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Abstract

Microscopically understanding and classifying phases of matter is at the heart of
strongly-correlated quantum physics. With quantum simulations, genuine projective
measurements (snapshots) of the many-body state can be taken, which include the full
information of correlations in the system. The rise of deep neural networks has made it
possible to routinely solve abstract processing and classification tasks of large datasets,
which can act as a guiding hand for quantum data analysis. However, though proven to
be successful in differentiating between different phases of matter, conventional neural
networks mostly lack interpretability on a physical footing. Here, we combine confu-
sion learning [1] with correlation convolutional neural networks [2], which yields fully
interpretable phase detection in terms of correlation functions. In particular, we study
thermodynamic properties of the 2D Heisenberg model, whereby the trained network is
shown to pick up qualitative changes in the snapshots above and below a characteristic
temperature where magnetic correlations become significantly long-range. We identify
the full counting statistics of nearest neighbor spin correlations as the most important
quantity for the decision process of the neural network, which go beyond averages of
local observables. With access to the fluctuations of second-order correlations — which
indirectly include contributions from higher order, long-range correlations - the network
is able to detect changes of the specific heat and spin susceptibility, the latter being in
analogy to magnetic properties of the pseudogap phase in high-temperature supercon-
ductors [3]. By combining the confusion learning scheme with transformer neural net-
works, our work opens new directions in interpretable quantum image processing being
sensible to long-range order.
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1 Introduction

Next to revolutionizing applications in image and sequence processing, in recent years neural
networks have gained tremendous interest also in the field of quantum many-body physics [4—
7]. In strongly correlated systems, complex phases of matter can emerge in seemingly sim-
ple models — which, in many settings, still lack microscopic understanding [8,9]. With their
powerful abstraction tools, neural networks have quickly opened a novel paradigm of analyz-
ing many-body phases of matter, which may help to gain deeper understanding of appearing
phases in strongly correlated systems [2,10,11], as well as act toward experimental image
reconstruction [12], enhanced Monte Carlo sampling [13-16], and efficient representations
of quantum states [17-19].

As a concrete example, deep neural networks have been increasingly utilized to predict
phase transitions in physical systems, the model’s input data types ranging from entanglement
entropy spectra [1,20-22] to quantum image data generated numerically [23-28] and ex-
perimentally [29-32]. However, one major drawback of the neural network toolbox is their
inherent black-box nature, which limits interpretation — and in turn restricts their applica-
bility towards developing microscopic theories of yet unsolved physical regimes. For phase
classification tasks using standard feed forward neural networks, for instance, the models rep-
resent complicated non-linear functions that are optimized to best represent the conditional
probability P(y|s) of assigning phase label y to data input s, however mostly without any
deeper insights into the decision making process of the network. This significant pitfall of
neural networks in quantum physics has triggered intensified research regarding reliable in-
terpretability, such as for linear and kernel [ 33-35], shallow [36,37] and engineered [2,38,39]
models, as well as by using Hessian based similarity measures [40,41] and optimal prediction
methods [42,43].

Highly controllable analog quantum simulation platforms — e.g. via ultracold atoms — al-
low for a systematic experimental exploration of paradigmatic Hamiltonians with strong cor-
relations like the Fermi-Hubbard model [44-52]. In particular, these setups allow to perform
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genuine quantum projective measurements and sample snapshots of the many-body state in
the Fock basis, which in turn allow for insights into the wave function beyond averages and
local observables [48,53,54]. Nonetheless, if order parameters are unknown or the physics
goes beyond the Landau paradigm of phase transitions, it is a difficult task to differentiate
between different phases of matter when a whole zoo of possible correlation functions needs
to be considered.

To this end, neural network processing of quantum snapshots can act as a guiding hand,
where architectures are desirable that, apart from detecting qualitatively different physical
regimes, let us know which physical correlations are crucial to base a reliable decision on.
For this purpose, unsupervised-supervised hybrid machine learning approaches based on cor-
relation convolutional neural networks (CCNN) [2] have been proposed, where interpretable
phase detection has been demonstrated via data clustering and subsequent filtering of im-
portant correlations in each cluster [11]. In this work, we propose a fully automated, unsu-
pervised method for interpretable phase detection by combining confusion learning training
schemes [1] with CCNNs, allowing for a reliable single-step detection of qualitatively differing
regimes while at the same time yielding full interpretability in terms of correlation functions.

In particular, we study numerically generated snapshots of the Heisenberg model, whose
temperature dependent magnetic properties share many similarities with the low-energy fea-
tures of the Fermi-Hubbard model at half filling. In this case, a characteristic temperature T*
exists where spin correlations become significantly long-range, replacing Fermi-liquid quasi-
particles by a single-particle pseudogap [55,56]. In the Heisenberg model, though no quasi-
particle interpretation exists, a suppression of the spin susceptibility can be observed below
a characteristic temperature T* ~ J [57-59] in analogy to the half filled Fermi-Hubbard
model [60,61]. Similarly, both the Heisenberg and Fermi-Hubbard model feature a maximum
of the specific heat at T, ~ 2J /3 [62-64], signaling the thermal activation of the spin degrees
of freedom. We show that the trained confusion correlator convolutional neural network is
able to pick up upon qualitative changes of these thermodynamic properties in the Heisen-
berg snapshot data sets above and below a characteristic temperature, broadly matching both
the peak of the susceptibility as well as the specific heat. We find that the network classi-
fies snapshots by analyzing the full counting statistics of nearest neighbor spin correlations,
which directly contain information about higher moments of the distributions. By evaluating
the fluctuations of nearest neighbor correlators, the network uses indirect access to four-point
correlations to assess long-range properties of the snapshots. Initiating the step towards fully
long-range capabilities, we show that similar features are detected using transformer vision
networks that include attention and thus correlations across the entire snapshot.

With its powerful correlation based ability to detect even featureless variations of snapshot
data sets, our work paves the way towards deep microscopic insights into strongly correlated
phases. In particular, application of the fluctuation based detection scheme promises novel
perspectives onto non-local properties of many-body systems.

2 Correlation based confusion learning

Confusion learning is a training scheme which aims to identify phase transitions by learning
the best labeling of data, where the labeling is originally unknown [1]. Given an input dataset
in some parameter space p € [py,p2], purposely mislabeling the data into two subsets and
evaluating the performance of the network to distinguish between the two labels can give
insights into whether and where a phase transition occurs. Concretely, consider a physical
system with a phase transition at point p.. Within the confusion learning scheme, a neural
network is trained to distinguish whether the input is taken from p; < p < p’ or p’ < p < p,,
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with p” an arbitrary decision boundary. If we choose, for instance, p’ = p,, we train the model
to assign label “A” to the full dataset, which is a trivial task for the neural network and results
in 100% accuracy. The same argument holds if we choose p’ < p;, where now all inputs
are predicted to belong to label “B”. Furthermore, assuming the model is capable of perfectly
distinguishing the two phases, we reach ideal performance also at p’ = p.. In between, the
model is assigned to label data from the same phase as coming from qualitatively different
regimes, leading to a majority decision and a reduced accuracy (hence the confusion of the
network). As a result, a characteristic W-shape of the network’s performance as a function of
p is expected.! By identifying the maximum of the network’s performance p.... upon varying
the decision boundary, the critical parameter p, = p/ . can be estimated. If, on the other
hand, no transition exists in the system, the network will always make a majority decision —
resulting instead in a V-shape of the accuracy.

2.1 Network architecture

With increasing efforts to interpret machine learning in the context of physical observables, a
neural network architecture based on non-linearities that directly correspond to measurable
correlations has been proposed in [2]. In particular, the uncontrolled mixing of correlations
that appears when using standard non-linearities is explicitly replaced by interpretable corre-
lation maps in the correlation convolutional neural network (CCNN) architecture. Here, by
combining correlation based convolutions with confusion learning (co-CCNN), we detect qual-
itative variations of quantum many-body snapshots while having direct access to the model’s
decision making process. The network’s architecture is schematically illustrated in Fig. 1 (a).
Many-body snapshots for a range of parameters are divided into two subsets —i.e., above and
below a given decision boundary p’. In order to perform interpretable classification, convo-
lutional filters generate a first order correlation map of the snapshot (C1), from which higher
order (i.e. non-linear) correlations are evaluated up to order M (C", 1 < n £ M). In par-
ticular, for a snapshot with pixels S.(x) for channels ¢ = {7, |} and filter weights f,.(x), the
correlation maps are given by [2]

n
c'@= >, |]f@s, x+ap, )
(a1,61)#..#(ap,c,) j=1

where a; refers to the positions of the convolution window.? Hence, the n’th order correlation
map corresponds to n-point correlations within a given fixed convolutional window. Note that
the above can be easily generalized to multiple filters. However, for the sake of simplicity and
easier interpretability, we here restrict ourselves to a single filter per channel.> After post-
processing the correlation maps by normalizing and averaging,* the M—dimensional output is
fed into a single fully connected layer with weights w™, which then makes a binary classifica-
tion based on the measured correlations. As the filters are trainable, the CCNN hence learns
which correlations give key information about the two subsets of snapshots when attempting
to distinguish between them. Upon sweeping the decision boundary through parameter space,
this allows for interpretable classification of snapshots within a single-step protocol in a fully
automated manner, whereby the model outputs regions of qualitatively differing snapshot sets

INote that, in most realistic applications, the model is not perfectly able to distinguish between the two phases,
leading to a smeared out W-shape in the accuracy [1].

2C! thus corresponds to the feature map of a standard convolutional operation; the non-linear part of the model
corresponds to all higher orders, C", n > 1.

3When including multiple filters, our findings do not change qualitatively.

“We assume translational invariance of the system, such that we can get meaningful quantities (i.e. measurable
n-point correlations) by spatially averaging over the correlation maps.
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Figure 1: Correlator based confusion learning. (a) Schematic architecture of the
confusion based [1] CCNN [2] network (co-CCNN). Correlation maps are computed
via convolution with learnable filters, which a coupled fully-connected discriminator
bases its binary decision on. We use a single 2 x 2 filter for each channel, and cascade
the first order correlation map to fourth order, M = 4. (b) When changing the deci-
sion boundary T in the confusion learning scheme, the network’s accuracy features
a W-shape, signaling that two qualitatively differing regimes are present in the data
(red data points). Accuracies are averaged over 20 runs; errors are negligible on the
scale of the plot. The performance maximum at T/~ 0.8 is found to broadly match
peaks of the specific heat Cy, at T ~ 0.6 (light blue data points) and magnetic sus-
ceptibility y, at T* ~ 0.9 (light blue data points, taken from [57]). Values for y, and
Cy are re-scaled and shifted to match the axis frame. (c) Top panel: regularization
path analysis of the weights w(™ at T’ = 0.7. Second order correlations are found to
set in earliest, while all other correlations stay insignificant for the whole range of A.
Lower panel: accuracy of the discriminator upon tuning the regularization strength
A. When significant weight is on the second order correlation neuron, maximum
accuracy is reached. (d) The four most relevant two-point correlations that the net-
work utilizes to make its decision, with weights given by f. (a;)f,(a,) (normalized
by the highest value), cf. Eq. (1). Nearest neighbor correlators are seen to single out
as the important correlations.

while at the same time yielding insights into which correlations are important to distinguish
these sets.

2.2 Application to the Heisenberg model

Using stochastic series expansion quantum Monte Carlo techniques [47,65,66], we take snap-
shots of the antiferromagnetic (AFM) Heisenberg model at temperature T, described by the
Hamiltonian [67,68]

(8)

where $ is a spin-1/2 operator and (i, j) denotes nearest neighbor pairs on the 2D square
lattice. Though long-range antiferromagnetic (AFM) order is only present in the ground state
(T = 0) and there exists no phase transition at finite temperature, the 2D Heisenberg model
features interesting thermodynamic properties. For instance, a typical temperature scale T*
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exists at which magnetic correlations become significantly long-range, indicated by a sudden
suppression of the uniform spin susceptibility [57-59],

s = 5 (SZSZ} > 3)

where N the number of spins in the system. The Heisenberg model is an effective low energy
description of the Fermi-Hubbard model at half filling and strong repulsion, where a similar
phenomenology of the spin susceptibility is observed [55,60]. Here, it has been proposed that
at T*, the exponentially growing correlation length of spin fluctuations becomes comparable
to the quasiparticle de Broglie wavelength Az ~ vy /T (with vy the Fermi velocity) — leading
to the formation of precursor AFM bands and the depletion of the electronic density of states
at the Fermi level known as the pseudogap [55]. Early experimental findings of cuprate high-
temperature superconductors have established the existence of a pseudogap in doped Mott
insulators, however a universal understanding of its origin and in particular its relation to
superconductivity is yet to be established [69]. Though subtle differences between the actual
opening of the pseudogap at the Fermi surface in the Fermi-Hubbard model and the peak of the
magnetic susceptibility exist in cuprate materials [70], T* — here defined as the maximum of
the susceptibility — constitutes a characteristic temperature below which significant magnetic
correlations develop.

Moreover, large correlation lengths at low temperatures and random, uncorrelated spins
at high temperatures lead to the appearance of a maximum of the specific heat at T ~ 2J/3
both in the Heisenberg as well as Fermi-Hubbard model,

G = (A%~ (#)°) /T2 = 2 () @
constituting a characteristic energy scale where spin degrees of freedom are thermally acti-
vated [62,64]. At low temperature, it has been shown that C,, o< T2 [63], as anticipated from
spin-wave theory.

The close correspondence of the low energy physics between the Heisenberg and the Hub-
bard model at half filling together with its non-trivial thermodynamic behavior render the
Heisenberg model a valuable and, importantly, verifiable testing ground for machine learning
applications. In the following, we analyze simulated snapshots of the Heisenberg model at
various temperatures using the co-CCNN scheme. We demonstrate that the network is capa-
ble of picking up qualitative thermodynamic changes of the model, which we fully interpret in
terms of full counting statistics of correlation functions — paving the way to analyze many-body
snapshots in, e.g., temperature and density scans in the Fermi-Hubbard model away from half
filling.

In our simulations, we take snapshots of the thermal ensemble of a 40 x 40 Heisenberg
model, but use only the central 16 x 16 region for further processing to minimize boundary
effects. In the following, all energies are given in units of J, where we set J = 1. According
to the scheme outlined in Sec. 2.1, we train a CCNN to discriminate between temperatures
T < T’ and T > T’ using binary cross entropy (BCE) loss and 2 x 2 convolutional filters. We
use 2,000 snapshots for each temperature value between T = 0.1 and T = 1.5 in increments of
AT = 0.1. We utilize 90% of the data set for training; the remaining 10% is used for validation.
The accuracy after 50 training epochs averaged over 20 runs is shown in Fig. 1 (b). In imme-
diate vicinity to the boundaries T’ 2 0.1 and T’ < 1.5, we see a linear reduction of accuracy,
signaling that the network makes a majority decision. At intermediate decision boundaries,
however, the network’s performance reaches a local maximum located at T, __ ~ 0.8 — being in
broad agreement with both the maximum of the spin susceptibility at T* ~ 0.9 (dark grey data
points in Fig. 1 (b)) as well as the peak of the specific heat at T ~ 0.6 (light grey data points in

6
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Figure 2: Two-point correlations of the Heisenberg model. Nearest neighbor cor-
relations ¢;, (a), as well as diagonal correlations ¢g4, (b), in the Heisenberg model
as a function of temperature. Correlations are approximated by evaluating ¢, cq in
each shot and averaging over all snapshots, cf. Eq. (7). Both correlations show a

monotonous behavior, with no qualitative differences above and below T .~ 0.8.

Fig. 1 (b), evaluated by numerical differentiation of (#1)). As we show in the Appendix, Sec. A,
our results to not alter qualitatively when choosing larger convolutional windows. However,
generally, the filter size shall be treated as a tunable hyperparameter of the CCNN, whereby
the maximum order of correlations accessible to the model is limited by the size of the kernel.

The observed performance maximum at TI;aX suggests that the network picks up upon the
qualitative change of thermodynamic properties of the spin system below and above char-
acteristic energy scales T, T*, where magnetic correlations become significantly long-range.
Importantly, we note that quantities such as Cy, and y, explicitly include long-range contri-
butions, cf. Egs. (3), (4); the network, however, is restricted to evaluating local correlations
within the convolutional filter. Thus, the question arises how the model makes its decision and
which qualitative changes precisely the co-CCNN scheme detects.

2.2.1 Regularization path analysis

To classify which correlation maps are important for the decision process, we retrain the fully
connected layer of the model that directly leads to the decision neuron [2]. By explicitly
adding a £, penalty to the weights w( between the post-processed correlation maps and the
interpretation bottleneck (see Fig. 1 (a)), we perform a regularization path that allows us to
analyze which correlation map is used first to reach maximum discrimination accuracies. In
particular, the retraining loss reads

N
Lreg =Lyce+ Ay, |[w™)|, (5)

n=1

where Ly is the binary cross entropy loss that was used to train the convolutional filters and
A is the regularization strength.

Weights w'™ for a given A are shown in the top panel of Fig. 1 (c) for decision boundary
T’ =0.7. We observe that for 1/A ~ 10~%, weights for the second order correlations first start
to deviate from zero. At the same time, the accuracy of the network shoots from ~ 50% to
~ 85%, see the lower panel in Fig. 1 (c). Note that all other weights are vanishingly small
throughout the whole range of A, and even when slightly deviating from zero do not lead to
a performance increase of the network. Hence, we conclude that it is indeed correlations of
second order that let the network reach its maximal accuracy shown in Fig. 1 (b).

To make it explicit which two-point correlators precisely the network measures, we plot
the four correlations with highest weights f. (a;)f,,(a;) (normalized by the largest correlation
weight) when applying the learned convolutional filter, Fig. 1 (d). Nearest neighbor spin-spin
correlations in horizontal and vertical direction single out by their strong weights. Diagonal
correlations are found to be further calculated and analyzed by the network, however only
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Figure 3: Illustration of the network’s learning process. By analyzing the full
counting statistics of sets A= {c; | T < T’} and B = {c; | T > T’}, the network learns
a threshold c;. For a given, unseen snapshot with cgs), the network then classifies it as
belonging to T < T’ (T > T”) for ¢; < ¢} (¢ > ¢}). When both distributions have no
overlap, the network has perfect accuracy, (a); for finite overlap, the network’s per-
formance decreases, (b). The ideal choice of ¢; that maximizes the accuracy explicitly
depends on the full distributions of A and B, including their means and widths.

with marginal weight (around 5%) compared to the nearest neighbor correlations. Note that
for all decision boundaries T’, the results shown above are qualitatively identical — that is,
second order nearest-neighbor correlations are found to be used by the network to make its
decision.

2.2.2 Full counting statistics

Based on these insights, we take a look at nearest neighbor and diagonal spin-spin correlations,

1 n AN ]_ A A
(€)= <— Sf87> ;o ()= <— Sf87> : (6)
Ny 5 Ny )

where Nj, is the total number of nearest neighbor (diagonal) pairs (i, j) ({({i,j))). We evaluate
correlations Eq. (6) by averaging over N; snapshots,

- _ 1 ) - _1 )
G=—)¢c¢’, Cq=— ) ¢’ (7
M Ty
where cgs/) 4 is the approximation of the correlator ¢, /4 using snapshot s,

(s) Zsz sst C(s) Z Sz sst (8)

b ((i,5))

with S‘l.z’s denoting the spin orientation of spin i in snapshot s. As depicted in Fig. 2, both corre-
lator strengths show a monotonous increase with decreasing temperature with no qualitative
difference above or below the temperature of maximum network accuracy.

If no structural change in the two-point correlators can be seen when passing T __, but the
network only utilizes nearest neighbor two-point correlations when learning to label the data,
what is it then that the network bases its decision upon?

To answer this question, we analyze the full counting statistics (FCS) of ¢;, given by the
total distribution {c;} = {cgl), 52), ..}, cf. Eq. (8). In contrast to merely using averages,
Eq. (7), the FCS directly gives information about higher moments of the distribution, such as
its width and skewness. In particular, given a bipartition of the data set with boundary T’, a
corresponding boundary ¢] can be learned by the network which assigns label T < T’ (T > T")

to all snapshots fulfilling c(s) <c] (c(s) > 1) such that its accuracy is maximized. If the network
indeed estimates c; for each snapshot and bases its decision on the result, its accuracy will be

8
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Figure 4: Full counting analysis. (a) We approximate the nearest neighbor corre-
lator for each snapshot, Eq. (8), and analyze whether the network correctly labels it
for a given decision boundary T’ after training. Shown are the full counting statis-
tics, where blue (red) indicates a correct (wrong) decision by the network. The right
panel shows the total accuracy of the network, cf. Fig. 1 (b). (b) Full counting statis-
tics of ¢; directly calculated from the Heisenberg snapshot data for a given bipartition
T < T’ (red), T > T’ (blue). If basing the labeling decision on c¢;, finite errors are
expected when both distributions overlap (hatched areas). The shapes of the hatched
and non-hatched areas precisely match the FCS of the network’s performance as a
function of ¢; in (a), underlining the interpretation of the network’s decision mak-
ing. The right panel shows the ratio d between the area spanned by the non-hatched
distributions to the total area below both hatched and non-hatched distributions, re-
producing the W-shape of the network’s accuracy.

flawless if the two sets A= {c; | T < T’} and B = {c; | T > T’} have no overlap, as illustrated
in Fig. 3 (a). On the other hand, increasing overlaps will result in decreasing accuracy of the
network as a hard decision boundary c] will inevitably lead to uncertain label predictions, cf.
Fig. 3 (b).

For each shot, we calculate the snapshot’s approximation of ¢;, Eq. (8), and explicitly differ-
entiate whether or not the network makes a correct decision, C = {c; | correct categorization}
and F = {c, |false categorization}, shown in Fig. 4 (a) in blue and red, respectively. The ac-
curacy of the classifier is hence given by a = ICl/|c|+|F|, with |C| (|F|) referring to the total
instances of correctly (incorrectly) categorized snapshots. Accuracies a as a function of T’ are
shown on the right hand side of Fig. 4 (a), matching Fig. 1 (b).°

We now perform a similar analysis of the FCS of ¢; directly from the raw Heisenberg snap-
shot data. To this end, we create bipartitions A= {c;|T < T’} and B = {¢; | T > T’} of the

>Note that in Fig. 4 (a) we are showing the accuracy after a single run, whereas Fig. 1 (b) presents the mean
accuracy over multiple optimizations — leading to the two curves not to be identical.
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Figure 5: Standard deviations and connected four-point correlations. (a) The
empirical standard deviation 044, Eq. (9), of ¢;, ¢4, showing a sharp increase below
temperature T, ~ 0.8. (b) Averaged connected four- point correlator, Eq. (11),
as a function of T. While being vanishingly small for T X T __, for T < T/ the

connected correlator gains significant weight.

snapshots and plot the corresponding distributions, in analogy to Fig. 3. Results are shown in
Fig. 4 (b), where A (B) is shown in red (blue). Overlaps of both distributions are illustrated
by hatched areas. Comparing the histograms in Fig. 4 (a) and (b), we find that the distribu-
tions match up almost perfectly. In particular, the hatched overlap of A and B in Fig. 4 (b)
corresponds to the distribution of false classifications of the network, F, see Fig. 4 (a). Cor-
rect instances C, in turn, match the distribution (A\B) U (B\A), i.e., the non-hatched areas in
Fig. 4 (b). Indeed, when computing the accuracy analog of the raw Heisenberg histograms
by evaluating the ratio @ = 1A\BI+|Bl/|a|+|B| = IB\AI+|Al/|a|+|B|, the characteristic W-shape of the
confusion learning scheme is reproduced — even matching quantitatively the accuracy of the
neural network up to high precision, see the right panel in Fig. 4 (b).

For a given snapshot s to be categorized, we conclude that the network makes a majority
decision that is based on the snapshot’s nearest neighbor correlation estimate c;. In particular,
the network learns a threshold ¢] according to which it classifies a given snapshot with cgs)

asT <T orT>T for c(s) < ¢} and c(s) > cy, respectively. We note that, as the network
has no information about the temperature of the snapshots, it can not, for instance, estimate
averages ¢;(T’) and make a corresponding decision according to ¢; = ¢;(T’). Instead, the
network leverages the FCS of the distributions A and B, choosing ¢] in order to maximize
the classification accuracy. Specifically, ¢] corresponds to the point where the distributions
A={c;|T < T’} and B={c;|T > T’} have maximum overlap, cf. Figs. 3 and 4. The learned
threshold ¢} explicitly depends on the widths o of distributions A and B, which directly include
information of the fluctuations of nearest neighbor correlations c;. We note that the learned
decision thresholds closely (though not exactly) match the values of ¢;(T’), as illustrated in
Fig. 4 by grey dashed lines. In the Appendix, Sec. A, we show that indeed a sharp cutoff exists
at ¢] below (above) which the network categorizes snapshots as T < T’ (T > T”) - see Fig. 7.

Having identified the FCS of ¢; as the decisive mechanism of the network to detect qual-
itatively differing snapshots in the Heisenberg model, we take a closer look at the widths o
of the distributions {c;} as a function of temperature, i.e., we study the fluctuations of c;,

o2 = ()~ (&) ©)

Results are shown in Fig. 5 (a). We observe that at high temperatures, the width of the distri-
butions stay relatively constant. At roughly T ~ T~ 0.8, however, the standard deviation
starts to significantly increase, consistent with magnetic fluctuations becoming more promi-
nent at temperatures below T*. As shown in Fig. 5 (a), this holds for both nearest neighbor
as well as diagonal two-point correlations.

Explicitly writing out Eq. (9),

== Z Z — ()%, (10)

) (G,J")
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we see that o in fact includes four-point correlations over two nearest neighbor spin pairs
— which, for a given configuration of indices (i,i’), (j, j’) might lie far apart from each other.
Hence, the width of the distribution of ¢, directly includes information about long-range prop-
erties of the spin-spin correlations. Note that, while nearest neighbor two-point correlations
show monotonous behavior as a function of temperature, long-range two-point correlations
as appearing in the susceptibility, Eq. (3), do show signals of changes of the thermodynamic
properties, cf. Fig. 1 (b). However, as the network is by construction restricted to analyze local
correlations only, it has no access to evaluate these long range properties. By instead consid-
ering the FCS of ¢;, the network finds a back door to analyze long-range correlations via the
four-point correlator appearing in Eq. (10), which enables it to detect qualitatively different
thermodynamic characteristics of snapshots above and below T .

In fact, the width of ¢, Eq. (9), very closely resembles the form of the specific heat Cy,
Eq. (4). Concretely, a% corresponds to the Ising part of T?Cy, where in particular cross-

terms such as ~ (§f‘§f§§}z§]z,) as appearing in Cy, are not present. Though there exists no
pronounced peak of o, as observed for the specific heat at T ~ 0.6, its strong alternation
for T < 0.8 is highly suggestive of corresponding thermodynamic features appearing in Cy,
cf. Fig. 1 (b). However, though similarities are present, there exists no direct correspondence
between the FCS signatures the network utilizes and thermodynamic properties such as Cy, or
xs- By indirectly evaluating long-range properties (as appearing in y, and Cj,) of four-point
correlations (as appearing in Cy), the network succeeds in detecting qualitative changes in
the snapshots as a function of temperature. These detected changes cannot, however, directly
be attributed to originating from the peak in Cy or y,, and shall rather be interpreted as a
related but independent indicator of qualitative change close to the pseudogap regime — as
also suggested by the position of the performance maximum lying in between the peaks of Cy,
and y,. Nevertheless, the presence of pronounced signatures of o; as a function of temperature
is very intriguing by itself, in turn strongly encouraging the observation of similar indications
at finite doping in spin-resolved occupation number snapshots as accessed through quantum
gas microscopes.

We conclude the above discussion by calculating explicitly the connected four-point spin
correlator,

A ]. n N N N n N n n n N n n N N N n
(&) = T (Z) (Z) [ (82828282 ) — (3282) (828%) — (8262) (828%) — (8282)(828%) |, (1m)
i,1) (j,J’

which we again approximate using the Heisenberg snapshots, ¢;. Eq. (11) gives information
about the genuine four-point correlations in the system, that in particular go beyond merely
the correlation length of the two-point correlators. Evaluation of ¢; shows vanishingly small
values for T > T, . shown in Fig. 5 (b). However, as T drops below T, _, ¢,(T) experiences
a sharp increase, indicating how long-range, four-point correlations gain significant weight
below T, - and correspondingly below the pseudogap temperature, T*, and the maximum

of the specific heat, T,.

3 Confusion transformer

A general concern when using convolutional neural networks to classify phases as presented
above is the limitation of correlations to the convolutional window, which seemingly excludes
sensibility to long-range order. As seen above, performant characterization can nevertheless
be achieved by the network via analysis of the FCS of local correlations, which implicitly in-
cludes longer-range contributions. Nevertheless, a network architecture that is able to in-
trinsically capture long-range correlations is desirable for future applications of machine vi-
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Figure 6: Confusion transformer. (a) Schematic illustration of the transformer ar-
chitecture coupled to a confusion learning scheme. Snapshots are cut into small
patches and linearly embedded via learnable matrices. The classification token
(shown in green) as well as positional encodings are added to the sequence, before
being encoded in two transformer blocks. The classification token — now including
information of all patches — is retrieved after the last self-attention encoder and clas-
sified to belong to T < T’ or T > T’. (b) Classification accuracy as a function of T".
The W-shape signals detection of qualitative change between the regions T < 0.6,
T Z 0.6. Light red areas correspond to the error to the mean of 20 repetitions.

sion techniques in many-body physics. Transformers are a promising candidate for this pur-
pose, taking advantage of non-local (and i.p. long-range) self-attention originally designed
to capture interdependencies in natural language processing (NLP) [71]. In particular, and
in stark contrast to e.g. recurrent neural networks (RNN) and long short-term memory mod-
els (LSTM) [72], transformer architectures explicitly avoid recurrent processing of sequential
data. Instead, they compute similarity scores between all constituents of a given input se-
quence (self-attention), allowing to capture long-range dependencies by processing the input
as a whole - i.e., they do not rely solely on past hidden states in the sequence.

In the past years, extension of transformers to image processing (vision transformers) has
proven itself to be comparably powerful to convolutions [ 73], opening possible routes toward
their application in many-body physics [74-76]. The architecture of a vision transformer is
schematically illustrated in Fig. 6 (a). In the first step, input images are cut into smaller
patches. These patches are subsequently linearly transformed, i.e., d—dimensional represen-
tations of the input patches, called tokens, are computed.® Importantly, as transformers do not
sequentially process the input, the tokens are further positionally encoded, i.e., the position
of the patch within the original image is stored. Thereafter follows the self-attention encoder,
where all-to-all inter-dependencies between tokens are computed. In particular, three linear
transformations are learned, resulting in three feature vectors per token, referred to as query,
key and value (QKV). Evaluation of dot-products between query-key pairs results in attention
scores between corresponding pairs of tokens, which is then used to efficiently store inter-
dependencies of a given token with the remaining sequence. By feeding the encoded output
of a single transformer block into another, independent encoder, this process is repeated mul-
tiple times. Additionally, multiple QKV transformations can be learned and applied in parallel
in each transformer block, resulting in multi-head attention encodings.

In addition to the data tokens, a randomized classification token is added to the begin-
ning of the sequence, which, via the self-attention mechanism, stores all inter-dependencies
between tokens while being processed through the various layers. After application of the
encoding blocks, the classification token is passed to a standard classifier. For a more de-
tailed discussion of vision transformer networks, we refer to its original proposal in [73].

®In NLB these tokens correspond to encodings of words.
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For quantum-image processing, the vision transformer’s intrinsic capability of capturing long-
range dependencies promises sensitivity to long-range and non-local (e.g. topological) order,
potentially leading to significant advantages over standard, convolutional approaches.

We implement a vision transformer and combine it with the same confusion learning
scheme outlined in Sec. 2. The original snapshot images are cut into 4 x 4 patches, and are
fed into the first transformer encoder after a learnable linear embedding and positional encod-
ing’ is applied. In particular, the 32—dimensional sequences (16 entries for each channel) are
embedded into an 8—dimensional space (tokens), and a classification token is inserted at the
beginning of the sequence (green box in Fig. 6 (a)). For simplicity, we use a single head within
the encoder, and limit the network to two transformer blocks. After applying self-attention and
classifying the auxiliary classification token, accuracies after training are presented in Fig. 6.
Similarly to using convolutional neural networks, a clear W-shape is visible in the accuracy as a
function of decision boundary T’, with a pronounced maximum at T, .~ 0.6 — suggesting that
also the vision transformer detects the alternations of thermodynamic properties. Through ac-
cessing the model’s learned attention maps between various patches, their inter-dependencies
can be analyzed. In particular, tailored encoding blocks could allow for interpretation in terms
of correlation functions similar in spirit to CCNNs, whereby the order of encoded correlations
increases with each encoding layer in the transformer architecture. Importantly, the all-to-all
self-attention mechanism could surpass convolution based approaches, in particular when fac-
ing systems characterized by long-range and non-local properties — which we will look further
into in future work.

4 Discussion

In this article, we have proposed the co-CCNN scheme as an approach based on interpretable
neural networks to detect distinct regimes in quantum many-body snapshots. Specifically, by
utilizing correlation-based convolutions in conjunction with a confusion learning scheme, it is
possible to identify parameter regions that exhibit significant differences, while maintaining
complete interpretability through correlation functions.

We have applied the method to snapshots of a 2D Heisenberg spin system, where the
build up of magnetic correlations as the temperature is decreased leads to the appearance
of, e.g., pronounced peaks of the specific heat and spin susceptibility. Using our method, we
found that the network categorizes the snapshots into two regimes T S T, ., whereby T,
was found to broadly match temperatures of maximal specific heat and susceptibility — thus
capturing the variation of thermodynamic properties. We found that the network bases its
decision solely on nearest neighbor correlations, which by itself have featureless, monotonic
characteristics as a function of temperature. However, we presented strong evidence that
the network indirectly accesses long-range, four-point correlations in the system by analyzing
the full counting statistics of nearest neighbor correlations. This enables the network to detect
alternations of thermodynamic quantities, such as the peak of the specific heat and suppression
of spin susceptibility, which directly include contributions from long-range correlations.

With even subtle alternations being detected by the network, this opens up insightful fu-
ture directions in interpretable quantum image processing. With regard to analog simulation
of strongly correlated systems with quantum gas microscopes, the presented method can be
directly applied to detect regions of differing phases, with immediate access to correlation
functions which are important to characterize the respective regimes. Applying the method
to the doped Fermi-Hubbard model might help to pin down the microscopic origin of, for in-
stance, the pseudogap phase, in particular regarding the debated question whether pairing or

’We use the same positional encoding as proposed in [71].
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magnetic fluctuations ultimately lead to the opening of the single particle spectral gap. Con-
cretely, our work suggests to directly look for the four-point spin correlator identified here,
both as a function of doping and as a function of temperature at finite doping.

We note that for our numerical experiments, which consist of data sets similar in size to
realistic quantum gas microscope experiments, the confusion learning scheme demands only
low computational resource. Nevertheless, for larger data sets, the retraining for all possible
decision boundaries can quickly become expensive, for which extended schemes as proposed
in [77] combined with interpretable CCNN architectures pose a possible extension of our work.

Making the bridge towards networks that have intrinsic capabilities of capturing long-range
dependencies, we found that vision transformers trained according to the confusion learning
scheme further support the categorization T S T, - promising novel aspects of interpretable
machine learning applications in many-body physics.
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A (Classification boundary c|

In the main text, we have seen that the confusion learning trained correlation based convo-
lutional neural network classifies snapshots as belonging to subset T < T or T > T’ for a
given decision boundary T’ by estimating the nearest neighbor correlator c;. To underline the
network’s decisive mechanism, we compute c; for each snapshot and create two correspond-
ing subsets by distinguishing between the two classification outcomes by the network after
training. Fig. 7 shows the distributions of ¢c; when being classified as T < T’ (red) and T > T’
(blue) for T" = 0.1...1.2. For T’ close to the lower boundary of simulated temperatures,
T’ = 0.1, we see how the network classifies (almost) all snapshots as T > T’, hence locking
in on a majority decision. However, for intermediate temperatures 0.3 S T’ < 1.2, a sharp
cutoff between samples classified as T < T’ and T > T’ in terms of c; is observed. Indeed,
the cutoff matches quantitatively the averages ¢;(T”), underlining that the network makes its

decision solely by comparing cf) with (a learned) cutoff value given by ¢; = ¢;(T”).
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Figure 7: Classification boundary c}. After training, ¢; is calculated and sorted
into two sets corresponding to their classification. Approximations ¢; of snapshots
classified as T < T’ (T > T’) are shown in red (blue) for T = 0.1...1.2. For
T’ = 0.1, (almost) all snapshots are classified to belong to T > T’. For T’ > 0.3,
maximum accuracy is instead achieved by learning a boundary ¢, below (above)
which all snapshots are classified as T < T’ (T > T’) — underlining that the decisive
process of the network is solely based on evaluation of ¢;. Though not exactly, these
cutoffs match averages of c; at the decision boundary temperature, i.e., ¢;(T’) (grey
dashed lines).

B Larger convolutional windows

In the main text, we have focused on fixed convolutional filter sizes of 2 x 2 and demonstrated
that the FCS of two-point correlations enable the network to classify snapshots. We now re-
train the model with a single 3 x 3 filter, and again analyze the network’s performance and
regularization path; results are illustrated in Fig. 8. Though showing slight deviations in the
network’s accuracy as a function of T’ from 2 x 2 filters, the qualitative W-shape including the
position of T, . remains unchanged when considering larger filter sizes, Fig. 8 (a). As for the
2 x 2 filter, including solely two-point correlations leads to maximum accuracy as a function
of regularization strength A, see Fig. 8 (b). Note that, with increasing inverse regularization
strength 1/A, weights corresponding to higher order correlations also light up, however with-
out any noticeable effect on the network’s performance. This highlights the importance of the
regularization strength analysis, whereby solely looking at weights of the last dense layer for
A = 0is generally not sufficient to reliably learn which correlations are important. In Fig. 8 (c),
we show the four two-point correlations with highest weights (corresponding to f., (a;)f,(as),
normalized by the highest value). As for the 2 x 2 filter, nearest neighbor spin-spin correlations
single out as the most important contributions.
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Figure 8: Larger filter sizes. (a) The network’s performance as a function of de-
cision boundary T’ for 3 x 3 (red) as well as 2 x 2 filters as presented in the main
text (grey). Though slight quantitative differences are present, the qualitative shape
including the position of the maximum remains unchanged. (b) Regularization path
analysis for 3 x 3 convolutional filters. Inclusion of two-point correlations lead to a
saturation of the accuracy. Finite weights of higher-order correlations as present at
large 1/A have no effect on the performance on the network, highlighting the impor-
tance of the regularization path analysis to isolate the most important contributions.
(c) Two-point correlations of highest weights f. (a;)f.,(a;), normalized by the max-
imum value. As for the 2 x 2 filter, nearest neighbor correlations single out as the
most important contributions for the network’s decision.
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