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Abstract

We investigate the quantum-critical behavior between the rung-singlet phase with hid-
den string order and the Néel phase with broken SU(2)-symmetry in quantum spin lad-
ders with algebraically decaying unfrustrated long-range Heisenberg interactions. To
this end, we determine high-order series expansions of energies and observables in the
thermodynamic limit about the isolated rung-dimer limit. This is achieved by extending
the method of perturbative continuous unitary transformations (pCUT) to long-range
Heisenberg interactions and to the calculation of generic observables. The quantum-
critical breakdown of the rung-singlet phase then allows us to determine the critical
phase transition line and the entire set of critical exponents as a function of the decay
exponent of the long-range interaction. We demonstrate long-range mean-field behavior
as well as a non-trivial regime of continuously varying critical exponents implying the
absence of deconfined criticality contrary to a recent suggestion in the literature.
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1 Introduction

While in electromagnetism the interaction between charged particles is long-range decaying as
a power-law with distance, in condensed matter systems the interaction is typically screened,
justifying to consider short-range interactions in most microscopic investigations. There are,
however, notable examples where the long-range behavior persists like in conventional dipo-
lar ferromagnets [1, 2] and exotic spin-ice materials [3, 4]. In quantum optical platforms,
long-range interactions are commonly present and there has been tremendous experimental
advancements over the past decades. Indeed, among others, trapped ion systems [5–16] and
neutral atoms in optical lattices [17–27] have gained vast attention as these platforms can
realize one- and two-dimensional lattices with adaptable geometries and a mesoscopic num-
ber of entities offering high-fidelity control and read-out. This makes them viable candidates
for versatile quantum simulators and scalable quantum computers [28–30]. Both platforms
realize effective spin interactions which decay algebraically with distance. In neutral-atom
platforms the decay exponent is fixed while it can be continuously tuned in trapped-ion sys-
tems. Recent progress ranges from the determination of molecular ground-state energies [15]
and the realization of equilibrium [5, 25] and dynamical quantum phase transitions [12–14]
to the direct observation of a topologically-ordered quantum spin liquid [26] and symmetry-
protected topological phases realized on ladder geometries [22,27].

The majority of numerical studies has focused on one-dimensional spin chains [31–46,46–
53] as well as two-dimensional systems directly related to Rydberg atom platforms with quickly
decaying (∼ r−6) long-range interactions [54–56]. One prominent exception is the long-range
transverse-field Ising model (LRTFIM), which was recently analyzed on the two-dimensional
square and triangular lattice with tunable long-range interactions [57–59]. Geometrically un-
frustrated LRTFIMs in one and two dimensions are known from field-theoretical considerations
to display three distinct regimes of quantum criticality between the high-field polarized phase
and the low-field Z2-symmetry broken ground state: For short-range interactions the system
exhibits nearest-neighbor criticality, for strong long-range interactions long-range mean-field
behavior, and in-between continuously varying critical exponents [60–65].

Less is known about the quantum-critical behavior of systems with long-range interac-
tions possessing a continuous symmetry. The antiferromagnetic spin-1/2 Heisenberg model is
the most prominent example here where, however, only the one-dimensional chain has been
investigated microscopically [36, 41, 42, 45, 47, 66]. For the short-range Heisenberg chain,
the spontaneous breaking of its continuous SU(2)-symmetry is forbidden by the Hohenberg-
Mermin-Wagner (HMW) theorem for finite temperature [67–70] and for zero temperature
[71]. Here, one finds quasi long-range order with gapless fractional spinon excitations. The
HMW theorem can be circumvented when unfrustrated long-range interactions are sufficiently
strong, giving rise to a quantum phase transition to a Néel state with broken SU(2)-symmetry
[36, 41, 42, 45, 47, 49, 66]. Interestingly, beyond the chain geometry, a recent work [72] has
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studied an antiferromagnetic quasi one-dimensional two-leg quantum spin ladder with unfrus-
trated long-range Heisenberg interactions. Here, an exotic deconfined quantum critical point
between the gapped short-range isotropic ladder with a non-local string order parameter and
the Néel state with broken SU(2)-symmetry has been suggested [72]. The proposed transi-
tion goes therefore even beyond the established scenario of deconfined quantum criticality
between two ordered phases with local order parameters [49,73–76].

In this paper, we investigate two types of long-range quantum spin ladders with arbitrary
ratios λ of nearest-neighbor leg and rung exchange coupling and for arbitrary decay exponent
1 + σ of the long-range Heisenberg interaction. To this end, we extend the pCUT approach
developed in Ref. [58] to generic observables and locate the critical breakdown of the rung-
singlet phase in the σ− λ parameter plane. This allows us to observe long-range mean-field
behavior as well as a non-trivial regime of continuously varying critical exponents. We stress
that the model studied in Ref. [72] is contained as one specific parameter line λ= 1 in our two-
dimensional quantum phase diagram. From our findings and physical arguments we conclude
that the investigated long-range Heisenberg quantum spin ladders do not show deconfined
criticality.

2 Model: Quantum spin ladders with long-range interactions

We consider the spin-1/2 Hamiltonian

H = J⊥
∑

i

S⃗i,1S⃗i,2 −
∑

i,δ>0

2
∑

n=1

Jq(δ)S⃗i,nS⃗i+δ,n −
∑

i,δ>0

J×(δ)
�

S⃗i,1S⃗i+δ,2 + S⃗i,2S⃗i+δ,1

�

, (1)

where the indices i and i + δ denote the rung and the second index n ∈ {1, 2} the leg of the
ladder. The exchange parameters J⊥ > 0,

Jq(δ) = Jq
(−1)δ

|δ|1+σ
, J×(δ) = J×

(−1)1+δ

|1+δ|1+σ
, (2)

couple spin operators on the rungs, legs, and diagonals, respectively. The distance-dependent
coupling parameters Jq(δ) and J×(δ) realize unfrustrated algebraically decaying long-range
interactions which induce antiferromagnetic Néel order for sufficiently small σ. This decay
exponent σ can be tuned between the limiting cases of all-to-all interactions at σ = −1 and
nearest-rung couplings at σ =∞. Here, we focus on σ ≥ 0 so that the energy of the system
is extensive in the thermodynamic limit. We restrict to the limiting cases Hq ≡ H|J×=0 and
H▷◁ ≡ H|J×=Jq illustrated in Fig. 1. In the following, we set J⊥ = 1 and introduce the pertur-
bation parameter λ ≡ Jq. Note, the Hamiltonian in Ref. [72] corresponds to H▷◁ at λ = 1. In
the limit of isolated rung dimers λ = 0, the ground state is given exactly by the product state
of rung singlets

|s〉=
1
p

2
(|↑↓〉 − |↓↑〉) , (3)

and with localized rung triplets

|t x〉= −
1
p

2
(|↑↑〉 − |↓↓〉) ,

�

�t y

�

=
i
p

2
(|↑↑〉+ |↓↓〉) , |tz〉=

1
p

2
(|↑↓〉+ |↓↑〉) (4)

as elementary excitations. For small λ the ground state is adiabatically connected to this prod-
uct state and the system is in the rung-singlet phase. The associated elementary excitations
of the rung-singlet phase are gapped triplons [77] corresponding to dressed rung-triplet ex-
citations. For σ =∞ this holds for both spin ladders for any finite λ and for Hq at λ =∞

3

https://scipost.org
https://scipost.org/SciPostPhys.15.3.087


SciPost Phys. 15, 087 (2023)

Figure 1: Illustration of the two quantum spin ladders with Heisenberg interaction
on rung dimers (∼ J⊥), between rung dimers along the legs (∼ Jq) and along the
diagonals (∼ J×). In the first row the common nearest-neighbor limit (σ =∞) of
both ladder models is shown while in the second row the two distinct spin ladders
Hq (left) and H▷◁ (right) with long-range interactions σ≪∞ are sketched.

the system decouples into two spin-1/2 Heisenberg chains with gapless spinon excitations and
a quasi long-range ordered ground state. The ground states at any finite λ break a hidden
Z2 ×Z2 symmetry and can be characterized by a non-local string order parameter [78–82].

Previous studies of the spin-1/2 Heisenberg chain [41, 42, 45, 49] and the two-leg lad-
der H▷◁ for λ = 1 [72] with unfrustrated long-range interactions deduced a quantum phase
transition towards Néel order with broken SU(2)-symmetry and thus circumventing the HMW
theorem [67–71]. Further, Goldstone’s theorem states that the spontaneous breaking of a
continuous symmetry gives rise to massless Nambu-Goldstone modes [83–85], however, the
same restriction applies and the theorem loses its validity in the presence of long-range inter-
actions. Indeed, in the extreme case of an all-to-all coupling the ground-state energy becomes
superextensive and the elementary excitations are gapped via a generalization of the Higgs
mechanism [86].

3 Approach: High-order series expansions with pCUT

Our aim is to investigate the quantum critical breakdown of the rung-singlet phase. To this
end, we extend the pCUT method [87, 88] to long-range Heisenberg interactions and deter-
mine high-order series expansions of relevant energies and observables in the thermodynamic
limit about the limit of isolated rungs. It is then convenient to consider rung dimers as super-
sites and to reformulate the Hamiltonian (1) in terms of hard-core bosonic triplet creation and
annihilation operators on rung dimers.

The pCUT method transforms the original Hamiltonian H, perturbatively order by order
in λ, into an effective Hamiltonian Heff conserving the number of quasiparticles (QPs) which
correspond to spin-one triplon excitations [77] – dressed rung triplets – in the rung-singlet
phase. The same transformation has to be applied to observables, however, the quasiparticle-
conserving property is lost. We can exploit the linked-cluster property [89] and perform the
numerical calculations on finite topologically distinct graphs. In the end, the contributions on
the finite graphs must be embedded on an infinite system to obtain the bulk properties which is
equivalent to evaluating high-dimensional infinite sums that can be efficiently done by Monte
Carlo integration [58].
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Figure 2: Quantum phase diagrams depicting the critical point λc as a function of the
decay exponent σ for Hq (left) and H▷◁ (right). Crosses are determined by DlogPadé
extrapolations of the one-triplon gap series from the pCUT method while dashed lines
are extracted from the self-consistency condition for the staggered magnetization
within linear spin-wave approximation (SWA). Comparing the left with the right plot,
we observe that the Néel ordered phase sets in at smaller λ or larger σ exponents
extending the Néel regime of H▷◁. The hexagon point at λ=∞ for Hq corresponding
to decoupled Heisenberg chains from Ref. [42] as well the star-shaped point along
the λ= 1 line for H▷◁ from Ref. [72] are consistent with our results.

Here, we investigate the zero- and one-triplon properties. The 0QP block of the effective
Hamiltonian corresponds to the ground-state energy Ē0 while the 1QP block allows the calcula-
tion of the one-triplon gap ∆ located at the critical momentum kc = π. Further, we extended
the pCUT approach for long-range interactions [58] to generic observables and determined
the one-triplon spectral weight S1QP(kc). The latter corresponds to the one-triplon part of the
Fourier transformed effective observable after the unitary transformation of the antisymmetric
observable

Oi,z =
1
2
(Sz

i,1 − Sz
i,2) (5)

on a rung dimer. We calculated high-order series of the control-parameter susceptibility

χ ≡ −d2 Ē0
dλ2 up to order 10 (6), the one-triplon gap ∆ up to order 10 (7), and the one-triplon

spectral weight S1QP(kc) up to order 9 (7) in λ for Hq (H▷◁). See Appendix A for details on
the pCUT approach.

The introduced quantities allow the extraction of critical exponents via the dominant
power-law behavior

χ ∼ |λ−λc|−α , (6)

∆∼ |λ−λc|zν , (7)

S1QP(kc)∼ |λ−λc|−(2−z−η)ν , (8)

close to the critical point λc when the rung-singlet phase breaks down. The critical point and
associated critical exponents can be directly determined from physical poles and associated
residuals using (biased) DlogPadé extrapolants. The associated error bars should strictly be
understood as the standard deviation from several extrapolants rather than rigorous errors.
More detailed information on extrapolations can be found in Appendix B.
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Figure 3: Critical exponents from Eqs. (6)-(8) determined by the pCUT approach as a
function of the decay exponentσ for both ladder modelsHq andH▷◁. Forσ ≤ 2/3 the
exponents coincide with the expected long-range mean-field values (shaded region).
For σ > 2/3 they become continuously larger and start to diverge. While the critical
exponent for both models match well for σ ≲ 2.1, they start to deviate from each
other for larger values ofσ but this can probably be attributed to the difference inσ∗.

4 Discussion of results

4.1 Quantum phase diagram

We determine the phase transition point λc as a function of the decay exponent σ by the
quantum-critical breakdown of the rung-singlet phase and the accompanied closing of the one-
triplon gap. The corresponding quantum phase diagram is shown in Fig. 2 for Hq and H▷◁. In
accordance with the HMW theorem, a quantum phase transition can be ruled out from one-
loop renormalization group (RG) for σ > 2 [60], since the one-dimensional O(3) quantum
rotor model can be mapped to the low-energy physics of the dimerized antiferromagnetic
Heisenberg ladder [90]. At small σ ≲ 0.7 (σ ≲ 1.0) for Hq (H▷◁) the critical point λc shifts
linearly towards larger λ with increasing σ. The gap closes earlier for H▷◁ in agreement with
expectations since the additional diagonal interactions further stabilize the antiferromagnetic
Néel order. For larger σ the critical points start to deviate from the linear behavior and bend
upwards towards larger critical points until eventually DlogPadé extrapolations break down
when the critical point shifts away significantly from the radius of convergence of the series.

We complement the pCUT approach with linear spin-wave calculations similar to the ones
in Refs. [41, 42]. Exploiting the fact that spin-wave theory is expected to work only in the
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Néel ordered phase, we can determine the quantum-critical line from a consistency condition
for the staggered magnetization (see also Appendix C). Linear spin-wave theory allows us to
qualitatively determine the extent of the Néel ordered phase in the whole parameter regime.
Indeed, we find for small λ that linear spin-wave theory agrees well with the pCUT findings
and we also observe that the Néel regime extends to smaller λ and larger σ for H▷◁ due to
the additional diagonal interactions. In the limit λ =∞ where the pCUT series expansion
does not provide any meaningful results we locate an upper critical bound σ∗ inline with the
absence of criticality at large enough σ. This upper bound corresponds therefore to the lower
critical dimension. In fact, for Hq at λ =∞ in the limit of decoupled Heisenberg chains we
recover the spin-wave dispersion in Ref. [42] yielding σSW

∗ ≈ 1.46 and for H▷◁ at λ =∞ we
find σSW

∗ ≈ 1.69.
Moreover, all our data is consistent with σ∗ = 1.225(25) at λ =∞ from Ref. [42] for Hq

and with σc ≈ 1.52 at λc = 1 for H▷◁ in Ref. [72] as depicted in Fig. 2. Besides this, the critical
exponents in the long-range mean-field realm discussed below are in very good agreement with
field-theoretical expectations. However, the distinct values for σ∗ from spin-wave calculations
and QMC [42] consistent with the pCUT results for both ladder models are unexpectedly at
significant smaller values than predicted from the one-dimensional long-range O(3) quantum
rotor model with σ∗ = 2 [61,62,91,92].

4.2 Critical exponents

We extract the critical exponents according to Eqs. (6)-(8) from DlogPadé extrapolants of the
perturbative series. The exponents are depicted in Fig. 3 as a function of the decay exponent
σ. The long-range mean-field regime (LRMF) is expected to extend to σuc = 2/3 [60]. The
extracted exponents agree well with expected long-range mean-field exponents, although the
presence of multiplicative logarithmic corrections to the dominant power-law behavior at the
upper critical dimension duc = 3σ/2 negatively affects the accuracy of the deduced critical
exponents around σ = 2/3 as known from the LRTFIM [38, 58]. Estimates for multiplicative
logarithmic critical exponents can be found in Appendix B. Excluding the α-exponent the crit-
ical exponents deviate less than 1.1 % (1.3 %) deep in the long-range regime σ ≤ 0.3 for Hq
(H▷◁). For σ > 2/3 we observe continuously varying exponents which seem to diverge for
σ → σ∗. In terms of the gap closing this can be understood from the nearest-neighbor limit
where the gap does not close but with the increasingly stronger long-range interactions the
finite gap is lowered until eventually the gap closes. Further strengthening the long-range in-
teractions shifts the critical point from infinity to smaller values and thus continuously tuning
the exponent zν from infinity to smaller values as the gap closes increasingly steep. In the
region σ ≳ 1.1 for Hq (σ ≳ 1.2 for H▷◁) close to σ∗ it becomes difficult to extrapolate the gap
series as the critical point starts to shift quickly towards λ =∞. This negatively affects the
accuracy of the exponent estimates.

Using the three critical exponents shown Fig. 3, one can apply the scaling relations

γ= (2−η)ν ,

γ= β(δ− 1) ,

2= α+ 2β + γ ,

(9)

as well as the hyperscaling relation

2−α=
�

d
ϙ
+ z
�

ν , (10)

with the pseudocritical exponent ϙ. The hyperscaling relation was only recently generalized to
be valid above the upper critical dimension [40]. This allows us to directly derive all canonical
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Figure 4: Canonical critical exponents obtained from (hyper-) scaling relations as
a function of the decay exponent σ. The critical exponents are in good agreement
with expectations in the long-range mean-field regime (shaded region) and show
continuously varying exponents for σ > 2/3. While some critical exponents appear
to diverge others seem to go to a constant value for increasingσ. For some exponents
the error bars become larger for σ ≈ σ∗.

critical exponents for any σ (see Appendix D). The canonical critical exponents are depicted
in Fig. 4 for Hq and H▷◁. In the long-range mean-field regime the exponents agree well with
the expectations. The exponents β and 1/δ around the upper critical dimension show larger
deviations which we attribute to error propagation due to the presence of multiplicative loga-
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rithmic corrections. While the critical exponent γ diverges for larger values of σ, the critical
exponent ν approaches a constant value ν≈ 1. The exponent 1/δ goes to −0.125 in this limit
and we attribute this to a systematic error arising from the diverging critical exponents close
to σ∗. Instead, the correct physical limit might be 0 since a sign change of 1/δ is unphysical.
For the exponents β , z, and η the uncertainty in the regime σ ≳ 1.2 becomes large due to
error propagation and it is hard to make precise statements in the vicinity of σ∗. Nonethe-
less, we find that η differs from the linear behavior η = 2 − σ expected by field theory for
σ < σ∗ [61,91,92] going faster to zero (until unphysically negative values are obtained) but
in agreement with our previous finding that σ∗ is smaller than expected by the long-range
O(3) quantum rotor model. Interestingly, also Heisenberg chains with long-range interactions
differ from the field-theoretical expectation η = 2 − σ. However, in Ref. [42] they observe
z < 1 and η≥ 2−σ while we find z > 1 and η≤ 2−σ.

Comparing the above results with Ref. [72] for H▷◁ at λ = 1 we find that the exponent
ν= 1.8 at about σc ≈ 1.5 is inconsistent with our result ν= 0.97(7) for all σ > 1.0 which ap-
pears to be particularly well converged compared to other critical exponents. Furthermore, the
monotonously increasing exponent z > 1 for σ > 1.1 is not in line with a proposed deconfined
critical point with z = 1 at σ ≈ 1.5. Our finding of continuously varying exponents reminis-
cent of the criticality of the unfrustrated LRTFIM [38,58,60–65] raises the question why this
specific point should display deconfined criticality, particularly considering that despite the
presence of a non-local string order parameter the rung singlet-phase of both models Hq and
H▷◁ for all relevant λ is not topologically protected but trivially connected to the product state
of rung singlets [93].

5 Conclusions

We investigated the quantum-critical behavior of two unfrustrated two-leg quantum spin lad-
ders with long-range Heisenberg interactions by applying and extending the pCUT method in
combination with classical Monte Carlo integration that allows us to determine relevant ener-
gies and observables in the thermodynamic limit. From the closing of the one-triplon gap we
determined the phase diagram in the σ−λ plane for both spin ladders. Interestingly, we find
lower critical dimensions σ∗ < 2 unlike σ∗ = 2 from field-theoretical predictions for the one-
dimensional long-range O(3) quantum rotor model, but in agreement with known results [42]
from the isolated chain limit. By generalizing the pCUT approach for long-range systems to
generic observables, we calculated the ground-state energy and the one-triplon spectral weight
so that we were able to extract the full set of critical exponents as a function of the decay expo-
nent using appropriate extrapolation techniques. A non-trivial regime of continuously varying
critical exponents as well as long-range mean-field behavior was observed. From these find-
ings and the fact that the rung-singlet phase is not topologically protected we conclude the
absence of deconfined criticality in the investigated models. However, quantum phase transi-
tions between phases with local order and non-local string order parameters, where the latter
phase is indeed topologically protected, should be investigated in the future as such systems
might realize exotic properties like deconfined criticality. The spin-one Heisenberg chain with
unfrustrated long-range interactions should therefore be very interesting to look at. Our ap-
proach can further be naturally extended to gapped phases of higher-dimensional Heisenberg
systems with long-range interactions, e.g., bilayer geometries. This opens a completely unex-
plored playground for future research.
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A High-order series expansion

In the following, we provide a description of the high-order series expansions approach using
the pCUT method along the same lines as in previous studies on the LRTFIM [39,40, 58,94].
The approach can be generalized to observables which allows us to determine the entire set
of critical exponents.

A.1 The pCUT method

To apply the pCUT method [87,88] it must be possible to describe the problem under consid-
eration with a Hamiltonian of the form

H =H0 +V = E0 +Q+
∞
∑

δ>0

λ(δ)V(δ) , (11)

with an unperturbed Hamiltonian H0 with equidistant spectrum that is bounded from be-
low and a perturbation V . We bring the spin-ladder Hamiltonian into this form by inter-
preting the Hamiltonian as a system of coupled supersites (dimers) and introducing hard-
core bosonic triplet (creation) annihilation operators t(†)i,ρ (creating) annihilating local triplets
with flavor ρ ∈ {x , y, z} on rung i [95, 96]. The unperturbed part becomes H0 = E0 +Q
with E0 = −3/4 Nrung the unperturbed ground-state energy, Nrung the number of rungs, and
Q =
∑

i,ρ t†
i,ρ t i,ρ counting the number of triplet quasiparticles (QPs). For long-range systems

the perturbation V can be written as a sum between interacting processes of distance δ with a
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distance-dependent expansion parameter λ(δ). Also, the perturbation must decompose into

V =
N
∑

m=−N

Tm =
N
∑

m=−N

∑

l

τm,l , (12)

where the operators Tm change the system’s energy by m energy quanta such that
[Q, Tm] = mTm. For the spin ladder Hamiltonian we have m ∈ {0,±2}. The operator Tm
decomposes into a sum of local operators τm,l on a link l connecting different sites of the un-
derlying lattice. When the above prerequisites are fulfilled the pCUT method unitarily trans-
forms the original Hamiltonian, order by order in the perturbation parameter λ, to an effective,
quasiparticle-conserving Hamiltonian Heff reducing the complicated many-body problem to an
easier effective few-body problem. The effective Hamiltonian in a generic form for an arbitrary
number of expansion parameters λi is then given by

Heff =H0 +
∞
∑

∑Nλ
j n j=k

λ
n1
1 . . .λ

nNλ
Nλ

∑

dim(m)=k,
∑

i mi=0

C(m) Tm1
. . . Tmk

, (13)

where the coefficients C(m) are exactly given by rational numbers and the condition
∑

i mi = 0
enforces the quasiparticle conservation [Q,Heff] = 0. Analogously, an effective observable is
given by

Oeff =
∞
∑

∑Nλ
j n j=k

λ
n1
1 . . .λ

nNλ
Nλ

k+1
∑

i=1

∑

dim(m)=k

C̃(m; i) Tm1
. . . Tmi−1

OTmi
. . . Tmk

, (14)

with the rational coefficient C̃(m; i). In contrast to the effective Hamiltonian the effective
observable is not quasiparticle conserving. The effective Hamiltonian and observables are
generally independent of the exact form of the original Hamiltonian as long as the pCUT pre-
requisites are satisfied. To bring Heff and Oeff into normal-ordered form, a model-dependent
extraction process must be applied. For long-range interactions this is done most efficiently by
a full-graph decomposition.

A.2 Graph decomposition

We apply the effective quantities to finite, topologically distinct graphs to bring them into
normal-ordered structure. We refer to this approach as a linked-cluster expansion imple-
mented as a full-graph decomposition. The underlying principle is the linked-cluster theo-
rem which states that only linked processes have an overall contributions to cluster-additive
quantities [89]. Since the effective pCUT Hamiltonian and observables are cluster-additive
quantities we can reformulate Eqs. (13) and (14) as

Heff =H0 +
∞
∑

∑Nλ
j n j=k

λ
n1
1 . . .λ

nNλ
Nλ

∑

dim(m)=k ,
∑

i mi=0

∑

G,
|EG |≤k

C(m)
∑

l1,...,lk ,
⋃k

i=1 li=G

τm1,l1 . . .τmk ,lk , (15)

Oeff =
∞
∑

∑Nλ
j n j=k

λ
n1
1 . . .λ

nNλ
Nλ

k+1
∑

i=1

∑

dim(m)=k

∑

G,
|EG |≤k

C̃(m; i)

×
∑

l1,...,lk ,
⋃k

i=1 li∪x=G

τm1,l1 . . .τmi−1,li−1
Oxτmi ,li . . .τmk ,lk ,

(16)
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where the sum over G runs over all possible simple connected graphs of perturbative order
k ≥ |EG |. A graph G is a tuple (EG ,VG) consisting of an edge or link set EG with |EG | edges and
a set of vertices or sites VG with |VG | vertices. The conditions

⋃k
i=1 li = G and
⋃k

i=1 li ∪ x = G
arising from the linked-cluster theorem ensure that the cluster made up of active links and
sites during a process must match with the edge and vertex set of a simple connected graph
G. Note, we generalized the notation for observables Ox where the index x can either refer
to a site (local observable) or a link (non-local observable). Thus, we can set up a full-graph
decomposition applying the effective quantities to a set of finite, topologically distinct, simple
connected graphs.
In the standard approach one would identify different expansion parameters with link colors
which serve as another topological attribute in the classification of graphs. However, this
approach fails for long-range interactions because every coupling parameter λ(δ) between
sites of distance δ would be associated to a distinct link color and the number of graphs would
already be infinite in first order of perturbation. We can overcome this obstacle by introducing
white graphs [89] where different link colors are ignored in the topological classification of
graphs and instead additional information is tracked during the calculation on white graphs. In
particular, every link on a graph is associated with a distinct expansion parameter λGn yielding
a multivariable polynomial after applying the effective quantities to the graph. Only during
the embedding on the lattice the proper link color is reintroduced by replacing the expansion
parameters of the polynomial by the actual coupling strength for each realization decaying
algebraically with the distance between interacting sites.

A.3 Monte Carlo embedding

Since we describe the ladder system in the language of rung dimers as super sites the graph
contributions from the linked-cluster expansion must be embedded into a one-dimensional
chain to determine the values of physical quantities κ =

∑

m c(κ)m λm as a high-order series in
the thermodynamic limit. Due to the infinite range of the algebraically decaying interactions
every graph can be embedded infinitely many times at any order of perturbation. For each real-
ization of a graph on the infinite chain the generic couplingsλGn in the multivariable polynomial
corresponding to distinct edges is substituted by the true coupling strength λ(−1)δ|δ|−1−σ or
λ(−1)1+δ|1+δ|−1−σ between graph vertices on sites i and i+δ on the chain. For a prefactor
cm in the high-order series only (reduced) contributions from graphs with up to m links and
m+ 1 sites can contribute. See Ref. [89] for remarks about reduced quantities. We can write
explicitly

c(κ)m =
m+1
∑

N=2

∑

a

fN (a) =
m+1
∑

N=2

S[ fN ] , (17)

where the first sum goes over the number of vertices and the second sum over all possible
configurations excluding embeddings with overlapping vertices. The integrand fN combines all
contributions from graphs with the same number of vertices N since the m−1 sums contained
in the sum
∑

a are identical for graphs with the same number of vertices. The integration of
these high-dimensional infinite nested sums S[·] quickly becomes very challenging when the
perturbative order increases. It is essential to use Monte Carlo (MC) integration to evaluate
these sums since MC techniques are known to be well suited for high-dimensional problems.
We take a Markov-chain Monte Carlo approach to sample the configuration space [58]. The
fundamental moves consist of randomly selecting and moving graph vertices on the chain. For
every embedding the integrands fN are evaluated with the correct couplings and added up to
the overall contributions [58].
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A.4 Derivation of physical quantities

After having established the theoretical framework of the pCUT approach, we derive the phys-
ical quantities used in this paper. We start by stating the normal-ordered effective one-triplon
(1QP) Hamiltonian given by

H1QP
eff = Ē0 +
∑

ρ

∑

j,δ≥0

aδ(t
†
j,ρ t j+δ,ρ + h.c.) , (18)

with the ground-state energy Ē0 and the 1QP hopping amplitudes aδ. We determine the
ground-state energy

Ē0 =
∑

m

c(
Ē0)

m λm , (19)

in the thermodynamic limit as a high-order series in the perturbation parameter λ using the
above described procedure where the general white-graph contributions must by embedded
into the infinite chain of dimer supersites using Monte Carlo summation yielding estimates

for c(
Ē0)

m . The control parameter susceptibility can be directly obtained using

χ = −
d2 Ē0

dλ2
. (20)

To get the one-triplon excitation gap as a high-order series, we remember that Eq. (18) can be
diagonalized by transforming into momentum space, yielding

H̃1QP
eff = Ē0 +
∑

k,ρ

ω(k)t†
k,ρ tk,ρ with ω(k) = a0 + 2

∑

δ>0

aδ cos(kδ) , (21)

so the one-triplon gap is given by

∆=min
k
ω(k) =ω(kc) =

∑

m

c(∆)m λm , (22)

with the critical momentum kc = π for antiferromagnetic interactions. Analogously to the
ground-state energy, we determine Monte Carlo estimates for c(∆)m . Last, we introduce the
dynamic structure factor

Sρ,ρ(k,ω) =
1

2πN

∑

i, j

∫ ∞

−∞
dt exp{i[ωt − k( j − i)]}〈Oi,ρ(t)O j,ρ(0)〉 , (23)

with the observable defined as the antisymmetric combination of spin operators

Oi,ρ =
1
2
(Sρi,1 − Sρi,2) =

1
2
(t†

i,ρ + t i,ρ) (24)

of flavor ρ on a rung i. We now follow the steps in Ref. [97]. Integrating out the energy ω,
one can express the structure factor in the effective basis as a sum over spectral weights SnQP

ρ,ρ
with fixed quasi-particle number

Sρ,ρ(k) =
∑

n

SnQP
ρ,ρ (k) . (25)

By changing into the Heisenberg picture we eventually arrive at

S1QP
ρ,ρ (k) =
�

�

�




tk,ρ

�

�O1QP
eff,ρ(k) |ref〉
�

�

�

2
= |s(k)|2 , (26)
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for the one-triplon spectral weight, where |ref〉 =
⊗

i |si〉 is the unperturbed rung-singlet
ground state and

�

�tk,ρ

�

is the one-triplon state with momentum k and flavor ρ. In second
quantization the effective observable restricted to the one-triplon channel can be expressed as

O1QP
eff,ρ(k) = s(k)(t†

k,ρ + tk,ρ) . (27)

Due to the SU(2)-symmetry one has Sx ,x = Sy,y = Sz,z , so we restrict in the following to ρ = z
and calculate S1QP ≡ S1QP

z,z . When we fix k = kc we can obtain a high order series of

s(kc) =
∑

m

c(s(kc))
m λm , (28)

from the Monte Carlo estimates of c(s(kc))
m and determine one-triplon spectral weight simply by

calculating the absolute square.

B DlogPadé extrapolations

To extract the quantum-critical point including critical exponents from the pCUT method even
beyond the radius of convergence of the pure high-order series we use DlogPadé extrapola-
tions. For a detailed description on DlogPadés and its application to critical phenomena we
refer to Refs. [98, 99]. The Padé extrapolant of a physical quantity κ given as a perturbative
series is defined as

P[L, M]κ =
PL(λ)

QM (λ)
=

p0 + p1λ+ · · ·+ pLλ
L

1+ q1λ+ · · ·+ qMλM
, (29)

with pi , qi ∈ R and the degrees L, M of PL(x) and QM (x) with r ≡ L + M , i.e., the Taylor
expansion of Eq. (29) about λ = 0 up to order r must recover the quantity κ up to the same
order. For DlogPadé extrapolants we introduce

D(λ) = d
dλ

ln(κ)≡ P[L, M]D , (30)

the Padé extrapolant of the logarithmic derivative D with r − 1 = L +M . Thus the DlogPadé
extrapolant of κ is given by

dP[L, M]κ = exp

�

∫ λ

0

P[L, M]D dλ′
�

. (31)

Given a dominant power-law behavior κ∼ |λ−λc|−θ , an estimate for the critical point λc can
be determined by excluding spurious extrapolants and analyzing the physical pole of P[L, M]D.
If λc is known, we can define biased DlogPadés by the Padé extrapolant

θ ∗ = (λc −λ)
d

dλ
ln(κ)≡ P[L, M]θ ∗ . (32)

In the unbiased as well as the biased case we can extract estimates for the critical exponent θ
by calculating the residua

θunbiased = Res P[L, M]D|λ=λc
,

θbiased = Res P[L, M]θ ∗ |λ=λc
.

(33)

At the upper critical dimensionσ = 2/3 multiplicative logarithmic corrections to the dominant
power law behavior

κ∼ |λ−λc|
−θ (ln (λ−λc))

pθ , (34)
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Table 1: Multiplicative logarithmic corrections pθ at the upper critical dimension
σuc = 2/3 associated to the ground-state energy pα, the 1QP excitation gap pzν, and
the 1QP spectral weight p(2−z−η)ν. Expected values from field-theoretical considera-
tion are read of from Refs. [100,101].

Multiplicative correction

pα pzν p(2−z−η)ν

Field-theoretical predictions 1
11 ≈ 0.091 − 5

22 ≈ −0.227 ?

Hq 0.453(6) -0.309(13) 3.94(11)

H▷◁ 0.533(16) -0.374(19) 3.77(12)

in the vicinity of the quantum-critical point λc are present. By biasing the critical point λc and
the exponent θ to its mean-field value, we define

p∗θ = − ln(1−λ/λc)[(λc −λ)D(λ)− θ]≡ P[L, M]p∗
θ

, (35)

such that we can determine an estimate for pθ by again calculating the residuum of the Padé ex-
trapolants P[L, M]p∗

θ
. Note, for all quantities we calculate a large set of DlogPadé extrapolants

with L +M = r ′ ≤ r, exclude defective extrapolants, and arrange the remaining DlogPadés in
families with L −M = const. Although individual extrapolations deviate from each other, the
quality of the extrapolations increases with the order of perturbation as members of different
families but mutual order r ′ converge. To systematically analyze the quantum-critical regime,
we take the mean of the highest order extrapolants of different families with more than one
member. Here, we use DlogPadé extrapolation for the gap series to determine the critical point
λc and the critical exponent zν. We then apply biased DlogPadé extrapolation with λc from
the one-tripolon gap to obtain estimates for α and 2− z −η via the series of the susceptibility
and the one-triplon spectral weight.

Multiplicative logarithmic exponents to the power law scaling for both ladder models Hq
and H▷◁ can be found in Table 1. We find estimates in the correct order of magnitude for pα
and pzν with better estimates for the logarithmic correction exponent of the gap. For p(2−z−η)
there are no field-theoretical predictions directly available. Note, it is extremely challenging to
accurately extract logarithmic corrections since the extracted values are very sensitive on the
position of the critical point and DlogPadés are known to overestimate the critical value [39].

C Linear spin-wave calculations

We supplement the critical behavior determined by the pCUT approach with critical points
from linear spin-wave approximation. As spin-wave theory considers fluctuations about the
classical ground state it is certainly valid in the Néel-ordered phase of the long-range Heisen-
berg ladders. We start by mapping the spin operators to boson creation and annihilation opera-
tors using the Holstein-Primakoff transformation up to linear order in the boson operators. For
the antiferromagnetic Heisenberg spin ladder the system must be divided into two sublattices
constituting the expected antiferromagnetic Néel order for strong long-range interactions. The
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transformation thus reads

Sz
i,1 = S − a†

i,1ai,1 , S−i,1 ≈
p

2Sa†
i,1 , S+i,1 ≈

p
2Sai,1 ,

Sz
i,2 = b†

i,2 bi,2 − S , S−i,2 ≈
p

2Sbi,2 , S+i,2 ≈
p

2Sb†
i,2 ,

Sz
j,1 = b†

j,1 b j,1 − S , S−j,1 ≈
p

2Sb j,1 , S+j,1 ≈
p

2Sb†
j,1 ,

Sz
j,2 = S − a†

j,2a j,2 , S−j,2 ≈
p

2Sa†
j,2 , S+j,2 ≈

p
2Sa j,2 ,

(36)

with i odd and j even rungs. Inserting these identities into the Hamiltonian Hq, neglecting
quartic terms and Fourier transforming the problem, we arrive at

HSW
q ≈ const.+ S

∑

k

¦∑

ν

�

(γ− f (k))
�

a†
k,νak,ν + b†

−k,νb−k,ν

�

+ g(k)
�

ak,νb−k,ν + a†
k,νb†
−k,ν

��

+ ak,1 b−k,2 + ak,2 b−k,1 + a†
k,1 b†
−k,2 + a†

k,2 b†
−k,1

©

.

(37)

Incorporating the long-range couplings for an infinite chain into the prefactors we can define
the quantities

γ= 1+ 2λ
∞
∑

δ=1

1
(2δ− 1)1+σ

,

f (k) = 2λ
∞
∑

δ=1

cos(2kδ)− 1
(2δ)1+σ

,

g(k) = 2λ
∞
∑

δ=1

cos [(2δ− 1)k]
(2δ− 1)1+σ

.

(38)

This Hamiltonian is quadratic in creation and annihilation operators in quasimomenta and we
intend to diagonalize the problem employing a Bogoliubov-Valatin transformation. Following
Ref. [102], we introduce the operator

ψ⃗†
k =
�

c⃗†
k c⃗T

k

�

=
�

a†
k,1 b†

−k,1 a†
k,2 b†

−k,2 ak,1 b−k,1 ak,2 b−k,2

�

. (39)

We use this operator to bring the spin-wave Hamiltonian into canonical quadratic form

HSW
q =
∑

k

�

1
2
ψ⃗†

�

Ak Bk
B†

k AT
k

�

︸ ︷︷ ︸

≡Mk

ψ⃗ −
1
2

tr Ak

�

, (40)

where Ak and Mk are Hermitian matrices and Bk is a symmetric matrix. To solve the diag-
onalization problem we must find a transformation ψ⃗k = T ϕ⃗k that brings Mk into diagonal
form and preserves the bosonic anticommutation relations of ψ⃗k. Xiao [102] proofs that the
problem can be reformulated in terms of the eigenvalue problem of the dynamic matrix

Dk =

�

Ak Bk
−B†

k −AT
k

�

, (41)

arising from the Heisenberg equation of motion and that the transformation matrix T can
be constructed using appropriately normalized eigenvectors. A physical solution to the prob-
lem exists if and only if the dynamical matrix is diagonalizable and the eigenvalues are real.
Employing this scheme we find

HSW
q = const.+ S

∑

k,ν

�

ω+(k)α
†
k,ναk,ν +ω−(k)β

†
k,νβk,ν

�

, (42)
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in terms of the new boson creation and annihilation operators α(†)k,ν and β (†)k,ν and the spin-wave
dispersion

ω±(k) =
q

(γ− f (k))2 − (g(k)± 1)2 . (43)

In the limit λ→∞we recover the spin-wave dispersion in Ref. [41] for the long-range Heisen-
berg spin chain. The staggered magnetization deep in the antiferromagnetic regime can be
expressed as m = S −∆m where ∆m is the correction induced by quantum fluctuations. We
start with the expression

∆m=
2
∑

ν=1

〈a†
j,νa j,ν〉

N→∞
=

1
π

2
∑

ν

∫ π/2

−π/2
dk〈a†

k,νak,ν〉 , (44)

and rewriting it in terms of the boson operators α(†)k,ν and β (†)k,ν we find

∆m=
1
π

∫ π/2

−π/2
dk
�

1
2

�

γ− f (k)
ω+(k)

+
γ− f (k)
ω−(k)

�

− 1
�

. (45)

Introducing the linear Holstein-Primakoff transformation for the Hamiltonian H▷◁ including
diagonal long-range interactions the linear spin-wave Hamiltonian reads

HSW
▷◁ = const.+ S

∑

k

¦∑

ν

�

(Γ − f (k))
�

a†
k,νak,ν + b†

−k,νb−k,ν

�

+ g(k)
�

ak,νb−k,ν + a†
k,νb†
−k,ν

��

+ v(k)
�

ak,1 b−k,2 + ak,2 b−k,1 + a†
k,1 b†
−k,2 + a†

k,2 b†
−k,1

�

+w(k)
�

a†
k,1ak,2 + a†

k,2ak,1 + b†
−k,1 b−k,2 + b†

−k,2 b−k,1

�©

,

(46)

where we introduced multiple prefactors defined as κ= κ1 +κ2, Γ = γ+κ and as

κ1 = 2λ
∞
∑

δ=1

1

((2δ)2 + 1)
1+σ

2

,

κ2 = 2λ
∞
∑

δ=1

1

((2δ− 1)2 + 1)
1+σ

2

,

v(k) = 1+ 2λ
∞
∑

δ=1

cos(2δk)

((2δ)2 + 1)
1+σ

2

,

w(k) = 2λ
∞
∑

δ=1

cos [(2δ− 1)k]

((2δ− 1)2 + 1)
1+σ

2

.

(47)

Again employing the same Bogoliubov-Valatin transformation we can derive the spin-wave
dispersion

ω±(k) =
q

[Γ − ( f (k)±w(k))]2 − [g(k)± v(k)]2 , (48)

and the corrections to the staggered magnetization

∆m=
1
π

∫ π/2

−π/2
dk
�

1
2

�

Γ − f (k)−w(k)
ω+(k)

+
Γ − f (k) +w(k)

ω−(k)

�

− 1
�

. (49)

For both Hamiltonians Hq and H▷◁ we evaluate the integrals ∆m numerically and use the
consistency condition ∆m < S in the antiferromagnetic regime to approximate the quantum
phase transition line.
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D (Hyper-) scaling relations

In renormalization group (RG) theory the generalized homogeneity of the free energy density
is exploited [103]. Connecting the critical exponents of observables with the derivatives of the
free energy density and exploiting the homogeneity properties, the (hyper-) scaling relations

γ= (2−η)ν , (Fisher equality) (50)

γ= β(δ− 1) , (Widom equality) (51)

2= α+ 2β + γ , (Essam-Fisher equality) (52)

2−α= (d + z)ν for d ≤ duc , (Hyperscaling relation) (53)

can be derived. However, the hyperscaling relation breaks down above the upper critical
dimension due to dangerous irrelevant variables in the free energy sector since these variables
cannot be set to zero as the free energy density becomes singular in this limit [104, 105].
Allowing the correlation sector to be affected by dangerous irrelevant variables for quantum
systems in analogy to previous works in classical systems [106,107] the hyperscaling relation
can be generalized to

2−α=
�

d
ϙ
+ z
�

ν , (54)

with the pseudocritical exponent ϙ=max (1, d/duc) [40]. As the one-dimensional O(3) quan-
tum rotor model can be mapped to the low-energy properties of the dimerized antiferromag-
netic Heisenberg ladder [90] we can use the long-range mean-field critical exponents

γ= 1 , ν=
1
σ

, z =
σ

2
, η= 2−σ , (55)

derived from one-loop RG [60] for the long-range O(3) quantum rotor model at the upper
critical dimension and insert them into Eq. (52). We find duc(σ) = 3σ/2. It directly follows
that d > duc in the regime σ < 2/3. Thus, we can rewrite

ϙ=max
�

1,
2

3σ

�

=

¨

1 , for σ ≥ 2/3 ,
2

3σ , for σ < 2/3 ,
(56)

which together with Eq. (54) is the generalized hyperscaling relation as derived in Ref. [40].

References

[1] D. Bitko, T. F. Rosenbaum and G. Aeppli, Quantum critical behavior for a model magnet,
Phys. Rev. Lett. 77, 940 (1996), doi:10.1103/PhysRevLett.77.940.

[2] P. B. Chakraborty, P. Henelius, H. Kjønsberg, A. W. Sandvik and S. M. Girvin, The-
ory of the magnetic phase diagram of LiHoF4, Phys. Rev. B 70, 144411 (2004),
doi:10.1103/PhysRevB.70.144411.

[3] S. T. Bramwell and M. J. P. Gingras, Spin ice state in frustrated magnetic pyrochlore ma-
terials, Science 294, 1495 (2001), doi:10.1126/science.1064761.

[4] C. Castelnovo, R. Moessner and S. L. Sondhi, Magnetic monopoles in spin ice, Nature
451, 42 (2008), doi:10.1038/nature06433.

[5] R. Islam et al., Onset of a quantum phase transition with a trapped ion quantum simulator,
Nat. Commun. 2, 377 (2011), doi:10.1038/ncomms1374.

18

https://scipost.org
https://scipost.org/SciPostPhys.15.3.087
https://doi.org/10.1103/PhysRevLett.77.940
https://doi.org/10.1103/PhysRevB.70.144411
https://doi.org/10.1126/science.1064761
https://doi.org/10.1038/nature06433
https://doi.org/10.1038/ncomms1374


SciPost Phys. 15, 087 (2023)

[6] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys,
M. J. Biercuk and J. J. Bollinger, Engineered two-dimensional Ising interactions in
a trapped-ion quantum simulator with hundreds of spins, Nature 484, 489 (2012),
doi:10.1038/nature10981.

[7] R. Islam et al., Emergence and frustration of magnetism with variable-range interactions
in a quantum simulator, Science 340, 583 (2013), doi:10.1126/science.1232296.

[8] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt and C. F. Roos, Quasipar-
ticle engineering and entanglement propagation in a quantum many-body system, Nature
511, 202 (2014), doi:10.1038/nature13461.

[9] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A. V.
Gorshkov and C. Monroe, Non-local propagation of correlations in quantum systems with
long-range interactions, Nature 511, 198 (2014), doi:10.1038/nature13450.

[10] M. Mielenz et al., Arrays of individually controlled ions suitable for two-dimensional quan-
tum simulations, Nat. Commun. 7, ncomms11839 (2016), doi:10.1038/ncomms11839.

[11] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M. Rey, M. Foss-Feig and J. J.
Bollinger, Quantum spin dynamics and entanglement generation with hundreds of trapped
ions, Science 352, 1297 (2016), doi:10.1126/science.aad9958.

[12] P. Jurcevic et al., Direct observation of dynamical quantum phase transitions
in an interacting many-body system, Phys. Rev. Lett. 119, 080501 (2017),
doi:10.1103/PhysRevLett.119.080501.

[13] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov,
Z.-X. Gong and C. Monroe, Observation of a many-body dynamical phase transition with
a 53-qubit quantum simulator, Nature 551, 601 (2017), doi:10.1038/nature24654.
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