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Abstract

We construct a projection-based cluster-additive transformation that block-diagonalizes
wide classes of lattice Hamiltonians H =H0 + V. Its cluster additivity is an essential in-
gredient to set up perturbative or non-perturbative linked-cluster expansions for degen-
erate excitation subspaces of H0. Our transformation generalizes the minimal transfor-
mation known amongst others under the names Takahashi’s transformation, Schrieffer-
Wolff transformation, des Cloiseaux effective Hamiltonian, canonical van Vleck effec-
tive Hamiltonian or two-block orthogonalization method. The effective cluster-additive
Hamiltonian and the transformation for a given subspace of H, that is adiabatically con-
nected to the eigenspace of H0 with eigenvalue en

0 , solely depends on the eigenspaces
of H connected to em

0 with em
0 ≤ en

0 . In contrast, other cluster-additive transformations
like the multi-block orthogonalization method or perturbative continuous unitary trans-
formations need a larger basis. This can be exploited to implement the transformation
efficiently both perturbatively and non-perturbatively. As a benchmark, we perform per-
turbative and non-perturbative linked-cluster expansions in the low-field ordered phase
of the transverse-field Ising model on the square lattice for single spin-flips and two
spin-flip bound-states.
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1 Introduction

In order to solve the time-independent Schrödinger equation for a Hamiltonian on a lattice

H =H0 +λV , (1)

one needs to find the eigenvalues and eigenfunctions of H. We will assume throughout that
H0 is solvable and has a gapped spectrum. The part H0 can therefore be written in diagonal
form, while

[H0, V ] ̸= 0 (2)

makes solving H a difficult problem. Many times one is not interested in properties at all
energies of the many-body Hamiltonian but only in the properties of the ground-state and a
few low-lying excitations and thus in much fewer degrees of freedom. Conceptionally, one
can try to find a transformation T that maps the full Hamiltonian to an effective Hamiltonian
Heff describing these relevant degrees of freedom only. In practice, in almost all cases one can
not find this transformation exactly but has to resort to approximations. One of the oldest is
perturbation theory. Let us note that the necessity of a perturbative starting point is not only
a drawback but also helps in giving a clear picture of the physical problem at hand. While the
first two orders of perturbation theory normally can be easily calculated by hand, high orders
are only accessible with computer aid and several methods for their computation exist. Albeit
many other numerical techniques exist nowadays, high-order series expansions are used as
a competitive technique to tackle quantum many-body problems at zero temperature [1–3].
Examples range from the calculation of low- and high-field expansions for transverse-field
Ising models [4, 5], the analysis of phase transitions in triangular-lattice bilayer Heisenberg
models [6] and spectral densities of two-particle excitations in dimerized Heisenberg quan-
tum spin systems [2,7,8] to the study of critical and Griffiths-McCoy singularities in quantum
Ising spin-glasses [9] or the derivation of spectral densities for Heisenberg quantum magnets
with quenched disorder [10,11], or to the analysis of quantum phase diagrams of long-range
transverse-field Ising models [12] and the application to quantum phases with intrinsic topo-
logical order [13–15]. Also questions such as the exploration of possible ground states in the
kagome Heisenberg model [16] can be tackled with perturbation theory. In all these exam-
ples, the quantum phase transitions are investigated by applying extrapolation techniques to
high-order series expansions of relevant energies or observables to investigate the breakdown
of the quantum phase present at λ= 0. The accuracy of those increases with higher orders of
perturbation available. This shows that the efficiency of the method used to derive the pertur-
bative expansion is crucial.
A common approach to calculate quantities perturbatively on a lattice is to do a graph de-
composition. Especially in dimensions larger than one, this becomes essential for obtaining

2

https://scipost.org
https://scipost.org/SciPostPhys.15.3.097


SciPost Phys. 15, 097 (2023)

high orders. Instead of a large single cluster, the calculations are performed on many small
ones, which decreases memory requirements and is easily parallelized. The calculated values
of a quantity M on the subgraphs of the lattice are then multiplied with embedding factors to
obtain the value of M up to a given order on the whole lattice making use of the inclusion-
exclusion principle. If for two disconnected parts A and B of the lattice, the operator M(A∪B)
is the direct sum

M(A∪ B) = M(A)⊕M(B) , (3)

the graph expansion can be restricted to connected subgraphs of the lattice. An operator M
that fulfils property (3) is called additive. However, not every transformation yields an ef-
fective Hamiltonian that allows a decomposition of the form (3). In particular, the efficient
block-diagonalisation transformation, that only makes use of the projectors of eigenspaces of
H0 and H (see next section for a detailed introduction), in general, does not allow to per-
form calculations on linked subgraphs of the lattice only. This is unfortunate since it can be
efficiently calculated using matrix-vector multiplications only [3]. This transformation was
introduced by different people in different communities. Because of that it is known under
different names, for example as Takahashi’s transformation, Schrieffer-Wolff transformation,
des Cloiseaux effective Hamiltonian, canonical van Vleck effective Hamiltonian or two-block
orthogonalization method [3, 17–20]. The existence of many different formulations of the
same transformation demonstrates its generic relevance but it is partially surprising that con-
nections between formulations are not well documented.
An obvious drawback of perturbative results is the limitation to the convergence radius of
the perturbative expansion. This radius can often be extended significantly by extrapolations.
Even though for many models extrapolations are very helpful in determining phase bound-
aries or critical behaviour, there are some where no conclusive answer can be reached. An-
other solution to extend beyond the convergence radius of the perturbative expansion are
non-perturbative linked-cluster expansions (NLCEs). First introduced in [21], they were often
used for thermodynamic quantities [22] or ground-state expectation values [23]. In contrast
to quantum Monte Carlo simulations, frustration poses no technical problem. NLCEs also do
not suffer from high dimensions as density-matrix renormalization group does. The same
holds true for the perturbative linked-cluster expansions. NLCEs follow the same principles
as perturbative expansions but use non-perturbative cluster results, which are in many cases
just the exact results of the finite cluster. They are again only expected to converge within the
quantum phase adiabatically connected to the limit λ= 0. However, there is hope that NLCEs
are helpful for models where perturbative series extrapolations fail. NLCEs have the potential
to converge whenever a finite correlation length is present and to allow for scaling close to
critical points.
For non-perturbative expansions it is even more important that the expansion can be performed
on linked clusters only. Otherwise finding a hierarchy to truncate the expansion is difficult. For
excited states non-perturbative linked-cluster expansions were performed with flow-equations
in an approach called graph-based continuous unitary transformations (gCUT) [24]. Another
expansion, only relying on the eigenvectors and energies of the block of interest, is the con-
tractor renormalization group method (CORE) [25]. In contrast to gCUT, it does not fulfil the
linked-cluster property in general. However, a great advantage is its efficiency only relying on
the low-energy eigenstates that can be calculated with numerical routines such as the Lanczos
algorithm. The CORE method is therefore similar to the projective transformation mentioned
above. Although an implementation is as straightforward as for the CORE approach, no NLCEs
using the projective transformation are known to us.
Altogether, the projective transformation has therefore many benefits but a crucial drawback:
for multi-particle excitations in general no linked-cluster expansion is possible. This restricts
the applicability to a limited number of models and forces one to use less efficient methods.

3

https://scipost.org
https://scipost.org/SciPostPhys.15.3.097


SciPost Phys. 15, 097 (2023)

So far, the non-validity of a linked-cluster expansion for this transformation is not well under-
stood. In this paper, we will identify the origin of the problem and will introduce an optimal
modified projective transformation, where this problem is absent. We do this by extending the
projective transformation for an eigenspace adiabatically connected to en

0 , where en
0 denotes

the energy of the degenerate subspaces of H0, to incorporate eigenstates adiabatically con-
nected to blocks m with em

0 < en
0 and not only those of en

0 . This method shares the efficiency of
the projective method, can be applied non-perturbatively using the exact lowest eigenvectors
and energies, and allows for cluster expansions with linked clusters only.
Before describing the important changes to the transformation we review other approaches to
construct a genuine linked-cluster transformation and inform about different equivalent for-
mulations of the classical projective transformation in Sec. 2. Then we exemplify the roots of
the linked-cluster violation of the projective transformation with a simple toy model. In Sec. 3
we show how these problems can be cured for multi-particle excitations in general and also
give a general form of the transformation in terms of projection operators. As an application,
in Sec. 4 we apply the method to the low-field expansion of the TFIM on the square lattice,
both perturbatively and non-perturbatively. We conclude our work in Sec. 5.

2 Block-diagonalisation methods

In this section, we first define what block-diagonal form we want to achieve with block-
diagonalisation methods and fix basic notation. Then we review existing cluster-additive
block-diagonalisation methods and the projective minimal transformation.

2.1 Block-diagonalised form and cluster-additivity

The Hilbert space H of a Hamiltonian with local Hilbert space dimension a and N sites has
finite dimension aN and can be written as the direct sum of the eigenspacesH n

0 of the operator
H0:

H =
N
⊕

n=0

H n
0 . (4)

As H0 is assumed to have block diagonal form we have

H0 =
N
⊕

n=0

Hn
0 , (5)

where the ordering of eigenvalues of the eigenspaces is em
0 ≤ en

0 for m≤ n.
In more explicit form the parts Hn

0 fulfil

H0 v =

� N
⊕

n=0

Hn
0

�

v =

� N
⊕

n=0

Hn
0 v0,n

�

, (6)

for v =
∑N

n=0 v0,n and v0,n ∈H n
0 .

For a block-diagonalising unitary transformation T and the corresponding effective Hamil-
tonian Heff = T †HT , unitarity implies

H =
N
⊕

n=0

H n
eff =

N
⊕

n=0

TH n
0 , (7)

as well as Heff to be block-diagonal so that it can be written as

Heff =
N
⊕

n=0

Hn
eff , (8)
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i.e.

Heff v =

� N
⊕

n=0

Hn
eff

�

v =

� N
⊕

n=0

Hn
eff vn

�

, (9)

for v =
∑N

n=0 vn and vn ∈ H n
eff. The block-diagonal form of Heff is specified by demanding

that Hn
eff contains the eigenstates adiabatically connected to the eigenstates of Hn

0. The set of
(possibly degenerate) energies of those eigenstates is denoted by en.

After having defined the block-diagonalised form of the effective Hamiltonian (8) result-
ing from a unitary transformation T , we next introduce the concept of cluster-additivity for
such transformations. Historically, first linked-cluster expansions for perturbative ground-state
energy calculations were performed in 1955 [26] and applied to calculate zero-temperature
ground state properties in high orders later in the 1980s using Nickel’s cluster expansion
method from unpublished work [21, 27]. The transformation used to calculate ground-state
properties is not important since the ground-state additivity

e0(A∪ B) = e0(A) + e0(B) (10)

is always fulfilled for disconnected clusters A and B assuming a non-degenerate ground-state
subspace. With Nickel’s cluster expansion method, even excitation gaps could be calculated [4]
by grouping terms in orders of the number of sites of the lattice, although a restriction to linked
clusters was not sufficient for that. Still, these calculations were more efficient than calcula-
tions on linked clusters using a cluster-additive transformation [28] due to the higher efficiency
of the method. The proper formalism to derive the right cluster-additive part of the effective
one-particle Hamiltonian was written down in 1996 by Gelfand [29]. A more extensive review
can be found in [30]. The decisive point was to not do a linked-cluster expansion for the ef-
fective Hamiltonian in the one-particle space H1

eff but to the effective Hamiltonian minus the
ground-state energy:

H̄1
eff(A∪ B)≡H1

eff(A∪ B)− e0(A∪ B) = H̄1
eff(A)⊕ H̄

1
eff(B) . (11)

In contrast to H1
eff, H̄

1
eff is additive. This was generalized to a proper cluster expansion for

two particles around 2000 [2,7,31] and was further generalized to multi-particle excitations
in 2003 [32]. They introduced the notion of cluster additivity: An effective cluster additive
Hamiltonian takes the form

Heff(A∪ B) =Heff(A)⊗1B +1A⊗Heff(B) , (12)

on disconnected parts A and B of the lattice. We stress that this form is different to the di-
rect sum in Eq. (3). However, if the effective Hamiltonian takes the cluster-additive form
of Eq. (12), it can be decomposed into additive parts and a linked-cluster expansion can be
performed. These additive parts, denoted by H̄n

eff, are inductively defined by

H0
eff = H̄0

eff ,

H1
eff = H̄0

eff|1 + H̄1
eff|1 ,

...

HN
eff =

N
∑

n=0

H̄n
eff|N .

(13)

The first two equations are precisely what was described by Gelfand [29]. To understand the
action of H̄m

eff|n on a state one has to expand the state in the position basis. Then, for each
position basis state, one finds all product state decompositions into two position basis states.
H̄m

eff|n then acts with an identity on the one part of the product state having unperturbed energy
en

0 − em
0 in H0, and with H̄m

eff|m on the other part.
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2.2 Cluster-additive block diagonalisation methods

The subtractions of Eq. (13) are necessary to perform linked-cluster expansions but not suf-
ficient. For degenerate subspaces of H0, the transformation used is not uniquely determined
and the cluster-additivity property of (12) is not necessarily given. There are two prominent
approaches to construct cluster-additive effective Hamiltonians. Both make use of the linking
structure of the commutator.
The first one is the method of continuous unitary transformations (CUTs), which are defined
by the flow equations

∂lH = [η,H] , (14)

with η(l) the anti-Hermitian generator of the transformation. In physics they were introduced
1993 by Wegner [33] and Glazek and Wilson [34] with the double-bracket flow, which was
known in mathematics already in 1988 [35]. To use flow equations to study eigenvalue prob-
lems was already proposed by Rutishauser in 1954 with an infinitesimal version of the QR
algorithm [36]. The Toda flow is another famous flow known from the study of the Toda lat-
tice in statistical mechanics [37]. Its relation to a matrix flow for tridiagonal matrices was
understood by Flachka and Moser in 1974 and 1975 [38,39]. This flow was generalized and
applied to banded matrices by Mielke 1998 [40]. Stein was one of the first to solve con-
tinuous unitary transformations of that flow perturbatively in 1997 [41] and the flow was
generalized further by Knetter and Uhrig in 2000, where they introduced the quasi-particle
generator ηQP [1]. They obtained a general perturbative solution for this flow equation under
the special condition of an equidistant spectrum of H0 and called it perturbative continuous
unitary transformations (pCUT). In an eigenbasis of H0 the quasi-particle generator ηQP can
be defined as

ηQP,i, j(l) = sgn(H0,i,i −H0, j, j)Hi,j(l) . (15)

By stating H(0) is linked we define what processes are considered as linked. The off-diagonal
parts of H(0) are assumed to be local operators. Two local operators commute when they act
on disconnected parts of the lattice. As ηQP(0) decouples all blocks of H(0), it is also linked
and can be written as a sum of local operators. Then by definition of the flow equation (14),
the cluster-additivity property is ensured during the flow as the commutator vanishes for local
operators acting on disconnected clusters.
The second genuinely linked-cluster transformation is the multi-block orthogonalization
method (MBOT) [2,7]. A similar construction can also be found in [42]. As the name indicates,
also here it is crucial that all blocks of the Hamiltonian are decoupled. This transformation
is constructed with the matrix exponential and a global generator S, i.e. T = exp(−S). It
makes use of the connection between Lie algebra and matrix exponential as well as the linked
structure established by the commutator expansion

exp(S)H exp(−S) =
∞
∑

n=0

[(S)n,H]
n!

, where [(S)n,H]≡ [S, . . . [S, [S
︸ ︷︷ ︸

n times

,H]] . . . ] . (16)

It is constructed order by order demanding that up to a given order all off-diagonal elements
between different blocks of Heff vanish. As the first-order part of S has to decouple all blocks,
it can be written as a sum of local operators. From the form of (16), it is then ensured that the
transformation is linked cluster in the next order if S contains only linked terms in all previous
orders. For the sake of completeness, we mention that in [42] also a local transformation
constructed order by order as

T = exp(−λS1) · . . . · exp(−λnSn) (17)

is introduced.
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Both pCUT and MBOT can be constructed order by order in a model-independent form for
Hamiltonians with equidistant H0. There is also a model-dependent method to use ηQP per-
turbatively (epCUT) and non-perturbatively (deepCUT) [43] for H0 with a non-equidistant
spectrum directly in the thermodynamic limit. Also, recently an extension of the pCUT ap-
proach to multiple quasiparticle types as well as non-Hermitian Hamiltonians and open sys-
tems was introduced under the name pcst++ [44]. It should also be possible to write down
model-independent perturbative expressions for MBOT and H0 with non-equidistant spec-
trum similarly as in the Schrieffer-Wolff expansion of the minimal transformation but now us-
ing projectors on all eigenspaces of H0. Unfortunately, it is hard to transfer the MBOT method
to non-perturbative exact calculations on finite graphs since it is difficult to find a transforma-
tion that sets all block-diagonal parts of S to zero while block-diagonalising the Hamiltonian.
Also how to efficiently truncate the basis states for MBOT is not clear non-perturbatively. In
contrast, the application of flow equations using ηQP to non-perturbative problems on finite
systems is straightforward and was used in the gCUT approach [24]. With regard to basis
truncations it is important to realize that one can use a modified version of the generator ηQP

ηn
QP,i, j(l) =
�

1−Θ(H0,i,i − en+1
0 )Θ(H0, j, j − en+1

0 )
�

sgn(H0,i,i −H0, j, j)Hi,j(l) , (18)

and still obtain the same effective Hamiltonian in the blocks m ≤ n [45]. To see this we
introduce the set of indices in the n-particle block sn. Then we note that the special form of
ηQP leaves the flow in lower subspaces m ≤ n invariant under unitary transformations of the
higher subspaces m> n as can be seen by

∑

k

Hi,k(l)Hk, j(l) =
∑

k

(HUi,k)(l)(U
†H(l))k, j , (19)

with i, j in the subspaces
⋃

m≤n sm and k in the higher-energy spaces
⋃

m>n sm and U a unitary
matrix acting on the states k. As a consequence, one can efficiently truncate the basis states
using the Krylov subspace of

⊕n
m=0H

m
0 when targeting the subspace n of Heff with the quasi-

particle generator because states of higher orders of the Krylov subspace only contribute at
larger times l of the flow. This efficient way of truncating is a big advantage of the special
form of ηQP and distinguishes this generator. With this, we conclude the discussion of existing
cluster-additive block-diagonalisation methods.

2.3 Projective block-diagonalisation method

Another type of transformation is the projective transformation T constructed of the eigen-
states and energies of the block n of interest. This transformation can be given in an order-
independent form, needs minimal information to be constructed, has minimal norm ∥1− T∥
and in many situations can be implemented numerically more efficiently than the transforma-
tions discussed in the last subsection because only matrix-vector multiplications are needed
and for most cases obtaining energies and eigenstates with Krylov-based algorithms is faster
than solving differential equations. Unfortunately, it only allows for a linked-cluster expansion
of excitations under special circumstances.
The projective transformation is constructed by projectors Pn on the eigenspaces of H0 and
projectors P̄n on the adiabatically connected eigenspaces of Heff. Projectors are idempotent
operators, i.e. P2

n = Pn and P̄2
n = P̄n. For v ∈H

Pn v ∈H n
0 , (20)

and

P̄n v ∈H n
eff . (21)
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Further, from the orthogonality of the subspaces the resolution of identity ,

1=
∑

n

Pn =
∑

n

P̄n , (22)

follows. A good educational introduction to perturbation theory described in the framework
of projection operators is given in [46].
We first state the form of the projective transformation introduced by Takahashi [18]:

T =
∑

n

Tn , (23)

Tn = P̄nPn

�

∑

m

Pm P̄mPm

�−1/2

, (24)

He further used a result of Kato [47] for the perturbative form of the projector P̄n

P̄n = Pn −
∞
∑

s=1

∑

k1+···+ks+1=s, ki≤0

Sk1
n VSk2

n V . . . VSks+1
n , (25)

where S0
n ≡ −Pn, Sk

n ≡
�

1−Pn
en

0−H0

�k
and realized that Pn

�∑

m Pm P̄mPm

�−1/2
Pn can be expanded

similarly using Kato’s expression. Note that while Pn P̄nPn can not be inverted its restriction to
the subspace H n

0 can. The local expressibility of the transformation is important as it shows
that the transformation has no contributions on subgraphs of the lattice with a larger number
of bonds than the perturbation order. The transformation T is symmetric in the diagonal blocks
as can be seen by

PnT Pn = PnTnPn = Pn P̄nPn

�

∑

m

Pm P̄mPm

�−1/2

Pn = Pn

�

∑

m

Pm P̄mPm

�1/2

Pn , (26)

and

Pn T †Pn = Pn T †
n Pn = Pn

�

∑

m

Pm P̄mPm

�−1/2

Pn P̄nPn = Pn

�

∑

m

Pm P̄mPm

�1/2

Pn . (27)

This shows the equivalence of the perturbative expansion of T with the two-block orthogonal-
ization method (TBOT) [3] as for TBOT in [3] it was shown that any perturbative transfor-
mation that decouples two blocks of the Hamiltonian is uniquely determined by demanding
symmetric diagonal blocks.
The projective transformation can also be written in the form of a Schrieffer-Wolff transforma-
tion TSW = exp(−SSW) that decouples block n from the rest. We understand as a Schrieffer-
Wolff transformation TSW any transformation with a particular anti-block-diagonal form of
SSW. Introducing

R=
∑

m, m ̸=n

Pm , (28)

it can be written as

TSW =
�

P̄nPn + R̄R
� �

Pn P̄nPn + RR̄R
�−1/2

= exp(−SSW) , (29)

where SSW takes the form

SSW =

�

0 SSW,n,R

−S†
SW,n,R 0

�

. (30)
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That SSW has to take such a form follows at least perturbatively from the uniqueness of SSW,
the symmetry of TSW in its diagonal blocks, and the fact that an exponential of an anti-block
diagonal SSW as in Eq. (30) yields a transformation that is symmetric in the diagonal blocks.
In [19] the transformation is constructed perturbatively by an SSW of that form and it is called
canonical form of van Vleck perturbation theory. A review of the Schrieffer-Wolff transforma-
tion also constructs the transformation order by order this way [48], while also giving a very
convenient form of the transformation as direct rotation

TSW =
q

(P̄n − R̄)(Pn − R) , (31)

between Pn and P̄n, i.e.
T †

SW P̄n TSW = Pn . (32)

The equivalence between (29) and (31) is most easily seen by comparing

�

P̄nPn + R̄R
�2
= P̄nPn P̄nPn + R̄RR̄R+ P̄nPnR̄R+ R̄RP̄nPn , (33)

and
(P̄n − R̄)(Pn − R)

�

Pn P̄nPn + RR̄R
�

= P̄nPn P̄nPn + R̄RR̄R− P̄nRR̄R− R̄Pn P̄nPn . (34)

The expressions are identical since 1 = Pn + R and P̄nR̄ = 0. In [48] the transformation is
constructed perturbatively order by order using the form of the matrix exponential Eq. (30).
This is not necessary as Takahashi’s form of the transformation for the effective low-energy
block is exactly identical and can be written down non-inductively. Another unique property
of TSW is that it has minimal norm ∥1− TSW∥ of all possible transformations that decouple the
block n from the rest [48, 49]. In contrast to the MBOT transformation, the global generator
only is anti-block-diagonal with respect to two blocks and because of that has non-local anti-
block-diagonal terms in general.
At last we state the form of the transformation given in [20]. It is very similar to Takahashi’s
form but given in terms of eigenvectors instead of projectors. This form will be particularly
useful for the construction of the cluster-additive projective transformation in Sec. 3. The
eigenvectors and energies X0 and D0 of H0 and X and D of H fulfil

HX0 = X0D0 , (35)

and
HX = X D . (36)

Projection operators and eigenvectors are related by

Pn,i, j =
∑

k∈sn

X0,i,kX †
0,k, j , (37)

and
P̄n,i, j =
∑

k∈sn

X i,kX †
k, j , (38)

where the ordering of basis states and energies is such that X0,i, j is only non-zero for i, j ∈ sn.
Here we remind that the set of indices in the n-particle block is denoted by sn. Introducing

X Pn ≡ PnX Pn , (39)

one can then write the transformation as

Tn,i, j =
∑

k

X i,k

�

X Pn †

�

∑

m

X Pm X Pm †

�−1/2�

k, j

, (40)
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with k ∈ sn. In [20] it was proved that this transformation has minimal norm ∥1− T∥, which
shows that also when one wants to decouple all blocks and not just two as in TSW this is the
transformation with minimal norm. The MBOT method, which is a Schrieffer-Wolff trans-
formation of local anti-block-diagonal operators, is different and consequently does not have
minimal norm. Hence, only when one decouples two blocks an anti-block-diagonal SSW leads
to a transformation with minimal norm ∥1− TSW∥.
For the effective Hamiltonian in the desired block n only the part X Pn X Pn † contributes. By
denoting the restriction of X Pn to the basis states sn with X Pn

sn
the part of the transformation

that creates the effective Hamiltonian in block n can be written as

Tn,i,sn
=
∑

k∈sn

X i,k

�

X Pn †
sn

�

X Pn
sn

X Pn †
sn

�−1/2
�

k, sn

. (41)

As these are the only basis states for which X Pn has non-zero matrix elements this restricts the
transformation to the relevant part for each block and can help make considerations easier. In
particular, for two disconnected clusters A and B and transformations Tl,A in A and Tk,B in B
and a transformation Tn,sl⊗sk

on A∪B in the subspace n, that projects only on the states sl ⊗ sk
(but only on these, not on the whole block n on A∪ B), one finds

Heff,sl⊗sk
(A∪ B) = Heff,sl

(A)⊗1B +1A⊗Heff,sk
(B) , (42)

as
∑

i, j

X †
sl⊗sk ,iHi, jX j,sl⊗sk

= Dsl
(A)⊗1B +1A⊗ Dsk

(B) , (43)

and
�

X Pn †
sl⊗sk

�

X Pn
sl⊗sk

X Pn †
sl⊗sk

�−1/2
�

=
�

X Pl †
sl

�

X Pl
sl

X Pl †
sl

�−1/2
�

⊗
�

X Pk †
sk

�

X Pk
sk

X Pk †
sk

�−1/2
�

, (44)

where en
0 − e0

0 = (e
l
0 − e0

0) + (e
k
0 − e0

0). This was also shown in [48] and shows that the effective
Hamiltonian of the projective transformation allows performing a linked-cluster decomposi-
tion for degenerate ground states. For excitations, it is not helpful since one can not separate
excitations in A∪ B with one excitation in A and ground state in B from ground state in A and
one excitation in B. The problems caused by this will become obvious in the next subsection,
where we show the failure of a linked-cluster expansion for spin-flip excitations in a simple
toy model.

2.4 Failure of linked-cluster expansion for excited states with projective method

Gelfand realized that a linked-cluster expansion for elementary excitations is possible with
non-cluster additive transformations as long as the elementary excitations have a different
quantum number than the ground state [29]. To show the failure of a linked-cluster expansion
for the minimal transformation we therefore consider a high-field expansion of the Hamilto-
nian given as the sum of the transverse-field Ising chain, where this is given, and a parity
breaking term σz

νσ
x
ν+1:

H =
∑

ν

σz
ν +
∑

ν

�

λσx
νσ

x
ν+1 +µ
�

σz
νσ

x
ν+1 +σ

x
νσ

z
ν+1

��

. (45)

The Pauli matrices σx/z
ν describe spins-1/2 on site ν. For µ ̸= 0 ground state and spin-flip

excitations are coupled to each other. Now we consider two disconnected clusters A and B.
The Hamiltonian on A∪ B can be written as
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H =HA+HB , (46)

where
[HA,HB] = 0 (47)

holds. Consequently the eigenfunctions of HA∪B take the form

|Ψ〉A∪B = |Ψ〉A⊗ |Ψ〉B , (48)

and have an energy

H |Ψ〉= (HA |Ψ〉A)⊗ |Ψ〉B + |Ψ〉A⊗ (HB |Ψ〉B) = (eA+ eB) |Ψ〉 . (49)

For spin-flip excitations on A∪B it follows that they are either build of a ground state on A and
a spin-flip excitation on B or vice versa:

|Ψ〉1, A∪B = |Ψ〉1, A⊗ |Ψ〉0, B ∨ |Ψ〉1, A∪B = |Ψ〉0, A⊗ |Ψ〉1, B . (50)

For the case µ = 0 where the parity is not broken, P0 |Ψ〉1 = 0. Then X P1
s1

is block-diagonal in
the A- and B-blocks

X P1
s1
=

�

X P1
s1,AX P0

s0,B 0

0 X P1
s1,BX P0

s0,A

�

, (51)

and additivity of H̄1
eff is given

T †
1HT1 − e0(A∪ B) = H̄1

eff(A∪ B) = H̄1
eff(A)⊕ H̄

1
eff(B) . (52)

This is not the case when µ ̸= 0. Then P0 |Ψ〉1 ̸= 0 and X P1
s1

is not block-diagonal in the A- and
B-blocks any more

X P1
s1
=





X P1
s1,AX P0

s0,B X P0
s1,AX P1

s0,B

X P0
s1,BX P1

s0,A X P1
s1,BX P0

s0,A



 . (53)

Consequently, additivity of H̄1
eff

T †
1HT1 − e0(A∪ B) = H̄1

eff(A∪ B) ̸= H̄1
eff(A)⊕ H̄

1
eff(B) (54)

is not given any more. If one performs calculations for the model with µ = 1 one finds these
non-linked terms in order four. Particles can then hop between disconnected clusters as illus-
trated in Fig. 1, which is never allowed in a linked-cluster expansion. The crucial step for the
construction of a cluster additive projective transformation is to modify X P1

s1
to restore block-

diagonal form for the general case µ ̸= 0 and to eliminate these hopping elements between
disconnected clusters.

3 Projective cluster-additive transformation

In the last section we reviewed the minimal projective transformation and showed an example
where the failure of linked-cluster expansion for excited states was shown. In particular, the
problem could be seen in the non-block diagonal form of X P1

s1
in (53). It is the major achieve-

ment of this paper to introduce the projective cluster-additive transformation Tpca which cures
this problem.
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Figure 1: The figure depicts a hopping process of one particle (yellow ball) between
two disconnected clusters. For the Hamiltonian (45) such hopping elements are seen
in the effective one-particle Hamiltonian in order four of perturbation. These pro-
cesses are a manifestation of the violation of cluster-additivity of the minimal projec-
tive transformation.

3.1 Cluster-additivity for single-particle states

It is necessary to modify X P1
s1

to X̃ P1
s1

to obtain a cluster-additive transformation for single-
particle states. To achieve this we modify the eigenstates of H. For ground-state energies
additivity is always given and consequently, the ground state |Ψ〉0 is not modified:

|Ψ̃〉0 = |Ψ〉0 . (55)

For single-particle eigenstates |Ψ〉1 we modify in the following way,

|Ψ̃〉1 = |Ψ〉1 − (1/〈0|Ψ0〉) 〈0|Ψ1〉 |Ψ〉0 , (56)

where |0〉 denotes the unperturbed ground state. Note that in general the states |Ψ̃〉1 as well
as |Ψ̃〉0 and |Ψ̃〉1 are not orthogonal and normalized any more. The ground-state subtraction
of |Ψ〉0 in |Ψ̃〉1 leads to

P0 |Ψ̃〉1 = 0 . (57)

As long as 〈0|Ψ0〉 ̸= 0 this subtraction is unique. Recalling the form (50) of a single-particle
eigenstate on two disconnected clusters A∪ B we find

|Ψ̃〉1, A∪B = |Ψ̃〉1, A⊗ |Ψ̃〉0, B . (58)

X̃ P1
s1

then takes the form

X̃ P1
s1
=

�

X̃ P1
s1,AX̃ P0

s0,B 0

0 X̃ P1
s1,B X̃ P0

s0,A

�

, (59)

because X̃ P0
s1,A = X̃ P0

s1,B = 0. The linked-cluster transformation of the single-particle block can
now be conveniently written as

Tpca
1,i,s1

=
∑

k∈s1

X i,k

�

X̃ P1 †
s1

�

X̃ P1
s1

X̃ P1 †
s1

�−1/2
�

k,s1

. (60)

Particularly important is the part

T pca
1,s1,s1

=
�

X̃ P1 †
s1

�

X̃ P1
s1

X̃ P1 †
s1

�−1/2
�

s1,s1

, (61)

since its form determines the matrix elements of Hn
eff. As we have already seen, this part is

block-diagonal
T pca

1,A∪B = T pca
1,A ⊕ T

pca
1,B . (62)
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The other part of the transformation just yields a diagonal matrix
∑

i, j

X †
s1,iHi, jX j,s1

= DA⊕ DB . (63)

Combining the direct sum of eigenvalues on A∪ B

DA⊕ DB − e0(A∪ B) = e1
A ⊕ e1

B , (64)

with the form of T pca
1 in Eq. (62) one obtains additivity of H̄1

eff:

∑

r,k

Tpca,†
1,s1,rHr,kTpca

1,k,s1
− e0(A∪ B) = H̄1

eff(A∪ B) = H̄1
eff(A)⊕ H̄

1
eff(B) . (65)

For one-particle excitations we now have constructed the right transformation. The more
general case of multi-particle excitations will be discussed in the next subsection.

3.2 Cluster-additivity for multi-particle excitations

As mentioned before, the cluster additivity of the effective Hamiltonian implies that we can
construct additive irreducible operators in every block of interest of the effective Hamiltonian.
To show cluster-additivity for multi-particle excitations we again make use of the tensor prod-
uct structure of eigenstates on A∪B with A and B not connected for n-particle states |Ψ〉n with
energy ea

0, A+ eb
0, B = en

0, A∪B of H0:

|Ψ〉n, A∪B = |Ψ〉a, A⊗ |Ψ〉b, B . (66)

What changes compared to single-particle excitations is the transformation of eigenstates
|Ψ〉 → |Ψ̃〉 for the construction of the transformation. For a state with energy en

0 we demand
that the projection on eigenstates of H0 with em

0 < en
0 is zero, i.e. for

R=
∑

m, m<n

Pm , (67)

we need to have
R |Ψ̃〉n = 0 . (68)

This has to be achieved by subtracting lower-energy eigenstates of |Ψ̃〉n. As long as

Yn−1 = X i, j , i, j ∈ ∪m<nsm , (69)

is invertible the construction is always possible and unique. Assuming non-singular Yn−1, the
transformed states |Ψ̃〉n are defined as

|Ψ̃〉n = |Ψ〉n −
∑

m<n

�

Y−1
n−1 (R |Ψ〉n)
�

m |Ψ〉m . (70)

The singular values of Yn−1 are the square roots of the eigenvalues of

Wn−1 =
∑

m<n

Pm

∑

m<n

P̄m

∑

m<n

Pm . (71)

As we discuss later in the context of NLCEs (see Subsec. 4.2), particle decay highly influences
the convergence properties of the non-perturbative expansion. For particle-decay of n-particle
states it is important to investigate the behaviour of Wn and not of Wn−1. The reason is that
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particle-decay of the n-particle states would show up as a problem in the construction of m-
particle states with m > n. When the smallest eigenvalue of Wn drops to almost zero sharply,
this is a hallmark of particle-decay. The transformation from |Ψ〉n to |Ψ̃〉n can be visualized as















P0 |Ψ〉n
...

Pn |Ψ〉n
...

PN |Ψ〉n















→















0
...

Pn |Ψ̃〉n
...

PN |Ψ̃〉n















. (72)

Since this subtraction is unique for non-singular YN−1 in Eq. (69), it follows

|Ψ̃〉n, A∪B = |Ψ̃〉a, A⊗ |Ψ̃〉b, B . (73)

Eq. (73) is at the heart of the cluster-additivity of the transformation. It follows

X̃ Pn
sa⊗sb

= X̃ Pa
sa , A⊗ X̃ Pb

sb , B , (74)

and with that for the transformation

X̃ Pn †
sa⊗sb

�

X̃ Pn
sa⊗sb

X̃ Pn †
sa⊗sb

�−1/2
= X̃ Pa †

sa , A

�

X̃ Pa
sa , AX̃ Pa †

sa , A

�−1/2
⊗ X̃ Pb †

sb , B

�

X̃ Pb
sb , B X̃ Pb †

sb , B

�−1/2
. (75)

Then with
∑

i, j

X †
sa⊗sb ,iHi, jX j,sa⊗sb

= Dsa , A⊗ 1B + 1A⊗ Dsb , B , (76)

cluster-additivity of the transformation is a consequence of

A†
�

Dsa , A⊗ 1B + 1A⊗ Dsb , B

�

A=Ha
eff(A)⊗ 1B + 1A⊗Hb

eff(B) , (77)

where A =
�

X̃ Pn †
sa⊗sb

�

X̃ Pn
sa⊗sb

X̃ Pn †
sa⊗sb

�−1/2
�

. The transformation as a whole acting on all particle

blocks can also be written down and is given as

Tpca = X

�

∑

m

X̃ Pm

�†��
∑

m

X̃ Pm

� �

∑

m

X̃ Pm

�†�−1/2

. (78)

with X̃ Pn = PnX̃ Pn.

3.3 Explicit form of transformation in terms of projection operators

It is important to have the transformation also explicitly given in terms of projection opera-
tors as this allows for a local expression of the transformation using Kato’s formula Eq.(25)
and implies that reduced graph contributions are zero for graphs with more bonds than the
perturbation order. For the explicit form, we first define

R̄n ≡
�

∑

m

RmR̄mRm

�−1

R̄n , (79)

with
Rn ≡
∑

m<n

Pm . (80)
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The transformation then takes the form

Tpca =

�

∑

m

�

P̄m − P̄mR̄m

�

Pm

��

∑

m

Pm

�

�

P̄m − P̄mR̄m

�† �
P̄m − P̄mR̄m

�

�

Pm

�−1/2

. (81)

To prove the equivalence of (78) and (81) we need to find a way to express X Pn(X̃ † − X †) in
terms of projection operators. We first note that the conditions

Pn(X̃
† − X †)Rn = −PnX †Rn

(subtractions of lower-energy states yield RnX̃ Pn = 0) and

Pn(X̃
† − X †)R̄n = Pn

�

X̃ † − X †
�

(only states with lower energy than in block n are subtracted) determine Pn(X̃ †−X †) uniquely.
We need to show that both these conditions are also fulfilled for −PnX †R̄n to show that
−P̄nR̄n = X Pn

�

X̃ † − X †
�

. The latter condition is obviously fulfilled by the construction of
Eq. (79). For the first condition we note that

PnX †R̄nRn = PnX †

�

∑

m

RmR̄mRm

�−1

RnR̄nRn = PnX †Rn . (82)

This proves the equivalence of Eq. (78) and Eq. (81) and establishes the form of the transfor-
mation in terms of projection operators only. It is important to have shown this equivalence
since perturbatively it follows that one can expand the transformation in local terms using
Kato’s formula.

4 Low-field expansion for the transverse-field Ising model on the
square lattice

As an application we investigate the ferromagnetic transverse-field Ising model on the square
lattice in the low-field ordered phase. The Hamiltonian of this paradigmatic model can be
written down with Pauli matrices and takes the form

H = −1
4

∑

〈ν,ν′〉

σz
ν σ

z
ν′ + h
∑

ν

σx
ν =H0 + hV , (83)

with
H0 = −

1
4

∑

〈ν,ν′〉

σz
ν σ

z
ν′ , (84)

and
V =
∑

ν

σx
ν . (85)

The Hamiltonian commutes with the spin-flip transformation
∏

νσ
x
ν . In the ordered phase

this Z2 symmetry is broken and the model undergoes a second-order phase transition in the
3d Ising universality class towards the disordered high-field phase when h is increased. Good
estimates of the critical point were obtained using high-field series expansions and quantum
Monte Carlo simulations and yielded hc ≈ 0.7610 [4, 50]. Best estimates of the critical expo-
nent can be obtained using the conformal bootstrap method and quantum Monte Carlo simu-
lations [51,52]. The first two digits of the correlation length exponent are given as ν = 0.63.
On finite systems the parity symmetry is not broken. To perform linked-cluster expansions one
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therefore goes into a dual picture that is isospectral to the original one in the infinite system
but has a unique polarized ground state for h= 0. As in [28] we define new pseudo-spin-1/2
degrees of freedom and new Pauli matrices

σ̃z
β = σ̃

z
〈ν,ν′〉 = σ

z
ν σ

z
ν′ , (86)

that takes the eigenvalues ±1 of the Ising interaction on every bond 〈ν,ν′〉. This means that
the degrees of freedom are located on the bonds and not on the sites any more. The dual
Hamiltonian in this basis can be decomposed into an unperturbed and perturbed part in the
following way:

H̃ = H̃0 + hṼ , (87)

with
H̃0 = −

1
4

∑

β

σ̃z
β , (88)

and
Ṽ =
∑

s

Ãs , (89)

where the plaquette operator Ã takes the form

Ãs =
∏

β∈s(ν)

σ̃x
β . (90)

The index β runs over the four bonds s(ν) that are connected to the site ν in the original
degrees of freedom.
In this section we are going to employ our transformation Tpca to the low-field phase of the
model and derive series and NLCE results for the spin-flip and bound-state excitation gap in
this model. Bound states arise in this model because flipping two adjacent spins in the ground
state yields a state with lower energy in H0 than flipping two spins further apart. We analyse
the series results in the next subsection 4.1 and further calculate the same quantities non-
perturbatively in subsection 4.2.

4.1 Perturbative results for single spin flip and bound states

Perturbative low-field expansions were most efficiently performed with a transformation of
the same complexity as the minimal transformation [5]. Even though this calculation was
done on a large number of also non-linked graphs - since it did not allow for a linked-cluster
expansion of excitations because of couplings between ground state and excitations - it reached
much higher orders than a calculation on only linked clusters with the pCUT method [28]. Our
approach is thus ideal having the same complexity as the minimal transformation but allowing
for a linked-cluster expansion.
We calculated graph embeddings on the square lattice using a hypergraph expansion [53] and
obtained the embedding factors for all graphs with up to 13 sites in the original lattice. The
elementary excitation in the low-field phase is a spin-flip. Next higher excitations are bound
states adiabatically connected to two spin flips on adjacent spins. We calculated the spin-flip
gap up to order 24 extending the results of [5] by 4 orders and the bound-state gap up to
order 22 extending the results of [28] by 10 orders. It is possible to reach such high orders
with graphs of only up to 13 sites since in the low-field expansion of excitations with a spin-
flips on a graph with N sites the minimal order for a reduced graph contribution is 2(N − a).
This property is also called strong-double-touch. We checked that both series agree with the
known results of [5,28].
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As for our method it is only important to obtain the eigenspaces and energies of the excitation
of interest and those of all excitations with lower energy, we used one of the most efficient
methods for calculating eigenspaces and energies perturbatively, which is the two-block or-
thogonalization method (TBOT) form of the minimal transformation. A description of TBOT
is given in [3]. With the information obtained this way we then construct the cluster-additive
projective transformation to perform the linked-cluster expansion for both the spin-flip and
bound-state gap. Almost all resources are needed for the TBOT calculation. Hence, we are as
efficient as TBOT but only need to consider linked clusters making the method very efficient.
We denote the series for the zero momentum single spin-flip gap by∆ and the one for the zero
momentum bound-state gap by ∆bs. They read respectively

∆= 2− 3 h2 + 3.5833 h4 − 23.140 h6 + 133.22 h8 − 849.05 h10 + 5738.0 h12

− 40573 h14 + 29615 · 10 h16 − 22157 · 102 h18 + 16906 · 103 h20

− 13105 · 104 h22 + 10292 · 105 h24 ,

(91)

and

∆bs = 3− 22.916 h4 − 13.334 h6 + 263.64 h8 + 5213.1 h10 − 7214.0 h12 − 31023 · 10 h14

− 24296 · 102 h16 + 19814 · 103 h18 + 30204 · 104 h20 + 57170 · 104 h22. (92)

Note that we displayed the first five digits of the coefficients and did not round to the last digit.
This accuracy can be guaranteed, while for more digits calculations would have needed to be
performed with higher accuracy than double precision.
To analyse the behaviour of these series we used Padé and DLog-Padé extrapolations. A good
and extensive review of extrapolation techniques in general and especially these two is [54].
Padé approximations are a well-established tool to enhance the convergence of a perturbative
series and DLog-Padé extrapolations in particular mimic the algebraic behaviour of critical
quantities in the vicinity of a quantum phase transition.
The series ∆ of the gap is consistently alternating up to high orders. Many DLog-Padé extrap-
olations of ∆ break down because of spurious poles. To estimate the reliability of DLog-Padé
extrapolations it is helpful to study the convergence behaviour of the DLog-Padé families of
order [n, n + d] with d fixed. As the series only contains even orders we made the analysis
for the series in the variable h2. Note that the maximum order of the series in this variable
is 12. We found that only the families with d = ±1 show converging behaviour and that the
family d = 1 appears to be better converged. For the d = −1 family the extrapolation of the
highest order, i.e. the [6,5] DLog-Padé extrapolant, yields a critical point hc = 0.727 and
a critical exponent ν = 0.417. From the highest-order [5,6] DLog-Padé extrapolant of the
better-converged d = 1 family one obtains a critical point hc = 0.762 and a critical exponent
ν= 0.649.

An extrapolation analysis of ∆bs is in principle also reasonable as the bound-state mode
is stable and expected to close with the same critical exponent as the spin-flip gap, i.e.
ν(∆) = ν(∆bs). Indeed, there are field theoretic calculations of Caselle et al. [55,56] predict-
ing ∆bs/∆|h=hc

≈ 1.8. This quantity was also calculated with exact diagonalisation yielding
a value of 1.84(3) [57]. Unfortunately, the series of the bound state ∆bs shows a compli-
cated behaviour and no convergence of Padé or DLog-Padé extrapolations was found. In [28]
∆bs/∆ was investigated with Padé and DLog-Padé extrapolations but only one extrapolation,
the DLog-Padé [4, 6], showed non-spurious behaviour and a value close to the numerical value
of 1.84(3) as in [57]. Having calculated ten orders of perturbation more than in [28] one
could hope that we find more extrapolations consistent with the predictions and calculations
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of [55–57]. However, this is not the case and the additional orders rather show that the DLog-
Padé family of the DLog-Padé [4,6] extrapolant does not seem to converge with higher orders.
At least up to the calculated orders so far, no behaviour of the series extrapolations that is
consistent with the expectation of ∆bs/∆|h=hc

≈ 1.8 could be found.

4.2 Non-perturbative results for single spin flip and bound states

Non-perturbative linked-cluster expansions (NLCEs) for the low-field phase of the transverse-
field Ising model were so far only performed for ground-state energies and ground-state ex-
pectation values of observables [58, 59]. In these papers the linked-cluster expansion for the
ground state was not performed in the dual picture but in a more optimised setting to capture
fluctuations of the environment that act back onto the closed finite system of a graph. Here
we stay in the dual picture because a modified coupling due to the environment is not obvious
for excited states. With NLCEs one can obtain converging results for larger values of h than
with perturbation theory. As long as the correlation lengths are captured within the length
scale of graphs considered it is reasonable to assume that NLCEs can converge. In contrast to
perturbative expansions where order of perturbation and length scales are coupled, for NL-
CEs this is not the case any more since an exact calculation on a graph can be thought of as
a resummation of an infinite order expansion on that graph. Consequently, the convergence
properties of both approaches can be different.
With the NLCE applying our transformation Tpca we also calculated ∆ and ∆bs using exact
diagonalisations with ARPACK routines to obtain the low-energy spectrum and eigenvectors
of H. In Fig. 2 we show plots of the spin-flip gap for different numbers of vertices of the
graphs used in the expansion and compare with extrapolations of the series results. The NLCE
converges to values of h ≈ 0.5 extending the convergence of the bare series. We also show
Wynn extrapolations [60] with regard to the number of nodes of graphs in Fig. 2. Wynn
extrapolations of a series So depending on an expansion parameter o are defined as

So+1So−1 − S2
o

So+1 − 2S0 + So−1
. (93)

These extrapolations extend the convergence of the NLCE a bit further but it still breaks down
before the critical point at hc ≈ 0.7610 [4, 50]. One way to access critical exponents with
NLCEs is to scale the spin-flip energy gap with respect to the number of vertices Nv of graphs
used in the expansion at the position hc ≈ 0.7610 of the estimated critical point. A logarith-
mic plot of this is shown in Fig. 3 together with a linear fit. This fit yielded an exponent of
κ = −0.51. As in this model one would expect the gap to scale with the inverse correlation
length this result implies that not the number of vertices Nv but the square root of it scales in
the same way as the correlation length. Although this analysis does not allow for a very precise
determination of the critical point it clearly is consistent with a critical value of hc ≈ 0.7610
and hence shows that critical behaviour can be captured with NLCEs of excitation gaps.
The NLCE expansion of the bound-state gap converges up to h ≈ 0.35. For a perturbative
calculation of the bound-state energy it does not matter if one subtracts only the ground-state
parts from the bound-state eigenvectors or both the ground-state and single-spin flip part as
described in Eq. (70). Interestingly, the NLCE broke down earlier when only the ground-state
part was subtracted so we always also subtracted the spin-flip part. Results are shown in Fig. 4.
The reason for worse convergence in comparison to ∆ is energetic overlap between bound
states and the two-spin flip continuum [28]. This is a well known problem in all sorts of ef-
fective Hamiltonian theories and for example also shows up in quantum chemistry as intruder
state problem on finite systems [61] or in graph-based continuous unitary transformations
(gCUT) [62]. Only a finite number of eigenstates and eigenvectors exist in a finite system.
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Figure 2: The figure shows an NLCE expansion of the spin-flip gap ∆ in dependence
of the number of vertices of the graphs taken into account. The expansion converges
until around h ≈ 0.5. The phase transition point hc ≈ 0.7610 [4, 50] is highlighted
as a black vertical line. Wynn extrapolations of the NLCE expansion converge up to
slightly larger values of h but converge only slowly towards the critical point. Padé
extrapolations are also shown together with the bare series.

Energetic overlap between two different sorts of formerly gapped quasi-particles shows up as
an avoided level crossing. These avoided level crossings are also connected to exceptional
points in the complex plane of the perturbation parameter that we follow adiabatically [63].
As pointed out in [61] either one follows adiabatically the low-lying state and loses transfer-
ability of the expansion or one tracks the right states but then has a problem of smoothness
of the expansion around the avoided level crossing. A promising solution to overcome this
problem was found in [62], where in the region of an avoided level crossing not exact but
only approximate eigenstates were used to track the right diabatic states as well as possible
and not the adiabatic ones any more. They used continuous unitary transformations based on
the quasi-particle generator in Eq. (15) [1] but using a modified generator around the anti-
level crossing. Next to observable characteristics they took a quantity known from the CORE
method as characteristic to identify such pseudo-particle decay. For single-particle excitations
not coupled to the ground state this quantity behaves similarly as the minimal eigenvalue of
Eq. (71)

Wn =
∑

m<n+1

Pm

∑

m<n+1

P̄m

∑

m<n+1

Pm.

While a generalization to the generic case seems not so clear within the CORE approach Wn
naturally shows up in our approach and can be used to identify particle-decay of higher en-
ergetic excitations or excitations coupled to the ground state. Indeed, Fig. 5 shows a graph
where avoided level crossings related to the quasi-particle decay occur. As can be seen, the
minimal eigenvalue wmin of Eq. (71) drops to zero as the two eigenvalues of the bound states
and spin-flip states approach each other. While decay is expected for high-energy momentum
modes in the thermodynamic limit the low-energy modes of the bound states are expected to
remain stable. Hence, it could be possible to keep some decay channels open but to still do a
linked-cluster expansion for the stable bound-state modes. A solution to this problem in our
approach could be to not use exact projective eigenspaces around an avoided level crossing
but only approximate eigenspaces in the spirit of [62], still demanding pairwise orthogonality
of each space. A solution to this problem is beyond the scope of this paper. We stress that it is
not clear if a parameter-free or even cluster-additive solution to this problem exists in general.
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Figure 3: The plot shows the scaling of the energy gap ∆ in the dependence of the
maximum number of vertices Nv of graphs used in the NLCE in a double-logarithmic
plot. A linear fit of good quality shows that the behaviour is algebraic with an expo-
nent of κ= −0.51.

5 Conclusions

We described how to construct a cluster-additive transformation for excitations of a Hamilto-
nian H = H0 + λV with energies en adiabatically connected to the energies en

0 of H0. The
transformation only depends on the projectors of eigenspaces em

0 ≤ en
0 of H0 and the pro-

jectors of the adiabatically connected eigenspaces of H. In that respect the transformation
needs minimal information content compared to other genuine cluster-additive transforma-
tions while generalizing the well-known minimal transformation, which uses projectors on
the eigenspace en

0 and the adiabatically connected space of H only, but is not cluster-additive
in general. We also give the transformation explicitly in terms of projection operators, which
implies basis independence and local expressibility of the perturbative expansion following
from the projector expansion of Kato (25). As an application we performed a low-field linked-
cluster expansion for spin-flip and two spin-flip bound state excitations in the transverse-field
Ising model on the square lattice. We did this both perturbatively and non-perturbatively.
Both in the perturbative and non-perturbative setting the method is computationally very ef-
ficient. The complexity of perturbative calculations is similar to the TBOT method, which
is the most efficient method for high-order matrix perturbation theory we know of. Non-
perturbatively the complexity is that of Krylov-based diagonalisation methods. While pertur-
batively it is hard to come up with further improvements of the method, in non-perturbative
applications using exact eigenvectors of finite-lattice Hamiltonians problems arising in the
vicinity of avoided level crossings still present a major obstacle. Promising approaches to
overcome this problem were given in [62]. To find a parameter-free and cluster-additive way
of dealing with avoided-level crossings in the construction of effective Hamiltonians remains
an important task for the future. If this is achieved the proposed transformation provides a
highly efficient tool to perform linked-cluster expansions for excitations in generic Hamiltoni-
ans with the possibility to describe the decay of excitations accurately and efficiently.
We want to end the paper with possible applications of the introduced method. The minimal
transformation only allows for a perturbative linked-cluster expansion of excitations that are
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Figure 4: The figure shows an NLCE expansion of the bound-state gap ∆bs in de-
pendence of the number of nodes of the graphs taken into account. The expansion
converges only until around h ≈ 0.35. The convergence problems are caused by
avoided level crossings occurring on finite graphs. As more graphs are taken into ac-
count in the expansion convergence becomes gradually worse. Padé extrapolations
and bare series results are also shown.
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Figure 5: The figure shows the behaviour of the minimal eigenvalue wmin,A of W2
(blue line) in the vicinity of an avoided level crossing for the calculation of the effec-
tive Hamiltonian on a finite graph, which is plotted in the inset of the figure. In the
same plot the energy difference ∆E between the lower end of the two-spin flip con-
tinuum and the maximum of the bound-state dispersion is plotted (red). One clearly
recognizes that wmin,A drops to a very small value as∆E decreases. As a blue dashed
line the minimal eigenvalue wmin,B of a modified W2 is shown, where one takes the
formerly lower two-spin flip continuum state for the calculation of the bound-state
effective Hamiltonian and rejects the state that was formerly the one with the highest
energy of the bound states. The plot clearly suggests further away from the avoided
level crossing the dashed blue curve would continue the solid blue one smoothly.

in a different symmetry sector than the ground state. In almost all low-field expansions this is
not the case. While it is possible to perform such expansions with pCUT or MBOT these meth-
ods are less efficient than the method we propose. Hence, it promises to reach higher orders in
low-field expansions in general, what we already showed specifically for the transverse-field
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Ising model on the square lattice. High-field expansions of models where the ground state is
coupled with the first excited states can also be computationally very demanding. An exam-
ple is the Kitaev model in a field [64, 65]. The proposed transformation could help to reach
higher orders for that system. Another advantage compared to pCUT is that we do not need an
equidistant spectrum of H0. In [66] it was proposed to use the model-independent structure
of the pCUT solution to treat systems with disorder or long-range interacting systems and this
idea, coined white-graph expansion, was also successfully applied [10,12]. Using perturbative
expansions of projectors we can do the same with this transformation but in a more general
setting of non-equidistant H0. This can be utilized to perform white-graph expansions for
the resolvent revealing the possibility of long-range low-field linked-cluster expansions and
low-field linked-cluster expansions in the presence of quenched disorder.
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