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Abstract

Quantum kinetically constrained models have recently attracted significant attention due
to their anomalous dynamics and thermalization. In this work, we introduce a hitherto
unexplored family of kinetically constrained models featuring conserved particle num-
ber and strong inversion-symmetry breaking due to facilitated hopping. We demonstrate
that these models provide a generic example of so-called quantum Hilbert space frag-
mentation, that is manifested in disconnected sectors in the Hilbert space that are not
apparent in the computational basis. Quantum Hilbert space fragmentation leads to an
exponential in system size number of eigenstates with exactly zero entanglement en-
tropy across several bipartite cuts. These eigenstates can be probed dynamically using
quenches from simple initial product states. In addition, we study the particle spread-
ing under unitary dynamics launched from the domain wall state, and find faster than
diffusive dynamics at high particle densities, that crosses over into logarithmically slow
relaxation at smaller densities. Using a classically simulable cellular automaton, we
reproduce the logarithmic dynamics observed in the quantum case. Our work suggests
that particle conserving constrained models with inversion symmetry breaking realize so
far unexplored dynamical behavior and invite their further theoretical and experimental
studies.
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1 Introduction

In recent years, kinetically constrained models, originally introduced to describe classical
glasses [1–3], have received considerable attention in the context of non-equilibrium quan-
tum dynamics [4–8]. In analogy with their classical counterparts, they are characterized by
unusual dynamical properties, including slow transport [7, 9–13], localization [14–16] and
fractonic excitations [17, 18]. Additionally, in the quantum realm, other interesting phenom-
ena have been observed, such as Hilbert space fragmentation [15,19–25] and quantum many-
body scars [26–30].

Among the many possible types of constraints, one can distinguish models that are in-
version symmetric from those that break inversion symmetry. Among the latter models, the
so-called quantum East model [8,14,31–34] where spin dynamics of a given site is facilitated
by the presence of a particular spin configuration on the left represents one of the most studied
examples. The quantum East model has been shown to host a localization-delocalization tran-
sition in its ground state [14], which allows the approximate construction of excited eigen-
states in matrix product state form. Transport in particle-conserving analogues of the East
model was recently investigated through the analysis of the dynamics of infinite-temperature
correlations, revealing subdiffusive behavior. A similar result has also been observed in spin-1
projector Hamiltonians [35].

The interplay of particle conservation and kinetic constraints that break inversion symme-
try opens several interesting avenues for further research. First, the phenomenon of so-called
Hilbert space fragmentation that is known to occur in constrained models and is character-
ized by the emergence of exponentially many disconnected subsectors of the Hilbert space is
expected to be modified. The additional U(1) symmetry is expected to influence Hilbert space
fragmentation beyond the picture presented in previously studied models [8,14,31]. Second,
the presence of a conserved charge allows the study of transport [7, 12, 13]. While transport
without restriction to a particular sector of fragmented Hilbert space results in slow subdif-
fusive dynamics [7, 12], a recent work [36] demonstrated that a restriction to a particular
sector of fragmented Hilbert space can give rise to superdiffusion. This motivates the study of
transport in the particle conserving East model restricted to a particular sector of the Hilbert
space.
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In this work, we investigate a generalized East model, consisting of hard-core bosons with
constrained hopping. The constraint prevents hopping in the absence of bosons on a few pre-
ceding sites to the left. The chiral nature of such facilitated hopping strongly breaks inversion
symmetry, akin to the conventional East model, additionally featuring the conservation of the
total number of bosons. Our results show that combining charge conservation and the breaking
of inversion symmetry yields new interesting transport phenomena. Specifically, we charac-
terize the proposed generalized East model using its eigenstate properties and dynamics. The
detailed study of the eigenstates reveals so-called quantum Hilbert space fragmentation, so far
reported only in a few other models [24,37]. The quantum fragmentation we observe in our
model leads to the existence of eigenstates that have zero entanglement along one or several
bipartite cuts. The number of these low entanglement eigenstates increases exponentially with
system size. We find that these unusual eigenstates can be constructed recursively, relying on
special eigenstates existing in small chains that are determined analytically.

The study of dynamics of the particle-conserving East model reveals that weakly entangled
eigenstates existing in the spectrum can be probed by quenches from simple product states. In
addition, the dynamics from a domain wall initial state reveals two distinct transport regimes.
At short times dynamics is superdiffusive, whereas at longer times the constraint leads to a
logarithmically slow spreading. We recover the logarithmically slow dynamics within a clas-
sically simulable cellular automaton that has the same features as the Hamiltonian model. In
contrast, the early time dynamical exponent differs between the quantum Hamiltonian dy-
namics and the cellular automaton. Additionally, the transport properties show signatures of
dependence on the density of particles in the leftmost part of the chain of the initial state.
These unusual results call for a more detailed exploration and better understanding of the
reported superdiffusive dynamics and its stability in the thermodynamic limit. This invites the
systematic study of such models using large scale numerical methods and development of a
hydrodynamic description of transport in such systems.

The remainder of the paper is organized as follows. In Section 2 we introduce the Hamil-
tonian of the particle-conserving East model and explain the effect of the constraint. We then
investigate the nature of the Hilbert space fragmentation and of the eigenstates in Section 3.
In Section 4 we investigate the dynamical properties of the system, showing similarities in the
long-time behavior among the quantum dynamics and the classical cellular automaton. Fi-
nally, in Section 5, we conclude by presenting a summary of our work and proposing possible
future directions.

2 Family of particle-conserving East models

We introduce a family of particle conserving Hamiltonians inspired by the kinetically con-
strained East model in one dimension. The East model, studied both in the classical [1, 34]
and quantum [14,31,33] cases, features a constraint that strongly violates inversion symmetry:
a given spin is able to flip only if its left neighbor is in the up (↑) state. A natural implementa-
tion of such a constrained kinematic term in the particle-conserving case is a hopping process
facilitated by the presence of other particles on the left. The simplest example of such a model
is provided by the following Hamiltonian operating on a chain of hard-core bosons,

Ĥr=1 =
L−1
∑

i=2

n̂i−1

�

ĉ†
i ĉi+1 + ĉ†

i+1 ĉi

�

, (1)

where the operator n̂i = ĉ†
i ĉi is the projector onto the occupied state of site i. We assume

open boundary conditions here and throughout this work, and typically initialize, without loss
of generality, the first site as being occupied by a frozen particle. All sites to the left of the
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Figure 1: Illustration of constrained hopping in the range-2 particle conserving East
model.

leftmost particle, in fact, cannot be occupied, hence they are not relevant to the behavior of
the system.

The Hamiltonian (1) implements hopping facilitated by the nearest neighbor particle on
the left, hence we refer to it as the range-1, r = 1, particle conserving East model. A natural
extension of this model would be hopping facilitated by the nearest or next nearest neighbor,
which reads:

Ĥ2 =
L−1
∑

i=2

(n̂i−2 + n̂i−1 − n̂i−2n̂i−1)
�

ĉ†
i ĉi+1 +H.c.
�

, (2)

where we treat the operator n̂i=0 = 0 as being identically zero. Note, that in this Hamiltonian
we use the same hopping strength irrespective if the facilitating particle is located on the near-
est neighbor or next nearest neighbor site, however this condition may be relaxed. Examples
of range-1, Ĥ1, and range-2, Ĥ2, particle conserving East models can be further generalized
to arbitrary range r as

Ĥr =
L−1
∑

i=r+1

K̂i,r

�

ĉ†
i+1 ĉi +H.c.
�

, (3)

K̂i,r =
r
∑

ℓ=1

tℓP̂i,ℓ , (4)

where the operator K̂i,r implements a range-r constraint using projectors on the configurations

with n̂i−ℓ = 1 and the region [i−ℓ+1, i−1] empty, P̂i,ℓ = n̂i−ℓ
∏i−1

j=i−ℓ+1(1−n̂ j). The coefficients
tℓ correspond to the amplitude of the hopping facilitated by the particle located ℓ-sites on the
left. The Hamiltonian Ĥ2 in Eq. (2) corresponds to the particular case when all tℓ = 1.

Models with similar facilitated hopping terms were considered in the literature earlier.
In particular a pair hopping • • ◦ ↔ ◦ • • was introduced in [38] and later used in [39] to
probe many-body mobility edges, and shown to be integrable in Ref. [25]. In [40] a similar
constrained hopping term was shown to arise from the Jordan-Wigner transformation of a
next nearest neighbor XY spin chain. Another constrained model recently studied is the so-
called folded XXZ [16, 21], where the ∆ →∞ limit of the XXZ chain is considered, leading
to integrable dynamics [22, 23]. The key difference in our work, compared to the previous
literature, consists of having a chiral kinetic term, whereas in the mentioned works symmetric
constraints are considered.

Hamiltonians Ĥr for all values of r feature U(1) symmetry related to the conservation of
total boson number, justifying the name of particle-conserving East models. In this work we
mostly focus on the case of r = 2 with homogeneous hopping parameters tℓ = 1, as written in
Eq. (2). We discuss the generality of our results with respect to the choice of hopping strengths
and range of constraint in Appendices D and F. A major feature of this family of models is
Hilbert space fragmentation, which is known to affect spectral and dynamical properties. As
such we begin our investigation by looking into the nature of Hilbert space fragmentation in
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these models in Section 3, where we highlight the generality of our results, by formulating
them for a general range r and show examples for r = 2.

3 Hilbert space fragmentation and eigenstates

In this Section we focus on the phenomenon of Hilbert space fragmentation in the particle-
conserving East models introduced above. First, we discuss the block structure of the Hamilto-
nian in the product state basis — known as classical Hilbert space fragmentation — and define
the largest connected component of the Hilbert space. Next, in Sec. 3.2 we discuss the emer-
gence of disconnected components of the Hilbert space that are not manifest in the product
state basis, leading to quantum Hilbert space fragmentation.

3.1 Classical Hilbert space fragmentation

Due to the U(1) symmetry of the Hamiltonian (3), the global Hilbert space is divided in blocks
labeled by the different number of bosons Np with dimension given by the binomial coefficient
C L

Np
. Within each given sector of total particle number Np, the constrained hopping causes

further fragmentation of the Hilbert space in extensively many subspaces. First, the leftmost
boson in the system is always frozen. Hence, as we discussed in Section 2, we choose the first
site to be always occupied, which may be viewed as a boundary condition. In addition, a boson
may also be frozen if the number of particles to its left is too small. An example configuration
is given by the product state | • ◦ ◦ ◦ • • ◦ ◦〉 for the r = 2 model, where ◦ corresponds to an
empty site and • is a site occupied by one boson. Here the second boson cannot move since
the previous two sites are empty and cannot be occupied.

In view of this additional fragmentation, we focus on the largest classically connected
sector of the Hilbert space with a fixed number of particles, Np. This sector can be constructed
starting from a particular initial state |DW〉, where all particles are located at the left boundary,

|DW〉= | • • • · · · •
︸ ︷︷ ︸

Np

◦ ◦ ◦ · · · ◦
︸ ︷︷ ︸

L−Np

〉 . (5)

Starting from this initial state the constraint will limit the spreading of particles, that can reach
at most

L∗r(Np) = (r + 1)Np − r (6)

sites, corresponding to the most diluted state, | • ◦ ◦ • ◦ ◦ • ◦ ◦ • . . .〉 for r = 2. Thus, in what
follows we use the system size L = L∗r uniquely defined by the number of particles and the
range of the constraint in Eq. (6).

The fragmentation of the Hilbert space discussed above may be attributed to a set of emer-
gent conserved quantities in the model in addition to the total particle number, N̂tot =

∑

i n̂i .
The first class of conserved operators responsible for the freezing of the leftmost particle is
written as

N̂ℓ0
= ℓ0





∏

i<ℓ0

(1− n̂i)



 n̂ℓ0
. (7)

Since projectors in this operator are complementary to the projectors in the Hamiltonian, this
satisfies the property N̂ℓ0

Ĥr = Ĥr N̂ℓ0
= 0, hence trivially having a zero commutator. This

conservation law induces further fragmentation of the Hilbert space into L−Np sectors labeled
by the position of the leftmost boson.

The second class of operators yields a further fragmentation within each sector with a
fixed position of the leftmost particle. Bearing in mind that the leftmost compact cluster of

5

https://scipost.org
https://scipost.org/SciPostPhys.15.3.093


SciPost Phys. 15, 093 (2023)

Ñ particles cannot expand farther than L̃ = L∗r(Ñ), one can realize that if r + 1 sites or more
are left empty to the right of L̃ then the chain is dynamically separated into two independent
regions. The Ñ particles on the left cannot spread to the right side i ≥ L̃ + r as well as the
leftmost particle on the right cannot move to the left as the constraint is never fulfilled. The
simplest example of such a configuration is given by | • ◦ ◦ • ◦ ◦ ◦ • . . . 〉 for r = 2, Ñ = 2 and
L̃ = 4. Crucially, the position j̃ > L̃ + r of the first occupied site on the right can be chosen
arbitrarily, as long as it satisfies the global constraints of the system. Formally, then, one can
define a family of conserved quantities given by the projector P̂Ñ on configurations with Ñ
particles in the leftmost L̃ sites followed by a sufficiently large empty region, and, finally, an
occupied site j̃

Ô j̃
Ñ
= P̂Ñ ,ĩ





j̃−1
∏

k= L̃+1

(1− n̂k)



 n̂ j̃ . (8)

The freedom in the choice of j̃ yields r(Np − Ñ −1) different sectors for a fixed Ñ . Hence, the
number of fragmented sectors is given by

Np−1
∑

Ñ=1

r(Np − Ñ − 1) =
�

1
2
(N2

p − 3Np) + 1
�

∝ N2
p . (9)

We notice that additional levels of fragmentation can emerge whenever the right part can be
further decomposed in a similar way to the one discussed above. This corresponds to compos-

ing two different Ô j̃
Ñ

where the second is shifted by j̃ sites. Every time that happens, additional

subsectors appear for some of the sectors identified by the operator Ô j̃
Ñ

. As the number of ad-
ditional levels of fragmentation increases proportionally to Np, each adding subsectors to the
previous level, one finally obtains that the asymptotic behavior of the global number of classi-
cally fragmented subsectors has to be O(exp(Np)). The exponential increase of the number of
disconnected subsectors was verified numerically, thus properly identifying a case of Hilbert
space fragmentation. Finally, we note that in our case, the operators defined in Eq. (8) do not
commute with each of the individual terms of the Hamiltonian, as in the definition of Ref. [37].
Nevertheless, they define an algebra of conserved quantities whose size grows exponentially
with system size.

3.2 Quantum Hilbert space fragmentation

Due to the fragmentation of the Hilbert space in the computational basis discussed above,
we focus on the largest sector of the Hilbert space as defined in the previous section. In
Appendix A we show that the statistic of the level spacing for the Hamiltonian Ĥ2 within this
block follows the Wigner-Dyson surmise, confirming that we resolved all symmetries of this
model and naïvely suggesting an overall thermalizing (chaotic) character of eigenstates [41].

To further check the character of eigenstates, we consider their entanglement entropy. We
divide the system into two parts, A containing sites 1, . . . , i, A = [1, i] and its complement
denoted as B = [i+1, L]. The entanglement entropy of the eigenstate |Eα〉 for such bipartition
is obtained as the von Neumann entropy of the reduced density matrix ρi = trB |Eα〉〈Eα|

Si = − tr
�

ρi lnρi

�

. (10)

In thermal systems entanglement of highly excited eigenstates is expected to follow volume
law scaling, increasing linearly with i for i ≪ L, and reaching maximal value for i = L/2.
However, our numerical study of the entanglement entropy shows strong deviations from these
expectations, in particular revealing a significant number of eigenstates with extremely low,
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Figure 2: Entanglement entropy of eigenstates along the bipartite cut at the site 8 for
Np = 8 and L = 22. The color intensity corresponds to the density of dots, revealing
that the majority of the eigenstates have nearly thermal entanglement. However, a
large number of eigenstates has entanglement much lower than the thermal value.
Among these, the red crosses correspond to entanglement being zero up to numerical
precision (inset).

and even exactly zero, entanglement, a feature typical of quantum many-body scars [26–28,
42–48].

Figure 2 illustrates such anomalous behavior of eigenstate entanglement for a chain of
L = 22 sites. For the bipartite cut shown, A= [1,8], most of the eigenstates have increasing
entanglement as their energy approaches zero, where the density of states is maximal, in
agreement with thermalization. Nevertheless, a significant number of eigenstates features
much lower values of entanglement, and the red box and inset in Fig. 2 highlight the presence
of eigenstates with zero entanglement (up to numerical precision). We explain this as a result
of an additional fragmentation of the Hilbert space caused by the interplay of the constraint
and boson number conservation.

Eigenstates with zero entanglement, denoted as |ES=0〉, are separable and can be written
as a product state of the wave function in the region A and in its complement B. To this end,
we choose the wave function |ψℓm〉 of the separable state |ES=0〉 in the region A as an eigenstate
of the Hamiltonian Ĥr restricted to the Hilbert space of m particles in ℓ sites. The state |ψℓm〉
has to satisfy the additional condition 〈ψℓm|n̂ℓ|ψ

ℓ
m〉 = 0, i.e. that the last site of the region is

empty. Provided such state exists, we construct the separable eigenstate |ES=0〉 as

|ES=0〉= |ψℓm〉 ⊗ | ◦ ◦ · · · ◦〉
︸ ︷︷ ︸

q

⊗|ψR〉 , (11)

where |ψR〉 is an eigenstate of the Hamiltonian restricted to L−ℓ−q sites and Np−m particles.
Inserting an empty region of q ≥ r sites separating the support of |ψℓm〉 and |ψR〉 ensures that
the two states are disconnected. Note that q is upper bounded by the requirement that the
resulting state belongs to the largest classically fragmented sector. It is easy to check that the
state |ES=0〉 is an eigenstate of the full Hamiltonian. Indeed, thanks to the empty region q the
particles in A cannot influence those in B and the two eigenstates of the restricted Hamiltonian
combine into an eigenstate of the full system.

Similarly to the case of classical fragmentation discussed in Eq. (8), one can define a family
of operators that commute with the Hamiltonian and label the different sectors arising due to
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quantum fragmentation

Ôq
ψℓm
= P̂ψℓm





ℓ+q+1
∏

k=ℓ+1

(1− n̂k)



 n̂ℓ+q+2 , (12)

where P̂ψℓm is the projector onto the eigenstate of the restricted Hamiltonian |ψℓm〉.
The construction of |ES=0〉 relies on the existence of eigenstates |ψℓm〉 with vanishing den-

sity on the last site. This is a non-trivial requirement that a priory is not expected to be satisfied.
However, we observe that such eigenstates can be found within the degenerate subspace of
eigenstates with zero energy, see Appendix C. If |ψℓm〉 is an eigenstate with zero energy, the en-
ergy of eigenstate |ES=0〉 is determined only by the energy of the |ψR〉. The existence of |ψℓm〉
relies on two conditions which have to hold simultaneously: ℓ > m+ r and (r + 1)m− r ≥ ℓ.
These are satisfied only for m ≥ 3 particles, thus resulting in a minimal size of the left region
ℓmin = 6 for r = 2. While there is no guarantee that states |ψℓm〉 exist for generic (m,ℓ), we
have an explicit analytic construction for the smallest state |ψ6

3〉 for (m,ℓ) = (3,6)

|ψ6
3〉=

1
p

2

�

| • • ◦ ◦ • ◦〉 − | • ◦ • • ◦ ◦〉
�

, (13)

similarly we report solutions up to (m,ℓ) = (7,18) in Appendix C. Furthermore, for each (m,ℓ)
satisfying the condition, one can easily verify that stacking multiple |ψℓm〉 separated by at least r
empty sites generates another state fulfilling the same condition. This recursive construction of
the left states in Eq. (11), together with the explicit example Eq. (13), guarantees the existence
of an infinite number of |ψℓm〉, in the thermodynamic limit. We further notice that a similar
decomposition can be applied to the right eigenstates, |ψR〉 in a recursive fashion.

The construction of the eigenstates described above suggests that combining two operators
Ôψℓm , one shifted by ℓ+q sites, yields a new operator commuting with the full Hamiltonian and

labeling a different fragmented subsector. Since there exist at least two different |ψℓm〉, one can
combine them in various ways always obtaining new sectors. Due to this property, the size of
the algebra of operators Ôψℓm scales as the total number of such combinations, which increases
exponentially with system size in the thermodynamic limit. We observe that the operators de-
fined in Eq. (12) do not commute with each individual term of the Hamiltonian, as required by
the definition of Ref. [37]. However, they still give rise to a block-diagonal Hamiltonian in the
entangled basis resulting from the product of the eigenestates of the restricted Hamiltonian on
the left with product states on the remainder of the system, thus presenting a genuine case of
quantum Hilbert space fragmentation. The recursive nature of the construction of constrained
eigenstates might indicate the existence of a more general structure, possibly common to mod-
els featuring both particle conservation and chiral constraints. Hence, the formal definition of
such recursive Hilbert space fragmentation presents an interesting direction for future work.

Let us explore the consequence of the existence of the special eigenstates defined in
Eq. (11). Given the special character of the wave function |ψℓm〉, we expect that states |ES=0〉
have a similar pattern of local observables in the first ℓ sites. An example of such behavior is
shown in Figure 3(a), which reveals that all four states |ES=0〉 that have zero entanglement
across at least one bipartite cut in the L = 13 chain for r = 2 feature the same density expecta-
tion values, 〈n̂i〉α = 〈Eα|n̂i|Eα〉, in the first ℓ= 6 sites. Starting from the site number i = 9, the
density profile has different values on different eigenstates, corresponding to different wave
functions |ψR〉 in Eq. (11).

The number of eigenstates with zero entanglement grows exponentially with system size.
Even for the case of a fixed |ψℓm〉, the right restricted eigenstate |ψR〉 is not subject to any
additional constraints, hence the number of possible choices of |ψR〉 grows as the dimension
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Figure 3: (a): The density profile of the zero-entanglement eigenstates for L = 13
shows a common pattern, due to their special structure (11). The first sites corre-
spond to the zero mode of the Hamiltonian restricted to 3 particles in 6 sites |ψ6

3〉, fol-
lowed by 2 empty sites. The right subregion can then be any of the 6 eigenstate of H
for 2 particles in 4 sites, with energy ±

p
2, 0. We note that eigenstates with the same

|ψR〉 but a different number of empty sites separating it from |ψℓm〉 are degenerate and
can be mixed by the numerical eigensolver, as is the case in the density profiles shown
here. (b): The number of zero entanglement entropy eigenstates NS(i) depends on
the boundary of the subregion A= [1, i]. In particular, in the interval i ∈ [5,9] the
number of zero-entanglement eigenstates is exponentially larger compared to more
extended left subregions. At larger i recursively fragmented eigenstates contribute
to NS(i) for L ≥ 13. The total number of zero-entanglement eigenstates, NS , grows
exponentially in L, as shown in the inset. Note that NS ̸=

∑

i NS(i), as some eigen-
states have zero entanglement across multiple bipartite cuts.

of the Hilbert space of Np −m particles on L − ℓ− r sites, that is, at fixed m, asymptotically
exponential in Np. In the general case where (m,ℓ) are allowed to change, new |ES=0〉 states
will appear, with zero entanglement entropy at different bipartite cuts, according to the size of
the left region. Finally, the recursive nature of the fragmentation discussed above is expected
to give eigenstates with zero entropy across two or more distinct cuts which are separated
by a non-vanishing entanglement region. These states are observed in numerical simulations
starting from Np = 7 and L = 19.

To illustrate the counting of eigenstates with zero entropy at a cut separating subregion
A= [1, i] from the rest of the system, we denote their number as NS(i). For i < 5, this number
is zero NS(i) = 0, as explained in the construction of these states. For i ≥ 5 we observe a
large NS(i), exponentially increasing with system size. However, at larger i, the available
configurations that can support states of the form Eq. (11) decrease and NS(i) drops and
eventually vanishes. As Np and system size increase, left states |ψℓm〉 with a larger support ℓ
are allowed thus increasing the range of sites where NS(i) > 0. This is also due to recursive
fragmentation which can appear starting from Np = 5 and L = 13, leading to eigenstates with
zero entanglement across at least one cut. Carefully counting all distinct eigenstates |ES=0〉
we confirm that their total number NS grows exponentially with system size in the inset of
Fig. 3(b).

4 Dynamics

After discussing recursive construction of the quantum Hilbert space fragmentation in the
particle-conserving East model, we proceed with the study of the dynamics. First, in Sec-
tion 4.1 we consider the dynamical signatures of Hilbert space fragmentation. Afterwards, in
Section 4.2 we discuss the phenomenology of particle spreading starting from a domain wall
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Figure 4: The signatures of quantum Hilbert space fragmentation can be observed
for initial states that have a large overlap with zero-entanglement eigenstates |ES=0〉.
The fidelity F(t) = |〈ψ0|ψ(t)〉|2 shows periodic revivals for all three initial states;
choosing an eigenstate on the left portion of the chain results in perfect revivals
(blue curve). Entanglement entropy across the cut i = 11 in the middle of the right
region R and density on the same site show oscillations with identical frequency.

state and illustrate how this can be connected to the structure of the Hilbert space. Finally, we
compare the quantum dynamics to that of a classical cellular automaton in Section 4.3.

4.1 Dynamical signatures of quantum Hilbert space fragmentation

The zero-entanglement eigenstates |ES=0〉 identified in Eq. (11) span a subsector of the Hilbert
space which is dynamically disconnected from the rest. In this subspace the Hamiltonian has
non-trivial action only in the right component of the state, and eigenstates can be written as
product states across the particular cut. Below we discuss signatures of such fragmentation in
dynamics launched from weakly entangled initial states.

As an illustrative example, we show in Figure 4 the time evolution of a state of the form
defined in Eq. (11) for L = 13. To obtain non-trivial dynamics, we replace the eigenstate |ψR〉
with a product state. In particular, we choose the initial state as

|ψ0〉=
| • • ◦ ◦ • ◦〉 − | • ◦ • • ◦ ◦〉

p
2

⊗ | ◦ ◦〉 ⊗ | • ◦ • ◦◦〉 , (14)

and consider the time-evolved state |ψ(t)〉 = e−ıt Ĥ2 |ψ0〉. The action of the full Hamiltonian
does not affect the left part of the state and the Hamiltonian acting on the last five sites in the
chain R= [9, 13] is a simple 3× 3 matrix

ĤR =





0 1 0
1 0 1
0 1 0



 , (15)
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Figure 5: The constrained character of the model leads to a non-uniform stationary
density profile for the domain wall initial state. This coincides with the infinite-
temperature prediction on large systems, as highlighted by the dashed line corre-
sponding to tr[n̂i]/ tr[1] for L = 25, where tr[Ô] =

∑

j Ôj j . Rescaling the x-axis by
the number of particles Np, we obtain a good collapse of the data, as shown in the

inset. The particle density follows a linear decrease 〈n̂i〉 ≈ 〈n̂2〉 − c(i − 2)/Np, with
c ≈ 0.15.

in the {|••◦◦◦〉, |•◦•◦◦〉, |•◦◦•◦〉} basis. Diagonalizing this matrix, we write the time-evolved
state |ψ0(t)〉 as

|ψ(t)〉=|ψℓm〉 ⊗ |00〉 ⊗
�

cos(
p

2t)| • ◦ • ◦◦〉 − sin(
p

2t)
| • • ◦ ◦◦〉+ | • ◦ ◦ •◦〉

p
2

�

, (16)

hence the fidelity reads F(t) = |〈ψ0|ψ(t)〉|2 = cos2(
p

2t). As the time-evolution in Eq. (16)
involves only three different product states, it produces perfect revivals with period T = π/

p
2.

This periodicity also affects observables, such as the density in the region R, and the entangle-
ment entropy.

This periodic dynamics also appears in the two product states |ψ+〉= | ••◦◦•◦◦◦•◦•◦◦〉
and |ψ−〉 = | • ◦ • • ◦ ◦ ◦ ◦ • ◦ • ◦◦〉 that are contained in Eq. (14). These states indeed show
revivals of the fidelity with the same period T , although the peaks are more suppressed. This
is not surprising, as these states have only part of their weight in the disconnected subspace.

In Figure 4 we show the results of the dynamics of the state |ψ0〉, Eq. (14), together with
the two product states generating the superposition, |ψ±〉. In addition to fidelity, we also show
the density and entanglement dynamics of sites i within the right region R. As expected, the
fidelity shows revivals with period T = π/

p
2, and similar oscillations are also observed in

local operators and entanglement. While the initial state |ψ0〉 defined in Eq. (14) presents
perfect revivals with F(T ) = 1, the product states |ψ±〉 do not display perfect fidelity revivals
and show larger entanglement. We note, that since the two product states |ψ±〉 together form a
state |ψℓm〉 their dynamics in the region R is not affected by the choice of the left configuration,
and all considered quantities for theses two initial states have identical dynamics.

4.2 Phenomenology of dynamics from the |DW〉 initial state

After exploring the dynamics resulting from quantum Hilbert space fragmentation, we now
turn to the dynamics in the remainder of the constrained Hilbert space focusing on the do-
main wall state (5). The domain wall state does not have any overlap with zero entanglement
eigenstates except for possibly states with zero entanglement on the last cut. It is also char-
acterized by a vanishing expectation value of the Hamiltonian, corresponding to zero energy
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Figure 6: The approach to saturation in the density dynamics is very different de-
pending on the region within the chain. (a) In the first 2Np sites of the chain a fast
relaxation takes place due to the weak role of the constraint in dense regions. (b)
For the right part of the chain, i > 2Np anomalously slow logarithmic dynamics arise.
The inset shows the data collapse upon rescaling the density axis by the long time
average and the time axis by the number of states within each leg of the graph Ni to
the power α ≈ 1.15, as discussed in more detail at the end of this section. The data
shown here are for a system of L = 28 sites with Np = 10 bosons.

density, where the density of states is maximal. Hence, thermalization implies that time evo-
lution from the domain wall leads to the steady state where all observables agree with their
infinite-temperature expectation value. To check this property we focus on the expectation
value of the particle density operators throughout the chain.

Figure 5 shows the infinite time average of the particle density, 〈n̂i〉 obtained through the
diagonal ensemble

〈n̂i〉=
∑

α

|〈DW|Eα〉|2〈Eα|n̂i|Eα〉 , (17)

where the sum runs over all eigenstates α. This calculation is performed for L ≤ 22, where
the full set of eigenstates can be obtained through exact diagonalization. For larger systems,
the infinite time average value of 〈n̂i〉 is approximated as the average of the density in the
time-window t ∈ [6.9 × 103, 104]. We observe that the density profile agrees well with the
infinite-temperature prediction. See Appendix A for details of the calculation.

The infinite-temperature prediction for the density profile does not result in a homoge-
neous density due to the constraint. The number of allowed configurations with non-zero
density in the last sites is indeed limited by the constraint, and results in a lower density in the
rightmost parts of the chain. In addition, the profile has a step-like shape that is related to the
range-2 constraint in the model. In the inset of Fig. 5 we show that the density profiles collapse
onto each other when plotted as a function of i/Np. This suggests the heuristic expression for

the density profile 〈n̂i〉 ≈ 〈n̂2〉 − c(i − 2)/Np where c ≈ 0.15 is a positive constant.
Although the saturation profile of the density is consistent with thermalization, below

we demonstrate that relaxation to the steady state density profile is anomalous. The time-
evolution of the density 〈n̂i(t)〉 = 〈ψ(t)|n̂i|ψ(t)〉 is shown in Figure 6 for L = 28 sites up to
times t ≈ 104. The data demonstrates that the relaxation of density qualitatively depends
on the location within the chain. In the left part of the chain with i ≤ 2Np, the spreading of
the density front is fast, and saturation is reached quickly on timescales of O(10), as shown in
Fig. 6(a). This can be attributed to the fact that the constraint is not effective at large densities.
In contrast, in the rightmost part of the chain, i > 2Np the constraint dramatically affects the
spreading of particles resulting in the logarithmically slow dynamics in Fig. 6(b).

12

https://scipost.org
https://scipost.org/SciPostPhys.15.3.093


SciPost Phys. 15, 093 (2023)

10−1 100 101 102 103 104

t

0.0

2.5

5.0

7.5
δn

(t
)

10−1 100 101 102 103 104

t

0.0

0.5

1.0

1/
z(
t)

0 10 20

t

0

2/3

1

1/
z

L =13

L =37

∼ 1
log(t)

(a) (b)

Figure 7: (a) The behavior of the particle current across the domain wall shows an
initial power-law growth δn(t)∼ t1/z(t) followed by a slow-down to logarithmic be-
havior at later times, in agreement with the density dynamics. (b) The analysis of the
dynamical exponent z(t) shows the presence of a super-diffusive plateau 1/z ≈ 2/3
at intermediate times, whose duration grows linearly with system size. At later times,
the onset of logarithmic dynamics is signalled by the decay of 1/z(t). Data are for
13≤ L ≤ 37 from more to less transparent.

To further characterize the anomalous dynamics, we study the transport of the particle
density on short time-scales for larger systems up to L = 37 sites. For the systems with L > 28
we use a fourth-order Runge-Kutta algorithm with a time-step as small as δt = 10−3. This al-
lows us to reliably study the short-time behavior with sufficient accuracy down to δt4 = 10−12.
We consider the particle flow across the domain wall

δn(t) =
∑

i≤Np

[〈n̂i(0)〉 − 〈n̂i(t)〉] . (18)

The dynamics of δn(t) in Figure 7(a) shows a clear initial power-law behavior drifting to
much slower logarithmic growth at later times, in agreement with the dynamics of 〈n̂i(t)〉 in
the right part of the chain. At even longer times δn(t) saturates to a value proportional to the
system size L. Figure 7(b) shows the instantaneous dynamical exponent,

z(t) =
�

d lnδn(t)
d ln t

�−1

. (19)

In this figure, the early time dynamics are characterized by fast transport of particles across
the domain wall i = Np due to the large initial density. On intermediate time-scales t ≈ 10,
a superdiffusive plateau of 1/z(t) ≈ 2/3 is visible. Finally, at longer times the dynamics slow
down and become logarithmic, consistent with a vanishing 1/z(t). Zooming in the time-
window t ≤ 30, we notice that the extent of the superdiffusive plateau increases linearly with
system size, suggesting the persistence of the superdiffusive regime in the thermodynamic
limit.

The superdiffusive behavior observed in the dynamics of the domain wall initial state is very
peculiar, as one would expect a state close to infinite temperature to show diffusive transport in
an ergodic system as is the one considered here. We further investigated the time-evolution of
other initial states with a lower density of particles in the leftmost part of the chain. Appendix E
shows that with decreasing density, the transport is drifting from superdiffusion in dense states
to diffusion as the density decreases. Such dependence of transport on the density in the initial
state suggests that superdiffusive dynamics is related to the special nature of the domain wall
state that separates completely empty and full regions, and thus it may lack a coarse-grained
hydrodynamics description.

We now focus on capturing the phenomenology of the slow dynamics observed at late
times using the structure of the Hamiltonian. Starting from the domain wall initial state,
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Figure 8: The representation of Ĥ2 as the adjacency graph Gr for system with Np = 5
particle and L = 13 lattice sites. The dense central part – backbone – has gradually
decreasing number of vertices and connectivity as the position of the rightmost par-
ticle increases above imax > 2Np = 10 (dashed line). The legs of the graph emanate
from the backbone and correspond to regions where imax is conserved. The legs end
with the product states (an example is labeled as Limax

), where a particular particle
is frozen near the end of the chain. Red vertices show product states corresponding
to zero-entanglement eigenstates |ES=0〉, which in this case have weight on 12 out of
DNp

= 273 product states contained in the constrained Hilbert space.

the slow dynamical regime is reached after a time scaling proportionally to the system size.
Naively this may preclude the observation of such dynamical regime in the thermodynamic
limit. However, our study of transport in more dilute initial states suggests that the onset of
logarithmic slow dynamics may depend on the density of particles. In particular, we conjecture
that at sufficiently low initial densities, logarithmic dynamics may be observable at timescales
that do not depend on the system size. In order to construct a phenomenological picture
of slow dynamics, we interpret the Hamiltonian as a graph where the vertices of the graph
enumerate the product states contained in a given connected sector of the Hilbert space. The
edges of the graph connect product states that are related by any particle hopping process
allowed by the constraint. A particular example of such a graph for the system with Np = 5
particles and L = 13 sites is shown in Fig. 8.

The vertices of the graph in Fig. 8 are approximately ordered by the position of the right-
most occupied site imax ≥ Np, revealing the particular structure emergent due to the constraint.
The dense region that follows the domain wall product state has high connectivity, and we re-
fer to it as the backbone. In addition to the backbone, the graph has prominent legs emanating
perpendicularly. The legs are characterized by the conserved position of the rightmost particle
that is effectively frozen due to the particles on the left retracting away, as pictorially shown
in Fig. 8. Since such legs are in one-to-one correspondence with the position of the rightmost
particle, imax, their number grows linearly with system size. The number of product state con-
figurations contained within each leg strongly depends on imax. Given that the position of the
rightmost particle is frozen within a leg, they cast a strong effect on the dynamics of the model.

In particular, the spreading of particles towards the right probed by R(t) can be related
to the presence of an increasing number of configurations within legs at large imax, Nimax

.
These are characterized by long empty regions as the one depicted in Figure 8, which require
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Figure 9: Schematic representation of the circuit used to describe the classical dy-
namics. The continuous time-evolution Û(t) is decomposed into a series of 4-sites
gates U1 and of 3-sites gates U2, whose action is shown on the right part of the Fig-
ure.

the collective motion of many particles to allow the hopping of the rightmost boson sitting at
imax. The slow dynamics observed, then, can be qualitatively understood as the effect of many
states not contributing to the spreading and of the increasingly long empty regions that have
to be crossed to activate hopping further to the right. Looking back at the dynamics shown in
Figure 6, we highlight this effect by rescaling the time-axis by the number of configurations
belonging to each leg, Ni . The resulting collapse is shown in the inset of Figure 6(b).

4.3 Dynamics in constrained classical cellular automata

The anomalous relaxation of the quantum model from the domain wall state reported in Sec-
tion 4.2 invites natural questions about the universality of dynamics in presence of inversion-
breaking constraints. To shed light on this question, we introduce a classical cellular automa-
ton model that replaces the unitary time-evolution of the quantum model Û(t) = exp(−ıĤ t)
with a circuit of local unitary gates preserving the same symmetries and constraints of the
Hamiltonian [49,50].

To reproduce correlated hopping in the Hamiltonian (2), we introduce two sets of local
gates U1 and U2 schematically shown in Fig. 10(a). The first gate, U1, acts on 4 sites and
implements the hopping facilitated by the next nearest neighbor,

U1 = exp

�

− ıθ
�

n̂ j(1− n̂ j+1)
�

c†
j+3c j+2 +H.c.
�

�

�

. (20)

The second gate, U2, acts on three sites, and implements the hopping facilitated by the nearest
neighbor site:

U2 = exp

�

− ıθ
�

n̂ j

�

c†
j+2c j+1 +H.c.
�

�

�

. (21)

For a generic choice of the rotation angle θ these gates cannot be efficiently simulated classi-
cally. However, in what follows we fix θ to the special value, θ = π/2, so that gates U1,2 map
any product state to another product state. This corresponds to a classical cellular automaton
which allows for efficient classical simulation.
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Figure 10: (a)-(b): Density evolution of the classical cellular automaton starting
from domain wall initial state for a system with L = 298 sites and NP = 100. (Black
and white dots correspond to occupied and empty sites). (a) At short times particles
spread ballistically into the empty region. Scattering events appear at regular time
intervals at the boundaries of the red dashed triangle which defines the region of
ballistic behavior. (b) At later times when particle density is lower the constraint
becomes more effective, leading to the logarithmic spreading of particles into the
empty region. The inset shows the dependence of the current across the domain
wall on time that has a clear ballistic regime of linear increase with time followed by
slow logarithmic growth at later times.

As each local gate is particle conserving, in order to allow for non-trivial transport, we shift
gate position by one site after each layer, as shown in Fig. 10(a). Consequently, the circuit has
a 7-layer unit cell in the time direction. Additionally, the order of gate applications is also
important, as the gates U1,2 generally do not commute with each other. Alternating the layers
of U1 and U2 gates proves to be the best choice, as it implements all allowed particle hopping
processes, leading to the circuit shown in Fig. 9.

Using this cellular automaton we are able to simulate the time-evolution of very large sys-
tems to extremely long times. As the setup implements the same constraint as the Hamiltonian
dynamics, we conjecture that it should present similar features. For instance, initializing the
system in a dense-empty configuration similar to the |DW〉 state, we expect the dense region to
spread quickly into the empty one, until eventually it stretches too much and its propagation
slows down due to the constraint.

We study the evolution to the domain-wall initial state for a system of L = 298 sites and
Np = 100 particles. Since this model is deterministic, the density as a function of circuit
depth is a binary function, ni(t) ∈ {0, 1}. Figure 10(a) shows the short-time density dynamics
(t < 1000). We observe ballistic particle transport in the dense regime. On the one hand,
the position of the rightmost particle moves to the right. On the other hand, defects (holes)
propagate within the dense domain wall state. The simulation reveals notable difference in
velocities of holes and spreading of the rightmost particle, that is expected in view of the
inversion breaking symmetry within the model.

The ballistic expansion of the particles is followed by a logarithmic slowdown at later
times as shown in Fig. 10(b). Much akin to the Hamiltonian dynamics, this slowdown is due
to the lower density reached at later times as the front moves to the right and more particles
become temporarily frozen due to the constraint. To further probe the two distinct behaviors
observed in the cellular automaton, in the inset of Fig. 10(b) we show the time-evolution of
the particle flow across the domain wall δn(t) as in Eq. (18). From the initial linear behavior,
δn(t) abruptly enters a logarithmic regime as it exceeds the extent of the ballistic region,
corresponding to i ≈ 180.
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The study of the circuit evolution for the domain-wall initial state then shows the overall
similar characteristic inhomogeoneous dynamics as the quantum system. At early times, and
close to the initial domain wall i = Np, the transport of particles and holes is ballistic as for
t ≤ 1 in the quantum case (see Fig. 7). However, as the density spreads and particle density
lowers, ballistic spreading is replaced by a logarithmic slow dynamics. We notice, however,
that the automaton lacks the super-diffusive plateau observed in the Hamiltonian dynamics.

5 Discussion

In this work, we introduced a family of models characterized by a conserved U(1) charge
and strong inversion symmetry breaking. We observe that quantum Hilbert space fragmenta-
tion [37] in such models can be understood from the recursive construction of special weakly
entangled eigenstates coexisting with volume-law entangled eigenstates in the spectrum. In
addition, we investigate the dynamics of the system in a quantum quench launched from the
domain wall initial state. Although the long time saturation value of particle density is con-
sistent with thermalization, we observe two distinct regimes in particles spreading from the
domain wall initial state. An initial superdiffusive particle spreading at high density is dramat-
ically slowed down at lower densities, leading to a logarithmically slow approach of density
to its saturation value. While the superdiffudive plateau has an extent in time that increases
with system size, its sensitivity to the choice of initial state suggests that it might be related to
the particular nature of the domain wall state considered here and may not have a universal
hydrodynamic description. The second, slow transport regime, on the other hand, is not so
sensitive to the particular initial state and we attribute this to the structure of the constrained
Hamiltonian. In addition, we also reproduce the logarithmic dynamics in a classical cellular
automaton that features the same symmetries, although at early times the cellular automaton
features ballistic dynamics in contrast to slower but still superdiffusive spreading of particles
in the Hamiltonian model.

Our work suggests that the interplay of constraints and broken inversion or other spa-
tial symmetries may lead to new universality classes of weak thermalization breakdown and
quantum dynamics. In particular, the quantum Hilbert space fragmentation in the considered
model gives rise to a number of weakly entangled eigenstates that can be interpreted as quan-
tum many-body scars [47, 48]. The number of these eigenstates scales exponentially with
system size. Moreover these eigenstates may be constructed in a recursive fashion, by reusing
eigenstates of a smaller number of particles. This is in contrast to the PXP model, where
the number of scarred eigenstates is believed to scale polynomially with system size [42,44],
though existence of a larger number of special eigenstates was also conjectured [36].

Although we presented an analytic construction for certain weakly entangled eigenstates
and demonstrated their robustness to certain deformations of the Hamiltonian, a formal def-
inition of recursive quantum Hilbert space fragmentation, beyond our phenomenological ob-
servation, remains an interesting direction for future work. The complete enumeration and
understanding of weakly entangled eigenstates may give further insights into their structure
and requirements for their existence. In addition, a systematic study of the emergence of quan-
tum Hilbert space fragmentation in the largest sector of a classically connected Hilbert space
in other constrained systems, like the XNOR or the Fredkin models is desirable [7,12].

From the perspective of particle transport, the numerical data for the dynamical exponent
controlling particle spreading suggests that our family of constrained models features superdif-
fusive dynamics [36,51–54] from a particular domain wall initial state in the largest connected
sector of the Hilbert space. Thus, although it is less robust compared to other examples, un-
derstanding and quantifying the emergence of superdiffusion in the present and similar mod-
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els with longer range of assisted hopping remains and interesting question. In particular, the
models considered in our work may be implemented using quantum simulator platforms using
control-swap gates of various ranges. Thus, an experimental study of such models may reveal
novel valuable insights into their physics and the universality of their transport phenomena,
which are beyond the reach of current state of the art numerical and theoretical approaches.
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A Thermalization within the largest subsector of the Hilbert space

In order to show the ergodic behavior of the eigenstates of the Hamiltonian, we study the distri-
bution P(s) of the energy differences in the sorted eigenspectrum weighted by the mean level
spacing ∆, si = (εi − εi−1)/∆. It is known that thermal systems which satisfy the eigenstate
thermalization hypothesis are characterized by level statistics in agreement with the prediction
of the Gaussian orthogonal ensemble (GOE), PGOE(s) =

π
2 se−

π
4 s2

.
However, before discussing the level statistics, the discussion of the density of states is in

order. The Hamiltonian Ĥ2 has a spectral reflection property with respect to E = 0 and it
presents an exponentially large in system size number of zero modes, as highlighted by the
peak in the density of states ρ(0) shown in Figure 11(a). The large number of zero energy
eigenstates is explained by the bipartite nature of the adjacency graph that describes the Hamil-
tonian, see Figure 8 for an example. In a bipartite graph there exist two sets of nodes P1,2
labeled by different product states, such that the action of the Hamiltonian on states belonging
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Figure 11: (a): As shown in the left sub-panel, the spectrum is symmetric with
respect to En = 0, such that for any eigenstate with eigenvalue En there is a second
state with energy −En. Additionally, the model has a large number of zero energy
eigenstates, as highlighted by the peak of the density of states ρ(En) in the right sub-
panel. We show data for Np = 7 and L = 19. (b): The level spacing distribution P(s)
shows good agreement with the GOE prediction, shown as a black dashed line, thus
confirming the presence of level repulsion within the largest subsector.
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Figure 12: (a): The density profile of the ground state 〈n̂i〉GS shows large particle
occupation up to i = 2Np. Outside this region, the density starts decaying exponen-
tially, as shown in the inset. (b): The finite size scaling of the energy gap ∆E shows
that it vanishes as 1/L, thus indicating that the model is gapless in the thermody-
namic limit. (c): Entanglement entropy across the central cut grows logarithmically
with strong finite size corrections (dashed orange and green lines show logarithmic
fits), providing additional evidence that the ground state is critical.

to the set P1 yields a state in the set P2 and vice versa. These two partitions are identified by
the eigenvalue of the parity operator P̂ =

∏

j(1− 2n̂ j) j =
∏

j(−σ
z
j )

j , where σz
j = 2n̂ j − 1 is

the corresponding Pauli matrix. It is known that a bipartite graph has a number of zero modes
bounded from below by the difference in the size of the two sets P1 and P2 [55].

In fact, when the two partitions have a different number of states, a non-trivial solution of
the Schrödinger equation for a zero energy eigenstate can be expressed as a system of n1 linear
equations for n2 variables. If n2 > n1, there are at least n2−n1 linearly independent solutions.
In this case, in spite of the bound not being tight, both the number of zero modes and the lower
bound from the bipartite structure of the graph describing the Hamiltonian increase exponen-
tially with system size, albeit with different prefactors in the exponent. This suggests that the
present understanding of the zero mode subspace is incomplete, inviting further research. In
particular, using the disentangling algorithm [56] may give valuable insights. This may also
help to develop a more complete understanding of the recursive Hilbert space fragmentation,
since its mechanism relies on the zero energy eigenstates with vanishing particle density on
the last sites of the system, see Section 3.2.

In Figure 11(b) we show the level spacing distribution for L ∈ [16, 22] in the interval
[EGS,−0.1], where EGS corresponds to the ground state energy. Note that due to the spectral
reflection property of the Hamiltonian, taking into account only negative energies yields the
same results as considering the whole spectrum. To obtain P(s), we unfold the spectrum in
the given interval through polynomial interpolation of the integrated density of states. The
agreement with the GOE prediction suggests that despite the presence of a constraint, the levels
develop repulsion within the largest connected sector of the Hilbert space and the model is
not integrable.

B Ground state characterization

In this Appendix we characterize the ground state, studying the scaling of the energy gap
and of the entanglement entropy. As the Hamiltonian (3) only has hopping terms, the low
lying eigenstates need to have a large overlap with product states that maximize a number of
configurations to which hopping is allowed to. In graph language, see Figure 8 for an example,
these product states correspond to vertices with the largest possible connectivity. For r = 2, the
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state with highest connectivity is | • ◦ • ◦ • · · · • ◦
︸ ︷︷ ︸

2Np

◦ ◦ ◦ · · · ◦
︸ ︷︷ ︸

L−2Np

〉, with connectivity 2Np−1, hence we

expect the ground state to have a large weight on the initial 2Np sites. In Figure 12(a) we plot
the density profile of the ground state of the Hamiltonian (2) for different system sizes from
L = 4 to L = 25 against a rescaled x-axis i/2Np. The figure confirms the prediction, the ground
state is confined within the first 2Np sites, with an exponentially decaying density outside of
this region, as shown in the inset. This behavior is different from the one observed in the
quantum East model in absence of particle conservation [8,14], where occupation immediately
decays exponentially.

We further study the scaling of the energy gap and of the entanglement entropy. As clearly
shown in Figure 12(b), the energy gap ∆E vanishes as the inverse system size, suggesting
that model is in a gapless phase in the thermodynamic limit. Additionally, the entanglement
entropy of the ground state across the central cut in the chain presents a slow logarithmic
growth. These results suggest that the ground state is critical.

C Construction of left parts of separable eigenstates

In this section we report the left-restricted eigenvectors entering Eq. (11) for all sub-system
sizes we were able to investigate numerically for r = 2. These were used in the main text to
correctly count the global number of zero entanglement eigenstates NS shown in Figure 3(b).
We remind here that these eigenstates have to fulfill two conditions

(i) they have to be an eigenstate on the problem restricted to m particles in ℓ sites, with
ℓ≤ 3m− 2.

(ii) They must have zero density on the boundary site ℓ: 〈ψℓm|n̂ℓ|ψ
ℓ
m〉= 0.

Additionally we observe that these left-restricted eigenvectors always correspond to zero en-
ergy.

To obtain these states, we take advantage of the large number of zero modes of the Hamil-
tonian (2). Within the degenerate sub-space, one can perform unitary transformations and
obtain a new set of zero energy eigenstates where at least one satisfies the condition (ii) above.
To find the correct states in an efficient way, we build the matrix Nα,β = 〈Em,ℓ

α |n̂ℓ|E
m,ℓ
β
〉 of the

expectation values of the density on the last site on eigenstates of the Hamiltonian reduced to
(m,ℓ). We then diagonalize Nα,β and check whether it has zero eigenvalues. If so, the corre-
sponding eigenvector is still an eigenstate of the reduced Hamiltonian, and, by construction,
it satisfies condition (ii). We notice that this method implements a sufficient condition, which
implies that there could be other states that fulfill the same set of restrictions. However, our
goal here is merely to provide evidence of existence of these states in several different system
sizes. In the following, we list the states for m= 3,4, 5 and ℓ= 6,9, 11 respectively.

|ψ6
3〉=

1
p

2

�

| • • ◦ ◦ • ◦〉 − | • ◦ • • ◦ ◦〉
�

,

|ψ9
4〉=

1
2

�

| • • ◦ ◦ • ◦ ◦ •◦〉 − | • • • ◦ ◦ ◦ ◦ •◦〉
�

+
1
4

�

| • ◦ ◦ • • • ◦ ◦◦〉+ | • ◦ • • ◦ • ◦ ◦◦〉

+ | • ◦ ◦ • ◦ • • ◦◦〉+ | • • • ◦ ◦ • ◦ ◦◦〉 − | • • ◦ • • ◦ ◦ ◦◦〉 − | • • ◦ ◦ • • ◦ ◦◦〉

− | • ◦ ◦ • • ◦ ◦ •◦〉 − | • ◦ • ◦ • ◦ • ◦◦〉
�

,

|ψ11
5 〉=

1
p

6

�

| • ◦ ◦ • • • • ◦ ◦ ◦◦〉+ | • ◦ • • ◦ ◦ • • ◦ ◦◦〉+ | • • ◦ ◦ • • ◦ ◦ • ◦◦〉

+ | • • • ◦ ◦ ◦ • ◦ ◦ •◦〉 − | • ◦ • ◦ • • ◦ • ◦ ◦◦〉 − | • • ◦ • ◦ ◦ • ◦ • ◦◦〉
�

.

(C.1)
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Figure 13: (a): entanglement entropy of the eigenstates of the Hamiltonian for range
r = 2, random hopping parameters t1 = 0.84, t2 = 0.49 , and system size L = 16.
The presence of zero entanglement eigenstates, highlighted by the red crosses, con-
firms that quantum fragmentation is insensitive to the value of the hopping ampli-
tudes. (b)-(c): A similar result is obtained for different values of the range r. The
central panels refer to r = 1, Np = 8 and L = 15, while the right ones show r = 3,
Np = 5 and L = 17.

Additional states are present, which we do not write down for the sake of brevity. However,
we point out the existence of recursively stacked eigenstates, as mentioned in the main text,
and of states where the right part corresponds to a single isolated particle.

D Quantum Hilbert space fragmentation for generic Hamiltonian
parameters

Throughout the main text, we often mentioned that the results regarding quantum fragmen-
tation hold irrespective of the range of the constraint r and of the values of the hopping am-
plitudes tℓ. In the following, we provide evidence in support of the generality of recursive
fragmentation.

In Figure 13, we first show the entanglement entropy of eigenstates for r = 2 and Hamil-
tonian

Ĥ =
L−1
∑

i=2

(t1n̂i−1 + t2n̂i−2 − t2n̂i−1n̂i−2)
�

ĉ†
i+1 ĉi +H.c.
�

, (D.1)

with generic, although homogeneous, hopping amplitudes t1, t2. In the leftmost panel, we
highlight the presence of zero entanglement eigenstates in the half-chain cut for a random
choice of the hopping parameters. The density profile of these special eigenstates is similar
to the one showed in Figure 3(a), although the density profile in the left region has more
complicated pattern due to the different values of t1,2.

Next, we show the presence of recursive fragmentation in the generic Hamiltonian (3). In
the central and right panels of Figure 13 zero entanglement eigenstates (red crosses) appear
across the central cut for both r = 1 and r = 3. As for the random t1,2 case, the structure of
these eigenstates is akin to the one obtained in Eq. (11), featuring an empty region of r + 1
sites disconnecting the left region from the right one. Thus we provide numerical evidence in
support of the generic form of the zero entropy eigenstates |ES=0〉 proposed in the main text.

E Transport in different initial states

In the main text, we discuss the transport properties of the domain wall initial state, observing
an unexpected superdiffusive behavior. Although at a finite time t∗, the dynamics slow down,
showing signatures of logarithmically slow transport, the linear increase of t∗ with system size
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Figure 14: (a) The inverse dynamical exponent for different system sizes
(L ∈ [16, 37] from more to less opaque) averaged over 10 random initializations.
The behavior of 1/z is qualitatively similar to the one observed for the |DW〉 initial
state, although the plateau is compatible with diffusion in this case. (b) The onset
time of the logarithmic behavior, t∗(ν), averaged over the different choices of |ψ0〉
(ν = 3/4) and for the domain wall initial state (ν = 1), shows a clear increase with
system size. (c) The average value of the inverse dynamical exponent within the
plateau 1/z shows an initial decrease with system size, before eventually saturating
to a value compatible with 1/z = 0.5 (black dashed line).

suggests that this feature persists in the thermodynamic limit. In this Appendix, we explore
the dynamics of random initial states with varying density to understand the generality of the
dynamics observed in the |DW〉 initial state.

To this end, we initialize the system in a random superposition of all product states |ϕi〉
with average particle density ν= 3/4 in the leftmost sites

|ψ0〉=
1
N

∑

i

cie
ıφi |ϕi〉 , (E.1)

where the amplitude ci and the phase φi are drawn randomly from a uniform distribution in
[0,π] and N is the normalization factor. After running the dynamics up to time t = 100 for 10
different random initial states, we obtain the inverse dynamical exponent 1/z as in the main
text and average among the different states.

As shown in Figure 14, the inverse dynamical exponent presents a behavior qualitatively
similar to the one observed for the |DW〉 initial state, with a plateau extending up to time t∗(ν)
before eventually slowing down to a logarithmic behavior. In this case, however, the plateau
suggests diffusive dynamics, suggesting the possibility of a density-dependent transport expo-
nent. In panel (b) of the same Figure, we show the average t∗(ν) as a function of system size,
clearly showing that the plateau becomes longer as L increases both for the |DW〉 initial state
(ν= 1) and for the present case. Finally, we study the value of the dynamical exponent within
the plateau, 1/z, by averaging 1/z(t) in a time window [t0(L), t1(L)] for each realization of
the initial state. The values of t0(L) and t1(L) are given in the following table.

L t0 t1

16 1 5
19 2.5 7.5
22 3 8
25 4 9.5

L t0 t1

28 5 10
31 5 12
34 5 13
37 5 13

As shown in panel (c), after a decrease with system size at small values of L, the average inverse
dynamical exponent 1/z among different |ψ0〉 realizations stabilizes to a value compatible with
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Figure 15: (a): Dynamics of the density on the last site 〈n̂L(t)〉 for several different
system sizes. The slow logarithmic growth is evident for all L ≥ 16. At larger system
sizes L ≥ 19 the slope becomes independent of system size, as well as the satura-
tion value, thus suggesting a universal behavior. (b): Density dynamics for different
values of the range r always show logarithmic behavior. While the quantitative de-
tails change between different values of r, the qualitative feature of the logarithmic
growth is a constant. The data are obtained on a chain of Np = 9 and L = 17 for
r = 1, and Np = 6 and L = 21 for r = 3.

diffusion 1/z = 0.5. We also notice that the small standard deviation, represented by the error
bars, suggests that this behavior is typical among the studied states.

F Dynamics of the domain wall initial state for different values
of r

In the main text we provided evidence of slow dynamics from the time-evolution of the density
operator in large systems and from the behavior of the root-mean-square displacement. Here,
we present some additional data regarding system size scaling of the density dynamics as well
as the observation of slow dynamics for generic r. Finally, we present an additional measure
for the logarithmic behavior of the particles spreading.

In Figure 15(a) we show the system size scaling of the dynamics of the density on the last
site of the chain, 〈n̂L(t)〉. All the curves present logarithmic growth, and for larger system sizes
L ≥ 19 the slope becomes roughly constant. The absence of logarithmic behavior for smaller
system sizes L < 16 is in agreement with the data shown in the main text, where R(t) quickly
saturates for L = 13.

Similar slow dynamics are observed in the time-evolution generated by Hamiltonians with
generic constraint range r. In Figure 15(b) we present the growth of the density in the last
three sites of two chains of length L = 17 and L = 21 for r = 1 and r = 3 respectively. As
the data suggest, the dynamics in the rightmost part of the chain always presents logarithmic
behavior, irrespective of the range of the constraint. However, the quantitative details are
affected by r.

To analyze the spreading of the density, in the main text we presented the behavior of the
root-mean-square displacement R(t) together with the respective dynamical exponent zR(t).
Here, we approach the same question using a different measure, namely the time-dependence
of the expansion of the density profile. This spreading distance δr is defined as the distance
from the domain wall boundary, i = Np, at which density becomes larger than a certain thresh-
old ϵ ≪ 1. The spreading distance δr is expected to asymptotically behave as a power-law
in time, defining a dynamical exponent zr such that δr ≈ t1/zr . However, the limited system
sizes available to our numerical study do not allow us to reach the asymptotic regime, and
we are forced to study the time-dependent analogue zr(t), obtained through the logarithmic
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Figure 16: (a) Spreading of the density in a system with L = 37 sites and Np = 13
bosons. Lines of constant value ϵ highlight the very different behavior observed in the
two regions i ≶ 2Np. (b) The inverse dynamical exponent 1/zr(t) is always super-
diffusive. While for a large threshold it decays to 0 indicating the onset of logarithmic
growth, for small values of ϵ the dynamical exponent seems to saturate approaching
the asymptotic value (weakly dependent on the threshold value), before the onset of
boundary effects. As shown in the right panel, the asymptotic 1/zr is super-diffusive
behavior is generic irrespective of the choice of the range of the constraint. The
data shown in this panel correspond to Np = 11 and L = 21, 31,41 for r = 1,2, 3
respectively.

derivative of the spreading distance with respect to time, (zr(t))−1 = d lnδr/d ln t.
In panel (a) of Figure 16 we show a heat-map of the density dynamics for L = 37 sites,

superimposed with curves of constant 〈n̂i(t)〉 = ϵ, for values of ϵ ∈ [0.1,10−10], above the
accuracy limit O(10−12) of the 4-th order Runge-Kutta algorithm. For each threshold, we show
in panel (b) the time-dependent dynamical exponent. For the largest values of ϵ the dynamical
exponent has a super-diffusive plateau at 1/zr(t) ≈ 0.7 before quickly vanishing as expected
from the logarithmic dynamics of the density. On the other hand, at smaller thersholds the
dynamical exponent seems to saturate to a finite value, before it eventually starts decreasing
due to boundary effects.

The saturation value of the time-dependent dynamic exponent for small thresholds has a
weak dependence on the value of ϵ. As ϵ → 0, 1/zr approaches a r-dependent saturation
value, monotonically increasing as the range of the constraint becomes larger, as shown in the
right panel of Figure 16(b). This behavior is in agreement with the expectation that at r →∞
the system should approach ballistic dynamics.

References

[1] F. Ritort and P. Sollich, Glassy dynamics of kinetically constrained models, Adv. Phys. 52,
219 (2003), doi:10.1080/0001873031000093582.

[2] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk and F. van Wijland,
Dynamical first-order phase transition in kinetically constrained models of glasses, Phys.
Rev. Lett. 98, 195702 (2007), doi:10.1103/PhysRevLett.98.195702.

[3] C. Toninelli, G. Biroli and D. S. Fisher, Spatial structures and dynamics of ki-
netically constrained models of glasses, Phys. Rev. Lett. 92, 185504 (2004),
doi:10.1103/PhysRevLett.92.185504.

[4] B. Olmos, I. Lesanovsky and J. P. Garrahan, Out-of-equilibrium evolution of kinetically
constrained many-body quantum systems under purely dissipative dynamics, Phys. Rev. E
90, 042147 (2014), doi:10.1103/PhysRevE.90.042147.

24

https://scipost.org
https://scipost.org/SciPostPhys.15.3.093
https://doi.org/10.1080/0001873031000093582
https://doi.org/10.1103/PhysRevLett.98.195702
https://doi.org/10.1103/PhysRevLett.92.185504
https://doi.org/10.1103/PhysRevE.90.042147


SciPost Phys. 15, 093 (2023)

[5] J. P. Garrahan, Aspects of non-equilibrium in classical and quantum systems:
Slow relaxation and glasses, dynamical large deviations, quantum non-ergodicity,
and open quantum dynamics, Phys. A: Stat. Mech. Appl. 504, 130 (2018),
doi:10.1016/j.physa.2017.12.149.

[6] S. Scherg, T. Kohlert, P. Sala, F. Pollmann, B. H. Madhusudhana, I. Bloch and M. Aidels-
burger, Observing non-ergodicity due to kinetic constraints in tilted Fermi-Hubbard chains,
Nat. Commun. 12, 4490 (2021), doi:10.1038/s41467-021-24726-0.

[7] H. Singh, B. A. Ware, R. Vasseur and A. J. Friedman, Subdiffusion and many-
body quantum chaos with kinetic constraints, Phys. Rev. Lett. 127, 230602 (2021),
doi:10.1103/PhysRevLett.127.230602.

[8] R. J. Valencia-Tortora, N. Pancotti and J. Marino, Kinetically constrained quan-
tum dynamics in superconducting circuits, PRX Quantum 3, 020346 (2022),
doi:10.1103/PRXQuantum.3.020346.

[9] Z. Lan, M. van Horssen, S. Powell and J. P. Garrahan, Quantum slow relaxation
and metastability due to dynamical constraints, Phys. Rev. Lett. 121, 040603 (2018),
doi:10.1103/PhysRevLett.121.040603.

[10] J. Feldmeier, P. Sala, G. De Tomasi, F. Pollmann and M. Knap, Anomalous diffusion
in dipole- and higher-moment-conserving systems, Phys. Rev. Lett. 125, 245303 (2020),
doi:10.1103/PhysRevLett.125.245303.

[11] A. Morningstar, V. Khemani and D. A. Huse, Kinetically constrained freezing
transition in a dipole-conserving system, Phys. Rev. B 101, 214205 (2020),
doi:10.1103/PhysRevB.101.214205.

[12] Z.-C. Yang, Distinction between transport and Rényi entropy growth
in kinetically constrained models, Phys. Rev. B 106, L220303 (2022),
doi:10.1103/PhysRevB.106.L220303.

[13] J. Feldmeier, W. Witczak-Krempa and M. Knap, Emergent tracer dynamics in constrained
quantum systems, Phys. Rev. B 106, 094303 (2022), doi:10.1103/PhysRevB.106.094303.

[14] N. Pancotti, G. Giudice, J. I. Cirac, J. P. Garrahan and M. C. Bañuls, Quantum east model:
Localization, nonthermal eigenstates, and slow dynamics, Phys. Rev. X 10, 021051 (2020),
doi:10.1103/PhysRevX.10.021051.

[15] V. Khemani, M. Hermele and R. Nandkishore, Localization from Hilbert space shat-
tering: From theory to physical realizations, Phys. Rev. B 101, 174204 (2020),
doi:10.1103/PhysRevB.101.174204.

[16] G. De Tomasi, D. Hetterich, P. Sala and F. Pollmann, Dynamics of strongly interacting sys-
tems: From Fock-space fragmentation to many-body localization, Phys. Rev. B 100, 214313
(2019), doi:10.1103/PhysRevB.100.214313.

[17] R. M. Nandkishore and M. Hermele, Fractons, Annu. Rev. Condens. Matter Phys. 10, 295
(2019), doi:10.1146/annurev-conmatphys-031218-013604.

[18] S. Pai, M. Pretko and R. M. Nandkishore, Localization in fractonic random circuits, Phys.
Rev. X 9, 021003 (2019), doi:10.1103/PhysRevX.9.021003.

25

https://scipost.org
https://scipost.org/SciPostPhys.15.3.093
https://doi.org/10.1016/j.physa.2017.12.149
https://doi.org/10.1038/s41467-021-24726-0
https://doi.org/10.1103/PhysRevLett.127.230602
https://doi.org/10.1103/PRXQuantum.3.020346
https://doi.org/10.1103/PhysRevLett.121.040603
https://doi.org/10.1103/PhysRevLett.125.245303
https://doi.org/10.1103/PhysRevB.101.214205
https://doi.org/10.1103/PhysRevB.106.L220303
https://doi.org/10.1103/PhysRevB.106.094303
https://doi.org/10.1103/PhysRevX.10.021051
https://doi.org/10.1103/PhysRevB.101.174204
https://doi.org/10.1103/PhysRevB.100.214313
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1103/PhysRevX.9.021003


SciPost Phys. 15, 093 (2023)

[19] T. Rakovszky, P. Sala, R. Verresen, M. Knap and F. Pollmann, Statistical localization:
From strong fragmentation to strong edge modes, Phys. Rev. B 101, 125126 (2020),
doi:10.1103/PhysRevB.101.125126.

[20] P. Sala, T. Rakovszky, R. Verresen, M. Knap and F. Pollmann, Ergodicity breaking aris-
ing from Hilbert space fragmentation in dipole-conserving Hamiltonians, Phys. Rev. X 10,
011047 (2020), doi:10.1103/PhysRevX.10.011047.

[21] Z.-C. Yang, F. Liu, A. V. Gorshkov and T. Iadecola, Hilbert-space frag-
mentation from strict confinement, Phys. Rev. Lett. 124, 207602 (2020),
doi:10.1103/PhysRevLett.124.207602.

[22] L. Zadnik and M. Fagotti, The folded spin-1/2 X X Z model: I. Diagonalisa-
tion, jamming, and ground state properties, SciPost Phys. Core 4, 010 (2021),
doi:10.21468/SciPostPhysCore.4.2.010.

[23] L. Zadnik, K. Bidzhiev and M. Fagotti, The folded spin-1/2 X X Z model: II. Thermody-
namics and hydrodynamics with a minimal set of charges, SciPost Phys. 10, 099 (2021),
doi:10.21468/SciPostPhys.10.5.099.

[24] B. Mukherjee, D. Banerjee, K. Sengupta and A. Sen, Minimal model for Hilbert
space fragmentation with local constraints, Phys. Rev. B 104, 155117 (2021),
doi:10.1103/PhysRevB.104.155117.

[25] B. Pozsgay, T. Gombor, A. Hutsalyuk, Y. Jiang, L. Pristyák and E. Vernier, Integrable spin
chain with Hilbert space fragmentation and solvable real-time dynamics, Phys. Rev. E 104,
044106 (2021), doi:10.1103/PhysRevE.104.044106.

[26] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn and Z. Papić, Weak
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