/4)2 . (119)

However, due to the small size of w1,os/t, and because w1,os/t shows up in quadrature with
the much larger λ, we found it to be impractical to estimate w1,os/t in the presence of spin-
orbit. Therefore, we perform the calculation in the absence of spin-orbit (i.e without using
fully relativistic pseudopotentials). Setting λ= 0, we determine the final two invariants as

8|w1,os ±w1,t|= E 1
2 ,±,+ − E 1

2 ,±,− . (120)
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Figure 10: Energy of the AA stacking configuration of bilayer FeSe as a function
of inter-layer distance. The red dashed line marks the cbulk = 5.5178 inter-layer
distance in the relaxed bulk [33].

4 Conclusion

Because the irreducible representations at Γ are irreps of D4h, the bandstructure reported here
for the Γ point is generic to other devices constructed from layers with a square lattice geometry
[55, 101]. While a quadratic-band touching is a requirement for the spin Hall phase, the
Hubbard limit Eqn 8 is still achievable for a single band with a band extremum at Γ . (This is
akin to the λ→∞ limit of a quadratic-band touching.) If such a band minimum/maximum
is partially occupied by electrons/holes, such that there is a small Fermi surface at Γ , and qS
is chosen such that the entire Fermi surface lies in the first superlattice zone, then the physics
is that of the s-orbital (Fig 2b) Hubbard model.

It is well known that the strong coupling s-orbital Hubbard model exhibits antiferromag-
netism when the band is half filled. At half filling the dominate Coulomb repulsion can be
minimized by placing charges one per site. The tunneling is perturbative, and shows up as a
second-order process in which a fermion hops to a neighboring site and back. Mathematically,
corrections to the energy coming in at second-order in perturbation theory necessarily bring a
minus sign, and therefore lower the energy, selecting out a new ground state from the mani-
fold of one-particle-per-site states. Since such a hopping process is only allowed if neighboring
fermions have opposite spin (b/c like-spins are forbidden by Pauli exclusion), the ground state
is an antiferromagnet.

However if, for fixed chemical potential, we were to tune qS such that the Fermi surface lies
just outside the first superlattice zone, then the system becomes that of interacting p-orbitals
[102–104]. This is because Eqn 8 describes a crystal of isotropic quantum harmonic oscillators,
whose first excited states are Gaussians multiplied by a form factor x (or y). The 2-fold nature
of which manifests as the double degeneracy seen as we approach the atomic limit in Fig 4.
Thus for fixed chemical potential, decreasing qS decreases the number of unoccupied states
in the s-band, until all states are occupied and fermions are forced to occupy the harmonic
oscillator’s first excited states.

The geometry and nodal structure of these p-type single particle states significantly changes
the strong-coupling story from the s-band case. Here the lobe-like shape of these orbitals
makes placing px and py orbitals on every other site energetically favourable, as it minimizes
the anisotropic component of the repulsive Coulomb. Even though the Coulomb dominates
at low densities (i.e large lS), the Coulomb anistropy vanishes as neighboring charges look
increasingly point-like at large distances. Consequently, the Coulomb anisotropy can be tuned
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(a) uAA

(b) uAB

(c) u 1
2

Figure 11: Bands near Γ for the (a) AA stacked, (b) AB
stacked, and u 1

2
= ( lFe

2 , 0) stacking. The momenta are given in

units of 2π
lFe

. The band energies at Γ are reported as follows:
{EAA,+,+λ, EAA,−,+λ, EAA,+,−λ, EAA,−,−λ} = {310.3, 252.9,238.5, 181.0}meV,
{EAB,+,+λ, EAB,−,+λ, EAB,+,−λ, EAB,−,−λ} = {290.2, 218.4,204.0, 135.1}meV, and
¦

E 1
2 ,+,+, E 1

2 ,+,−, E 1
2 ,−,+.E 1

2 ,−,−

©

= {269.5,267.5, 200.8,195.7}meV.

small such that it competes with the second-order tunneling processes. The dominate tunnel-
ing process is one in which a fermion hops from px (py) to an adjacent px (py) along the x
(y) axis. Tunneling of this kind prefers to lower the energy by aligning neighboring p orbitals,
in opposition to the Coulomb anisotropy, which prefers them disaligned. It has been argued
previously that this competition at second order can give rise to dynamics governed by fourth-
order plaquette hopping which supports a gapless bond algebraic liquid phase in bosons [102],
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and may be a path toward a tunable non-Fermi liquid state.
In this way described, the Fe-chalcogenides offer a promising pathway toward filling the

void left by the success of triangular/hexagonal Hubbard simulators based on TMDs [17–21].
Crucially, this means the potential exploration of exotic phases unique to the square lattice
geometry [102]; as well as providing a pathway toward engineering superconductivity driven
by repulsive interactions, the existence of which in the 2D Hubbard model has been a point
of debate [105]. Recent state-of-the-art density matrix renormalization group (DMRG) and
auxilliary field quantum Monte Carlo (AFQMC) found that the square Hubbard model with
next-to-nearest-neighbor hopping and repulsive interactions exhibits superconductivity [106,
107]. In our model, the ratio of nearest-neighbor and next-to-nearest neighbor hopping is
a tunable function of the twist angle, thus opening up the possibility to directly engineer a
quintessential toy model for the cuprates using iron.

This ability for small-angle moire devices to simulate model systems in their ground state
is a consequence of the insensitivity of the low-energy fermions to the microscopic intricacies
of the moire pattern. While higher-order contributions to the continuum theory for a uniform
twist exist – see Sec 3.2, 3.5, and the text surrounding Eqn 22 – they are constrained by
geometry to be sub-leading. Such sub-leading terms would have to overcome the energy scale
of the leading-order tunneling/potential, in order to close the gap and fundamentally change
the states of the band. This is a similar story to the BM model for twisted graphenes [4], which
despite neglecting higher order contributions to the continuum theory [5], still succeeds in
capturing the magic angle and topology of the bands. Nevertheless, a complete determination
of the strong-coupling ground state requires understanding what role kinetic energy plays as
a perturbation [83, 84]. Therefore, any future studies of the strong-coupling problem will
necessarily need to consider the role of these sub-leading terms in potentially reshaping the
stories described above.

Similarly beyond the scope of our continuum theory are the effects due to lattice relaxation
and reconstruction. Consider for a moment rigidly rotating a stacked bilayer some θ → 0 away
from its AA stacking, such that lS is much larger than the sample size. If the AA stacking is
stable, then for sufficiently small θ , the stacking is almost everywhere AA, and thus one would
expect the bilayer to relax back to AA. If lS is smaller than the sample size, such that a moire
pattern forms with multiple AA, AB, etc stackings locally throughout, then the twist is stable.
This is because in order for the bilayer to rotate back into an everywhere AA stacking (θ = 0),
it necessarily needs to convert locally AA stacked regions into stacking configurations which
are at higher energy. This picture, however, naively considers only rigid deformations of the
type described by u(x) = θ ẑ× x+u0. In a real system, u(x) can adjust at x in order to locally
minimize the competition between the tension within the layers and the energy of the local
stacking. So long as the gradients of u (i.e ∂αuβ) remain small, then a continuum expansion
remains possible [83, 84], but where ∂αuβ is no longer necessarily constant (as opposed to
a rigid twist where it equals θ). However, for small enough θ , there is the possibility that
the lattice reconstructs as to grow the AA regions, forming sharp boundaries with large ∂αuβ
between AA stacked domains [108].

This phenomena is therefore expected to set a limit on the maximum size of lS for which a
moire continuum theory is still valid. We cannot make any quantitative statements on the size
of lmax

S at this time – however, we would like to stress that free-standing iron-based monolayers
are unstable. As such, they are necessarily epitaxially grown on a substrate, such as SrTiO3 [96,
97]. The bonding between FeSe and SrTiO3 is not weak, involves a sharing of electrons (doping
of FeSe [40]), and is known to strain the iron atoms [40, 95] – leading to a small difference
in lattice constant relative to the bulk [40]. Therefore, any relaxation/reconstruction would
have to overcome intra-layer tension of the combined FeSe/SrTiO3 layer, making moire devices
constructed from them more robust to these effects. This is unlike the case of monolayer TMDs
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or graphene, which are not strongly bonded to their substrates (typically hexaboron nitride).
Lastly, while not explicitly studied here, the superlattice potentials/tunnelings derived for

the atomic M point pave the way for future theoretical studies. Similar to the K point in
graphene, the M point in FeSe is at non-zero crystal momentum. This makes it such that
the moire tunneling invariants cannot be expanded as a series of Fourier harmonics q or-
dered by increasing |q|. This is because of the fast oscillating plane-wave component of the
fields at M , eiM ·x in Eqn 1. Since M is rotated in one layer relative to the other, the tun-
neling between the two layers involves a modulation from the overlap of these waves, i.e
e−iM ·xeiR−1

θ
M ·x = e−i(M−R−1

θ
M)·x. Therefore, the plane waves about M do not transform simply

under space group symmetries, but instead have a non-trivial behaviour coming from this mod-
ulation due to the twist (see Eqn 75). Generically, this gives rise to special points x correspond-
ing to local stacking configurations u(x) at which the plane waves in either layer destructively
interfere and the tunneling vanishes, dubbed destructive interference manifolds [101].

In a previous work [101], studying small-angle twisted square lattices with one orbital per
layer, it was argued that the zeros of the tunneling at M act like a potential barrier between
moire unit cells. Using a tight-binding calculation, they found that the small-angle limit gives
rise to a nested Hubbard model [101] – which can be understood as two decoupled staggered
copies of the plain Hubbard limit derived here at Γ . In fact, remember that our Hubbard limit
Eqn 8 is just one copy of a layer-bonded/antibonded band pair. Let us momentarily consider
only tunneling (w0,os = 0). The q = 0 inter-layer tunneling t sets the energy difference be-
tween these band pairs, which are otherwise identical except for experiencing opposite signs
of w0. The consequence of this is that they experience a superlattice minima which is relatively
shifted between the pairs, and thus are staggered. It is thanks to dominate t that one of these
Hubbard copies is pushed down in energy.

Unlike a single-orbital square lattice [101], the fields at M in FeSe are higher-dimensional
irreps which do not belong to any 3D point group [70,81]. This makes FeSe a potential nursery
for novel unexplored moire physics. For example, the underdoped monolayer FeSe hosts Dirac
cones directly at the Fermi level [28] (also seen in thin films [109]). These Dirac cones come
in pairs along high symmetry lines [110], and are “tilted” owing to a particle-hole breaking
component of their dispersion [81]. Dirac cones of this variety have been argued to experi-
ence an emergent 2+1 gravity, known as the Painelevé-Gullstrand metric [111–113], such that
fermions occupying the cone appear to be in the vicinity of a black hole. A moire superlattice
could be used to both tune and isolate these tilted cones into their own bands.

Perhaps most importantly, we found previously that the observed phenomenology of the
superconducting state in FeSe can be described within the k · p for the M point [81]. It then
holds that the invariants derived here can be used to study twisted superconductors [114–
122], or the effect of an external superlattice on the superconducting state. This may open a
path to robustly determining pairing symmetry [118], which is a question of ongoing debate
in FeSe [123]. This was successfully done recently in twisted cuprate thin films [114, 115].
The experimental success in twisted cuprates has inspired efforts to use the d-wave nodes to
engineer topological superconductivity [121, 122]. Since the Fermi surface in the cuprates
extends across the entire BZ, the cuprates are not amenable to a BM-like continuum theory
like that we have constructed here. This makes FeSe/SrTiO3 [26] the highest temperature
superconductor for which a continuum moire theory can be constructed. Lastly, it remains to
be seen if flattening the bands, and therefore increasing the density of states, provides a boost
to the already high 65K+ Tc of the monolayer.
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A Mathematically flat bands

Surprisingly, even though the twist case (II) decouples into two copies of a monolayer (I),
the model still exhibits magic-angle physics. This is best illustrated for a special choice of the
k ·p invariants for the bands of the fields at Γ . These conditions (elaborated on below), along
with taking the limits λ = 0 and |w0/w1| ≪ 1, produce a Hamiltonian for the moire system
which can be written as an anti-holomorphic/holomorphic operator in the off-diagonal. At the
magic-angle, the Bloch states for the moire bands at k = Γ , which are guaranteed to be zero
energy modes by these conditions, generate zeros at both the center and corner of the moire
cell. Similar to the chiral limit in graphene [124,125], a zero-energy solution can be found at
any k away from Γ , thus guaranteeing that the bands are everywhere flat. We explicitly write
these solutions in terms of the Jacobi theta functions [126] and the Bloch state at Γ .

This flattening of the bands occurs independently in both decoupled monolayers, which
themselves are independent problems for which the twist angle may be unphysical. Therefore
it is better to understand the band flattening as occurring at a magic cell size q∗S , rather than a
magic angle. We would then describe the flatband limit of case (II) as two copies of (I) with
magic cells, the size of which is set by θ in scenario (II). Within a spin-sector, each copy is
composed of two degenerate bands of opposite Chern number – a Z2 pair. By introducing a
finite λ, the degeneracy is lifted, similar to the action of the sublattice-symmetry breaking in
tBG [85], but without violating any symmetries here.

Let us fix ourselves to the following parameters: a = −2b, µ = 0, w0/w1→ 0, and λ = 0.
Under these special conditions, Eqn 5 takes the form

H−,↑(−i∇,x) = e−i π4 τ1

�

0 Dx
D∗x 0

�

ei π4 τ1 , (A.1)

where Dx (D∗x) is an anti-holomorphic (holomorphic) operator in the off-diagonal, defined

Dx ≡ −b(∂x − i∂y)
2 +w1U(x) . (A.2)

Let us notate the 2-component Bloch states which solves H−,↑ as Ψk(x) = (φk,χk)T , which
satisfy H−,↑Ψk(x) = EkΨk(x) by definition. In order for there to be perfectly flat bands, then
there must exists some Ψk(x) s.t Dxχk(x) = 0 and D∗xφk(x) = 0 holds for every k. By our choice
of µ and λ equal to zero, the modes at k = Γ are guaranteed to be zero energy. Therefore,
following similarly to Ref [124], if there exists a holomorphic function fk(x − i y) which is
Bloch periodic under superlattice shifts, then it satisfies the equation Dx fk(x− i y)χΓ (x , y) = 0
with the correct boundary conditions, and is thus our solution.

However, it is well known that functions which are everywhere holomorphic and bounded
are necessarily constant. Since a constant function cannot generate the phase required by a
Bloch state under periodic shifts, this precludes any fk(x − i y) which is everywhere holomor-
phic from being a Bloch state. In order for fk(x−i y) to satisfy our boundary conditions, it must
have poles somewhere in the superlattice unit cell (a.k.a meromorphic) [124]. In general, this
prevents us from finding a normalizable solution of the form χk(x) = fk(x − i y)χΓ (x). The
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exception occurs when tuned to the magic cell q∗S , where χΓ (x0) = 0 for some x0 in the unit
cell, and the poles from fk and the zeros from χΓ can be made to cancel. Here, depending
on the sign of w1, these zeros occur at either the center x0 = 0 or corner x0 = lS(

1
2 , 1

2) of
the cell. This corresponds to the shift in the principal Brillouin zone of the hybrid-Wannier
states [127], and is analogous to the shift of the Wannier centers for w0→−w0 in the exactly
solvable Hubbard limit. In the Hubbard limit, w0 multiplies the cosine potential of Eqn 8, such
that flipping its sign flips the potential minima into maxima (and visa versa).

We explicitly construct these meromorphic functions in terms of the Jacobi theta functions
θa,b(z|Ω) [126]. Let Ψ−,k represent the flatband solution to H−,↑, which experiences w1 > 0;
and similarly Ψ+,k for H+,↑, which experiences w1 < 0. The wavefunctions are

Ψ±,k(x) =

�

f±(x + i y)φ±,Γ (x)
f±(x − i y)χ±,Γ (x)

�

, (A.3)

where f+ ( f−) has its poles at the center (corner) of the unit cell:

f+,k(z) =
θ R1 ·k

2π −
1
2 ,− R2 ·k

2π +
1
2
( z

R1
|i)

θ− 1
2 , 1

2
( z

R1
|i)

, (A.4)

f−,k(z) =
θ R1 ·k

2π ,− R2 ·k
2π
( z

R1
|i)

θ0,0(
z

R1
|i)

, (A.5)

defining R1 ≡ (R1)x + i(R1)y .
Within a fixed spin sector, the previously neglected spin-orbit λ enters the problem in a

similar fashion to the sublattice splitting in hexaboron nitride-aligned tBG [85], but without
violating any space-group symmetries. Its effect is to split the degenerate flatbands at zero
into C = ±1 pairs of flat bands, separated in energy by 2λ. This is shown in Fig 12.

What then is the roll of finite µ on the flat bands? Notice that when µ= 0, hΓ satisfies the
relation (τ2hΓτ2)∗ = −hΓ , and therefore exhibits the (single-particle) particle-hole symmetry
whose generator is P ≡ Kτ2; where K represents complex conjugation, and τ2 is equiva-
lent to a quarter rotation C4. (When λ = 0, unitary particle-hole symmetry is sufficient, i.e
{τ2, hΓ } = 0.) In this limit, the continuum bands of Eqn 2 disperse in opposite directions,
unlike the physical system where both bands disperse downward [70]. And the action of P is
to swap the states of the bands.

Introducing µ has the effect of changing the relative curvature of these bands, breaking the
particle-hole symmetry. Nonetheless, µ being an identity in the orbital basis, the eigenstates
of the bands and their action under P are left unchanged. WLOG, take b > 0. For sufficiently
negative µ, namely |µ|/b ≥ 1, the upper continuum band flips over, such that both bands
disperse downward. In flipping over, the upper band necessarily becomes flat, which causes it
to be folded infinitely many times onto itself in the mBZ.

Such a singularity obfuscates a direct mathematical connection between the Chern bands
of the chiral limit and the Chern bands for |µ|/b ≥ 1. We leave it to future research to find
a smooth path across the |µ|/b ≥ 1 singularity, if one exists, and instead point out that for
µ = −2830 meVÅ

2
equal to its fitted value for FeSe, we numerically find moire bands which

are nearly flat when the cell size is the magic one (see Fig 13a-13b). In this regard, these nearly
flat bands for large µ shadow the perfectly flat bands found at perfect particle-hole symmetry
(i.e µ= 0). Therefore, if the value of w̃1 is greater than what is predicted by DFT, then such a
nearly-flat chiral limit shadow may be achievable in FeSe.

Additionally, not only do deviations from µ = 0 ruin the off-diagonal holomorphic/anti-
holomorphic structure of Eqn A.1 necessary to produce mathematically flat bands, so too do
deviations from a = −2b. This latter condition amounts to demanding that the bands be
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Figure 12: The pair of zero energy flatbands with (w0, w1) = (0,0.1) meV,

(µ, a, b) = (0,−3440.93,−a/2) meVÅ
2
, qS = 0.0148 Å

−1
, and λ= .1 meV.

perfectly isotropic about Γ ; however, perfect isotropy is not guaranteed for a quadratic-band
touching in a C4 symmetric system. Nevertheless, our fittings for FeSe a = −2.5b are close
to this isotropic limit, which is clear from the inset of Fig 1-a, which shows that the energy
contours for the upper band are nearly circular. Also, isotropy is guaranteed in the limit of
one band, which is to say that increasing λ/(|a|q2

S) suppresses anisotropy, but at the cost of
reducing the gap.

Lastly, we would like to point out a separate work proposed recently for engineering sim-
ilar chiral superlattice bands in a monolayer, but for systems with C3 and C6 symmetry (as
opposed to the C4 symmetry here), and where the superlattice is generated from applied pe-
riodic strain [128]. Similarly, a quadratic-band touching at Γ is found to be required, and the
problem is studied for |µ|/b ≤ 1, where they found |µ|/b = 1 corresponds to the flat band
in the nearest-neighbor-hopping kagome lattice. Unlike the C4 symmetric case, the quadratic-
band touchings arising in a C3 symmetric system are guaranteed isotropic; and therefore the
bands of Ref [128] do not suffer from the problem described in the previous paragraph. They
determined that these flat bands exhibit an ideal quantum geometry for realizing fractional
Chern insulators [128], which is not guaranteed for all nearly flat topological bands [125]. It
would be interesting to know if similar nearly-flat shadow bands exists in the particle-hole bro-
ken regime of Ref [128], and if these nearly-flat shadows meet the mathematical requirements
necessary to exhibit topological fractionally-filled phases.

A.1 Jacobi theta functions, magnetic Bloch states, and their symmetries

A function f (x + i y) which is complex differentiable everywhere in the vicinity of a point is
called “holomorphic”, or similarly “holomorphic at the point”. Let z = x + i y . Such functions
necessarily satisfy d f

dz∗ = 0 in that point’s neighborhood, where d
dz∗ =

1
2(∂x + i∂y). This stems

from the requirement that the complex derivative defined

d f
dz
≡

f (z + dz)− f (z)
dz

(A.6)

is independent of the direction of the infinitesimal step dz in the complex plane – in other
words, that the derivatives in the real and imaginary direction do not contradict (are equal).
Throughout this manuscript, we refer to both a function f (x−i y) ( f (x+i y)) and the derivative

d
dz∗ ( d

dz ) as holomorphic (anti-holomorphic) in order to specify their interrelationship; but
describe both f (x ∓ i y) as being “holomorphic” in the sense of their property of smoothness.

Non-constant smooth functions which are bounded and periodic over the real numbers,
such as cos(x), are holomorphic yet unbounded in the complex plane. This is clear for
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(a) (b)

Figure 13: Nearly flat bands in the region |µ|/b ≥ 1. Plotted bands are coloured
to distinguish from grey eye-guide lines. (a) The lowest energy superlattice bands
with (w0, w1) = (0,0.1) meV, (µ, a, b) = (−2830,−3440.93,−a/2) meVÅ

2
, λ = 0,

and qS = 0.0148 Å
−1

. Turning on finite λ gaps the blue-orange band touching at Γ ,
producing a nearly flat Chern band. (b) For large enough w1, an additional phase
exists in which the two lowest energy bands are both gapped from the remote band.
Shown plot corresponds to w1 = .5 meV.

cos(x + i y) = cos(x) cosh(y) − i sin(x) sinh(y), letting x , y ∈ R, which diverges in every
direction not along the real axis. One can show that the same goes for sin(x + i y), in fact,
this unboundedness is a generic property of functions which are everywhere holomorphic in
the complex plane. The only functions which are completely smooth and bounded in C are
constants.

This appears problematic for the construction of holomorphic states with periodic sym-
metry, however, there is no requirement that periodic functions be smooth. For instance, the
ratio of two holomorphic functions such as 1/ cos(x + i y), does not blow up at y = ±∞, but
diverges periodically at simple poles corresponding to the zeros of cos(x+ i y). Such functions
are referred to as “meromorphic” in literature.

Indeed, there exists a family of functions, the Jacobi theta functions [126], which can be
used to construct periodic functions of the type desired. We write these functions as

θa,b(z|Ω) =
∑

n∈Z
eiπΩ(n+a)2 e2πi(n+a)(z+b) , (A.7)

where we consider real rational characteristics a, b ∈Q, and Ω ∈ C. A ratio of these functions
was used to construct Eqn A.4, i.e we can define

ψ̃a,b(x , y)≡
θa,b

�

x+i y
R1
|Ω
�

θ0,0

�

x+i y
R1
|Ω
� , (A.8)

where Ω= i R2
R1

guarantees the proper crystal symmetry. The reader can verify that the follow-
ing symmetries are true for A, B ∈ Z [126]:

θa,b(z + A|Ω) = e2πiaAθa,b(z|Ω) , (A.9)

θa,b(z +ΩB|Ω) = e−2πi bBe−iπΩB2
e−2πiBzθa,b(z|Ω) , (A.10)

from which it follows ψ̃a,b(x+AR1) = e2πiaAψ̃a,b(x) and ψ̃a,b(x+BR2) = e−2πiaBψ̃a,b(x). Thus
Eqn A.8 transforms as desired for a Bloch state, save for its non-normalizability present in the
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periodically-ordered poles in the complex plane, the position of which is set by the rational
characteristics of the theta function in the denominator. In the numerator, they represent the
crystal momentum as a fraction of the BZ (see Eqn A.4). If normalizability is desired (as it is
for any quantum state), another function χ(x , y) needs to be found with zeros that exactly
cancel the simple poles coming from Eqn A.8 when they are multiplied. For our purposes, this
occurs for the Bloch state at Γ , exactly at the magic cell size q∗S . Assuming this condition is
met, we can define normalizable ψa,b = ψ̃a,bχ.

Unlike trivial Bloch states, the magnetic Bloch states which these functions represent have
the property that their phase winds in one of the momentum (here b) in a way which depends
on the other (a): ψa,b+B(x) = e−2πiaBψa,b(x). If we Fourier transform in one direction, we get

ωχ,b(x) =
∑

a∈Z/NxZ

ei2πaχψa,b(x , y) , (A.11)

where Nx is the number of unit cells in the x-direction, χ ∈ {1,2, · · · , Nx}, and
Z/NxZ ≡ {

1
Nx

, 2
Nx

, ..., 1}. The winding phase therefore guarantees such a function exhibits
the behavior that ωχ,b+1(x) = ωχ−1,b(x) – a property of the hybrid-Wannier functions with
twisted boundary conditions [129]. Such functions are the crystal analog to the continuum
Landau levels [85]. The direction of the winding depends on the sign of the Chern number,
which can be flipped via a complex conjugation. Therefore, the hybrid-Wannier states con-
structed from the two flatbands in Fig 12 each have an opposite-spin counterpart that winds
in the opposite direction. This in turn means that opposite spins at the edge of the system
(or its domains) flow with opposite momentum. This is most easily seen mathematically on a
cylinder, where the momentum in one direction is preserved [85,130].
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