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Abstract

Scalable quantum algorithms for the simulation of quantum many-body systems in ther-
mal equilibrium are important for predicting properties of quantum matter at finite
temperatures. Here we describe and benchmark a quantum computing version of the
minimally entangled typical thermal states (METTS) algorithm for which we adopt an
adaptive variational approach to perform the required quantum imaginary time evo-
lution. The algorithm, which we name AVQMETTS, dynamically generates compact and
problem-specific quantum circuits, which are suitable for noisy intermediate-scale quan-
tum (NISQ) hardware. We benchmark AVQMETTS on statevector simulators and perform
thermal energy calculations of integrable and nonintegrable quantum spin models in one
and two dimensions and demonstrate an approximately linear system-size scaling of the
circuit complexity. We further map out the finite-temperature phase transition line of
the two-dimensional transverse field Ising model. Finally, we study the impact of noise
on AVQMETTS calculations using a phenomenological noise model.
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1 Introduction

Theoretically deriving finite-temperature thermodynamic properties of interacting quantum
many-body systems is notoriously difficult, but important to be able to compare to experi-
mental results. Determining the behavior near and at thermal phase transitions, including
a prediction of transition temperatures, is one of the central challenges of condensed mat-
ter physics. There are several computational techniques that address this question. Exact
diagonalization (ED), for example, is generally applicable and can be used at arbitrary tem-
perature, if the full energy spectrum is computed [1]. However, ED is limited to small system
sizes, especially if many excited states contribute at finite temperature. An alternative ap-
proach is based on thermal pure quantum (TPQ) states [2,3], which significantly reduces the
computational load compared to ED. It is still constrained in the system size that can be simu-
lated as it requires the preparation and evolution of a random quantum state in Hilbert space,
which grows exponentially with system size. Techniques that work well at high temperatures
are Quantum Monte Carlo approaches [4–6], high-temperature and numerical linked-cluster
expansion methods [7–9], as well as the pseudo-Majorana functional renormalization group
method [10,11]. They become less reliable at lower temperatures, where spatial correlations
build up. Finally, the numerical renormalization group [12,13] is well suited for the descrip-
tion of quantum impurity models at low temperatures, which can be combined with embedding
methods such as the dynamical mean-field theory to simulate lattice models [14–17].

One of most powerful numerical techniques for low-dimensional systems is based on ap-
proximating the many-body wavefunction as a matrix product state (MPS). This underlies the
density matrix renormalization group (DMRG) method [18] and generally tensor network ap-
proaches [19]. These methods can also be applied to simulate systems at finite temperature,
for example, by using a ancilla purification method [20,21]. This approach introduces a refer-
ence system with the same dimension as the physical system of interest, and prepares a state
where the physical and reference systems are maximally entangled. The physical system is
then evolved in imaginary time until a given β = 1/T , where it reaches a purified Gibbs state
at temperature T , which can be used to calculate thermodynamic quantities. This approach
is conceptually appealing, but requires a significantly larger bond dimension χ ′ to represent
the joint state of system and ancillae compared to the bond dimension χ required for the pure
system simulation. In the limit β →∞ the difference approaches χ ′ = χ2 [22]. An alterna-
tive technique that circumvents this challenge relies on sampling minimally entangled typical
thermal states (METTS) [22–24], which are states obtained by imaginary-time evolution of
product states. Since this method only evolves the physical system, the computational com-
plexity to generate a METTS is comparable to that of a ground state DMRG calculation. On
the other hand, it requires sampling over potentially many METTSs depending on the sim-
ulation temperature. The METTS technique is therefore most suited for simulating the low
temperature regime [25].
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To address some of the limiting issues of classical algorithms, several quantum algorithms
for finite-temperature simulations of quantum many-body systems have been proposed [26–
39]. Some algorithms focus on preparing purified thermal states using variational approaches
[32,35,37]. This requires the classical optimization of a cost function and provides a quantum
generalization of the ancilla purification method discussed above [20,21]. A quantum analog
of the METTS algorithm (QMETTS) has also been proposed [34, 38] and utilizes a quantum
imaginary time evolution (QITE) algorithm to evolve the initial product states [34]. This
method offers the potential advantage of requiring exponentially less space and time resources
to store and evolve quantum states of 2D and 3D systems compared to the METTS algorithm
using MPSs. We note that, while it might seem straightforward and appealing to leverage the
statistical approach based on TPQ states in a quantum algorithm, the necessary initial step of
random state preparation is known to be exponentially hard on quantum computers [40].

The quantum resource requirements for QMETTS are determined by QITE for which the
quantum circuit depth scales exponentially with the system correlation length ξ and it grows
linearly with imaginary time β . Several techniques have been developed to reduce the cir-
cuit complexity for practical QITE calculations [38, 41, 42] to make it more suited for noisy
intermediate-scale quantum (NISQ) hardware. However, the execution of QITE on current
quantum hardware remains limited to small system sizes so far. Another related approach is
variational quantum imaginary time evolution based on MacLachlan’s principle, which corre-
sponds to following the quantum natural gradient descent path [43–47]. This approach ex-
presses the state by a parametrized quantum circuit whose variational parameters are updated
according to a classical equation of motion, whose coefficients are obtained on a quantum com-
puter. It was shown that an adaptive construction of the variational ansatz yields compact and
problem specific parametrized circuits that enable high fidelity quantum state propagation in
imaginary time (AVQITE) [47]. The AVQITE algorithm adaptively expands the variational cir-
cuit ansatz with unitaries drawn from a predefined operator pool in order to maintain a high
state fidelity at each timestep along the imaginary time path.

In this work, we use AVQITE to perform imaginary time evolution in an adaptive vari-
ational quantum minimally entangled typical thermal states (AVQMETTS) algorithm. The
AVQMETTS approach leverages the shallow circuits produced by AVQITE and is thus promis-
ing for application on NISQ hardware. As a first step, we here perform benchmark calculations
on statevector simulators and show that AVQMETTS calculations can yield accurate thermal
expectation values, for example, the thermal energy. We investigate thermal properties of the
transverse-field Ising model (TFIM) and the mixed-field Ising model (MFIM) with up to 20
sites in one-dimensional (1D) and two-dimensional (2D) lattices. For 1D models, we observe
linear system-size scaling of the circuit complexity as characterized by the number of CNOT
gates. This agrees with the scaling observed in METTS calculations using MPSs for gapped 1D
systems, if the MPS is written as a quantum circuit [48]. For 2D models, we observe that the
circuit complexity scales approximately linear for the MFIM and superlinear for the TFIM. This
implies a potential advantage of AVQMETTS calculations for 2D systems compared to METTS
calculations, where the bond dimension of MPSs generally scales exponentially with system
size [18]. Furthermore, we use AVQMETTS to determine several points on the finite tempera-
ture phase boundary between ferromagnetic and paramagnetic phases in the 2D TFIM. Finally,
we implement noisy AVQMETTS simulations based on a phenomenological noise model as a
preliminary investigation of noise effects.

The remainder of the article is organized as follows: in Sec. 2, we describe the AVQMETTS
algorithm, and in Sec. 3 we introduce the TFIM and MFIM together with the operator pool used
for AVQMETTS. We analyze the performance of the algorithm at a few representative thermal
steps in Sec. 4, before presenting results for the spin models in 1D in Sec. 5 and 2D in Sec. 6.
In Sec. 7, we present results of the Binder cumulant and determine the critical temperature in
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the TFIM. The noisy simulation results are discussed in Sec. 8. Conclusions and outlook are
given in Sec. 9.

2 AVQMETTS algorithm

We are interested in calculating the thermal expectation value of an observable Ô in an N -
qubit quantum system at inverse temperature β = 1/T . Assuming that the system is governed
by a Hamiltonian Ĥ the thermal expectation value can be obtained from

〈Ô〉β =
1
Z Tre−βĤÔ = 1

Z

2N
∑

i=1

PiOi(β) . (1)

Here, we have defined the expectation value Oi(β)≡ 〈φi(β)| Ô |φi(β)〉 in a METTS

|φi(β)〉= P−1/2
i e−βĤ/2 |i〉 , (2)

which is obtained by imaginary time evolution, starting from a classical product state (CPS) |i〉.
The summation over i in Eq. (1) runs over a complete CPS basis. The probability distribution
of METTSs is proportional to Pi = 〈i| e−βĤ |i〉 and is normalized by the canonical partition
function Z =
∑

i Pi . In the METTS algorithm, the thermal average (1) can be efficiently
evaluated using a METTS ensemble of size S as

〈Ô〉β ≈
1
S

S
∑

i=1

Oi(β) . (3)

As described in detail below, the METTS ensemble is generated by independent Markovian
random walks, which samples METTS with the desired distribution Pi/Z as a fixed point in
this process [22,23].

In the AVQMETTS approach, one uses AVQITE for state propagation along imaginary time
τ from a CPS |i〉 at the initial time τ = 0 to the corresponding METTS |φi(β)〉 at final time
τ= β/2. It was shown previously that AVQITE produces compact variational quantum states
that allow for imaginary time evolution with high fidelity [47]. This is achieved by representing
the time-dependent quantum state with an adaptive variational ansatz in a pseudo-Trotter form

|φi[θ (τ)]〉=
Nθ
∏

µ=1

e−iθµ(τ)Âµ |i〉 . (4)

Here, Âµ ∈ {I , X , Y, Z}⊗N is a Pauli string defined as a direct product of Pauli operators for
an N -qubit system. The time evolution of the quantum state is encoded in the variational
parameters θ (τ), which propagate according to the equations of motion determined by the
McLachlan variational principle [43,44,49]

dθ
dτ
=M−1V . (5)

Here we define the quantum Fisher information matrix

Mµν = 2ℜ
�

∂ 〈φ[θ ]|
∂ θµ

∂ |φ[θ ]〉
∂ θν

−
∂ 〈φ[θ ]|
∂ θµ

|φ[θ ]〉 〈φ[θ ]|
∂ |φ[θ ]〉
∂ θν

�

,

and the energy gradient Vµ = 2ℜ
�

− ∂ 〈φ[θ ]|∂ θµ
Ĥ |φ[θ ]〉
�

, which can be measured on a quantum

computer. A detailed discussions on quantum circuit implementations is given in Refs. [47,50].
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Figure 1: AVQMETTS approach and model setup. (a) Schematic flowchart of the
AVQMETTS algorithm, which includes application of quantum circuits Û|i〉 for initial
CPS |i〉 preparation in the X - or Z-basis, followed by application of AVQITE circuits
for imaginary time evolution to a desired inverse temperature β . The final Hadamard
gates realize a measurement basis rotation that is applied in every other thermal step,
and Z basis measurements are performed at the end of each thermal step. The result-
ing bitstring is then used as the initial CPS during the next thermal step. (b) Layout
of the 1D (9-site) or 2D (3×3) lattice of the MFIM. The 2D model is obtained by
considering the dashed couplings with the same coupling as the solid ones. Periodic
boundary conditions are used for both models, and applied in both directions for the
2D lattice.

We note that we here implement the algorithm fully classically to benchmark its performance
in the absence of noise. The equations of motion (5) are integrated using the Euler method
with a time step δτ that controls the simulation duration and accuracy. We note that the
resulting AVQITE circuit is problem-specific and tied to the initial state |i〉.

In the AVQITE approach, the set of Nθ generators {Âµ} in the variational ansatz in Eq. (4)
is constructed automatically and can be gradually expanded along the dynamical path by ap-
pending optimal Pauli strings from a predefined operator pool P of Pauli strings. The ansatz
expansion is performed such that the McLachlan distance [43, 47] remains below a desired
threshold Lcut. The McLachlan distance is a measure of the difference between the variational
state evolution and the exact one during a single time step.

The flowchart of AVQMETTS is illustrated in Fig. 1(a). An initial thermal step of the al-
gorithm starts with a random CPS |i〉 in the computational Z-basis prepared with a quan-
tum circuit. The AVQITE algorithm is then employed to represent the METTS |φi[θ (β)]〉 in
terms of a parametrized circuit, which allows for a measurement of the expectation value
Oi[θ (β)] ≡ 〈φi[θ (β)]| Ô |φi[θ (β)]〉. The next thermal step follows after collapsing the
METTS to a new CPS |i′〉 with probability |〈φi[θ (β)]| i′〉|2 through a quantum measurement.
The result of time-propagation followed by state collapse is a Markovian random walk between
METTSs corresponding to different initial CPSs. As the AVQITE circuit is associated with the
initial state, each distinct CPS requires a unique AVQITE calculation. However, reusing AVQITE
circuits is also feasible and can help minimize the quantum resource demand for AVQMETTS
calculations. This is due to the fact that a CPS obtained from state collapse after a thermal step
may be identical to one that was sampled in a previous step due to the inherent structure of the
distribution of METTS. In the numerical simulations reported below, we observe 10− 60% of
CPSs are sampled for more then once, depending on the system size and temperature. Follow-
ing earlier results, we apply alternating X - and Z-basis measurements in consecutive thermal
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steps to effectively reduce the autocorrelation time of the walk [23]. In practice, a METTS
ensemble of size S = SwS0 is obtained using Sw independent Markovian random walks, which
can be executed in parallel, each of which generates S0 METTSs. We discard the initial ther-
mal steps, typically the first ten, in each random walk to erase memory effects. The METTS
ensemble average gives an efficient estimation of the thermal expectation value

〈Ô〉β ≈ 〈Ô〉θ (β) ≡
1
S

∑

i

Oi[θ (β)] , (6)

which is the quantity we are interested in.

3 Spin models

To benchmark the accuracy and scalability of the AVQMETTS approach, we consider the non-
integrable mixed-field nearest-neighbor Ising model in 1D and on the 2D square lattice with
periodic boundary conditions (PBC) as illustrated in Fig. 1(b). The Hamiltonian reads

Ĥ = −J
∑

〈 jk〉

Ẑ j Ẑk −
∑

j

�

hx X̂ j + hz Ẑ j

�

, (7)

where 〈 jk〉 denotes summation over nearest neighbors. In the following, we consider the fer-
romagnetic model (J > 0) and measure the energy in units of J = 1. The 1D MFIM reduces
to the integrable TFIM when the longitudinal field vanishes hz = 0. The competition between
ferromagnetic and paramagnetic phases is controlled by the transverse field hx and the tem-
perature T . The 1D TFIM exhibits a quantum critical point at hx = 1 and T = 0. While
the 1D TFIM is paramagnetic at any finite temperature T > 0 and only undergoes thermal
crossovers [51,52], the 2D TFIM undergoes a continuous phase transition in the Ising univer-
sality class in the (hx , T ) parameter plane. At hx = 0, the model reduces to the classical Ising
model on the square lattice with a critical temperature Tc = 2J/ ln(1+

p
2) given by Onsager’s

exact solution [53]. The transition temperature Tc(hx) decreases continuously with increasing
hx > 0 and reaches Tc = 0 at the quantum critical point hx/J = 3.04438 [54]. In contrast,
the ferromagnetic MFIM only exhibits crossovers at zero and finite temperatures due to the
explicit breaking of the global Z2 symmetry Zi →−Zi by the longitudinal field [55].

In the following, we focus on two sets of model parameters, where we apply AVQMETTS
to evaluate the thermal energy. First, we consider the 1D and 2D TFIM at finite temperatures
T > 0 above the quantum critical point, with (hx , hz) = (1, 0) for 1D and (3.05, 0) for 2D.
Second, we investigate the 1D and 2D MFIM, where we keep the same transverse field hx as
the TFIM, and set hz = hx/2. We consider system sizes in the range 4≤ N ≤ 20.

When constructing the adaptive ansatz, we use the following complete operator pool [56,
57]:

P = {Yj}Nj=1 ∪ {Yj Zk, Z jYk}1≤ j<k≤N . (8)

This pool is composed of all one-qubit and two-qubit Pauli strings that contain a single Y Pauli
matrix. Since every generator contains an odd number of Y operators, a variational wave-
function that is initialized with real coefficients remains real along the imaginary-time path.
In this case, the second term in the quantum Fisher information matrix Mµν vanishes [47].

4 Analysis of representative thermal steps

The accuracy of the variational state preparation in AVQMETTS using AVQITE and the as-
sociated circuit complexity is analyzed in Fig. 2 for two representative thermal steps in sim-
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ulations of a N = 14 site MFIM. The model parameters are J = 1, hx = 1, hz = 0.5, and
the simulated temperatures are in the range 0.2 ≤ β ≤ 4. In the AVQITE calculations, we
use the time step δτ = 0.02 and the MacLachlan distance threshold Lcut = 0.001. Results
are shown for a thermal step with an initial Z-basis CPS (green) and an initial X -basis CPS
(blue), which are obtained by a measurement in the Z and X -basis to collapse a METTS at
β = 2. We refer to them as Z- and X -thermal steps hereafter. Clearly, one observes a charac-
teristic difference between these two thermal steps. In Fig. 2(a), we compare the energy of
the exact imaginary-time-evolved state Ei(τ) = 〈φi(τ)|Ĥ|φi(τ)〉 with the variational energy
Ei[θ (τ)] = 〈φi[θ (τ)]|Ĥ|φi[θ (τ)]〉. The absolute energy difference is generally smaller than
0.1. The Z-thermal step produces a smaller error than in the X -thermal step up to a final
propagation time of τ ≈ β = 2. For τ ≥ 2, we observe a convergence of the absolute energy
difference within about 10−4 to 10−6. The inset shows the scale of the energy, from which we
derive that the relatively error is smaller than 0.5%. Generally, the relatively larger error in
the X -thermal step correlates with the higher energy of the initial X -basis CPS at τ = 0, as
plotted in the inset.

Fig. 2(b) shows that the associated state infidelity is generally smaller than 10−3. At
τ = β = 2, the infidelity reaches 2× 10−5 at Z-thermal step and 6× 10−5 at X -thermal step.
For τ ≥ 2, the infidelity shows a convergence to within about 2× 10−5 to 10−6. The overall
improvement of the variational state energy error and infidelity with increasing β implies that
the effective reduction of Hilbert space dimension due to lowering temperature dominates
over the error accumulation in discretized state propagation due to the finite timestep δτ in
AVQITE.

In Fig. 2(c) we plot the τ-dependence of the number of variational parameters Nθ in the
pseudo-Trotter state. Each parameter is associated with a generator selected from the operator
pool P defined in Eq. (8). Generally, the number of parameters Nθ grows with τ as more
variational degrees of freedom are required to cover the entire dynamical path. The difference
of the state energy that we observe during Z- and X -thermal steps is also manifested in a
disparity in the number of variational parameters: for τ > 1, Nθ ≈ 100 for the X -thermal step,
which is about 2.5 times larger than for the Z-thermal step. Finally, to further characterize the
circuit complexity for NISQ applications, we plot in Fig. 2(d) the number of CNOT gates Ncx
required to prepare the variational pseudo-Trotter state as a function of τ. The behavior of Ncx
mirrors that of Nθ . At large τ > 1, Ncx ≈ 150 for the X -thermal step, which is about three times
larger than Ncx for the Z-thermal step. In this analysis, we assume that the quantum device
has all-to-all qubit connectivity, which allows us to simplify the calculation by considering a
two-qubit rotation gate as requiring Ncx = 2 CNOTs. Since Ncx/Nθ ≈ 1.5 when τ ≥ 2, we
observe that about half of the generators in the adaptive ansätze are two-qubit Pauli strings.

5 AVQMETTS results for 1D spin models

In this section, we apply AVQMETTS to the 1D TFIM and MFIM in order to perform a sys-
tematic study of the computational accuracy and scalability of the algorithm. The calculation
uses Sw independent Markovian random walks that each undergo a number of thermal steps
S0 after discarding the initial 10 steps. This generates a METTS ensemble of size S = SwS0
that we use to estimate thermal averages of observables. Since the statevector simulation time
of one thermal step increases with system size, in the following calculations we typically re-
duce S0 from 128 to 2 for systems with increasing size and correspondingly increase Sw for
efficiency. In the following, we focus on the thermal energy 〈Ĥ〉β . Fig. 3(a) shows estimated
thermal energy 〈Ĥ〉θ (β) of the N = 14 TFIM at β = 2 (blue) and β = 4 (green) as a function of
thermal step number. The error bars of 〈Ĥ〉θ (β) indicate the standard error, which is defined as
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Figure 2: Accuracy and circuit complexity of two representative thermal steps in
AVQMETTS calculations for a 14-site MFIM. (a) Energy difference between exact
and variational state evolution |Ei[θ (τ)]− Ei(τ)| as a function of imaginary time τ
for two representative METTSs obtained for initial Z-basis CPS (green) and initial X -
basis CPS (blue). The CPSs are generated by state collapse from a METTS at β = 2 as
indicated by a vertical dotted line. Inset shows variational energy converging to the
ground state energy for large τ. (b) Infidelity 1−F = 1−| 〈φ(τ)|φ[θ (τ)]〉 |2 between
exact and variational state for the two METTSs versus τ. (c) Number of variational
parameters Nθ versus τ. (d) Number of CNOT gates Ncx versus τ. Ncx is calculated
assuming all-to-all qubit connectivity as in trapped-ion quantum processors, where
each two-qubit rotation gate contributes two CNOTs. Model parameters used are
J = 1, hx = 1, hz = 0.5, and AVQITE parameters are δτ= 0.02 and Lcut = 10−3.

1
S

r

∑S
i=1

�

Hi[θ (β)]− 〈Ĥ〉θ (β)
�2

. The model is simulated above the quantum critical point at

hx = 1. The dashed line indicates the exact diagonalization (ED) result 〈Ĥ〉β . The relatively
large variance of 〈Ĥ〉θ (β) in the first three thermal steps is a manifestation of autocorrela-
tions in the Markov chain, after which 〈Ĥ〉θ (β) starts to converge. With a fixed ensemble size
S = 288 in the simulations, the fluctuations of 〈Ĥ〉θ (β) at β = 4 are much smaller than those
at β = 2, implying that for a comparable accuracy a smaller sample size is required at lower
temperatures due to the reduced number of states that are accessible at lower temperatures.

In contrast, as shown in Fig. 3(b), the AVQMETTS estimation of the thermal energy 〈Ĥ〉θ (β)
converges more rapidly for the 1D MFIM. The estimator also exhibits a smaller error of the
mean [note that the vertical scale in this plot is similar to that of Fig. 3(a)]. At β = 2, no
sizable fluctuations in the MFIM simulations are observed after the first thermal step. This
can be understood from the energy level diagrams in the inset of (b). A large gap ∼ 4J
between the ground and first excited states exists for MFIM, while many states are present in
this energy window for TFIM. At temperatures T = 1/β well below this scale (e.g. β = 2), the
accessible portion of Hilbert space is dominated by the ground state for the MFIM, making the
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Figure 3: AVQMETTS results for 1D TFIM and MFIM. (a) AVQMETTS thermal
energy 〈Ĥ〉θ (β) versus thermal step number for N = 14 TFIM. Different curves are
for β = 2 (blue) and β = 4 (green). Each point is averaged over S = 288 samples,
and the error bars denote the standard error. The estimator converges to the exact
value (dashed) for larger step number. (b) Same quantity as in panel (a) for the
N = 14 MFIM and β = 2. Inset shows energy level diagrams for the 14-site TFIM
and MFIM. Red dashed line indicates approximate thermal energy at β = 2. (c,d)
Thermal energies 〈Ĥ〉θ (β) as a function of inverse temperature β . The average and
standard error are obtained for a METTS sample of size S = 256 for β > 0.5 and
S = 512 otherwise. The first ten thermal steps are discarded. Insets show relative
error ε of AVQMETTS compared to ED, which is below 0.01 throughout. (e,f) Average
number of CNOT gates Ncx in the AVQITE circuits associated with X and Z-thermal
steps as a function of system size N that produce the states in the AVQMETTS sample
at β = 1, 2. Panel (e) is for the TFIM and panel (f) is for the MFIM. Error bars denote
standard deviation σcx. Ncx scales approximately linearly with N , and we observe
much larger values at X -thermal steps compared to at Z-steps in Fig. 2.
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AVQMETTS sampling task much simpler than for the TFIM.
In Fig. 3(c) we plot the AVQMETTS estimated thermal energy 〈Ĥ〉θ (β) for the TFIM as a

function of β between 0.5≤ β ≤ 4. We observe that the thermal energy decreases as a function
of β and converges to the ground state energy with increasing β . The inset shows the relative
error compared to the exact thermal energy ε≡ |1− 〈Ĥ〉θ (β)/〈Ĥ〉β |, which lies between 10−2

and 10−4 for the values of β we consider. A similar plot of 〈Ĥ〉θ (β) and its relative error ε is
shown in Fig. 3(d) for the MFIM. The convergence to the ground state occurs faster due to the
large gap of about 4J between the ground and the first excited states, and the error ε is also
smaller. With a fixed ensemble size S = Sw = 256 for β > 0.5 and S = Sw = 512 otherwise in
AVQMETTS calculations, the standard error of 〈Ĥ〉θ (β) generally grows with decreasing β (or
increasing T) as more states contribute to the thermal average.

To demonstrate the scalability of AVQMETTS calculations, we numerically study the re-
quired quantum resources for the algorithm as a function of system size N at fixed tempera-
tures. We use the number of CNOT gates Ncx in the ansatz circuits to quantify the required
resources, which is the relevant figure of merit for NISQ hardware. Fig. 3(e) shows that Ncx
grows approximately linearly with N for the TFIM, with a slope that is increasing with β . A
linear system-size scaling of Ncx is also observed for the MFIM, albeit with a smaller slope and
magnitude compared with the TFIM. The error bars represent the standard deviation, which

is defined as σcx =
Ç

1
S

∑S
i=1

�

N i
cx − 〈Ncx〉
�2

, where 〈Ncx〉 is the average value. We find that the
X -steps require a much larger number of CNOTs than the Z-steps. We note that in the β →∞
limit, the AVQMETTS calculation converges to AVQITE ground state calculation, where Ncx
scales linearly and quadratically with N for MFIM and TFIM at the critical point (hx/J = 1),
respectively [47]. Therefore, Ncx shows a better linear-N scaling in AVQMETTS calculations
of TFIM at criticality at nonzero temperature compared to at zero temperature. This improved
N -scaling of Ncx is also observed in the real-time dynamics when comparing simulations at
fixed final simulation time versus asymptotically long times [50]. Finally, in classical METTS
calculations of 1D models the bond dimension of MPSs is expected to be independent of sys-
tem size N for gapped systems and of order O(N) at criticality [18]. Therefore, the classical
computational complexity of METTS calculations for the 1D MFIM and TFIM is also expected
to approach O(N) and O(N2) as β →∞, respectively.

6 AVQMETTS results for 2D spin models

The classical METTS algorithm with DMRG as the imaginary time solver is efficient in cal-
culating low-to-intermediate temperature properties of 1D systems, even though the sam-
pling becomes costly for higher temperature [23]. Therefore, it is important to extend the
AVQMETTS benchmark to 2D models, where DMRG suffers from an exponentially growing
bond dimension even for area law states [18]. METTS+MPS simulations of 2D models have
been progressed using cylindrical geometries with finite circumference, but the calculations
are extremely demanding [58,59]. Even though tensor network-based simulations have made
much progress in addressing this fundamental challenge [19,60], their application to METTS
at finite temperature still remains difficult. The higher dimensionality d > 1 also introduces
fundamentally different physics beyond 1D systems such as the stabilization of ordered phase
at finite temperature and finite temperature phase transitions and criticality [52,53,61–63].

In this section, we apply AVQMETTS to thermal energy calculations for the 2D TFIM and
MFIM on the different square lattice geometries up to N = 4× 4 with PBC in both directions
[see Fig. 1(b)]. We consider the TFIM with hx = 3.05 for which the ground state is doubly
degenerate and exhibits a finite magnetization in the thermodynamic limit. At finite system
sizes, however, there exists a splitting between the two lowest energy states, which becomes
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Figure 4: AVQMETTS results for 2D TFIM and MFIM. (a) Thermal energy 〈Ĥ〉θ (β)
obtained from AVQMETTS versus thermal step in the 4×3-site TFIM with hx = 3.05
for two different inverse temperatures β = 1 and β = 1.6. The average is obtained
from a METTS sample of size S = 288. Error bars denote standard error of the sample
mean. (b) Same quantity as in panel (a) in the MFIM with hz = 1.525 for β = 1.
Inset shows low energy level diagram of the two models. (c, d) Thermal energies
〈Ĥ〉θ (β) versus β for 4 × 3-site TFIM (c) and MFIM (d). Standard error increases
as β decreases and more states contribute to the thermal average. Inset shows the
relative error between AVQMETTS and ED. (e, f) Average number of CNOT gates Ncx
in the AVQMETTS circuits at X and Z-thermal steps as a function of system size N
for β = 0.4,0.8. Error bars denote standard deviation σcx. Ncx at X -thermal steps
are larger than that at Z-steps, consistent with 1D results.

exponentially small in the system size. For the 4× 3-site TFIM, the gap between the ground
states and the first excited state is ∆E(TFIM) = Eex,1 − EGS ≈ 1.3. For the MFIM simulation we
choose hx = 3.05 and hz = 1.525, which results in a rather large energy gap ∆E(MFIM) ≈ 9.5
at N = 4× 3. It is important to note that both models are nonintegrable in 2D and the two
parameter sets are chosen to represent models with different gap sizes.

In Fig. 4(a, b), we present the convergence behavior of the thermal energy 〈Ĥ〉θ (β) with
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increasing thermal step number for the TFIM in panel (a) at β = 1.0 and β = 1.6 and the
MFIM in panel (b) at β = 1.0. The average energy 〈Ĥ〉θ (β) is obtained for a METTS sample of
size S = 288. The error bars denote the standard error of the mean, which is larger at smaller
β and also larger than for the 1D models. Similarly to the 1D model simulations, 〈Ĥ〉θ (β)
converges after the third thermal step for the TFIM, with residual fluctuations tied to the finite
ensemble size S = 288 that reduce in amplitude with increasing β . Likewise, 〈Ĥ〉θ (β) for the
MFIM converges faster with smaller errors due to the presence of a much larger gap between
the ground and first excited states, as illustrated in the inset of Fig. 1(b).

In Fig. 4(c, d), we present the AVQMETTS thermal energy estimation as a function of β for
the TFIM (in panel c) and for the MFIM (in panel d). Compared with the 1D model simulations
shown in Sec. 5, we observe a similar convergence to the ground state with increasing β as
well as an increasing statistical error with decreasing β (or increasing T). The relative error
ε between 〈Ĥ〉θ (β) and the ED results lies between 10−2 and 10−4 for the TFIM, and between
10−3 and 10−6 for the MFIM, as shown in the insets in Figs. 4(c) and (d). Since the energy gaps
between the ground and the first excited states are much larger in the 2D models compared
to the 1D models studied above, we here use a smaller β range for the 2D models.

In Fig. 4(e, f) we plot the distribution of the number Ncx of CNOTs in the AVQMETTS
circuits as a function of system size N of different 2D square lattice geometries for the TFIM
and MFIM at three temperatures β = 0.4, 0.8. We observe a general trend that Ncx grows with
increasing β , which agrees with the results for 1D models shown in Fig. 3(e,f). In contrast,
we observe an approximate linear to superlinear transition in the system size scaling of Ncx for
the 2D TFIM. The range of system sizes is too small to make any definite statement of whether
the scaling is polynomial or exponential. Interestingly, for the 2D MFIM, an approximate
linear scaling remains, but the slope becomes larger than in 1D. This may be related to the
large energy gap ∆E(MFIM) for our choice of parameters in the MFIM for which the thermal
average probes mostly ground state properties. We note that in the next Sec. 7, we focused
on simulating the TFIM close to the thermal phase transition, where several excited states
contribute to the partition function. Finally, the bimodal distribution of Ncx in the Z- and
X -thermal steps is also observed in the AVQMETTS calculations of 2D models.

7 AVQMETTS estimation of critical temperature in 2D TFIM

The analysis performed in the previous sections establishes AVQMETTS as a viable method
to study finite-temperature systems. Now we demonstrate one important application, which
is the simulation of thermal phase transitions and the calculation of the associated transition
temperature Tc .

We focus on the 2D TFIM, which exhibits a continuous phase transition at finite temper-
ature T and transverse field hx . At zero field hx/J = 0, this model becomes the classical 2D
Ising model on the square lattice, which can be exactly solved analytically [53,61]. In the ther-
modynamic limit, the system undergoes a phase transition from a low-temperature ferromag-
netically (FM) ordered phase to a high-temperature paramagnetic (PM) phase at temperature
Tc/J = 2/ ln(1 +

p
2). This transition is driven entirely by thermal fluctuations and defines

the universality class of the d = 2 classical Ising model. A finite transverse field hx breaks the
integrability of the 2D model. Stronger hx increases quantum fluctuations and thus reduces
Tc . Using the Suzuki-Trotter method [64], the 2D model at finite temperatures can be mapped
to an anisotropic classical model in three dimensions (with size dependent couplings) that can
be investigated by Monte-Carlo methods [65–67]. The universality class of the transition at
finite Tc and hx is still that of the d = 2 classical Ising model. Once Tc → 0 is suppressed to
zero at the quantum critical point hx/J = 3.04438, the transition is driven entirely by quan-
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Figure 5: Locating the thermal phase transition in 2D TFIM. (a, b) The fourth-
order Binder cumulant U4 as a function of the control parameter hx for system sizes
N = 3 × 3 and N = 4 × 3 at fixed inverse temperature values β = 0.7 (a) and 1.7
(b). Additional results for N = 4× 4 are also presented at β = 1.7 (b). The dashed
lines correspond to the ED results, whereas the points are computed by AVQMETTS.
The crossing of the two Binder cumulant curves determines the critical field hc

x at
the corresponding temperature T = 1/β . The thus-obtained representative points
(hc

x , Tc) on the critical line of the hx − T phase diagram of the 2D TFIM are plotted
in panel (c). From left to right, the three points at Tc = 1/1.7 = 0.59 are estimates
using data for (3×3, 4×3), (3×3, 4×4), and (4×3, 4×4) sites. The points obtained
from the latter two data sets are colored in green to distinguish them from the other
blue representative points obtained from the (3×3, 4×3) crossings. The dashed line
is obtained from an approximate treatment of the exact series expansions [69–71].
The Onsager solution (hx = 0, Tc = 2/ ln(1+

p
2) ≈ 2.27), and the quantum critical

point (hx = 3.04438, Tc = 0) are marked with a star and diamond, respectively. (d)
Convergence of U4 as a function of ensemble size S relative to the ED values (dashed
lines) for (β , hc

x) = (0.7,2.3) (blue) and (1.7,2.8) (green).

tum fluctuations and the universality class of the transition is changed to that of the classical
Ising model in d = 3 dimension [54,68–74].

We use AVQMETTS to determine two points on the finite temperature FM-PM phase bound-
ary in the hx − T plane. We calculate the fourth-order Binder cumulant [75,76]:

U4 = 1−
〈m4〉

3〈m2〉2
(9)

to accurately locate the phase transition, using the well-known fact that the Binder cumulant
for different system sizes cross at Tc . Here m = 1

2N

∑N
i=1 Zi is the average magnetization.

Because of its scale invariance at the critical point, the Binder cumulant U4 is one of the best
ways to reduce finite-size effects in numerical simulations of phase transitions.
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In Fig. 5(a, b) we show the Binder cumulant U4 obtained using AVQMETTS simulations
(symbols) as a function of transverse field hx for two different square lattice geometries of size
N = 3× 3 (blue) and N = 4× 3 (green). The results in panel (a) are obtained at inverse tem-
perature β = 0.7 and the one in panel (b) are obtained at β = 1.7. The average is over METTS
samples of size S(β = 0.7) = 6× 104 and S(β = 1.7) = 7× 103 and the error bars denote the
standard error of the mean. The AVQMETTS results show excellent agreement with ED cal-
culations (dashed lines). The phase transition point can be estimated as the crossing between
the two lines of different size, using the fact that U4(4× 3) > U4(3× 3) in the ordered phase.
It is obvious that a large number of samples is needed to reduce the standard error below the
difference of the averages for the two system sizes. Using this procedure, we determine two hc

x
values on the thermal phase transition at Tc = 1/0.7 and 1/1.7, which are shown in Fig. 5(c).
We see a close agreement between the AVQMETTS (blue circles) and ED (red cross) results
for the hc

x values. To estimate the impact of finite-size effects on the determination of hc
x using

the Binder cumulant approach, we add a data set for for N = 4×4, as shown in Fig. 5(b). We
choose β = 1.7 for the analysis because the required sample size for thermal averaging is much
smaller than that at β = 0.7. The two additional estimates of hc

x determined by the crossings
between the Binder cumulant curves of N = 4×4, N = 3×3 and N = 3×3 are shown as green
circles (AVQMETTS) and yellow crosses (ED) in Fig. 5(c). Specifically, we obtain hc

x ≈ 2.97
from the N = 3 × 3 and N = 4 × 4 data, and 3.07 from the N = 4 × 3 and N = 4 × 4 data,
which are slightly larger than hc

x ≈ 2.87 based on N = 3× 3 and N = 4× 3 calculations. For
reference, we also include a dashed curve for the complete critical line, that is taken from an
approximate calculation using an exact series expansions [69–71]. The star symbol indicates
the exact transition temperature at zero field, obtained from the Onsager solution.

The statistical error of an AVQMETTS ensemble average depends strongly on tempera-
ture, which we observed already in Secs. 5 and 6. In Fig. 5(d), we plot the METTS ensemble-
averaged Binder cumulant U4 as a function of ensemble size S at the two transition temper-
atures β = 0.7 and β = 1.7. We find a consistent temperature-dependence with the lower
temperature simulation at β = 1.7 converging already for S ≳ 100, while the higher temper-
ature simulation at β = 0.7 requiring S ≳ 104 samples for convergence. The need for large
ensemble sizes at higher temperatures limits the application of METTS to lower temperatures,
which has also been noted in Ref. [25].

8 Noisy AVQMETTS simulations

In practical quantum computing, NISQ hardware is subject to various error sources besides the
inherent sampling noise. These include coherent errors caused by imperfect gate operations,
as well as stochastic errors due to qubit decoherence, dephasing, and relaxation. Here we
investigate how these hardware imperfections affect AVQMETTS calculations using a noise
model proposed by Kandala et al. in Ref. [77]. This model consists of an amplitude damping
channel (Λa[ρ] =

∑2
i=1 Ea

i ρEa†
i ) and a dephasing channel (Λd[ρ] =

∑2
i=1 Ed

i ρEd†
i ), which

act on the qubit density matrix after each single-qubit or two-qubit gate operation. The Kraus
operators are defined as follows:

Ea
1 =

�

1 0
0
p

1− pa

�

, Ea
2 =

�

0
p

pa

0 0

�

,

Ed
1 =

�

1 0
0
p

1− pd

�

, Ed
2 =

�

0 0
0
p

pd

�

.

(10)

The error rates pa = 1 − e−tg/T1 and pd = 1 − e−2tg/Tφ depend on the gate time tg , qubit
relaxation time T1, and dephasing time Tφ = 2T1T2/(2T1−T2), where T2 is the qubit coherence
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Figure 6: Impact of noise on AVQMETTS simulations. (a) Energy of an adaptive
variational ansatz state, Ei[θ (τ)], along an imaginary time evolution path for the
N = 2 × 3 TFIM with hx = 3.05. The simulation starts with a CPS in the Z-basis,
|i〉 = |↓〉⊗N . We use Ns = 214 shots for each measurement circuit. To account for
hardware noise effects, we adopt a noise model with a uniform single qubit error
rate p1 = 10−4 and two-qubit gate error rate p2 = 10−2, 10−3, and 10−4. The noise-
less statevector simulation result is also shown for reference. The variational ansatz
totals Nθ = 40 parameters at the final imaginary time. (b) Thermal energy 〈Ĥ〉θ (β)
obtained from AVQMETTS calculations with the same noise model as (a). The stan-
dard error of 〈Ĥ〉θ (β) is indicated by the vertical error bar, which becomes smaller
than the line width at larger β . The METTS sample size is fixed to S = 150. The exact
thermal energy is shown as circles for comparison. Note that, to estimate the thermal
energy at inverse temperature β , the system is evolved from a CPS up to τ= β/2 at
each thermal step. A 7-qubit simulator with all-to-all connectivity, as in trapped-ion
devices, is adopted for the calculations. Besides the 6 qubits used for modelling the
physical lattice, an additional ancilla qubit is needed for the generalized Hadamard
test to measure some elements of the quantum Fisher information matrix M [47,50].

time. Since tg depends on the gate being performed, this noise model assumes a different error
rate for each gate. For simplicity in our analysis, we assume a uniform single-qubit gate error
rate pa

1 = pd
1 ≡ p1 = 10−4, which closely matches the value observed in current hardware. To

examine the impact of two-qubit gate noise, we also consider a uniform two-qubit error rate
pa

2 = pd
2 = p2, where 10−4 < p2 < 10−2 [78, 79]. Additionally, we set Ns = 214 shots for each

measurement circuit. We use a common set of CPSs and weights obtained from exact METTS
calculations at each temperature. The crucial step of preparing METTSs from CPSs, however,
is performed via noisy AVQITE simulations. Therefore, the results described below include the
dominant noise effects and demonstrate the impact of noise on AVQMETTS calculations.

Figure 6(a) shows the variational energy, Ei[θ (τ)], as a function of imaginary time τ ob-
tained from an AVQITE calculation, starting with an initial CPS |i〉 = |↓〉⊗N in the Z-basis for
an N = 2× 3 TFIM. If we set τ to end at β/2, this showcases a noisy simulation of one ther-
mal step in AVQMETTS sampling at an inverse temperature β . The noisy simulation result
at p2 = 10−4 closely follows that of the noiseless statevector simulator, with an energy devi-
ation between the noisy and statevector simulation results ∆E ≈ 0.27 (1.5%) at τ = 0.4 and
∆E ≈ 0.30 (1.6%) at τ = 0.8. At a larger p2 = 10−3, the deviation increases modestly, with
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∆E ≈ 0.57(3.1%) at τ= 0.4 and ∆E ≈ 0.47(2.5%) at τ= 0.8. At p2 = 10−2, a typical value of
the two-qubit gate error rate of current hardware, a more significant growth of the deviation
is observed, with ∆E ≈ 1.6 (8.7%) at τ= 0.4 and ∆E ≈ 1.7 (8.8%) at τ= 0.8.

In Fig. 6(b) we plot the thermal energy 〈Ĥ〉θ (β) as a function of β from the noisy
AVQMETTS calculations. Consistent with the results for a single thermal step in Fig. 6(a),
〈Ĥ〉θ (β) agrees very well with the exact thermal energy 〈Ĥ〉β at p2 = 10−4. The thermal energy
deviation, ∆〈H〉 ≡ 〈Ĥ〉θ (β)−〈Ĥ〉β , is 0.28 (1.5%) at β = 0.8 and 0.16 (0.8%) at β = 1.6, com-
pared with ∆〈H〉 ≈ 0.04 (0.2%) at β = 0.8 and ∆〈H〉 ≈ 0.01 (0.07%) at β = 1.6 for statevector
simulations. When the noise level increases to p2 = 10−3, the deviation grows modestly, with
∆〈H〉 ≈ 0.72 (3.8%) at β = 0.8 and ∆〈H〉 ≈ 0.58 (3.0%) at β = 1.6. When the noise level
further increases to p2 = 10−2, a substantial growth in deviation is noticeable. At β = 0.8,
∆〈H〉 reaches about 2.8 (14%), while at β = 1.6, it reaches about 2.3 (12%).

9 Conclusion

In summary, we have developed an adaptive variational QMETTS approach (AVQMETTS) for
finite-temperature quantum simulations that utilizes AVQITE for imaginary-time state propa-
gation. This approach leverages the shallow and problem-specific quantum circuits that are
generated by AVQITE that are suitable for simulations on NISQ hardware.We benchmark the
performance of AVQMETTS for 1D and 2D TFIM and MFIM at different points in the phase
diagram, including close to the quantum and thermal phase transitions.

For the 1D models, we report a high simulation fidelity with linear system-size scaling of
the AVQMETTS circuit complexity, which we characterize by the number of CNOT gates re-
quired for preparing the METTSs. In the 2D TFIM we find a superlinear scaling of Ncx with N .
Due to the limited range of system sizes that we can simulate classically, it remains an open
question whether the scaling is exponential or polynomial. The latter case would provide a
potential path towards quantum advantage, since DMRG exhibits an exponential scaling of the
computational complexity due to an exponentially increasing bond dimension in 2D. For the
2D MFIM at a point in the phase diagram with a large energy gap between ground and first
excited states, we find a linear scaling of Ncx with N . As expected, we observe that the number
of required CNOT gates increases with dimension and decreasing temperature. Among the
benchmark systems, the 4× 4 TFIM at finite T and at hx = 3.05 requires the largest number
of CNOT gates Ncx ≈ 1200 for AVQMETTS simulations of all the systems we have studied.
Nevertheless, the computational load could be partially alleviated by the relatively small sam-
ple size S needed in METTS at low temperatures, where a limited number of excited states
contribute to the thermal expectation values. In contrast, at higher temperatures, AVQMETTS
circuits become shallower, but one needs to use a significantly larger sample size S for accurate
thermal averaging. This is a known challenge of the METTS algorithm at larger temperatures.

We also apply the AVQMETTS algorithm to evaluate the transition temperature between
the FM and PM phase at two points in the hx -T parameter plane of the 2D TFIM. We determine
Tc by accurately computing the fourth-order Binder cumulant U4, which requires a METTS
sample of size S ≈ 104 at β = 0.7. This computational demand can be partially addressed by
parallelizing the sampling in terms of independent Markov random walks used in the stochastic
sampling algorithm. Our results are in excellent agreement with ED results inferred from the
same finite systems.

Finally, we perform noisy AVQMETTS simulations for an N = 2×3 TFIM to investigate the
impact of noise on the results. At the noise level of p2 = 10−2 representative for the current
hardware, the relative thermal energy error is about 12%. The relative error is reduced to
about 3% when p2 improves to 10−3.
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The next steps are to perform AVQMETTS calculations on quantum hardware, which will
require leveraging ongoing efforts in circuit optimizations for the AVQITE algorithm as well as
making use of error mitigation techniques [80–85]. The distribution of quantum measurement
shots among the various circuits used to obtain the AVQITE equations of motion (5) can also be
optimized to reduce the total shot budgets [86]. Recently, practical error mitigation techniques
such as zero-noise extrapolation have been demonstrated on quantum hardware to scale to
circuits containing up to 26 qubits and 1080 CNOTs [87,88]. Provided further improvements
of the quantum hardware, we envision that AVQMETTS will enable calculations of thermody-
namic properties for a wide range of quantum many-body systems. We consider this approach
to be particularly pertinent in two dimensions, where the rapid growth in bond dimension
with increasing system size or decreasing temperature poses a fundamental challenge to clas-
sical simulations. In addition to static observables at finite temperature, the formalism can
also be naturally extended to the simulation of finite-temperature dynamical correlation func-
tions [38]. It can therefore also be used as an impurity solver for finite-temperature quantum
embedding simulations of real materials [15,79,89–91].
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