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Abstract

Non-equilibrium dynamics of many-body quantum systems under the effect of measure-
ment protocols is attracting an increasing amount of attention. It has been recently re-
vealed that measurements may induce different non-equilibrium regimes and an abrupt
change in the scaling-law of the bipartite entanglement entropy. However, our under-
standing of how these regimes appear, how they affect the statistics of local quantities
and, finally whether they survive in the thermodynamic limit, is much less established.
Here we investigate measurement-induced phase transitions in the Quantum Ising chain
coupled to a monitoring environment. In particular we show that local projective mea-
surements induce a quantitative modification of the out-of-equilibrium probability dis-
tribution function of the local magnetization. Starting from a GHZ state, the relaxation
of the paramagnetic and the ferromagnetic order is analysed. In particular we describe
how the probability distributions associated to them show different behaviour depending
on the measurement rate.
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1 Introduction

Isolated many-body quantum systems at zero temperature, governed by an Hamiltonian
H = H1 + gH2 with non-commuting [H1, H2] ̸= 0, may exhibit different phases depending on
the value of a physical parameter g appearing in the Hamiltonian. By varying the parameter
g, quantum fluctuations may drive the many-body ground state across a quantum phase tran-
sition [1,2]. This competition between non-commuting operators lies at the heart of quantum
mechanics, e.g., inducing correlations and frustration in quantum many-body systems, and
forming the cornerstone of quantum technology.

This effect is shared in common with the transition rooted by the the non-commutativity
between the generators of the unitary dynamics and the measured operators, which gives rise
to macroscopically distinct stationary states.

In fact, recently, the interplay between Hamiltonian, or more generally, unitary evolution
and measurements has gained much attention, since monitored quantum systems have been
found to undergo a measurement-induced entanglement phase transition [3–5].

In particular, it has been established that quantum systems subjected to both measurements
and unitary dynamics offer another class of dynamical behavior described in terms of quantum
trajectories [6], and well explored in the context of quantum circuits [7–25], quantum spin
systems [26–37], trapped atoms [38], and trapped ions [39–41]. In this context, the bipartite
entanglement entropy of isolated systems grows over time and eventually reaches the order of
the system size as predicted by the celebrated Cardy-Calabrese quasi-particle picture [42–45].
In this case, the system thermalizes (in a generalised Gibbs sense) and it is characterized by
highly entangled eigenstates, i.e. states following an extensive (with the volume) scaling of
their entanglement entropy [46–48]. Conversely, projective quantum measurements suppress
entanglement growth, such as in the quantum Zeno effect [49–53] according to which continu-
ous projective measurements can freeze the dynamics of the system completely. This question
has been addressed in many-body open systems [54–60] whose dynamics is described by a
Lindblad master equation [61–63].

However, it has been shown that the average entanglement entropy can still show a transi-
tion between a logarithmic and area law phase at a critical measurement strength or to display
a purely logarithmic scaling, depending on the stochastic protocol [55]. A logarithmic growth
of the entanglement entropy in an entire phase is particularly intriguing, given that the aver-
age state is expected to be effectively thermal, and it is reminiscent of a critical, conformally-
invariant, phase whose origin has been so far elusive. Similar results have been obtained for
free-fermion random circuits with temporal randomness [64], a setting that has been recently
generalized to higher dimension [65], or for Majorana random circuits [66,67]. Whether the
logarithmic character of the entanglement entropy in the stationary phase survives in the ther-

2

https://scipost.org
https://scipost.org/SciPostPhys.15.3.096


SciPost Phys. 15, 096 (2023)

modynamics limit is still under a very heated debate, since different models and protocols may
lead to slightly different conclusions. For example, in Ref. [68] the authors have shown that
the average of the stationary entanglement entropy manifests just the area-law behavior, for
any finite measurement rate, in the thermodynamic limit. A remnant of a logarithmic scal-
ing is observed only for finite sub-subsystem sizes though, where a characteristic scaling-law
between sizes and measurement-rate is established.

In light of these developments, in this work we study the competition between the unitary
dynamics and the random projective measurements in a quantum Ising chain coupled to an
environment which continuously measures its transverse magnetization. For this particular
model several works have discussed the relationship between measurements and entangle-
ment transition. In particular in Refs [30,69,70], the authors considered the one-dimensional
quantum Ising model coupled to an environment which continuously measures its transverse
magnetization focusing in the quantum state diffusion protocol [71, 72] and in the quantum
jump [73]. They found a sharp phase transition from a critical phase with logarithmic scaling
of the entanglement to an area-law phase. Instead the Ref. [28] presents the transverse Ising
model with two non-commuting projective measurements and no unitary dynamics showing
the entanglement transition between two distinct steady states that both exhibit area law en-
tanglement.

However, here we want to change back the point of view by restoring the usual connection
to the well established way of characterising quantum phase transitions: namely, by identifying
a possible local order parameter and by inspecting its full counting statistics.

In particular, we investigate how the stationary probability distribution of the averaged val-
ues over the set of quantum trajectories of the magnetizations and its momenta (and cumulant)
are affected by the monitoring of local degrees of freedom. In particular, upon increasing the
ratio γ between measurement rate and Hamiltonian coupling we find a transition from a corre-
lated to a uncorrelated phase, the former characterized by a Gaussian probability distribution
of magnetization along the z direction and the latter by a binomial distribution. Moreover,
right at the transition point γc ≃ 4, we have numerical evidence that the variance of the prob-
ability distribution of the magnetization along z also shows a sharp transition bnetween two
different behavior. Indeed, for γ < γc , the second z-magnetization cumulant grows with the
measurement rate; otherwise, for γ > γc , it gets bounded. This phase change is get confirmed
by the fluctuations of the ferromagnetic correlation function. Where, now, even for relatively
small subsystem sizes, we are able to distinguish between two different regimes: from an ex-
tensive scaling of the fluctuations with the subsystem sizes, to a vanishing-fluctuating regime.

The content of the manuscript is organised in the following way:

• Sec. 2 is devoted to introduce the model and its description in terms of diagonal spinless
fermions and we introduce the Majorana fermions as well.

• In Sec. 3 we discuss the measurement protocols used in our study.

• In Sec. 4 we introduce the formalism beyond mean states and quantum trajectories,
stressing the differences between both.

• Sec. 5 collects the main results of our investigation, namely the non-equibrium dynam-
ics generated by a combination of unitary evolving a fully polarised initial state and
measurements. After exploring the timedependent behaviour, we mainly focus on the
stationary properties. In Sec. 5.1, we analyze the static properties of paramagnetic mag-
netization for different value of measurement rate γ. In Sec 5.2 we study the behaviour
of the ferromagnetic magnetization in the stationary state.

• Finally, in the Appendices, we collect some details on the Lindbladian dynamics of the
averaged states, as well as we focus on the dynamics of the full quantum probability dis-
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tribution function of the subsystem magnetisation and its connection to the generating
function of the moments (and cumulants as well) of the order parameter.

2 Model

The Ising Hamiltonian (with no transverse field) reads

Ĥ = −J
L−1
∑

j=1

σ̂x
j σ̂

x
j+1 , (1)

where σ̂αj are the local Pauli matrices, such that [σ̂αp , σ̂βq ] = 2iδpqε
αβγσ̂

γ
p. Here we consider

open boundary conditions (OBC). The Hamiltonian is invariant under the action of the global
spin flip operator P̂ =

∏L
j=1 σ̂

z
j . In the following we enforce such symmetry and work in the

invariant sector with P = +1.
Using the Jordan-Wigner transformation

σ̂x
ℓ =

ℓ−1
∏

j=1

(1− 2n̂ j)
�

ĉ†
ℓ
+ ĉℓ
�

, σ̂
y
ℓ
= i

ℓ−1
∏

j=1

(1− 2n̂ j)
�

ĉ†
ℓ
− ĉℓ
�

, σ̂z
ℓ = 1− 2n̂ℓ , (2)

where {ĉi , ĉ†
j }= δi j and n̂i ≡ ĉ†

i ĉi , the Hamiltonian takes the form

Ĥ = −J
L−1
∑

j=1

�

ĉ†
j − ĉ j

��

ĉ†
j+1 + ĉ j+1

�

. (3)

Within the approach we will be using in the next sections, it is convenient to replace the
fermions ĉ j with the Majorana fermions (here we define two sets of operators through the
apexes x and y)

âx
j =
�

ĉ†
j + ĉ j

�

, â y
j = i
�

ĉ†
j − ĉ j

�

, (4)

which are hermitian and satisfy the algebra {âαi , âβj }= 2δi jδαβ , and such that one has

σ̂x
j =

j−1
∏

m=1

�

iâ y
mâx

m

�

âx
j , σ̂

y
j =

j−1
∏

m=1

�

iâ y
mâx

m

�

â y
j , σ̂z

j = iâ y
j âx

j . (5)

In terms of the Majorana fermions, the Hamiltonian reads

Ĥ = J
L−1
∑

j=1

�

i
2

â y
j âx

j+1 −
i
2

âx
j+1â y

j

�

=
J
2

â†Tâ , (6)

where we defined the vector â† = (âx
1 , . . . , âx

L , â y
1 , . . . , â y

L ), and identified the 2L×2L couplings
matrix

T=

�

0 H
H† 0

�

, (7)

with Hpq = −iδp,q+1 for p, q in {1, . . . , L}. Introducing the unitary matrix V = (v1, . . . , v2L),
(i.e. V†V= I2L×2L), whose column vectors are parametrised as

vq =
1
p

2

�

φq
−iψq

�

, (8)
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we get from the eigenvalue equation Tvq = εqvq the following coupled equations

−iHψq = εqφq , (9)

H†φq = −iεqψq . (10)

We can notice here that these equations are invariant under the simultaneous change εq→−εq
and ψq → −ψq. So, to each positive eigenvalue, εq > 0, corresponds a negative eigen-
value εq′ = −εq with the associated eigenvector vq′ = (σz ⊗ IL×L)vq. From these equa-
tions it is straightforward to obtain two decoupled eigenvalue equations HH†φq = ε2

qφq and

H†Hψq = ε2
qψq .. Since HH† and H†H are real symmetric matrices, their eigenvectors can be

chosen real and they satisfy completeness and orthogonality relations.
In the specific case of the Ising Hamiltonian in Eq. (6), those matrices are already diag-

onal (with one eigenvalue equals to zero, and L − 1 eigenvalues equal to one), specifically
(HH†)pq = δpq−δp1δq1 and (H†H)pq = δpq−δpLδqL . Choosing the coefficients φpq = δpq for
p and q in {1, . . . L}, leads to ψpq = −δp q−1 for q in {2, . . . , L} and ψp1 = −δpL . This implies
V†TV = σz ⊗ HH†. From the Majorana field we get the following diagonal Fermi operators
corresponding to positive energies

η̂q =
1
2

L
∑

p=1

�

φpq âx
p + iψpq â y

p

�

=
1
2

�

âx
q − iâ y

q−1

�

, for q = 2, . . . , L , (11)

and η̂1 = [âx
1 − iâ y

L ]/2. They satisfy canonical anticommutation relations {η̂q, η̂†
p} = δpq.

From those, the inverse relations reads

âx
q = η̂q + η̂

†
q , â y

q = i[η̂q+1 − η̂
†
q+1] , (12)

with â y
L = i[η̂1 − η̂

†
1], leading to the diagonal Hamiltonian

Ĥ =
L
∑

q=1

εq η̂
†
qη̂q − J(L − 1) , (13)

with εp = 2J(1−δp1). From the previous relations, the unitary time evolution of the Majorana
operators can be easily worked out

âx
p (t) = cos
�

εp t
�

âx
p − sin
�

εp t
�

â y
p−1 , (14)

â y
p (t) = sin
�

εp+1 t
�

âx
p+1 + cos
�

εp+1 t
�

â y
p , (15)

where periodic boundary conditions in the indices are intended, namely 0→ L and L+1→ 1.
For a Gaussian state all the information is encoded in the two-point correlation function of

the Majorana operators, namely

A= 〈â · â†〉=
�

Ax x Ax y

Ay x Ay y

�

, (16)

which under the classical Ising Hamiltonian evolve from time s to time s + t according to
A(s+ t) = R(t)A(s)R†(t), with

R(t) =

�

Rx x(t) Rx y(t)
Ry x(t) Ry y(t)

�

, (17)

whose matrix elements are

Rx x
pq (t) = cos
�

εp t
�

δpq , (18a)

Ry y
pq (t) = cos
�

εp+1 t
�

δpq , (18b)

Ry x
pq (t) = sin
�

εp+1 t
�

δp q−1 , (18c)

Rx y
qp (t) =− sin
�

εp t
�

δp q+1 . (18d)
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3 Protocol

We prepare the system in the symmetric (P = +1) ground state of the Hamiltonian in Eq. (1),
namely the GHZ state

|ψ0〉=
1
p

2
[| · · · ↑ · · · 〉+ | · · · ↓ · · · 〉] , (19)

where here |↑〉 and |↓〉 represents the eigenstates of σ̂x with eigenvalues respectively +1 and
−1. This initial state is described by a correlation matrix whose matrix elements are

Ax x
pq = Ay y

pq = δp q , Ax y
pq = −iδp q+1 , Ay x

pq = +iδp+1 q , (20)

where once again, PBC in the indices are intended, i.e. L + 1 → 1; as expected, the initial
correlation matrix would be unaffected by just the unitary evolution generated by the Ising
Hamiltonian in Eq. (1). However, the system experiences random interactions with local mea-
suring apparatus such that the full time-dependent protocol becomes highly non-trivial. In
practice, with a characteristic rate γ, for each single lattice site k, the local magnetization
along ẑ is measured, i. e. σ̂z

k =
∑

σσP̂(σ)k . Here σ = ±1 are the possible outcomes of the

measurements, and P̂(σ)k = (1+σσ̂z
k)/2 is the projector to the corresponding subspace.

Let us stress that both the unitary evolution and the local projective measurements keep the
state Gaussian in terms of the Majorana fermions. While the former comes straightforwardly
from the fact that exp

�

−i t Ĥ
�

is Gaussian; the latter may not be immediately visible from the
simple structure of the projectors P̂σk . However, it is easy to show that

P̂(σ)k = lim
x→∞

exσσ̂z
k

Tr(exσσ̂z
k)

, (21)

thus also being a Gaussian operator in terms of Majorana fermions. Finally, let us mention
that the protocol also preserves the spin-flip invariance, the state thus remaining always in the
P = +1 sector.

For the aforementioned reasons, during the entire dynamics, the full information of the
state is completely encoded within the two-point functions Aαβpq = 〈âαp âβq 〉, and all higher-
order correlators slipt into sums of products of the two-point function only, according to the
Wick theorem.

Since σ̂z
k operators acting on different lattice sites commute, we can measure the lo-

cal spins in any arbitrary order; specifically, if at time t the k-th site has been measured,
following the Born rule, if the outcome is σ = ±1, then the state |Ψ(t)〉 transforms into

P̂(σ)k |Ψ(t)〉/
Ç

〈Ψ(t)|P̂(σ)k |Ψ(t)〉. The resulting state remaining Gaussian, we can thus focus on

the two-point function Aαβpq (t) which completely characterises the entire system. The recipe is
the following: for each time step d t and each site k, we extract a random number qk ∈ (0,1]
and only if qk ≤ γd t we take the measurement of σz

k. In such case, we extract another random
number pk ∈ (0,1], and the two-point function immediately after the projection to the σ̂z

k local
eigenstates becomes (in the following we omit the time dependence in order to simplify the
notation)

Aαβpq |σ =
2

1+ iσAy x
kk

�

1
4

Aαβpq +
iσ
4
〈{âαp âβq , â y

k âx
k }〉 −

1
4
〈â y

k âx
k âαp âβq â y

k âx
k 〉
�

, (22)

where σ = +1 if pk ≤ 1/2+ 〈σ̂z
k〉/2, otherwise σ = −1.

The second term can be easily evaluated using the Wick theorem obtaining

〈{âαp âβq , â y
k âx

k }〉= 2Ay x
kk Aαβpq +
�

Aαx
pk Aβ y

qk +Axα
kp Ayβ

kq

�

−
�

Aαy
pk Aβ x

qk +Ayα
kp Axβ

kq

�

. (23)
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Finally, using the fact that

âαp âβq â y
k âx

k =− 4δpkδqkδ
αyδβ x + 2δqkδ

β y âαp âx
k + 2δpkδ

αy âx
k âβq (24)

+ 2δqkδ
β x â y

k âαp − 2δpkδ
αx â y

k âβq + â y
k âx

k âαp âβq , (25)

after a bit of algebra, also the last term in Eq. (22) can be explicitly decomposed as follow

〈â y
k âx

k âαp âβq â y
k âx

k 〉=−Aαβpq − 4δpkδqk

�

δαyδβ x −δβ yδαx
�

Ay x
kk − 2δqkδ

β yAyα
kp+

+ 2δpkδ
αyAyβ

kq − 2δqkδ
β xAxα

kp + 2δpkδ
αxAxβ

kq .
(26)

4 Mean state and quantum trajectories

In this work, we study observables affected by the continuous monitoring of the system. Before
doing so, it is important to stress the differences between quantum trajectories and mean
states [54]. The mean state of our protocol is defined as the average of the density matrix
over the measurements outcomes

ρ̂t = |ψt〉〈ψt | , (27)

where with (. . . ) we denote the average over the measurement protocol. The Lindblad master
equation associated to our protocol, which describes the time-evolution of the mean state, is
given by

∂t ρ̂ = −i[Ĥ, ρ̂] +
γ

2

L
∑

k=1

�

σ̂z
k ρ̂ σ̂

z
k −

1
2
{σ̂z

kσ̂
z
k, ρ̂}
�

, (28)

see Appendix A for its derivation. Since the evolution is implemented by an unital dynamical
quantum map, then the completely mixed state is a fixed point of the dynamics. We therefore
expect the dynamics to bring the mean state (apart from symmetry protected sectors of the
Hilbert space) toward the trivial infinite temperature one. Therefore, we say that averages
computed with the mean state are known a priori.

On the other hand, we may consider single quantum trajectories described by a set of not-
averaged density matrices ρ̂t,ξ =

�

�ψt,ξ

�


ψt,ξ

�

� where ξ represents a single realization of the
stochastic protocol. We then consider averages of a functional of our state F[ρ̂] over the set
of quantum trajectories, it is apparent that

F[ρ̂t] ̸= F[ρ̂t,ξ] , (29)

as long as F is not a linear functional of ρ̂t,ξ. As a simple example we observe that the purity of

our states Tr
¦

ρ̂2
t,ξ

©

= 1 for the set of quantum trajectories (since the state is always a product

state), meanwhile since the mean state is generically mixed we have Tr
n

ρ̂t
2
o

< 1.

Let us now consider an operator Â and a set of quantum trajectories ρ̂t,ξ. Given a certain
fixed realization of the measurement protocol ξ we can define a quantum probability

Pt,ξ(a; Â) = Tr
�

δ(Â− a)ρ̂t,ξ

	

(30)

of obtaining certain outcomes from the eigenvalues of Â. Given that this distribution is linear
in ρt,ξ, following the previous discussion, we have that the average of the distribution over
the set of quantum trajectories

Pt(a; Â) =Pt,ξ(a; Â) = Tr
¦

δ(Â− a)ρ̂t,ξ

©

(31)
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is a deterministic quantity known a priori, which is completely described by the dynamics of
the mean state. Furthermore, all the moments of Pt,ξ(a), i.e.

¬

Ân
t,ξ

¶

= Tr
�

Ânρ̂t,ξ

	

(32)

are linear functionals of ρ̂t,ξ and therefore display a deterministic a priori dynamics. Despite
this we can consider the cumulants of the distributions (30) over the set of quantum trajec-
tories which result in non-linear functional of ρt,ξ. In particular, the n-th cumulants of the
distribution is given by

Kt,n(Â) = ∂
n
λ log
�

Tr
�

eλÂρ̂t,ξ

	�

�

�

�

�

λ=0
. (33)

As for instance, we may write the second cumulant

Kt,2(Â) = Tr
�

Â2ρ̂t,ξ

	

− Tr
�

Âρ̂t,ξ

	2
= Tr
¦

Â2ρ̂t,ξ

©

− Tr
�

Âρ̂t,ξ

	2
, (34)

which is clearly given by an average of a non-linear functional of ρt,ξ.
We are going now to construct a different probability distribution whose second moment

is the very same non-linear contribution of the former cumulant Tr
�

Âρ̂t,ξ

	2
. Indeed, we may

consider a classical probability obtained by consideringN different trajectories and computing
the average of the observable over each realization of the stochastic protocol ξ

at,ξ = Tr
�

Âρ̂t,ξ

	

, (35)

in the limit ofN →∞ the averages over this set will be distributed according to a probability
distribution

Pt(a; Â) = lim
N →∞

1
N

N
∑

ξ=1

δ(at,ξ − a) = δ
�

Tr
�

Âρ̂t,ξ

	

− a
�

, (36)

not dependent on the particular realization ξ and non-linear in ρt,ξ. Then, we can consider
the moments of the latter distribution

µt,n(Â) =

∫

Pt(a; Â)anda , (37)

which in this case are non-linear functionals of ρt,ξ. As a clarifying example, let us consider
the second moment

µt,2(Â) =

∫

Pt(a; Â)a2da = lim
N →∞

1
N

N
∑

ξ=1

�

Tr
�

Âρ̂t,ξ

	�2
= Tr
�

Âρ̂t,ξ

	2
. (38)

We notice that this latter probability distribution contains the information on all the moments



ψξ
�

�Â
�

�ψξ
�n

, which describe the statistical properties of the average of Â over the set of quan-
tum trajectories.

As it is apparent, there is a close connection among the cumulants of Pt,ξ(a; Â) and the
moments of the distributions {Pt(a; Âk)}k∈N. This is due to the fact that it is possible to compute
the n-th cumulant of Pt,ξ(a; Â) with a linear combination the moments of {Pt(a; Âk)}k≤n.

In order to examine the melting of the ferromagnetic order of the Ising chain under con-
tinuous projective paramagnetic measures, we will consider the following observables

M̂ z
ℓ =

1
2

∑

j∈ℓ

σ̂z
j , M̂ x

ℓ =
1
2

∑

j∈ℓ

σ̂x
j , M̂ x x

ℓ =
1
4

∑

i ̸= j∈ℓ

σ̂x
i σ̂

x
j , (39)

and study the classical distribution Pt of the averages computed over a set quantum trajectories
or, when this will not be possible, the cumulants of Pt,ξ.
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Figure 1: Local z-magnetization computed on single realization of a quantum trajec-
tory. Left panel: γ= 0.1; Right panel: γ= 10.

5 Numerical results

We recap here the numerical procedure that implements the continuous measurement proto-
col. We remark that, since we are working with an evolution that preserves the state Gaussian,
the correlation matrix A contains all the information of the system. The starting point of the
dynamics is the GHZ state whose correlation matrix is given in Eq. (20). The system is then
evolved unitarily by d t with Eqs. (18), then we apply the projective measurement step. To do
so, sequentially projective measurements of the z-magnetization on each site are applied with
probability pmeas = γd t, thus transforming the system correlation matrix A as pointed out in
Eq. (22).

In our simulations, in order to set a time scale, we evolve our system up to a fixed time
which depends on gamma, we chose t f = T /γ. This means that, on average, for each choice
of γ the same number of projective measurements are executed. Indeed, we have t f /d t time
steps where with probability γd t for each of the L sites a projective measurement is done. This
implies an average number of measurements of

Nmeas =
t f

d t
Lγd t = T L , (40)

in our simulations T = 20, L = 128 then, on average, each realization of the stochastic proto-
col consist of Nmeas = 2560 projective measurements. Furthermore, in the following, for each
choice of the parameters, we chose a set of N = 200 quantum trajectories.

In the following paragraphs, we study how the initial ferromagnetic order melts under the
influence of repeated measures.

5.1 Paramagnetic magnetization

First of all, we start by analyzing the dynamics of the paramagnetic magnetization, we will
denote with |0〉 and |1〉 the two eigenstates of σ̂z with eigenvalue 1 and −1 respectively. In
Fig. 1 we show the evolution of the local z-magnetization

mz( j,γt) =
1
2

Tr
¦

σ̂z
j ρ̂t,ξ

©

, (41)

for a single realization of the stochastic protocol and two different choices of the measurement
rate γ. It is apparent that, due to the quantum Zeno effect [50, 51], increasing the measure-
ment rate, local regions in which the magnetization is frozen appear. On the other hand, if
measurements are sparse in time we expect a completely random evolution of the system.
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Figure 2: Stationary probabilities of the subsystem paramagnetic magnetization. (a)
regime of fast measurements γ = 10, the numerically probability (obtained from an
histogram) is compared to a binomial distribution. (b) sparse measurements regime
γ = 0.1 the numerically probability (obtained from an histogram) is compared to a
Gaussian distribution. Details on the normalization of the two histograms are in the
main text.

To be more quantitative, we are going to analyze the behavior of Pt

�

mz
ℓ
; M̂ z

ℓ

�

, which we
remind is the probability distribution of the averaged value of the subsystem paramagnetic
magnetization over the set of quantum trajectories, in the stationary case for which γt ≫ 1 by
defining the distribution

P(m; M̂ z
ℓ
) =

1
t f − t0

∫ t f

t0

Pt

�

mz
ℓ; M̂ z

ℓ

�

dt , (42)

where (. . . ) denotes the time average, in our simulations we chose t0 such that γt0 = 5, we
will study the aforementioned limiting case of fast measurements γ≫ 1 and rare γ≪ 1.

We start our analysis by the limit case in which γ ≫ 1 we are constantly monitoring all
the sites of the system, the unitary evolution thus becomes negligible, and therefore we are
effectively blocking the system in the product state outcome of first measurement. Since we
are starting from the ferromagnetic GHZ ground state, the first measurement outcome with
equal probability is one of the product states |τ1 . . .τL〉, with τ j = 0, 1 for j = 1, ..., L. Since

in this limit the state is blocked in the first measurement outcome we have that P(mz
ℓ
) will

be equivalent to the quantum probability P (mz
ℓ
; M̂ z

ℓ
) of obtaining from the state a certain

eigenvalue of M̂ z
ℓ
. Thus P(mz

ℓ
) will be the discrete binomial distribution

P(m; M̂ z
ℓ
) =

1
2ℓ

�

ℓ

mz
ℓ
+ ℓ

2

�

, mz
ℓ ∈ −ℓ/2, . . . ,ℓ/2 . (43)

In Fig. 2(a), for γ = 10, we compare the numerical distribution obtained from an histogram
to the theoretical prediction obtaining a good agreement. Since we want to compare this
distribution to a discrete one, we normalized the histogram such that the sum over all the
heights of the distribution in each bin is equal to one.

On the other hand, the case in which γ≪ 1 means that measurements are diluted in time
and that the information can propagate along the chain. We then have a dynamics dominated
by the unitary evolution which may produce an entangled state by propagating the defects
generated from the projective measurements. In first approximation, in the limit of γ≪ 1, we
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Figure 3: Distribution of the magnetization M̂ z
ℓ

on a sub-lattice of size ℓ centered
in the middle of the spin chain in the stationary state γt ≫ 1. The values of the
distribution are extracted form an histogram.

found from the numerics that the local magnetization mz( j,γt) is distributed in [−1/2, 1/2]
with a variance σ2 ≈ 1/16. From the central limit theorem, we thus find that the subsystem
magnetization is distributed as a Gaussian centered in zero with standard deviation σ

p
ℓ, and

thus its probability distribution is given by

P(m; M̂ z
ℓ
) =

√

√ 16
2πℓ

exp

�

−
16(mz

ℓ
)2

2ℓ

�

. (44)

In Fig. 2(b), for γ= 0.1, we compare the numerical distribution obtained from an histogram,
now normalized such that the integral over the bins is equal to one, to the Gaussian distribution
obtaining a good agreement.

Finally, in Fig. 3, for γ = 0.1, 2, 2.5, 4 and ℓ = 6, 18 we plot the distributions of the
subsystem magnetizations. Qualitatively, as it is suggested by the plot, there is a crossover from
a Gaussian distribution to the binomial one. Furthermore, for values of the measurement rate
around the critical value of the measurement induced phase transition γc ≃ 4, the distribution
starts to develop peaks in correspondence of mz

ℓ
∈ −ℓ/2, . . . , ℓ/2 which are the values of the

eigenvalues of M̂ z
ℓ
.

In order to study the latter behavior more deeply, in Fig. 4 we plot, for different subsys-
tem sizes, the value of the second moment of the subsystem magnetization, rescaled with the
subsystem size, against the measurement rate γ

µ2(M̂
z
ℓ ) =

1
t f − t0

∫ t f

t0

Tr
�

M̂ z
ℓ
ρ̂t,ξ

	2
dt , (45)

where once again γt0 = 5 and γt f = 20. When γ is less than 4, so that the dynamics is in the
long-range correlated region of the phase diagram, there is a perfect match of the data points.
Increasing the value of γwe witness spreading of the averages, meaning that we are in a differ-
ent regime. As a matter of fact, fluctuations of the transverse magnetisation over the stochastic
trajectories are extremely favorable indicator to detect a dynamical phase-transition. In par-
ticular, the critical value of the measurement rate is located at γc ≃ 4, in perfect agreement to
what has been observed by studying the entanglement entropy in Ref. [30].

5.2 Ferromagnetic magnetization

We are now going go study the behavior of the ferromagnetic magnetization along x in the
stationary state. We can not proceed as in the previous section. Indeed, due to the Z2 symmetry
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Figure 4: Second moment of the subsystem paramagnetic magnetization M̂ z
ℓ

rescaled
with the size of the subsystem. If γ < 4 there is a perfect matching between data,
after the phase transition we witness a different behavior of the magnetization. Error
bars are given by the error of the mean.

of the protocol and of the initial state 〈σ̂x
j 〉 = 0 in any site and all the times. This result in a

trivial distribution of the ferromagnetic magnetization

Pt(m; M̂ x
ℓ ) = δ(m) ∀ t . (46)

On the other hand, we can consider the quantum probability

Pt,ξ(m; M̂ x
ℓ ) = Tr
�

δ
�

M̂ x
ℓ −m
�

ρ̂t,ξ

	

, (47)

and compute the generating function of the cumulants. In particular we studied the fourth
cumulant. Despite it has a non trivial a priori evolution, it does not contain any relevant
information on the measurement-induced phase transition, due to the fact that we could not
have access to sufficiently large subsystems. We present the detailed analysis in the Appendix
B.

5.2.1 Probability of M x x
ℓ

In order to overcome the limitations described in the previous paragraph, we considered the
full counting statistics over the trajectories of the following observable

M̂ x x
ℓ =

1
4

∑

i ̸= j∈ℓ

σ̂x
i σ̂

x
j . (48)

To extract information on the spectrum of M̂ x x
ℓ

, we rewrite its expression as follow

M̂ x x
ℓ =

1
4

∑

i, j∈ℓ

σ̂x
i σ̂

x
j −

ℓ

4
=

1
4

�

∑

i∈ℓ

σ̂x
i

�2

−
ℓ

4
=

�

2M̂ x
ℓ

�2 − ℓ
4

. (49)

The maximum eigenvalue M̂ x x
ℓ

corresponds to ℓ(ℓ− 1)/8 while the minimum is −ℓ/8. Since
we consider an evolution starting from the GHZ state we start from the maximum of value
of 〈M̂ x x

ℓ
〉 and evolve towards a stationary state. In Fig. 5(a) we show the stationary classical
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Figure 5: (a) Stationary probability distribution of M̂ x x
ℓ

for ℓ = 28 integrated for
5< γt0 < 20. (b) Variance of mx x

ℓ
extracted from the probabilities distributions, the

errorbar is given by its fluctuation.

probability P(m; M̂ x x
ℓ
) for a subsystem of size ℓ= 28. In the case in which γ≫ 1 the system is

not far form an eigenstate of M̂ z
ℓ

thus the distribution is well described by a δ(m), we expect
thus that all the moments of the distribution in this limit to be equal to zero. On the other
hand, decreasing the value of γ the distribution transition towards a distribution centered in
mx x
ℓ
= 0 with a width that increases decreasing the value of γ. Indeed, in Fig. 5(b) we plot

the width of the aforementioned distribution for different values of the subsystem size, which
decreases with the measurement rate γ. We see that (M̂ x

ℓ
)2 could witness the measurement

induced phase transition since crossing the critical value γc ≃ 4 the width changes dramatically
behavior with the subsystem size: in the Zeno-like regime (namely for γ > 4), the fluctuations
are basically suppressed; instead, for γ < 4 they show a remarkable dependence with the ℓ,
already for relatively small sizes.

As a matter of fact, although this behavior seems not as clean as what we have found for the
paramagnetic magnetization, the ferromagnetic fluctuations have the paramount advantage
to keep the extensive (with the subsystem size) character only when entering the strongly
correlated phase. In other words, while µ2(M̂ z

ℓ
) is expected to show a non-analytic behavior

at γ≃ 4 in the thermodynamics limit; µ2(M̂ x x
ℓ
) is not just non-analytic at the transition point,

but in addition it clearly characterizes the entire correlated phase already looking at small
subsystems.

6 Conclusion

The interplay of local measurements and unitary evolution can give rise to phase transitions,
manifesting in, e.g., either delocalized, strongly entangled or localized, weakly entangled con-
ditional states.

In this work, we investigated the quantum quench dynamics in a quantum Ising chain
under local projective measurements of the paramagnetic magnetization Sz .

Very much like in a classical equilibrium situation, when non-commuting observables com-
pete in driving a system accross a quantum phase transition; here the unitary driving and the
projective measurements compete in creating or destroying the local order.

In a genuinely statistical sense, different quantum trajectories naturally fluctuate under our
dynamical map; this gives rise to non-equilibrium probability distributions of local quantities
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which contain signature of paramount yet elusive transitions, going much beyond the simple
dynamics of the mean state.

In particular, during the time evolution, by computing the statistics of the expectation
values of the system magnetisation in the z direction, we are able to distinguish different
regimes, namely different phases. Starting from the strong measurement phase, increasing
the imperfection rate, the distribution changes from a bimodal distribution into a Gaussian
distribution, the transition point being located at measurements rate γc ≃ 4, in agreement
with what have been observed for the entanglement entropy transition [30]. Therefore, our
article paves the way for considering second-order cumulants, or even the complete statistics,
of quantum averages over sets of quantum trajectories as witnesses of measurement-induced
quantum phase transitions.

As a matter of fact, our approach, based on the observation of the statistics of local quanti-
ties, is naturally related to what is done in the nowadays experiments. However, especially for
devising projective-measurement protocols in the real quantum world, the ultimate challenge,
which need to be addressed yet, remains the post-selection problem: namely the possibility to
experimentally reproduce the same trajectory ρ̂t,ξ many many times, without being affected
by the exponentially inefficient measurement-induced post-selection.
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A Lindbladian dynamics of the averaged state

The projective measurement protocol outlined in the main text relies on the fact that, at ev-
ery single measurement step, we know which lattice sites are measured, together with the
outcomes of the measurements as well.

However, if we do not know whether the lattice site k-th is measured and no informa-
tion about the measurement is retained, then a generic state ρ transforms accordingly to the
quantum mechanic prescription as follow

ρ̂→Mk(ρ̂) =
�

1−
γdt

2

�

ρ̂ +
γdt

2
σ̂z

k ρ̂ σ̂
z
k , (A.1)

where γd t is the probability that a single site is measured, after a discretization of the contin-
uum time evolution has been applied. Therefore, after a time step d t the entire system with
L lattice sites transform according to

ρ̂→ e−idtĤ[ML ◦ · · · ◦M2 ◦M1(ρ̂)]e
idtĤ . (A.2)

The discrete protocol in the previous equation can be easily implemented in a Tensor Network
algorithm, where each measurement operation Mk is easily implemented as a transformation
of the local tensor in the MPO representation of the mixed state ρ̂.

From an analytical point of view, if we are interested in the continuum limit of Eq. (A.2),
where d t → 0 with fixed γ, we can keep the first order terms in the composition of the mea-
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surement string, obtaining

ML ◦ · · · ◦M2 ◦M1(ρ̂) =
�

1− L
γdt

2

�

+
γdt

2

∑

k

σ̂z
k ρ̂ σ̂

z
k +O(dt2) . (A.3)

Combining the previous expansion with the unitary part in the evolution, we finally get the
following Lindblad master equation

∂t ρ̂ = −i[Ĥ, ρ̂] +
γ

2

L
∑

k=1

�

σ̂z
k ρ̂ σ̂

z
k −

1
2
{σ̂z

kσ̂
z
k, ρ̂}
�

, (A.4)

where we used the fact that (σ̂z
k)

† = σ̂z
k and (σ̂z

k)
2 = 1.

Eq.s (A.2) and (A.4) describe respectivelly the discrete and the continuous version of the
dynamics experienced by averaged state ρ̂ as well.

In our protocol, the initial state |ψ0〉〈ψ0| admit a MPO representation whose local tensors
for each lattice site k are

Γk =







|↑〉〈↑| 0 0 0
0 |↑〉〈↓| 0 0
0 0 |↓〉〈↑| 0
0 0 0 |↓〉〈↓|






=

1
2







1+ σ̂x 0 0 0
0 σ̂z − iσ̂ y 0 0
0 0 σ̂z + iσ̂ y 0
0 0 0 1− σ̂x






,

(A.5)
and both left and right boundary vectors are given by l⃗ = r⃗ = (1, 1,1, 1)/

p
2. Once again,

here |↑〉 and |↓〉 represents the eigenstates of σ̂x with eigenvalues respectively +1 and −1. In
particular, even under the action of the local transformation Mk (which does not change the
MPO auxiliary dimension), the averaged state remains always an eigenstate of the classical
Ising Hamiltonian Hx x . In other words, the unitary part in Eq. (A.2) does not play any role,
and the only contribution to the averaged state evolution comes from the nested application of
Mk on each lattice site. In addition, each single operator in the diagonal MPO Γk, transforms
independently.

The local dynamics induced by the nested transformations of Mk can be easily solved in
the Pauli matrix representation of each local state. Indeed, discarding the index k for a sake
of clarity, and expanding a generic local density matrix as ρ =

∑

µ cµσ̂
µ, we easily get

cµ(t) =
∑

ν

M(t)µνcν(0) , with M(t) =







1 0 0 0
0 e−γt 0 0
0 0 e−γt 0
0 0 0 1






. (A.6)

Using this last result with the initial condition in Eq. (A.5) we obtain

Γk(t) =
1
2







1 0 0 0
0 σ̂z 0 0
0 0 σ̂z 0
0 0 0 1






+

e−γt

2







σ̂x 0 0 0
0 −iσ̂ y 0 0
0 0 iσ̂ y 0
0 0 0 −σ̂x






. (A.7)

The time evolved averaged state is therefore described by ρ̂(t) = l⃗ ·
∏L

k=1 Γk(t)· r⃗, and it relaxes
toward the infinite temperature state within the Z2 symmetry sector with P = 1, namely
ρ̂(∞) = (1+ P̂)/2L .

In addition, the averaged generating function of the moments of M x
ℓ

can be easily com-
puted as follow

Tr{eλM̂ x
ℓ ρ̂(t)}= t

1
2

�

[cosh(λ/2) + e−γt sinh(λ/2)]ℓ + [cosh(λ/2)− e−γt sinh(λ/2)]ℓ
	

, (A.8)

which is expected to be different form the average of the cumulant generating function that
has been evaluated in the main text.
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Figure 6: Non a priori contribution to the fourth cumulant. Left panel: evolution of
the fourth cumulant towards the stationary state. Right panel: time averaged fourth
cumulant in the stationary state (after γt0 = 5), the error bars are estimated as
the standard deviation of the time average, inset log-linear plot of the mean values.
Subsystem size ℓ= 10.

B The full counting statistics

Since we are interested in the statistics of the order parameter M̂ x
ℓ
= 1

2

∑ℓ
j=1 σ̂

x
j , in a subsystem

of ℓ contiguous lattice sites, we do identify Fℓ(λ) via

eFℓ(λ) ≡ 〈eλM̂ x
ℓ 〉, with Kn

ℓ = ∂
n
λ Fℓ(λ)
�

�

λ=0 , (B.1)

as the generating function of all cumulants Kn
ℓ

of the subsystem magnetization. From the large
deviation theory we may expect Fℓ(λ) ∼ ℓF̃(λ) for ℓ≫ 1, where F̃(λ) is the large deviation
function. However, this relies on the extensive behaviour of the cumulants, which is violated
in the initial GHZ state. For such reason, it is worth to investigate at the average over the

quantum trajectory dynamics of the ratio Fℓ(λ)/ℓ= log〈eiλM̂ x
ℓ 〉/ℓ.

The computation of the subsystem generating function is a very hard task mainly because
σ̂x is a nonlocal operator in terms of Majorana fermions. By exploiting the Z2 symmetry of
the measurement protocol, we have

Fℓ(λ)≡ Gℓ(λ) + ℓ log cosh(λ/2) , (B.2)

with

Gℓ(λ) = log
⌊ℓ/2⌋
∑

n=0

tanh(λ/2)2n
ℓ
∑

j1< j2<···< j2n

〈σ̂x
j1
σ̂x

j2
· · · σ̂x

j2n
〉 , (B.3)

where the ordered indexes { j1, . . . , j2n} are in the interval [1,ℓ]. Here we decided to high-
light the nontrivial part Gℓ(λ) of the generating function, whilst the second term in Eq. (B.2)
simply gives the infinite temperature contribution. Indeed, we may define the non a priori
contribution κn of the cumulants as

∂ n
λ Fℓ(λ)
�

�

λ=0 = κn + ℓ ∂
n
λ log cosh(λ/2)

�

�

λ=0 , (B.4)

so that κn ≡ ∂ n
λ

Gℓ(λ)
�

�

λ=0. The evaluation of Gℓ(λ) reduces to the computation of the generic
string 〈σ̂x

j1
σ̂x

j2
· · · σ̂x

j2n
〉. Following Ref. [74], it can be evaluated as the Pfaffian of a skew-

symmetric real matrix which explicitly depends on the particular choice of the indices:

〈σ̂x
j1
σ̂x

j2
· · · σ̂x

j2n
〉= (−1)L jn (L jn−1)/2 pf

�

Fy y
jn

Gy x
jn

Gx y
jn

Fx x
jn

�

, (B.5)
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where we used the shorthand notation jn ≡ { j1, . . . , j2n} for the full set of indices, and
L jn =
∑n

k=1( j2k − j2k−1). The real matrices F jn and G jn (F jn being also skew-symmetric)
have dimensions L jn ×L jn and entries given by [75]

(Fy y
jn
)mp ,nq

= −i〈â y
p â y

q 〉+ iδpq = −iAy y
pq + iδpq , (B.6)

(Fx x
jn
)mp ,nq

= −i〈âx
p+1âx

q+1〉+ iδpq = −iAx x
p+1 q+1 + iδpq , (B.7)

(Gy x
jn
)mp ,nq

= −i〈â y
p âx

q+1〉= −iAy x
p q+1 , (B.8)

(Gx y
jn
)mp ,nq

= −i〈âx
p+1â y

q 〉= −iAx y
p+1 q , (B.9)

with {p, q} ∈ [ j1, j2 − 1] ∪ [ j3, j4 − 1] ∪ · · · ∪ [ j2n−1, j2n − 1] and where the indices mp and
nq run in {0, . . . ,L jn − 1}, and have the function of shrinking all together the intervals. The
knowledge of the Majorana correlation functions together with the representation (B.5) are
the basic ingredients to compute the generating function in Eq. (B.3).

We note that, due to the Z2 symmetry of our system, all the odds cumulants are null.
Moreover, for the same reason the second cumulant has a trivial a priori evolution since

Kt,2(M̂
x
ℓ ) = Tr
�

(M̂ x
ℓ
)2ρ̂t,ξ

	

− Tr
�

M̂ x
ℓ
ρ̂t,ξ

	2
= Tr
¦

(M̂ x
ℓ )

2ρ̂t,ξ

©

, (B.10)

since the non-linear contribution is equal to zero. The first non-trivial contribution is therefore
the fourth cumulant, namely

Kt,4(M̂
x
ℓ ) = Tr
¦

(M̂ x
ℓ )

4ρ̂t,ξ

©

− 3 Tr
�

(M̂ x
ℓ
)2ρ̂t,ξ

	2
, (B.11)

where the second term does give a non-linear contribution. In Fig. 6 we plot the time evolution
of the non a priori part of the fourth cumulant, i.e. κt,4, and its time average in the stationary
state

κ4(M̂ x
ℓ
) =

1
t f − t0

∫ t f

t0

κt,4(M̂ x
ℓ
)dt , (B.12)

with γt0 = 5 and for a subsystem of size ℓ = 10, and where again (. . . ) denotes a time aver-
age in the stationary configuration. Increasing the value of the measurement rate γ, we find
an exponential decay of the stationary value of the 4-th cumulant towards zero, namely the
infinite temperature value. On the other hand, the non-trivial time-evolution does not con-
tain any relevant information on the measurement-induced phase transition. This is probably
due to the fact that we could not have access to sufficiently large subsystems. As a matter of
fact, the numerical evaluation of the full counting statistics is a very involved procedure, which
scales exponentially with the subsystem dimension, thus not allowing to reach thermodynamic
relevant sizes.
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