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Abstract

We count the physical Bethe states of quantum integrable models with twisted bound-
ary conditions using the Witten index of 2d supersymmetric gauge theories. For multi-
component models solvable by the nested Bethe ansatz, the result is a novel restricted
occupancy problem. For the SU(3) spin chain and the t-J model, we propose formulae
for the solution count on singular loci in the space of twist parameters.
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1 Introduction

The Heisenberg spin chain is the prototype of all quantum integrable models. The exact solu-
tion is given in terms of the Bethe ansatz equations (BAEs) [1]

�

λk + i/2
λk − i/2

�L

=
M
∏

j=1
j ̸=k

λk −λ j + i

λk −λ j − i
. (1)

The equations impose quantization conditions on the magnon rapidities {λk} that define eigen-
states with M down spins and L − M up spins. Counting Bethe states is a notoriously tricky
problem. Bethe roots only correspond to su(2) highest-weight states [2], while descendants
are obtained by sending some roots to infinity [3]. Among the solutions, unphysical ones need
to be excluded to obtain the correct eigenstates [4–6].1

A physical way to regularize the Bethe roots is to introduce a twisted periodic boundary
condition [7]. It is equivalent to turning on a magnetic flux through the closed chain [8],
which breaks the su(2) degeneracies of the states. Empirically, one finds that all the Bethe
roots become physical and account for all the eigenstates in the M -magnon sector [9–11]. The
bijection between the physical Bethe roots and the eigenstates can be proved by reformulating
the BAEs in terms of a set of functional relations [12]. See e.g. [13–15] and references therein.
Multi-component models are diagonalized by the nested Bethe ansatz [16,17]. It is expected
that turning on multiple twist parameters will make all solutions physical, although a general
proof is not known. Models with multiple twist parameters have rich structures, while these
models are less explored. The competition of twist parameters results in singular loci where
the number of solutions changes. In practice, counting states is still a challenge. Powerful
algorithms for solving the BAEs have recently been developed [13, 18, 19]. However, one
quickly encounters the curse of dimensionality as the magnon number is increased.

A complementary approach to the solution-counting problem is via gauge theory. The
Bethe/Gauge correspondence relates eigenstates of quantum integrable systems with the
ground states of 2d supersymmetric theories [20, 21]. The Witten index is a fundamental
observable in a supersymmetric theory that counts the vacua [22]. A basic question, still
unanswered, is whether physical Bethe states can be correctly counted by the Witten index.
The goal of this paper is to provide a definite answer to this problem.

Symmetries of integrable models also provide a complementary way to address questions
about supersymmetric vacua. The number of Bethe states changes at special loci in the space of
twist parameters. The corresponding picture is that there are singularities in the gauge-theory
moduli space where the minimum energy vanishes and some Coulomb vacua may escape to
infinity [23]. Little is known about the behavior of gauge theories at singularities. Strictly
speaking, the Witten index is well defined away from such singular loci. Nevertheless, the
highest-weight property of the Bethe states allows us to predict the number of Coulomb vacua
even at singularities in the moduli space, which is difficult to study using field-theory methods.
As we will see in concrete examples for the rank-1 and 2 examples, some discrete Coulomb
vacua still survive, and this suggests there exist some well-defined effective theories residing
on these singular loci.

The Witten index can be evaluated by taking a limit of the elliptic genus [24], which has
been computed by supersymmetric localization [25–27]. The elliptic genus receives contribu-
tions from a set of poles specified by the Jeffrey-Kirwan prescription [28]. As we will show,
they are in one-to-one correspondence with the eigenstates. The index of a U(M) gauge the-
ory counts all the eigenstates in the M -particle sector of a quantum integrable model. We

1Not all the Bethe states correspond to the eigenstates of the Hamiltonian, see, for example, [5,6]. In this paper,
we will only count the physical Bethe states.
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show that the solution counting of the multi-component models leads to a new combinatorial
problem that is a 3d generalization of restricted occupancy.

The index method can be applied to a large class of quantum integrable models. We study
the Kondo model and the 1d t-J model with twisted boundary conditions. For the SU(3) spin
chain and the t-J model, we identify the singular loci where the number of vacua changes.
We propose formulae relating the solution counts for the twisted and untwisted models and
test them with an analytic solver developed in [18]. In the untwisted limit, the solution count
exactly reproduces the results in the literature.

2 The Bethe/gauge correspondence and the Witten index

The Heisenberg spin chain admits an integrable generalization to higher spins, inhomo-
geneities and a twisted boundary condition [29]. The BAEs take the form

L
∏

α=1

λk − να + isα
λk − να − isα

= e−t
M
∏

j=1
j ̸=k

λk −λ j + i

λk −λ j − i
. (2)

According to the Bethe/Gauge dictionary [21], they coincide with the Coulomb vacua equa-
tions of a 2d N = (2, 2) supersymmetric gauge theory with gauge group U(M), L pairs of
fundamental and anti-fundamental chiral multiplets (Q, eQ), and an adjoint chiral multiplet Φ.
The twisted masses for the matter fields correspond to the spins and inhomogeneities. The
combination of the Fayet-Iliopoulos parameter and the θ angle t = 2πξ+ iθ corresponds to
the diagonal twist parameter. There is a superpotential of the form

W =
L
∑

α=1

wαeQ
αΦ2sαQα , (3)

where wα are complex coefficients.
The supersymmetric vacua can be counted by the Witten index [22]:

Tr (−1)F e−βH . (4)

It can be obtained by taking a certain limit of the elliptic genus [24], which is a torus
partition function that can be computed via supersymmetric localization [25–27]. Detailed
computations are presented in the appendix. The elliptic genus of this model is

ZT2 =
∑

n⃗

L
∏

α,β=1

nα−1
∏

mα=0

θ1(τ|ξαβ + (nβ −mα)λ− z)

θ1(τ|ξαβ + (nβ −mα)λ)

θ1(τ| − ξαβ + (mα − sα − sβ)λ)

θ1(τ| − ξαβ + (mα − sα − sβ)λ+ z)
. (5)

The summation is over all configurations of non-negative integers n⃗ = {n1, . . . , nL} such that
|n⃗| :=
∑

α nα = M . Note that the product vanishes when mα = 2sα. Therefore, the summation
truncates to configurations where nα ≤ 2sα. The Witten index is obtained in the z → 0 limit,
where the summand tends to 1. The number of vacua is the possible configurations of M boxes
into L columns, each with capacity 2sα.

This is a classic combinatorial problem known as restricted occupancy [30,31], as shown
in Fig. 1. Since each column may be filled with nα = 0, . . . , 2sα boxes, it may be identified with
a state with spin sα. Each configuration is in one-to-one correspondence with an M -magnon
state in a spin chain. When all sα are equal to s, the number of choices is given by

cs(L; M) =
L
∑

j=0

(−1) j
�

L
j

��

L +M − 1− (2s+ 1) j
L − 1

�

. (6)
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Figure 1: The pole configurations of the elliptic genus give rise to a restricted occu-
pancy problem. Each column with at most sα blue boxes corresponds to a spin-sα
state at each site of the spin chain. The total number of blue boxes is M .

It is independent of the spin for 2s ≥ M , for there may be at most M boxes in a column. We
have used numerical methods to test this fact, which is not obvious from the BAEs. Summing
cs(L; M) over M = 0, . . . , 2sL, we count all possible ways of placing 0, . . . , 2s boxes in each
column, yielding a total of (2s+ 1)L states.

We remark that a truncation of the partition function is common in theories with polyno-
mial superpotentials in the adjoint fields [32,33]. The same combinatorial problem also arises
in [34], where the number of physical Bethe states for the untwisted case is shown to be equal
to the difference cs(L; M)− cs(L; M − 1), although the twisted case was not considered.

The spin chain has a Z2 symmetry that reverses each spin as sz
α↔−sz

α. The total magne-
tization Sz =
∑

α sα −M and the magnetic flux t are also reversed. This implies a duality to a
U(2
∑

α sα −M) gauge theory with the same matter content and superpotential. Such duality
has been tested by the sphere partition function, where the parameters are found to transform
as expected [32,35]. It may also be tested by an index computation analogous to [33].

3 Nested Bethe ansatz and 3d restricted occupancy

Multi-component models are diagonalized by the nested Bethe ansatz [16,17]. The excitations
for one component become the pseudo-vacuum for another. For the twisted SU(r + 1) spin
chain, the Bethe roots λ(a)k , k = 1, . . . , Ma satisfy the equations [36]

L
∏

α=1

λ
(1)
k − να + isα

λ
(1)
k − να − isα

= e−t1

M1
∏

j=1
j ̸=k

λ
(1)
k −λ

(1)
j + i

λ
(1)
k −λ

(1)
j − i

M2
∏

j=1

λ
(1)
k −λ

(2)
j −

i
2

λ
(1)
k −λ

(2)
j +

i
2

,

1= e−ta

Ma−1
∏

j=1

λ
(a)
k −λ

(a−1)
j − i

2

λ
(a)
k −λ

(a−1)
j + i

2

Ma
∏

j=1
j ̸=k

λ
(a)
k −λ

(a)
j + i

λ
(a)
k −λ

(a)
j − i

Ma+1
∏

j=1

λ
(a)
k −λ

(a+1)
j − i

2

λ
(a)
k −λ

(a+1)
j + i

2

,

(7)

for a = 2, · · · , r. The equations determine eigenstates with Ma − Ma+1 objects for each com-
ponent. Their gauge dual is an Ar -type linear quiver gauge theory, as shown in Fig. 2.

To keep the notation compact, we consider the case when all sα are equal. We turn on a
superpotential of the form

W = Tr

�

eQΦ2s
1 Q+

r−1
∑

a=1

�

eBaΦa+1Ba + BaΦaeBa

�

�

, (8)
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Figure 2: The linear quiver gauge theory corresponding to the SU(r + 1) spin chain.

Figure 3: A 3d restricted occupancy problem. On each level we have a 2d restricted
occupancy with n(a)α boxes in each row and a total of Ma boxes. Each row on a higher
level has no more boxes than the lower level.

with all coefficients set to unity.
The computation of the Witten index yields a novel 3d restricted occupancy problem, as

shown in Fig. 3. We now count all configurations n⃗(a) such that n(a)α ≤ n(a−1)
α . Intuitively,

we count ways of constructing a building on an L × 2s ground with Ma rooms on each level,
from left to right, such that no room on a higher level protrudes over the lower level. We may
also view it as a restricted colored partition [n(1)α , . . . , n(r)α ] for α = 1, . . . , L. Each partition is
restricted to lie inside an r × 2s rectangle, with the additional constraint

∑L
α=1 n(a)α = Ma on

each level.
We see the correspondence to an SU(r+1) spin-s state as follows. Each site corresponds to

a 2s-th symmetric power of the fundamental representation of su(r + 1), whose weights may
be mapped to semi-standard Young tableaux □□ · · ·□ of length 2s with a set of non-increasing
integers 0 ≤ hi ≤ r in the i-th box. hi may be identified with the height of the i-th column of
the partition n(a)α for each α= 1, . . . , L. See Fig. 4.

Each partition is defined by a boundary path consisting of 2s horizontal and r vertical steps.
The total number of configurations is precisely the total number of states in an SU(r+1) spin-s
chain [34]:

∑

0≤Mr≤···≤M1≤2sL

cs(L; M1, . . . , Mr) =
�

2s+ r
r

�L

. (9)

We remark that the eigenstates of the untwisted SU(r + 1) spin chain was counted in
[37], which leads to another combinatorial problem. It would be an interesting mathematical
question to study their relations.

Duality exchanges the pseudo-vaccum with the excitations. It acts locally on a gauge node,
corresponding to a Weyl reflection of the associated root [38]. The rank of the gauge group
transforms as

M ′a = Ma−1 +Ma+1 −Ma , (10)

where M0 := 2sL and Mr+1 := 0. In the restricted occupancy picture, the dual configuration
is

n⃗′(a) = n⃗(a−1) + n⃗(a+1) − n⃗(a) . (11)
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Figure 4: At each site, the su(r+1)weight labelled by a semi-standard Young tableau
corresponds to a partition in the 3d restricted occupancy problem.

4 The untwisted limit

Let us now consider the rank-one case. In the t → 0 limit, the SU(2) symmetry is restored.
The physical Bethe states degenerate and organize into su(2) highest-weight states of fixed
spin with multiplicity determined by the tensor product. The descendants are those states not
annihilated by S+. Thus they are in one-to-one correspondence with states with spin s+ 1, or
M −1 magnons. One magnon decouples from the system and flies off to infinity [3]. Another
way to see this is that the momentum of one magnon is frozen to zero and decouples from the
dynamics. Thus the number of highest-weight states labeled by each set of solutions to the
untwisted BAEs is

cs(L; M)− cs(L; M − 1) . (12)

In the higher-rank case when one ta → 0, an SU(2) subgroup of the SU(r + 1) symmetry
is restored. We postulate the following: descendants corresponding to infinite rapidities are
removed. There should be

cs(L; M1, · · · , Mr)− cs(L; M1, · · · , Ma − 1, · · · , Mr) , (13)

solutions to the partially twisted BAEs.
There are other singular loci where the number of solutions change. For the SU(3) chain,

we propose a formula for the solution count when t1 + t2 = 0:

cs(L; M1, M2)− cs(L; M1 − 1, M2 − 1) . (14)

For the fully untwisted case, we propose a formula for the number of highest-weight states:

cs(L; M1, M2)− cs(L; M1 − 1, M2)− cs(L; M1, M2 − 1)

+ cs(L; M1 − 2, M2 − 1) + cs(L; M1 − 1, M2 − 2)− cs(L; M1 − 2, M2 − 2) .
(15)

Our predictions can be tested by explicitly solving the BAEs. We have generalized the
analytic solver developed in [18] with twist parameters, which is capable of computing up to
a total of ∼ 500 solutions. Some results are shown in Table 1. For the untwisted case, the
prediction agrees with the Littlewood-Richardson coefficient [39] in every case. Proposals for
higher rank will be discussed in [40].

Table 1: The solution count for the BAEs for the SU(3) s = 1/2 spin chain.

(L; M1, M2) generic t t1 = 0 t2 = 0 t1 + t2 = 0 t1, t2 = 0
(7;4,1) 140 105 35 105 21
(8;4,2) 420 140 252 252 56

(10;4,1) 840 630 480 720 315
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Figure 5: An A2 quiver for the t-J model.

5 Applications to other models

The Kondo model Consider the Kondo model with an impurity of arbitrary spin s [41]. It is
solved by the BAEs (2) with sα = 1/2 for α = 1, . . . , L and sL+1 = s. For non-zero t, we count
(M − i)-magnon states when the impurity has spin s− i for i = 0, . . . , 2s:

cK
s (L; M) =

2s
∑

i=0

�

L
M − i

�

. (16)

The total number of states is 2L(2s+ 1), as expected. In the t → 0 limit, the SU(2) symmetry
is restored and we recover the solution count of the untwisted model [41]

cK
s (L; M)− cK

s (L; M − 1) =
�

L
M

�

−
�

L
M − 2s− 1

�

. (17)

The t-J model The 1d t-J model describes the spin-hopping interaction of M1 electrons in a
lattice of L sites with M2 spin-down excitations [42]. The Hamiltonian can be diagonalized by
the BAEs corresponding to the superalgebra sl(1|2) [43]. There are three equivalent BAEs [44],
associated with choices of Borel subalgebras. This leads to dualities between A2 quiver gauge
theories [45]; one of which is shown in Fig. 5.

Turning on a eQΦ2sQ-type superpotential for the adjoint field leads naturally to a spin-s
generalization of the t-J model where each electron carries spin s. Note that there is an adjoint
field only for the M2 node. The elliptic genus receives contributions from the poles at

�

u(1)i

�

∗
= ξα −χ(1) ,
�

u(2)i

�

∗
= ξβ −χ(1) −χ(2) −mβλ .

(18)

Here α ∈ I1 and β ∈ I2, where I1 is a choice of M1 integers from {1, . . . , L} and I2 is a choice
of M2 integers from I1. Counting the poles, we obtain the solution count for the twisted spin-s
t-J model:

ctJ
s (L; M1, M2) =

�

L
M1

�

cs(M1; M2) . (19)

Since each site may be either vacant or a spin-s state, we find a total of (2s + 2)L states by
summing over all 0≤ M2 ≤ M1 ≤ L.

In the untwisted limit, we conjecture the solution count to be

∞
∑

i=0

(−1)i
�

ctJ
s (L; M1, M2 − i)− ctJ

s (L; M1 − i − 1, M2 − i)
�

. (20)

For s = 1/2, we recover the solution count [46]

L!(L − 2M1 +M2 + 1)
M1M2!(L −M1)!(M1 −M2 − 1)!(L −M1 +M2 + 1)

. (21)

A derivation of (20), based on characters of Lie superalgebras, will be presented in [40].
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6 Discussion

It would be interesting to extend the index techniques to important examples such as the
XXZ spin chain, the Hubbard model, and other superspin chains [47–49]. We expect that
the physical states of an XXZ spin chain can be similarly counted by the 3d Witten index.
One important caveat is that when the anisotropy parameter is a root of unity, there may be
continuous solutions to the BAEs [50,51] that correspond to non-compact Coulomb branches
in the gauge theory. Examples of such non-compact Coulomb branches in a related context
were studied recently in [52]. In this paper, we presented the index of an A2 quiver for the
t-J model. A different spin-s realization was studied in [53], which would predict new gauge-
theory dualities. For s = 1/2, such dualities were realized in string theory [45] and then
extended to gl(m|n) spin chains [49]. It would be interesting to consider higher s.

It would also be interesting to consider open chains [54] and general boundary conditions.
The form of the off-diagonal BAEs [55] suggests that the existing Bethe/Gauge dictionary
needs to be expanded. In this paper, we have obtained the solution count from the leading
z→ 0 part of the elliptic genus. It would be interesting to extract other useful information from
the elliptic genus. For example, the χy genus receives contributions from the Higgs branch.

The limitation of the index is that it does not know about the detailed nature of the vacua. A
common assumption on Coulomb vacua is that repeated solutions λ j = λk should be excluded
because they correspond to strongly-coupled regions. Solutions at λk = να ± isα should also
be excluded because quantum Higgs branches may emanate from there [56, 57]. The rôle of
Higgsing was elucidated in [38,58]. Despite evidence for the absence of vacua at such points, a
proof is not known. Analysis of the BAEs show, however, that some such solutions are physical
in the untwisted model [4,6]. This hints at new vacua at the singular loci and calls for a more
refined solution counting, using the Witten index and other methods.
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A Computation of the elliptic genus

We follow the convention in [26,27] for the elliptic genus. For a 2d N = (2, 2) supersymmetric
theory, the elliptic genus is a refined Witten index defined as

ZT2 = Tr (−1)F qHL qHR y J
∏

i

xKi
i . (A.1)

Here F is the fermion number, q = exp2πiτ is defined by the modular parameter of the torus,
HL and HR are the left- and right-moving Hamiltonians, respectively. J is the charge of the left-
moving U(1) R symmetry and Ki are the charges of the flavor symmetry. The global symmetry
fugacities y and x i are related to the holonomies of the background gauge fields as

y = e2πiz , x i = e2πiui . (A.2)
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The supersymmetric localization formula gives [27]

ZT2 =
1
|W |

∑

u∗∈M∗sing

JK-Res(Q(u∗),η) Z1-loop . (A.3)

Here |W | is the order of the Weyl group and M∗sing is the set of poles that contribute to the
Jeffrey-Kirwan (JK) residue, defined as follows: Q(u∗) is the subset of charges that lie in the
chamber defined by the stability parameter η. The result is independent of the choice of η.
The one-loop determinant depends on the field content of the gauge theory. The contribution
of a vector multiplet is

ZV =

�

2πη(q)3

θ1(τ| − z)

�rk G
∏

α∈∆

θ1(τ|α · u)
θ1(τ|α · u− z)

rk G
∏

i=1

dui . (A.4)

The contribution of a chiral multiplet is

ZC =
∏

ρ∈R

θ1(τ|ρ · u+ (J − 1)z)
θ1(τ|ρ · u+ Jz)

. (A.5)

The product is over all the weights ρ of the representation R of the gauge and flavor groups.

A.1 Rank one

The flavor symmetry is U(L)Q × U(L)
eQ × U(1)Φ. Due to the superpotential (3), each U(L) is

broken to U(1)L , which rotates the individual components. We further rewrite U(1)Q ×U(1)
eQ

into the vector and axial parts U(1)vec ×U(1)axi. Note that the R charge of a chiral multiplet
enters in its one-loop determinant (A.5), which is cumbersome in calculations. It is conve-
nient to redefine the flavor symmetry by mixing with the left-moving R symmetry U(1)J as
U(1)′vec := U(1)vec+U(1)J , etc. One may introduce the holonomies χα, ξα, and λ for U(1)′vec,
U(1)′axi, and U(1)′Φ, respectively. Since the superpotential is invariant under the original flavor
symmetry and charged 1 under the left-moving R symmetry, this leads to the constraint

2χα + 2sαλ= z . (A.6)

The one-loop determinant of this gauge theory is, up to a possible sign,

Z1-loop =

�

2πη(q)3

θ1(τ| − z)

�M




M
∏

i ̸= j

θ1(τ|ui j)

θ1(τ|ui j − z)









M
∏

i, j=1

θ1(τ|ui j +λ− z)

θ1(τ|ui j +λ)





×
M
∏

i=1

L
∏

α=1

θ1(τ|ui − ξα +χα − z)
θ1(τ|ui − ξα +χα)

θ1(τ| − ui + ξα +χα − z)
θ1(τ| − ui + ξα +χα)

dM u .

(A.7)

Here ui j := ui−u j . Taking η= (1, . . . , 1), the poles that contribute are located at ui = u j+z,
ui = u j − λ, and ui = ξα − χα. The first type of poles leads to a vanishing residue. Thus the
non-trivial poles form a tower of the form

(ui)∗ = ξα −χα −mαλ , (A.8)

for mα = 0, . . . , nα − 1. The poles are labeled by possible configurations of n⃗ = {n1, . . . , nL}
with nα ≥ 0 and

∑

α nα = M . The JK residue integral gives [25,27]

ZT2 =
∑

n⃗

L
∏

α,β=1

nα−1
∏

mα=0

θ1(τ|ξαβ + (nβ −mα)λ− z)

θ1(τ|ξαβ + (nβ −mα)λ)

θ1(τ| − ξαβ +χα +χβ − z +mαλ)

θ1(τ| − ξαβ +χα +χβ +mαλ)
. (A.9)
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The products due to the vector multiplet telescope with the adjoint chiral multiplet, which
then cancel with the fundamental chiral multiplet to yield the first line. The second line is due
to the anti-fundamental chiral multiplet. Imposing the holonomy constraints (A.6) then leads
to (5).

A.2 Higher rank

For the linear quiver gauge theory defined in Section 3, the flavor symmetry preserved by
the superpotential (8) is U(1)vec × SU(L)axi for (Q, eQ), U(1)vec ×U(1)axi for each (Ba, eBa), and
U(1)Φa

for each Φa. We mix the flavor symmetry with the R symmetry and introduce the
holonomies χ(a) for U(1)′vec, ξα for SU(L)′axi, and λ(a) for U(1)′Φa

. The superpotential imposes
the following constraints:

2χ(1) + 2sλ(1) = 2χ(2) +λ(2) = · · ·= 2χ(r) +λ(r) = z ,

2χ(2) +λ(1) = · · ·= 2χ(r) +λ(r−1) = z ,
(A.10)

which imply that all λ(a) are equal and χ(2) = · · ·= χ(r).
The one-loop determinant of the gauge theory can be read out by multiplying all the matter

contributions

Z1-loop =
r
∏

a=1

ZVa
ZΦa

ZBa−1
Z
eBa−1

, (A.11)

where (B0, eB0) := (Q, eQ). The JK prescription picks up non-trivial contributions from the poles
at

u(a)i − u(a)j +λ= 0 ,

u(a)i − u(a−1)
i +χ(a) = 0 .

(A.12)

for a = 1, . . . , r and u(0)i := ξi . We label the poles by

�

u(a)i

�

∗
= ξα −

a
∑

i=1

χ(i) −m(a)α λ , (A.13)

where m(a)α = 0, . . . , n(a)α − 1. We evaluate the JK residue as before. Applying the holonomy
constraints (A.10) and the identity θ1(τ| − z) = −θ1(τ|z), we find

ZT2 =
∑

{n⃗(a)}

L
∏

α,β=1

n(a)α −1
∏

m(a)α =0

θ1(τ|ξαβ + (n
(a)
β
−m(a)α )λ− z)

θ1(τ|ξαβ + (n
(a)
β
−m(a)α )λ)

θ1(τ|ξαβ + (n
(a−1)
β
−m(a)α )λ)

θ1(τ|ξαβ + (n
(a−1)
β
−m(a)α )λ− z)

.

(A.14)
The summation is over all configurations subject to |n⃗(a)| = Ma and n(0)α := 2s. The products
from the bi-fundamental chiral multiplets ZBa−1

Z
eBa−1

telescope and cancel against the extra
factor from ZVa

ZΦa
to yield the second line of (A.14). The product is truncated to configurations

where
n(a)α ≤ n(a−1)

α . (A.15)
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