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Abstract

We present a comprehensive non-perturbative study of the phase structure of the asymp-
totically safe Standard Model. The physics scales included range from the asymptotically
safe trans-Planckian regime in the ultraviolet, the intermediate high-energy regime with
electroweak symmetry breaking to strongly correlated QCD in the infrared. All flows
are computed with a self-consistent functional renormalisation group approach, using a
vertex expansion in the fluctuation fields. In particular, this approach takes care of all
physical threshold effects and the respective decoupling of ultraviolet degrees of freedom.
Standard Model and gravity couplings and masses are fixed by their experimental low
energy values. Importantly, we accommodate for the difference between the top pole
mass and its Euclidean analogue. Both, the correct mass determination and the thresh-
old effects have a significant impact on the qualitative properties, and in particular on
the stability properties of the specific ultraviolet-infrared trajectory with experimental
Standard Model physics in the infrared. We show that in the present rather advanced
approximation the matter part of the asymptotically safe Standard Model has the same
number of relevant parameters as the Standard Model, and is asymptotically free. This
result is based on the novel UV fixed point found in the present work: the fixed point
Higgs potential is flat but has two relevant directions. These results and their analysis are
accompanied by a thorough discussion of the systematic error of the present truncation,
also important for systematic improvements.
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1 Introduction

One of the most challenging open tasks in contemporary high energy physics is its ultraviolet
(UV) closure including quantum gravity. In the past three decades, asymptotically safe gravity
[1–3] has been established as a viable option for this endeavour, for reviews see [4–14].

Asymptotically safe matter-gravity systems potentially include the Asymptotically Safe
Standard Model (ASSM), the UV-complete unification of the Standard Model (SM) with gravity.
This minimal set-up for the fundamental theory of matter and gravity with an absence of new
physics implies that our current understanding of particle physics may hold up to the Planck
scale. Hence, all masses and couplings converge at an interacting asymptotically safe UV fixed
point. The solidified existence of such a minimal set-up would also allow for a systematic and
well-controlled extension toward UV-complete Beyond Standard Model scenarios including the
potential exclusion of such UV-safe embeddings in specific models.

This highly interesting programme has been set-up and pursued in a number of works
concerning the matter content compatible with asymptotic safety [15–23], as well as the
relation to the IR physics [23–34], and beyond the SM physics [35–39]. The running of SM
couplings and full Higgs potentials has also been studied without the inclusion of gravity in
similar frameworks [40–49]. While the physical mechanisms in the UV and potential scenarios
have been well understood, the control over the mechanisms is still lacking. For example,
it is necessary to consider higher-order curvature invariants such as R2 in order to reliably
determine a bound on the field content compatible with asymptotic safety [23]. Also the gravity
contributions to the matter couplings are only partially under control: while it has been well
understood that gravity supports asymptotic freedom of the gauge coupling or is vanishing at
leading order [23,25,50–54], the gravity contribution to the Yukawa coupling carries more
intricacies [28, 55]. Moreover, so far, the full ASSM flows were investigated in perturbative
threshold-free RG flows for the matter fields, in particular for sub-Planckian physics, as well as
a (classical) φ4-approximation of the Higgs effective potential. For reliable predictions on the
nature of the ASSM, a consistent RG flow including physical threshold effects is needed.

The ASSM covers physics at vastly different momentum scales ranging from trans-Planckian
momenta with asymptotic safety in the UV to sub-Fermi momenta with strongly correlated
quantum chromodynamics (QCD) in the infrared (IR). Its parameters or rather the specific
UV-IR trajectory are fixed by their experimental values measured in the IR, which also fixes the
respective UV fixed point. Importantly, the UV landscape includes several physically distinct
fixed-point classes. They range from fixed points with stable asymptotically free matter parts
(or shifted Gaußian fixed points), fixed points with fully interacting matter parts over unstable
FPs to regimes without fixed points. These differences not only concern the existence, stability
and interaction nature of the UV regime, but also the number of relevant directions. This can
lead to predictive trajectories with fewer parameters in the matter sector of the ASSM than in
the SM. Trivial examples are boundary trajectories between the stable and unstable FP classes
as well as the Gaußian FP class with a flat Higgs potential with only one relevant parameter,
the Higgs mass.
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While many of the SM parameters have little impact on the UV fixed point class, if varied
largely about the experimental value, there are few whose precise value and correct IR-UV
trajectory has a huge and qualitative impact on both, high energy physics below the Planck
scale and the trans-Planckian UV physics. In particular, the values and correct scale dependence
of the top quark and Higgs masses have a qualitative impact on the UV fixed point class of the
ASSM, as well as the high energy stability of the Higgs potential.

In short, reliable access to even the qualitative physics properties of the ASSM require
quantitative control of its physics at all scales. Accordingly, this task requires a systematic,
self-consistent approach able to treat non-perturbative physics both in the UV and IR. In the
present work, we add to this task by computing the UV-IR flow of the ASSM self-consistently
within the functional renormalisation group (fRG) approach. Here, self-consistency refers to
two important aspects: Firstly, all coupling parameters, whose flows are computed are fed
back to the flow, which leads to full resummations. This property is required for the rapid
convergence of physics results and is mandatory for a precise determination of the IR parameters
of the ASSM. Secondly, all flows are computed within the renormalisation scheme inherent to
the fRG approach. In particular, this scheme incorporates physical threshold effects naturally
and self-consistently due to its Wilsonian nature. In terms of standard RG schemes this can
be phrased as follows: the fRG scheme leads to independence of the physics results from the
RG-point already in relatively simple approximations.

In the present work, we add substantially to this endeavour by considering for the first time
a fully consistent fRG system of all couplings of the ASSM. In particular, the physical thresholds
of the respective matter and gravity dynamics are included. This is required for reliable and
quantitative access to the physics of electroweak spontaneous symmetry breaking and strong
chiral dynamical symmetry breaking. Furthermore, we take into account that the top mass
parameter is related but not equivalent to the experimentally measured pole mass. We compute
the pole mass of the top quark in the present non-perturbative setting and adjust the top mass
parameter such that the pole mass takes its experimental value. This is essential for a correct
estimate of the metastability scale of the Higgs potential.

Finally, we compute the full effective Higgs potential in the trans-Planckian regime within
a high order of the Taylor expansion in the Higgs field. This allows us to reveal the presence of
a novel UV fixed point for the Higgs potential that is present for a large parameter range: while
the full effective potential is flat, is features two relevant directions. One of them is aligned
with the Higgs mass operator, but the operator of the most relevant direction is non-polynomial
in the Higgs field. In the current approximation, it is this novel non-trivial fixed point that
is connected to the physical SM in the IR where the parameters are fixed by experimental
observables.

In contradistinction, the standard Gaußian fixed point potential features one relevant
direction, the Higgs mass. Naturally, for a vanishing coupling of the most relevant non-
polynomial operator this FP is embedded in the novel FP as a one-dimensional sub-manifold.
Parameter values in this sub-manifold are not connected to the physical SM in the IR: the
resulting Higgs and top mass are roughly 3 GeV from the central experimental values. Whether
this distance is close or feasible is subject to the evaluation and interpretation of the systematic
error of the present approximation. This is but one of the reasons for the rather detailed
description of the systematic error estimates in the present work.

The physical thresholds and the dynamics of spontaneous symmetry breaking are specifically
important for two interrelated reasons: Firstly, in the absence of any thresholds the IR sector
of the SM is not accessible, and the SM parameters have to be chosen for cutoff values at
least above the electroweak scale. Such a procedure requires the identification of momentum
and cutoff scales, which typically work qualitatively but not quantitatively. Secondly, the fRG
renormalisation scheme differs significantly from the standard MS and MOM schemes used
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in particle physics, and the use of the respective perturbative β-functions may only work
qualitatively. In particular, the naive identifications of momentum and cutoff scales for physical
thresholds such as the electroweak symmetry breaking scale may not be suitable. Indeed, we
shall observe in the present computation, that it is nearly off by one order of magnitude. This
has a significant impact on the parameter choices and hence on the selected UV-IR trajectory as
well as potentially on the fixed-point class.

To wrap up, the present work includes for the first time the sub-Planckian physics of
spontaneous symmetry breaking, both in the electroweak sector and in QCD, including all
physical threshold effects. This is necessary (but not sufficient) for a precision determination of
the matter parameters of the ASSM. We also determine the pole mass of the top quark instead
of estimating it by Euclidean running masses. This precision computation is of qualitative
importance for the stability of the Higgs sector at high energies, as well as the UV fixed
point physics. For the latter, we find novel fixed point properties: the matter fixed point is
asymptotically free (Gaußian or shifted Gaußian), but with a flat Higgs potential with two
relevant directions. Our analysis includes a thorough error analysis, which suggests that the
present findings have to be corroborated within systematic extensions of the truncation.

This work is organised as follows. In Section 2 we discuss the fRG approach to the ASSM
and detail our approximation. In Section 3, we discuss the existence, stability, and physics
properties of the UV fixed point and the ASSM. This also includes a part of the systematic error
analysis. In Section 4, we present our results on the full phase structure of the ASSM ranging
from the asymptotically safe regime with the Reuter fixed point to the deep IR with QCD and
chiral symmetry breaking, summarised in Figure 3. The novel property of a flat effective Higgs
potential at the UV fixed point with two relevant directions is discussed in Section 5. There we
also discuss the fixed-point landscape for general values of the gravity fixed-point values. In
Section 6, we evaluate the predictivity of the UV fixed point and perform an analysis of the
main sources of the systematic error. In Section 7, we conclude with a summary of our results,
including a short discussion of some consequences. Most of the technical details have been
deferred to Appendices.

2 Asymptotically Safe Standard Model

In the Asymptotically Safe Standard Model (ASSM), the coupled SM–quantum-gravity system
is fully described as a quantum field theory. The underlying classical action consists of the
classical gauge-fixed action of the SM and the gauge-fixed Einstein-Hilbert action of General
Relativity,

SASSM[φ] = SSM[φ] + Sgravity[φgrav] , (1)

for the explicit form see Appendix B.1 (SM) and Appendix B.2 (gravity).
The field content φ is given by the gauge fields Aµ of the SM gauge groups,

SU(3)C × SU(2)L × U(1)Y , as well as the matter fields, leptons and quarks, l, l̄, q, q̄ and the
scalar doublet, Φ. The metric field gµν is split into a flat Euclidean background metric ḡµν = δµν
and a fluctuation field hµν, which carries the dynamics of the metric,

gµν = δµν +
p

16πGN hµν . (2)

We define the dynamical fluctuation superfield, which also includes the auxiliary ghost fields
stemming from the gauge-fixing sector,

φ = (φgrav, φSM) , (3a)
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with

φgrav =(hµν, cµ, c̄µ) ,

φSM =(Aµ, C, C̄, l, l̄, q, q̄, Φ) . (3b)

The matter superfield φSM comprises the gauge and ghost fields of the SM gauge group
U(1)Y×SU(2)L×SU(3)C,

Aµ =
�

Bµ, Aa
µ, Gb

µ

�

, C =
�

ca, cb
�

, (3c)

with the hypercharge gauge field Bµ, the weak gauge fields Aa
µ with a = 1, 2, 3, and the gluons

Gb
µ with b = 1, ..., 8. The field C contains the respective ghost fields of the weak and strong

gauge groups. φSM also contains the three families of quarks q and leptons l,

q = (d, u, s, c, b, t) , l = (e, νe, µ, νµ, τ, ντ) . (3d)

The full quantum effective action of the ASSM, Γ [φ] contains all interaction terms that are
compatible with the symmetries of the ASSM.

2.1 Functional RG for the ASSM

We are interested in the full UV-IR phase structure of the ASSM, ranging from the trans-
Planckian asymptotically safe UV regime ruled by gravity, to the electroweak (EW) scale with
EW symmetry breaking, and finally to the deep IR with strongly correlated QCD including
strong chiral symmetry breaking and confinement. For covering this vast range of scales and
different physics we use the functional renormalisation group (fRG) approach, which already
has proven its applicability in all these regimes. In this approach, an IR regulator is introduced
in the path integral, which suppresses quantum fluctuations below a given IR cutoff scale k,
leading to the respective scale-dependent effective action Γk[φ]. Then, the full effective action
Γ [φ] = Γk=0[φ] is obtained by successively integrating out momentum fluctuations at the scale
k. The respective flow equation for Γk, the Wetterich equation [56–58], reads

∂tΓk [φ] =
1
2

Tr





1

Γ
(2)
k + Rk

∂tRk



 , (4a)

where

Γ
(n)
φi1 ···φin

[φ](p1, ..., pn) =
δ Γ [φ]

δφi1(p1) · · ·δφin(pn)
. (4b)

Equation (4) provides us with a full non-perturbative setup, that enables us to access the full
UV-IR phase structure of the ASSM.

2.2 Approximations of the quantum effective action

In general, (4) cannot be solved for the full effective action of an interacting theory, leaving
aside the ASSM. Hence, we have to approximate the full effective action and its flows. In the
present section, we summarise the approximations and the reliability considerations behind
them, more details can be found in Appendices B and C.

To begin with, we aim at an accurate description of the full dynamics of the gauge and scalar
sectors, and specifically that of the EW sector. Hence, the scale dependence (average momentum
dependence) of all primitively divergent vertices in this sector is taken into account. Within
this setup, we can, for the first time, reproduce the EW transition U(1)Y×SU(2)L→ U(1)EM
including all threshold effects, starting from the asymptotically safe initial conditions.
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2.2.1 Momentum symmetric point approximation

Below the Planck scale, quantum gravity effects quickly decouple and we are left with the quasi-
perturbative quantum dynamics of the SM. Its effects are captured well by only considering the
average momentum running (with k) of the primitively diverging vertices of the SM. To that
end, we consider general vertices Γ (n)k (p1, . . . , pn) defined at symmetric points with

p2
i = p2 ,

�

�

�

�

�

pµi pµj
p2

�

�

�

�

�

= cosθ . (5)

It has been shown both for strongly correlated QCD [59–62], and in gravity [14,63,64], that
the system of flow equations of symmetric point vertices is well-approximated by only feeding
back these vertices in the diagrams: effectively these vertices represent a close system of flow
equations, and define a good approximation Γ (SP)

k [φ] of the full effective action if only being
interested in symmetric point physics. Note however, that it can be shown in QCD, that this
approximation is limited to vertices and regimes without resonant momentum channels in
vertices such as the scalar and pseudo-scalar meson channels in QCD for momentum and cutoff
scales k, p ≲ 1 GeV.

We also emphasise that Γ (SP)
k [φ] does not suffice to give access to important physics infor-

mation such as S-matrix elements for generic scattering momenta related to the full vertices
Γ (n)(p1, ..., pn). However, the latter can be obtained in a systematic way from Γ (SP)

k [φ] by their

flows. Importantly, feeding back the full scattering vertices to the flow of Γ (SP)
k [φ] leads to

subleading effects.
In a final step, we introduce a further approximation to the symmetric-point vertices: they

only depend on the symmetric-point momentum, the mass gaps m⃗ of the ASSM, and the cutoff
scale k. For cutoff scales above the mass gaps, the (dimensionless) dressings can only depend
on the ratio p2/k2 and we can trade one for the other. This property is also at the root of
mass-independent RG-schemes, where (in asymptotic regimes) one can read off the momentum
dependence of couplings from the RG-scale dependence. In turn, for cutoff scales below the
mass threshold of specific fields, their contribution to the flows and the physics is suppressed,
while the remaining flow still only depends on p2/k2. In consequence, for symmetric-point
vertices, the cutoff dependence (at p = 0) reflects well the momentum dependence with

k = α p , (6)

and hence supports a low-order derivative expansion with vertices Γ (n)k (p = 0) with an approxi-

mate effective action Γ (av)
k [φ] of these average vertices. As for the symmetric-point vertices,

this expansion holds in the absence of resonant vertex structures or more generally strong
momentum and angular dependences of vertices. It is well-tested by now both in the asymptot-
ically safe UV regime of gravity-matter systems [10,16,63–66] and also holds true in the SM
including QCD [59,61,67,68]. We remark that within such an expansion the mass parameter
extracted at p = 0 corresponds to the Euclidean curvature mass and not to the pole mass.
However, it has been shown that in the absence of strong momentum dependences of the
wave-function renormalisation or anomalous dimensions the two agree well, see [69]. This
intricate topic is discussed further in [12–14].

2.2.2 Couplings of the ASSM

In our approximation, all primitively divergent vertices, as well as all wave functions of the
SM, are taken into account with scale-dependent dressings. Moreover, we consider an effective
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Higgs potential VΦ,eff in a high-order Taylor expansion about the flowing minimum. In short,
we parametrise

Γ
(n)
k (p1, ..., pn) =

n
∏

i=1

Æ

Zφi ,k S(n)
�

p1, ..., pn; λ⃗k

�

, (7a)

where S(n) are the nth derivatives of the classical ASSM action in (1), augmented with higher-
order Higgs-self interactions. In (7a) the classical couplings are substituted by their running
quantum analogues,

λ⃗k =
�

g⃗1,k , g⃗2,k , g⃗3,k , y⃗q,k , y⃗l,k , λ⃗Φ,k , G⃗k , Λ⃗k

�

. (7b)

Here the vector on the coupling indicates that they represent a set of avatars of this coupling
originating from different vertex functions, which will be explained below. The gi with i = 1, 2, 3
are related to the hypercharge gauge coupling with g1 ≡

p

5/3 gY , the weak gauge coupling
g2, and the strong gauge coupling g3. The classical dispersions are augmented with wave
functions,

Zφ,k =
�

ZA,k , ZC,k , Zl,k , Zq,k , ZΦ,k , Zh,k , Zc,k

�

. (7c)

The wave-function factors in (7c) encode the running of the attached fields, and the coupling
parameters in (7b) are indeed running couplings (and masses), and not only vertex factors.
From here on we drop the subscript k on all couplings and wave functions and their scale
dependence is implied.

In the Higgs sector, we go significantly beyond the approximation in (7a), and consider the
full Higgs potential within a high-order of a Taylor expansion about the flowing minimum. We
parametrise the Higgs doublet Φ as

Φ=
1
p

2

�

G1 + iG2
v +H + iG3

�

, ρ = trΦ†Φ , (8)

where v is the flowing minimum, and H is the (radial) fluctuation Higgs field with a vanishing
expectation value 〈H〉 = 0, as the latter is explicitly carried by v. The Gi with i = 1, 2, 3 are the
Goldstone modes. Then, the Higgs potential is a function of ρ− v2/2. In the symmetric regime
with a vanishing minimum of the potential, v = 0, we use the parametrisation

VΦ,eff(ρ) = V0 +
Nmax
∑

n=1

λΦ,2n Zn
Φρ

n , (9)

where V0 = Λ/(8πGN) is related to the cosmological constant, see (B.16). The running mass
parameter µΦ > 0 and the quartic Higgs self-coupling, already present in the classical Higgs
potential, are

µΦ = λΦ,2 , λΦ = λΦ,4 , (10)

and the expansion starts at n= 1 with the mass term.
In turn, in the broken regime with v > 0, we parametrise

VΦ,eff(ρ) = Ṽ0 +
Nmax
∑

n=2

λΦ,2n Zn
Φ

�

ρ −
v2

2

�n

, (11)

where Ṽ0 is V0 minus the series, evaluated at ρ = 0. The lowest term in the series with n= 2
encodes the classical Higgs potential. At the spontaneous symmetry breaking cutoff scale kSSB,
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below which EW symmetry breaking kicks in, the flow is switched from (9) for k > kSSB with a
flowing µΦ to (11) for k < kSSB with a flowing vk.

In the following, we refer to both µΦ, v2 as λΦ,2, and hence the set of coupling parameters
of the Higgs potential is always given by λ⃗Φ = {λΦ,2n} with n = 1, ..., Nmax. It is understood that
λΦ,2 = v2 is taken in the broken regime while λΦ,2 = µΦ is taken in the symmetric regime. More
details on the EW symmetry breaking and the respective scales can be found in Section 4.2.

In the UV regime, we consider a high-order Taylor expansion with the maximal monomial
power

Nmax = 17 . (12)

This rather high-order of the Taylor expansion allows us to discuss the convergence of the
potential at the UV fixed point. For the sake of simplicity, we do not consider such a general
potential for scales below k ≤ 1017 GeV. Such non-trivial potentials at the EW and metastability
scales will be discussed in detail elsewhere.

The flows of the couplings and wave functions in the approximation are extracted at
vanishing momentum, which captures the average momentum dependence as discussed in
detail at the beginning of this section. For the details of the projection onto the flow equations
for all couplings, see Appendix C.

We close this section with a discussion of the gauge and gravity couplings. The set of coupling
parameters (7b) comprises different avatars of gauge and gravity couplings as required for the
flow of different gauge and gravity vertices. For gravity, we consider vertex couplings of the
n-graviton vertices proportional to the classical tensor structure,

Γ
(n)
h···h ≃ Zn/2

h S(n)h···h(Gn , Λn) . (13)

Note that Gn and Λn are the vertex couplings of the classical tensor structure. While they should
not be confused with the Newton coupling GN and cosmological constant Λ, they have the
scale and momentum running of couplings. The different Gn and Λn are related by modified
Slavnov-Taylor identities, see [14]. In the classical limit or rather in classical regimes, the
effective action reduces to the Einstein-Hilbert action, and all these couplings agree,

Gn = GN , Λn = Λ . (14)

Within our approximation, we use (14) throughout.
We also emphasise that the vertex gauge couplings defined in (7b) are subject to two-loop

universality (in mass-independent RG schemes). However, in the presence of threshold effects
and/or non-perturbative physics they differ genuinely. Specifically, we then have to consider
avatars of the gauge couplings for different vertices. In the present approximation to the ASSM,
this concerns the quark-gluon couplings as well as the matter-gauge couplings in the EW sector.
For example, the quark-gluon couplings are

g⃗3 =
�

g3,u , g3,d , g3,s , g3,c , g3,b , g3,t

�

, (15)

where the field subscripts qi = u, d, s, c, b, t indicate the quarks in the respective quark-gluon
vertex. We consider the strong isospin symmetric approximation with

g3,u = g3,d , (16)

for all scales. Moreover, for momentum scales beyond the top threshold, all avatars converge
towards a unique strong vertex coupling, g3,qi

= g3. In turn, in the presence of non-perturbative
physics and threshold effects the two-loop universality of gauge couplings (in mass-independent
RG schemes) does not hold anymore, and the matter-gauge couplings do not necessarily agree
anymore, and also differ from the pure gauge couplings.
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2.3 Strongly coupled UV & IR regimes

In the IR regime for k, p ≲ 10 GeV, the approximation (7) has to be improved both in the
gluonic sector for including confinement, as well as in the matter sector for including dynamical
spontaneous chiral symmetry breaking, see [68]. Here, the epithet dynamical refers to the
fact, that the quasi-goldstone modes of strong spontaneous chiral symmetry breaking in QCD
are effective IR degrees of freedom, the pions, and not a fundamental field such as the Higgs
field Φ in the ASSM. In turn, for more quantitative access to the asymptotically safe regime,
momentum dependences for the pure gravity sector are required, see [64]. The two asymptotic
regimes are discussed below in Sections 2.3.1 and 2.3.2.

2.3.1 Confinement and strong chiral symmetry breaking

At momentum scales p, k ≲ 10 GeV, strongly correlated IR-QCD starts getting relevant and even
two-loop perturbative approximations successively lack reliability, for a detailed discussion
see [70]. However, in this regime, we can resort to results in functional approaches for 2 and
2+1 flavour computations that meet lattice 2 and 2+1 flavour benchmarks in the IR regime of
physical QCD, see in particular [61,68,70]. Hence, below an interface scale kinter with

5GeV≲ kinter ≲ 15 GeV , (17)

we use IR-QCD flows as an external input in our system of ASSM flow equations: it has been
shown in [70] that below k ≈ 10 GeV two-loop resummed approximations successively lose
their reliability, a -weak- limit being given by k ≈ 5 GeV. In turn, for k ≳ kinter, the approximation
to the ASSM flows discussed here suffices. Consequently, we use the stability of the results
under a variation of kinter as a consistency and reliability check of the interface flows, see
Figure 12 in Appendix C.5.

Specifically, we utilise results from [68] as the approximation of the respective computation
resembles most that used here, and the results can be used directly. This concerns the running
of the quark masses including dynamical chiral symmetry breaking, as well as the running of
the dressing of the gluon propagator, whose mass gap is related to the physical mass gap of
QCD.

In terms of the correlation functions considered here, this amounts to using the gluon
dressing ZA or rather the anomalous dimension

ηA = −
∂t ZA

ZA
, (18)

from [68]. This implements the physical gapping of glue interactions for small momentum
scales and suffices to describe the respective decoupling of the glue sector from the matter
sector semi-quantitatively. It has been shown in [68, 71] that the anomalous dimension is
well-described as a function of αs and the mass gaps of the theory. This allows us to write the
full anomalous dimension as

η
(ASSM)
A ≈ η(2+1)

A

�

α⃗(ASSM)
s , ⃗̄m2

�

+η(c,b,t)
A , (19)

where α⃗(ASSM)
s is the vector of all strong fine structure constants derived from different vertices,

see (C.21) in Appendix C.5. The vector ⃗̄m2 is the vector of all mass gaps in the QCD sector,
see (C.19). The second term on the right-hand side, η(c,b,t)

A , comprises the contributions from
the heavier quarks c, b, t. The relation (19) works quantitatively for mapping the anomalous
dimension from pure glue to two-flavour QCD, and from two flavour QCD to 2+1 flavour QCD,
see [68]. The approximation becomes better for larger N f and heavier quarks.

10

https://scipost.org
https://scipost.org/SciPostPhys.15.3.105


SciPost Phys. 15, 105 (2023)

While the use of the relation in (19) is required for a quantitative description of the full IR
dynamics of QCD, for the applications in the present work it suffices to use a semi-quantitative
approximation derived in Appendix C.5, see (C.27),

∂t Z
(ASSM)
A ≈ ∂t Z

(2+1)
A −η(c,b,t)

A Z (ASSM)
A , (20)

where Z (ASSM)
A is determined by a UV-IR consistency condition at the interface scale kinter in

the range (17), see (C.30). In Appendix C.5 it is also discussed, that the results show a small
dependence on kinter within this range, see Figure 12.

Spontaneous chiral symmetry breaking requires the inclusion of the resonant scalar–pseudo-
scalar four-quark interaction channel as in [68]. Effectively this leads to an additional mass
contribution to the quark masses,

mq =
yq v
p

2
→

yq v
p

2
+∆M const

q . (21)

The term ∆M const
q is taken from the results for the u, d quarks in [68], computed in a strong

isospin symmetric approximation: yu = yd . Then, the QCD contribution is given by the full phys-
ical constituent quark mass M const

q without the current quark contribution,∆M const
q =M const

u − yuv,
where yuv is evaluated at k = 0. We also use that the resonant interaction channel does not
directly enter the flows of the other parameters considered in our approximation.

At large cutoff scales k ≳ 10 GeV, the approximation used in [68] matches that used here,
so the QCD part of the present ASSM investigation flows into strongly correlated QCD. In
combination this allows us to flow the ASSM down to k = 0, including confinement and strong
chiral symmetry breaking, leading to a semi-quantitative IR closure of the ASSM.

2.3.2 Asymptotically safe UV regime

In the asymptotically safe regime for k ≳ MPl, we utilise the results of [63, 64] where pure
gravity flows with momentum dependences of propagators and vertices at a symmetric point
have been considered. We emphasise that the momentum dependences of the vertices imply
the inclusion of higher-order curvature invariants and also the difference between background
and fluctuation correlation functions is resolved.

Here, we consider the momentum-dependent couplings

gh,n(p) = Gh,nk2 , λh, n = Λn/k
2 , (22)

of the curvature tensor structures (pg R)(n) and the volume-form tensor structures (pg)(n)

respectively. They are part of the n-point vertices Γ (n)h···h of the fluctuation graviton h, and the
present approximation is built upon the assumption of their dominance over other tensor
structures in the vertices. While reminiscent of Newton coupling and the cosmological constant,
these coupling parameters are vertex couplings and should not be confused with the former
physical observables, see [14].

Moreover, for the fixed-point analysis, we take into account the momentum-dependent
wave functions of the fluctuation graviton, Zh(p), and the gravity ghost, Zc(p).

We identify the avatars of the vertex couplings, see (14), and compute the flow of

Zh , Zc , gh = gh,3 , µh = −2λh, 2 , (23)

where all the avatars of the Newton coupling are identified with that of the three-point vertex.
In [64,72,73], it has been shown that they are of similar size. The flow of gh and the anomalous
dimensions are evaluated bilocally between p = 0 and p = k. The couplings of the volume form
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tensor structures are of sub-leading importance and we use λh, n≥3 ≈ 0. This approximation
has been chosen due to their small fixed-point values for n= 3, 4,5.

In [21,23,72,73], it has been shown that matter-gravity systems admit an effective univer-
sality and a close perturbative behaviour. This entails that we can (approximately) identify the
different gravity-matter vertex couplings of the n matter fields Φi1 , ...,Φin with m gravitons h
with the uniform one in pure gravity, gh,

gΦ1···Φi h···h = gh , (24)

also used for the back coupling of matter to gravity. We only consider gravity-matter couplings
that arise from the dispersion of the matter fields (kinetic and mass term), that is two identical
or conjugate matter fields and one to three fluctuating gravitons.

In summary, this approximation is informed by the results on the momentum dependence of
vertices and propagators in [64] and the effective universality and close perturbative behaviour
of matter-gravity couplings. It hence reflects the state-of-the art approximations for matter-
gravity systems in the literature, except for gravity-induced higher order couplings, see, e.g.,
[21,28,55,74–81]. The respective extension will be considered elsewhere.

A final important novel ingredient is the non-trivial dimensionless Higgs potential u consid-
ered in the fixed-point analysis. It derives from (9) by rescaling all dimensionful quantities
by respective powers of the cutoff scale k. Restricting ourselves to the parametrisation of the
Higgs potential in the symmetric regime, (9), we are led to

u(ρ̄) =
VΦ,eff

k4
= u0 +

Nmax
∑

n=1

λ̄Φ,2n ρ̄
n , (25a)

where u0 = λh,0/(8πgh) with λh,0 as defined in (22), and Nmax = 17, see (12). The dimension-
less radial Higgs field ρ̄ and couplings λ̄2n are given by

ρ̄ = ZΦ
trΦ†Φ

k2
, λ̄Φ,2n =

λΦ,2n

k4−2n
. (25b)

In (25b), we have also absorbed the wave-function factors Zn
Φ into the definition of ρ̄, for more

details see Appendix C.3. This allows us to map out the non-trivial UV phase structure of the
ASSM with unstable potentials, trivial Gaußian potentials with one relevant direction, non-
trivial flat potentials with two relevant directions, and stable as well as semi-stable potentials
in Section 5.

2.4 Intermediate high energy regime

For momentum scales above kinter ≈ 10 GeV, the fermionic matter sector hosts all three families
of quarks and leptons. We use the fact that for cutoff scales k ≳ 10 GeV only the t quark
experiences a threshold effect due to its mass, while the other quarks, ql = d, u, s, c, b, and
all leptons l can be assumed to be quasi-massless. Hence, for the sake of simplicity, we do
not consider the running of the gauge couplings separately as they agree for k ≳ 10 GeV, but
identify all couplings with

g1,φi
= g1,e , g2,φi

= g2,e , g3,q = g3,u . (26)

The approximation (26) ensures that all fields have the required universal running above the
respective thresholds, and settle at their correct IR value at k = 0. Below the mass threshold
mφi

of a given field φi, the running of its couplings is approximated with that of the lightest
fields of the same type. This guarantees that the light fields have the correct running above the
threshold, and is of sub-leading consequence for the dynamics triggered by the heavier field
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φi: all diagrams with internal lines of the field φi are suppressed with powers of the running
scale k over its mass, k2/m2

φi
→ 0. Consequently, these contributions are suppressed.

A similar approximation could be applied to the set of Yukawa couplings. We have refrained
from using it here, as quantitative access to the top Yukawa coupling is chiefly important for an
accurate determination of the top pole mass to the per cent level. In conclusion, we include
the running of all Yukawa couplings separately.

2.5 Wrap-up of the approximation

In summary, the approximation of the full effective action of the ASSM, is given by the classical
one with running couplings and wave functions and a full effective Higgs potential within a
high-order Taylor expansion in the trans-Planckian regime. In the asymptotic IR and UV regimes,
we also take into account momentum-dependences for the gravity part in the asymptotic safety
regime and for QCD in the strongly correlated IR regime. Then, the flow of the dynamical
fluctuation parameters is solved self-consistently, the running parameters are fed back into
the flow and importantly, we consider all physical threshold effects. The flow solved here is
RG-consistent [82,83], and can be systematically improved.

3 The ASSM: Existence & stability

A highly non-trivial aspect of general gravity-matter systems and the ASSM, in particular, is
the reliability of predictions in the asymptotically safe regime. A necessary but not sufficient
reliability criterion is the requirement that results are stable under changes of the regularisation
and improvements of the approximation and also pass benchmark tests in simpler subsystems.
It has been argued in [23] that the Reuter fixed point is always present for minimally coupled
matter systems. Therefore, any approximation to the full system of flow equations that do
not accommodate this property lacks full predictive power. In [23], this was illustrated in the
example of Yang-Mills gravity system. It was shown that the presence of the required Reuter
fixed point including asymptotically free Yang-Mills theory seemingly depends on the regulator
choice. Moreover, the sign of the graviton contributions of the gluon anomalous dimension
ηa(p) depends on the value of the graviton mass parameter as well as the momentum p.

In the current work, we extend this analysis to the full ASSM and provide a reliability analysis
of the UV regime. We are interested in the scenario where the marginal matter couplings run
into the asymptotically free UV fixed points and hence pure matter contributions are subleading
in the scaling regime around the fixed point. Then, the system shows competing effects between
graviton tadpole diagrams and diagrams with more vertices. These competing effects originate
in the inherent momentum dependences of the matter-graviton vertices and they complicate
the determination of the sign of the β -functions due to the non-trivial momentum dependence.
The latter also implies that a derivative expansion about vanishing momentum has to be done
with care. For works including momentum dependences see [21,23,63–66,72,73,84], and
the recent review [10]. An expansion in powers of curvature invariants as is done in most
applications of heat-kernel methods is tantamount to a derivative expansion at vanishing
momenta, see [10]. Consequently, the same reliability arguments apply and in order to access
the full momentum dependence, the inclusion of invariants with full covariant momentum
dependence is required, see [85–89]. Most heat-kernel computations additionally use the
background-field approximation which is lifted in the present fluctuation approach.

Most expansion schemes at work in asymptotically safe gravity explicitly or implicitly use
expansions about specific backgrounds, in most cases the flat background. An optimal choice
for such a background would be the (minimal) solution of the equations of motion, leading to
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an on-shell expansion. Notably, the flat background, or equivalently an expansion in powers of
curvature invariants in the background field approximation, is an off-shell expansion. Off-shell
expansion schemes may show an unphysical behaviour of the system at least in low orders of the
expansion scheme if the off-shell expansion point is too far away from the on-shell background.
A further intricacy is the fact, that commonly used expansions about a given background have
a finite radius of convergence and one may see convergence towards an unphysical behaviour.
Finally, the theory may not exist for all possible metric backgrounds. A respective analysis
requires the evaluation of the fixed point and the flow for all backgrounds. In the fluctuation
approach, the computation of background-dependent vertices was initiated in [22, 90], for
respective works in the background field approximation see e.g. [91–94].

In the present case, we do not expect the approximation to provide stable results for general
background fields but only in the vicinity of the equations of motion (on-shell). Even though
the present approximation together with the accompanying stability checks is qualitatively
more elaborate than those used in previous works, we expect instabilities for far off-shell
configurations.

3.1 Beta functions of marginal matter couplings

In the following, we restrict our analysis to the flow of the three-point couplings
λi = (g1, g2, g3, y)i in the vicinity of their Gaußian fixed point. The UV properties of the
other avatars of the gauge couplings as well as the other Yukawa couplings follow similarly.
We drop the subleading pure matter contributions, and we arrive at

∂tλi(p) = β
grav
λi
(p) , (27a)

where p= (p1, p2) are two of the three independent four-momenta of a three-point function.
The gravity contributions to these β -functions have been previously computed. For example, the
gravity contribution to the gauge coupling was computed within the fRG in [23,25,52,77,95–97]
and within perturbation theory in [51,53,98]. Here we go beyond previous fRG works since we
derive this contribution for the first time from the gauge-quark vertex. The gravity contribution
to the Yukawa coupling was computed in [17,28,55,99,100] and we are in agreement with
the results from, e.g., [55]. The gravity contribution to the quartic scalar coupling was studied
in [30,32,99–104]. The right-hand side of (27a) reads

β
grav
λi
(p) = ηgrav

λi
(p)λi(p) + Fgrav

λi
(p) , (27b)

with

ηλi
(p) =

1
2

∑

ji

ηφ ji

�

p ji

�

. (27c)

Equation (27c) comprises the sum of (1/2 of) the momentum-dependent anomalous dimensions
of the fields φ ji (p ji ) whose scattering is described in the vertex at hand, and ηgrav

λi
(p) is the

matter-gravity part.
The second term in (27b), Fgrav

λi
, stands for the diagrams of the vertex flow, see also

Appendix F. We can distinguish two classes of diagrams, the class of matter graviton tadpoles
/ polarisation diagrams (tp), and genuine three-point function triangle diagrams (tri). The
vertices in these diagrams depend on more momenta than the original couplings, for example,
the two-graviton–two-quark–gluon vertex depends on four independent four-momenta. In the
present approximation, these momentum dependences cannot be fed back properly. In the
tadpole diagrams, the two graviton legs have the momenta q and −q and therefore we identify
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λi(p, q,−q) = λi(p), and similarly for the polarisation diagrams where always two matter legs
have the momenta p1 and p2. This leads us to

Fgrav
λi
(p) = F tp

λi=1(p)λi(p) + F tri
λi
(p) , (28)

where the tadpole and polarisation diagrams only include the dressings λi(p) as a prefactor
in the involved graviton-matter vertices. In turn, the triangle diagrams include the genuine
matter three-point vertices, and the loop momentum runs through the coupling, and hence this
coupling cannot be pulled out in front of the diagram. In these diagrams, we can for example
choose to identify the momenta of the coupling with the internal momenta q1 = q, q2 = −p1−q,
leading to

λi(q1, q2)|tri
p→0
−→ λi(q,−q) . (29)

This also entails that the coupling at an exceptional momentum with p1 = 0 is relevant for this
investigation, and not that at the symmetric point.

The coupling λi(p) in (27) is the renormalisation group invariant dressing of the vertex
at hand. In the flow equation approach, respective couplings are typically evaluated at a
symmetric point: feeding back only this dressing in an average momentum approximation can
be shown to lead to quantitative results in the absence of resonant interaction channels, for
more details see [10,12,13]. Further interesting couplings are defined at exceptional momenta
with soft momenta for one of the fields.

In order to investigate the scaling regime in the vicinity of the UV fixed point for k→∞,
we evaluate (27) at a fixed momentum p. The dimensionless quantities in (27) are functions
of p/k→ 0 and we can safely use this limit for all fixed momenta, and hence the right-hand
side of (27a) reduces to βgrav

λi
= βgrav

λi
(p= 0), with

β
grav
λi
=
�

η
grav
λi
+ F tp

λi=1 + γ
triF tri

λi=1

�

λi , (30a)

where

F tp/tri
λi=1 = F tp/tri

λi

�

�

�

λi(p)=1
(0) , γtri =

F tri
λi
(0)

λi F tri
λi=1

. (30b)

The first two terms in the parenthesis on the right-hand side of (30a) only involve the anomalous
dimension at vanishing momentum η

grav
λi
= ηgrav

λi
(0), the tadpole and polarisation diagrams

F tp
λi=1 and the coupling λi = λi(0) at vanishing momentum. In contradistinction, the coupling

λi(q1, q2)→ λi(q,−q) in the flow term F tri
λi
(0) is integrated over loop momenta q2. Hence, it is

sensitive to all momenta smaller than the cutoff scale as q2 ≲ k2. This is taken into account
with the prefactor γtri which is cutoff-independent in the scaling regime. This relative prefactor
changes the balance between the triangle diagrams and the tadpole and polarisation diagrams.
It may increase or suppress the contribution of the triangle diagram, subject to the momentum
dependence of the coupling λi(q,−q) in the vicinity of the fixed point. The integrand of the
triangle diagram involves a factor q3 from the radial momentum integration and a factor q4

from the vertices, leading to the factor (q/k)7 in the integrand. This suppresses very efficiently
the small loop momentum regime of the vertex dressing λi(q,−q) in comparison to the regime
with q2 ≈ k2 in the triangle diagram.

Equation (30a) is readily solved which leads us to

λi,k1
= λi,k2

exp

�

∫ k1

k2

dk
k

�

η
grav
λi
+ F tp

λi
+ γtriF tri

λi

�

�

, (31)
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where both cutoff scales k1 and k2 are in the scaling regime. The present Gaußian fixed point
scenario for the matter couplings λi is sustained for

η
grav
λi
+ F tp

λi
+ γtriF tri

λi
< 0 . (32)

This concludes the derivation of the UV flows of marginal matter couplings in the ASSM.

3.2 Variations of the regulator and cutoff scales

We are now in the position to access the stability of the Gaußian fixed point as well as the
reliability of the results in the present approximation. A necessary condition is the independence
of UV fixed-point nature from the chosen regulator. A given approximation typically only works
for a given class of regulators. In turn, extreme choices of regulators potentially invalidate any
approximations. In this context, we have to take into account that in the present approximation
minimally coupled systems do not show the Reuter fixed point for all cutoff choices [23].
Therefore we only expect to see a stable Gaußian fixed point for specific choices of regulators.

We analyse the fixed-point scenario under specific variations of the regulators. For the sake
of simplicity, we only consider relative changes of the cutoff scales kgrav for pure gravity and
kmat for matter fields. To that end, we introduce

k =min
�

kgrav, kmat

�

, kmat = γmgkgrav . (33)

The standard choice is γmg = 1, but the qualitative features of the system should be independent
of it. Its choice can be constrained by optimisation arguments in a given approximation: in
the present approximation, we have dropped momentum dependences of the effective action.
Then, optimal regulators are those that minimise the momentum transfer in diagrams as such
a transfer (strong momentum dependences) cannot be captured by the present approximation
that relies on p2 ≈ k2 for all momenta. While this implies γmg = 1 for different fields of the
same kind, this is by far not obvious within a system that either contains both fermions and
bosons or shows vastly different anomalous dimensions. By considering a variation of the
relative cutoff scale between the matter and gravity sector, we provide a first exploratory study
of the stability of the system.

Technically, we proceed as follows: the fixed point analysis is done in dimensionless
variables. These variables are defined by multiplying the dimensionful ones with appropriate
powers of the gravity cutoff scale k. This implies that for γmg < 1 the only change in our
system of flow equation originates in the matter shape functions and vice versa for γmg > 1.
For γmg < 1, the matter shape functions are given by

rmat(x) = rflat

�

1
γ2

mg
x

�

, x =
p2

k2
, (34)

and

rflat(x) =
�

1
x
− 1

�

Θ(1− x) . (35)

In a rough first estimate, this change introduces relative factors γ4
mg or even higher powers in

the diagrams with a scale-derivative ∂tRmat, if evaluated at vanishing external momentum. The
power four is obtained for momentum-independent couplings, the higher power is obtained for
momentum-dependent couplings, triggered by

∫ γmg

0

dq q3(q2)n =
1

4+ 2n
γ4+2n

mg , (36)
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with the highest power n = 2 for the triangle diagrams in (30a). For this estimate we have
neglected the subleading effect that the graviton and matter propagators have a non-trivial
momentum dependence for q2 > 1 and q2 > γ2

mg. In summary, the main effect of the choice
(34) is the suppression of diagrams with ∂tRmat (γmg < 1) or ∂tRgrav (γmg > 1). If diagrams are
contributing with different sings, this may introduce a change in the sign of given β -functions,
entailing a qualitative change of the nature of the fixed point.

We note that such an enhancement or suppression can also be obtained by varying the
graviton mass parameter µh: large positive masses µh→∞ suppress diagrams with ∂tRgrav
as they contain one further graviton propagator. In turn, for µh → −1, these diagrams are
enhanced. As discussed in [105], an on-shell analysis requires a non-trivial metric solution
which compensates effects of the mass parameter but also changes the vertices. This implies that
the physical consequences of a suppression or enhancement that originates in the value of the
mass parameter, should be taken with a grain of salt: they are based on an off-shell background
that can easily destroy the fixed-point properties. On-shell backgrounds with constant curvature
were calculated in [22,90] within the vertex expansion and the on-shell background curvature
turned out to be O(1) in units of the cutoff scale. This suggests that a natural estimate for the
on-shell analysis is given by small values of the graviton mass parameter.

3.3 Stability of the Gaußian matter fixed point

We proceed with the stability analysis of the Gaußian matter fixed point. The pivotal part of
the full system of flow equations is the matter-gravity part of the β-functions: for graviton
couplings this part may destabilise the Reuter fixed point, leaving us with no UV closure. In
turn, for matter couplings, the matter-gravity part is required for the existence of respective UV
fixed points. Therefore the following discussion is restricted to the matter-gravity part as this is
already conclusive.

Now we use that in the UV regime the matter-gravity parts of all matter-gauge couplings
are identical as are that of all Yukawa couplings

βgrav
gi
→ βgrav

g , βgrav
yq,l
→ βgrav

y , (37)

and we can restrict our analysis to the pair (βgrav
g ,βgrav

y ). For the non-Abelian gauge couplings,
the pure matter part of the β-function is negative, βmat

g2,3
∝ g3

2,3, which entails asymptotic

freedom with g2,3 → 0. Thus, the gravity part βgrav
g2,3
∝ g2,3 dominates the asymptotically

safe UV regime and is required to be negative for supporting the Gaußian fixed point with
asymptotic freedom.

The pure matter parts of the U(1) coupling is positive βmat
g1
> 0 and hence the matter-

gravity parts has to be negative, βgrav
g1

< 0. In the Yukawa beta function, the Yukawa interaction
contributes positively βmat

y ∝ y3 > 0 while the Yukawa-gauge interaction contributes negatively

βmat
y ∝ y g2 < 0. For the Gaußian matter fixed point, the matter-gravity parts have to be

negative, βgrav
y < 0. In summary, in all cases negative matter-gravity parts are required,

β
grav
g ,βgrav

y < 0.
The analysis is facilitated further as we focus on the leading order contribution and neglect

the anomalous dimensions stemming from regulator insertions in the diagrams. Then the
dimensionless Newton coupling, gh, is simply an amplitude factor in βg ,βy . In the limits
γmg→ 0 and γmg→∞, also the graviton mass parameter only changes the amplitude of the
flow as all diagrams left have the same number of graviton propagators. For all other values
of γmg, we have a competition of diagrams with one and two graviton propagators and the
value of the graviton mass parameter can change the sign of the contribution. For the analysis,
we use µh = 0. The results for other values µh can be inferred by a simple rescaling of γmg
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Figure 1: Matter-gravity contributions to the gauge beta functions βgrav
g derived from

the gauge-fermion vertex for g = 1, gh = 1, µh = 0, and different values of γmg. For
γmg = 0, βgrav

g vanishes due to an exact cancellation between the fermion anomalous
dimension and the three-point diagrams.

via γmg,µh=0 = (1+µh)γmg. Accordingly, the fixed-point values of the pure gravity sector are
irrelevant for the analysis.

We consider relative rescalings of matter and gravity cutoffs with γmg defined in (33) in
the regime

γmg ∈ [0,∞) , (38)

which indirectly allows us to also access variations of the shape functions. As the present
approximation does not allow for momentum transfers over large momentum scales, the limits
γmg→ 0,∞ can only support the UV fixed point if matter fluctuations dominate the matter-
gravity part (γmg→ 0), or gravity fluctuations dominate the matter-gravity part (γmg→∞).
These are two physically different UV scenarios whose existence is accessed in these limits:

(i) For γmg → 0 discussed in Section 3.3.1, the matter sector is not IR regularised and
quantum fluctuations of the matter fields are included at all scales. The matter propagators
lack the IR mass introduced by the regulator and hence are enhanced relative to the
graviton propagator. Therefore, this limit is a natural one for systems that are dominated
by matter fluctuations (matter matters [15]).

(ii) For γmg →∞ discussed in Section 3.3.2, the gravity sector is not IR regularised and
quantum fluctuations of the graviton are included at all scales. The graviton propagator
lacks the IR mass introduced by the regulator and hence is enhanced relative to the
matter propagators. Therefore, this limit is a natural one for systems that are dominated
by gravity fluctuations (gravity rules [16,23]).

The results of [23] entail that minimally coupled gravity matter systems should show a gravity-
dominated Reuter fixed point apart from other fixed points. Evidently, an ASSM fixed point
with a Gaußian or shifted Gaußian matter sector falls into the gravity-dominated class of fixed
points, and we shall see in Section 3.3.2 that the ASSM fixed point with a Gaußian matter
sector is supported in this limit, while the Gaußian matter fixed point is not present in the
matter-dominated limit of the matter-gravity part as shown in Section 3.3.1. Note also, that
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Figure 2: Matter-gravity contribution to the Yukawa beta function βgrav
y for y = 1,

gh = 1, µh = 0, and different values of γmg. For γmg ≈ 1.6, βgrav
y turns negative at

p/k ∼ 0.5, and for γmg ≈ 2.55 we observe a sign change at p = 0. Larger/smaller
values of gh increase/decrease the amplitude of βgrav

y .

this limit cannot work for the full system as it accesses the UV sector of the ASSM without UV
fluctuations of gravity. This is simply the UV sector of the SM which is UV unstable.

This leaves us with the question in which regime for γmg we lose the ASSM fixed point.
In Section 3.3.3 we show that this happens for γmg ≈ 1, which in our opinion is non-trivial
support for the Gaußian fixed point scenario dominated by gravity fluctuations: stability only
in one of the extreme limits γmg → 0,∞, while it may show the correct physical behaviour
also cast serious doubts on the approximation used. This is discussed in Section 3.4.

3.3.1 Matter matters: no matter cutoff with γmg→ 0

All diagrams with ∂tRmat drop out. This restates diffeomorphism and gauge consistency in the
matter sector of the ASSM in terms of standard matter parts of the Slavnov-Taylor identities.
Interestingly in this limit, the β -function of the minimal background gauge couplings vanishes
as has been shown in [25]: the non-trivial cancellation of the graviton tadpole diagram and
three-point function diagram in the graviton contribution to the background propagator is
based on a kinematic identity rooted in diffeomorphism invariance of the gauge sector in this
limit as well as the transversality of the kinetic term of the gauge field.

It is a highly non-trivial result of the present work, that this non-trivial kinematic identity
at work in the flow for the gluon two-point function in [25] extends to the same result for the
gauge-fermion coupling,

βgrav
g (p = 0) = 0 , for γmg = 0 , (39)

see also the red dot-dashed curve in Figure 1. As for the two-point functions of the gauge fields
the identity (39) is rooted in diffeomorphism invariance of the gauge sector for γmg = 0 and
transversality of the gauge field.

We emphasise that it is the above combination of diffeomorphism and gauge symmetry
leading to this non-trivial result. For the Yukawa couplings, this cancellation between tadpole,
polarisation and triangle diagrams is not present and the graviton tadpole dominates. Its
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contribution to the β-function is positive and we are led to

βgrav
y > 0 , for γmg = 0 , (40)

see also the red dot-dashed curve in Figure 2.
In conclusion, the gauge-gravity part βgrav

g , (39), supports the asymptotically free Gaußian
fixed point of the non-Abelian gauge couplings g2,3 and allows for a stable Gaußian as well as
unstable interacting fixed point for the U(1) coupling g1. Conversely, the matter-gravity part
β

grav
y , (40), is positive and no combined fixed point is present. One may speculate that the

absence of the kinematic identity in the Yukawa coupling is a truncation artefact that originates
in the lack of (modified) diffeomorphism invariance of the present approximation, also missing
in other approximations used in the literature.

3.3.2 Gravity rules: no gravity cutoff with γmg→∞

All diagrams with ∂tRgrav drop out. This reinstates diffeomorphism consistency in the pure
gravity sector of the ASSM in terms of standard gravity parts of the Slavnov-Taylor identities.
In this limit, the graviton tadpole is not present and the other diagrams lead to negative
contributions to the β-function. In summary, we are led to

βgrav
g,y (0)< 0 , for γmg =∞ , (41)

see also the green dashed curves in Figures 1 and 2. This entails, that in the gravity-dominated
UV scenario we encounter a Gaußian fixed point for all gauge and Yukawa couplings.

It is important to note that for γmg ̸= 0 the absence of the graviton tadpole can also be
simulated by a sufficiently large positive graviton mass parameter µh ≫ 0 or a sufficiently
negative cosmological constant Λ ≪ 0 in the background field approximation. This limit
suppresses the graviton propagator and leads to an artificial suppression of gravity: on-shell
a large graviton mass parameter or large negative cosmological constant does not lead to
a suppression of gravity fluctuations, and already classically gravitons are massless in the
presence of large curvatures. It is suggestive that this option is a mere truncation artefact, but
this has to be investigated in better approximations.

As in the matter-dominated limit discussed in Section 3.3.1, a change of the graviton mass
parameter only leads to a change of the amplitude of βg,y , but does not change the sign.
In short, the stability of the Gaußian fixed point in the gravity-dominated scenario persists
off-shell.

3.3.3 Crossover regime at γmg ≈ 1

So far we have analysed two limits γmg = 0,∞ and differences are expected between these
extreme choices. In the gravity-dominated limit with γmg→∞, the Reuter fixed point for the
gravity couplings exists and all matter couplings have a stable Gaußian fixed point, while the
Reuter fixed point is absent in the matter-dominated limit for γmg = 0 and only some matter
couplings have a stable Gaußian fixed point.

It is now decisive to investigate the crossover from βy > 0 to βy < 0. Remarkably, it takes
place in the regime with γmg =O(1): This hints at the fact, that the γmg-dependence is caused
by the low order of the approximation rather than being an artefact of an extreme choice of
regulators.

For γmg larger than γmg ≈ 1.6 the β-function first dips below zero at momenta p ≈ k/2,
before it turns negative for p = 0 for γmg > γ

stab
mg with

γstab
mg ≈ 2.55 , (42)

20

https://scipost.org
https://scipost.org/SciPostPhys.15.3.105


SciPost Phys. 15, 105 (2023)

see Figure 2. The value γstab
mg is very close to unity. This also entails that sign change may

also be obtained by an appropriate change of the shape function of gravity and matter fields
while keeping γmg = 1. In our opinion, this gives a hint for the viability of the stable Gaußian
fixed point scenario by the fact that the crossover between the two regimes takes place for
γmg =O(1).

3.4 Existence of the ASSM

In short, the highly relevant question of the UV stability of the ASSM and its fixed-point
properties cannot be answered conclusively in the present approximation. Future analyses
should include a discussion of the on-shell or off-shell properties or instabilities. This entails,
that we are in high demand for quantitative and qualitative upgrades, and a comprehensive
fixed-point analysis should include all possible scenarios. In our opinion, despite the deficiencies
of the present analysis, it still provides non-trivial hints for the existence of the ASSM with a
stable Gaußian fixed point for all gauge and Yukawa couplings.

The computation of the running Yukawa coupling should be improved in several aspects:
firstly, the momentum dependences of the n-point correlation functions should be taken into
account, in particular, those associated with the Yukawa coupling as discussed in Section 3.1.
Secondly, one should include tensor structures of higher-order curvature invariants and form
factors that contribute to the flow, such as, Rφψ̄ψ and Rf (∆)R. Improving the flow of the
Yukawa coupling is one of the most pressing issues of the ASSM.

In the remainder of this work, we discuss the UV-IR and the fixed-point properties of the
ASSM in the present existence scenario. This entails a sub-leading behaviour of the graviton
tadpole contributions to the flows of the matter couplings in the vicinity of the UV fixed point.
Below the Planck scale, these contributions are also suppressed, and we can safely drop the
respective diagrams. Then, the ASSM fixed point persists for all γmg and we choose γmg = 1
for the sake of simplicity. This approximation can be summarised as

γmg = 1 , and Fgrav,tad
y = Fgrav,tad

g ≈ 0 , (43)

i.e., we set the gravity-tadpole contributions to the running of the gauge and Yukawa couplings
to zero.

4 Sub-Fermi to trans-Planckian ASSM

As a first application of the fRG set-up of the ASSM we compute its UV-IR phase structure.
This includes the determination of the fundamental parameters by the respective experimental
observables that give access to a comprehensive error analysis including both, experimental
and systematic errors.

4.1 Fixing the coupling parameters of the ASSM

The physics trajectory of the ASSM is determined by matching its fundamental parameters to
their experimental IR values. These observables have to be determined from S-matrix elements
at k = 0 for the respective scattering momenta. We need to fix the following SM and gravity
couplings

(g1 , g2 , g3) , ( y⃗q , y⃗l) , λ⃗Φ , (gh ,µh) , (44)

where we have paired the parameters of the different sectors of the ASSM, the gauge couplings,
Yukawa couplings, parameters of the Higgs potential, and the Newton coupling. All SM
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Figure 3: Scale dependence of the gauge couplings, the top Yukawa coupling and
the Higgs self-coupling in the ASSM. We have omitted here the flow of the remaining
Yukawas and the flow of the curvature mass and vacuum expectation value. In the
UV regime beyond the Planck scale (indicated by a violet vertical line), all matter
couplings approach the Gaußian fixed point, including a flat Higgs potential with
two relevant directions. Below the kSSB scale (indicated by a red vertical line), the
top threshold is clearly visible in the yt , λΦ,4 and g2 flows. Moreover, for the latter
two the Higgs, W± and Z0 bosons decoupling also play a quantitative role. For scales
above k = 1017 GeV the flow of λΦ,4 is considered within the full Taylor expanded
potential.

parameters except the strong coupling g3 and the top Yukawa coupling yt are determined at
p = 0 for the physical cutoff scale k = 0.

For the EW gauge couplings, we use the experimental values for p→ 0 to fix the electron
avatars g1 = g1,e and g2 = g2,e at vanishing momentum

g1 = 0.446 , g2 = 0.618 . (45a)

For the masses (except the top mass) we ignore the difference between the Euclidean curvature
masses and the experimental pole masses, M (pole)

φi
. This leads us to

λΦ,4 = 0.129 , v = 246 GeV , (45b)

for the Higgs self-coupling and Higgs vacuum expectation value, and

yb = 0.0240 , yc = 0.00734 ,

ys = 5.46 · 10−4 , yu = 1.32 · 10−5 ,

yd = 2.76 · 10−5 , yτ = 0.0102 ,

yµ = 6.06 · 10−4 , ye = 2.93 · 10−6 , (45c)

for the Yukawa couplings at p = 0 except for the top Yukawa coupling yt . With the vacuum
expectation value v in (45b) and the Yukawa couplings in (45c), all curvature masses except
the top mass match the experimental pole masses from [106].

The Newton coupling and cosmological constant are given by

GN = (1.22 · 1019 GeV)−2 , Λ≈ 0 . (45d)
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It is left to determine the remaining two parameters, yt and g3. We first discuss the top Yukawa
coupling yt . While the identification of Euclidean curvature masses with the respective pole
mass is a qualitatively reliable approximation for low-lying masses, see [69] for a case study,
we cannot use it for the top quark mass or rather its Yukawa coupling yt : the phase structure of
the ASSM including its UV asymptotics is very sensitive to its precise value. The experimental
pole mass from cross-section measurements is given by [106],

M (exp)
t,pole = 172.5± 0.7 GeV , (45e)

with a decay width of

Γ
(exp)
t,pole = 1.42+0.19

−0.15 GeV . (45f)

In Appendix G, we analytically compute the time-like momentum dependence of the top
mass function Mt(p) at vanishing cutoff scale, k = 0. The access to the analytic momentum
dependence is rooted in the simple one-loop exact structure of the flow of the top quark
propagator. The present determination includes full resummations of diagrams due to the
iterative structure of the flow, and hence the result is very stable under further improvements
of the approximation.

This allows us to determine the pole mass of the top as a function of the Euclidean mass
parameter mt , and for the experimental value of the pole mass, (45e), we arrive at the Euclidean
mass parameter at vanishing cutoff scale, k = 0,

mt = 165.4+0.9
−0.2 GeV ↔ yt = 0.950+0.005

−0.001 , (45g)

see Appendix G. Having fixed the Euclidean mass parameter, the decay width is a prediction
and we find

Γ
(theo)
t,pole = 1.72+0.09

−0.41 GeV , (45h)

in quantitative agreement with the experimental value (45f) from the PDG. Note, that the error
in (45g) constitutes a systematic error estimate while the error in (45h) only describes the
relative weighting of QCD and non-QCD contributions, see Appendix G for details.

The error in mt in (45g) is dominated by the uncertainty of the value of the strong coupling
g3. To begin with, it cannot be determined at k, p = 0: In the deep IR, QCD is strongly
correlated and the strong coupling cannot be defined by scattering experiments. For this
reason experimental values are only present at and above the τ-scale p = 1.77 GeV, see [106].
Moreover, the definition of the strong coupling in the IR is subject to threshold effects and
non-universality beyond two loops, see the discussion in Section 2.3.1. For this reason, we fix
its value at the perturbative Z-scale. Here, its experimental value (pp/pp̄) is given by [106]

gMS
3,k=MZ

≈ 1.22 ↔ ᾱs :=

�

gMS
3,k=MZ

�2

4π
≈ 0.118 , (45i)

matching the strong coupling in an MS or MOM-scheme. In the 2+1 flavour QCD computation
in [68], it has been shown that the momentum-dependent (up-)quark-gluon coupling g3(p)
at k = 0 agrees quantitatively with that at g3,k(p = 0) for k = p for perturbative and semi-
perturbative momenta, k ≳ 4 GeV. This has been checked with lattice results as well as the
momentum-dependent fRG and DSE results from [61,70] and relates to the logarithmic running
of the (up-)quark-gluon coupling in this regime far from the up-quark threshold.

It has been shown in [70], that the MOM2 RG-scheme, used in the fRG, leads to an
enhancement of the avatars of the running gauge coupling αs(p). In pure Yang-Mills, the
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respective enhancement factor for αs is approximately 4/3 [67], dropping to an enhancement
factor of approximately 1.2 in the 2+1 flavour case (measured in the regime between 10-
40 GeV). A linear extrapolation from these two values can be done for the ASSM quark content
leading to a scaling factor of 1.07. This analysis suggests identifying

g3,k=MZ
=
Æ

1.07 (4πᾱs) = 1.26 . (45j)

However, being short of a full analysis, we show results within an estimate of the systematic
error of the choice in (45j) with

αs,k=MZ
∈
�

ᾱs, 1.10 ᾱs

�

, (46)

see also (F.5) and the detailed discussion in Appendix F.3. There and in Appendix G further
estimates and consequences are discussed.

In particular, the above scale setting of the strong coupling, and its uncertainty, has a
sizeable impact on the top Yukawa coupling and therefore in the high energy development of
the ASSM flows. For example, the seemingly small uncertainty of the strong coupling has a huge
effect on the metastability scale kmeta at which the quartic Higgs-self coupling turns negative.
We discuss this point in detail and perform a systematic error analysis in Appendices F.3 and G.

4.2 The ASSM trajectory

The scale-dependence of the ASSM parameters is depicted in Figure 3. We span momentum
scales from k→ 0 and p = 0 in the deep IR with chiral symmetry breaking and confinement to
k→∞ far beyond the Planck scale in the asymptotically safe UV fixed-point regime. While
the cutoff-scale dependence is not directly a physical momentum dependence, it relates to the
physical momentum dependence at the symmetric point. For a detailed discussion see Section 6
and [12–14].

For cutoff scales below roughly 1 TeV, the ASSM enters the symmetry broken phase, as the
effective potential of the Higgs field, VΦ,eff, develops a non-trivial minimum,

µΦ(k < kSSB)< 0 , with kSSB = 940GeV . (47)

The non-trivial background of the Higgs renders all SM fields except photons and gluons
massive. Consequently, this leads to a decoupling of the fluctuations of the respective fields
below their mass thresholds, clearly visible in Figures 3 and 4.

The Euclidean masses of the SM fields read,

mW± =
g2 v
2

, mZ =
g2 v

2 cos(θW )
, mH =

Æ

2λΦ,4 v , (48)

for the EW and Higgs bosons. The quark/lepton fields with/without the constituent mass
contribution are given in (21). The scale dependence of all Euclidean particle masses is shown
in Figure 4. From this figure, the intricacy of the particle masses can be understood. These
evolutions are important for the correct determination of observables at colliders, for example,
the weak mixing angle is especially sensitive to those.

Finally, dynamical strong chiral symmetry breaking has a sizeable impact on the (constituent)
quark mass function (21), in particular for the light flavours u, d, s. The respective u-quark-
gluon exchange coupling, defined in (C.31), is depicted in Figure 12. It decays for cutoff
scales below ∼ 1 GeV as a consequence of the QCD mass gap. Note that the avatars of the
quark-gluon exchange couplings for the different quarks vary slightly due to the different quark
wave functions, see (C.21). Moreover, the strong exchange couplings defined in (C.21) carry the
physical threshold effect of the respective gluon exchange. This threshold is not present in the
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Figure 4: Flow of all SM Euclidean masses. Plain lines correspond to the EW and
Higgs bosons, dashed to quarks and dotted to the leptons. The different particle
decoupling scales are indicated by vertical lines. For quarks, the constituent masses as
defined in (21) and obtained from [68] are also accounted. Above kSSB, the vacuum
expectation value of the Higgs and all masses vanish.

definition of the electroweak gauge couplings: the wave functions of W±, Z0 are the prefactors
of the kinetic terms, while the masses originate from the interaction of the electroweak gauge
bosons with the Higgs. These couplings are also called effective charges, e.g. [107, 108]. A
related definition in QCD, that does not show the threshold of the mass gap in QCD, is given
by the process-independent coupling or effective charge, see e.g. [109, 110]. In turn, the
respective electroweak exchange couplings with the physical mass thresholds enter directly the
ASSM flows, as do the quark-gluon exchange couplings, and directly show the decoupling of
fluctuations below the mass thresholds. Their definition is provided in (C.31) in Appendix C.5.
For an illustration of the threshold effect and their similarity with the quark-gluon exchange
couplings, they are also depicted there in Figure 12.

The exchange gauge-fermion couplings show the decoupling of fluctuations in the flows of
the fermion mass terms due to the mass gaps of the gauge bosons. A second source for the
decoupling of fluctuations is given by the mass thresholds of the fermions themselves. Finally,
the electroweak fluctuations are suppressed due to the small electroweak couplings. All these
threshold effects and the dominant nature of the strong fluctuations below the electroweak
scale are visible in Figure 4, where we show the flows of the ASSM fermion masses below
k ≤ kSSB = 940 GeV, see (47). This regime covers all matter thresholds in the ASSM.
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For k→ kSSB from below, the Higgs expectation value v drops sharply as a function of the
cutoff scale, and all fields become massless. We note that while this is reminiscent of a second
order phase transition, it should not be confused with it. This a standard behaviour of RG flows
with spontaneous symmetry breaking and, in particular, it does not carry directly the order of
the thermal electroweak phase transition.

Above the EW cutoff scale, k > kSSB, all fields are effectively massless and the β-functions
and anomalous dimensions of all marginal (logarithmically running) parameters reduce to their
universal form, and agree with that computed with perturbative methods, as do the respective
trajectories, see e.g. [111]. In turn, the flow of the dimensionful Higgs mass parameter shows
the expected quadratic running and hence is subject to quadratic fine-tuning in the UV. We
emphasise that this is technically challenging but carries no conceptual intricacy.

At sufficiently large cutoff scales the quartic Higgs self-coupling changes sign and turns
negative, see Figure 3. This indicates a metastable regime or the potential importance of
higher-order couplings. In the present ASSM setup, this happens at

kmeta = 1.2 · 1010 GeV . (49)

This value compares well with the values obtained in perturbative computations within the
MS-scheme: As discussed before, a direct translation of the RG scales is not straightforward, as
is their relation to momentum scales. However, a conservative estimate of these uncertainties
is well below an order of magnitude, and hence we identify RG scales. This entails that (49) is
well compatible with

109 GeV≲ kmeta ≲ 1011 GeV , (50)

in the MS-scheme, see e.g. [111]. A conclusive analysis requires the inclusion of higher-order
couplings in this regime [40,41,43–45,47]. Importantly, the metastability scale kmeta is very
sensitive to the size of the Yukawa coupling and hence the determination of the top quark pole
mass, discussed in detail in Appendix G. There it is shown that the largest systematic error in
the determination of the pole mass can be attributed to the uncertainty in the determination of
the running QCD coupling g3,k=MZ

, that stems from the requirement of a self-consistent RG
scheme for all scales.

In the present work, we use the estimate (45j) with a relative factor 1.07 in comparison to
the MS-value. This is a linear extrapolation of the Yang-Mills and 2+1 flavour to the ASSM
quark content with the error estimate (46), see also the discussion in Appendix F.3. Interestingly,
for αs ,k=MZ

being roughly 15% larger than the MS-value, the metastability scale approaches
the Planck scale M2

pl = G−1
N . For the strong coupling g3 ,k=MZ

, this entails a 7% enhancement,

g3,k=MZ
= 1.31 , kmeta = Mpl . (51)

An analysis of the respective systematic error is deferred to Appendix F.3, where we also show
kmeta as a function of the strong gauge coupling αs,k=MZ

, see Figure 16.
Above the Planck scale, the ASSM quickly gets dominated by gravity fluctuations, as is

the ASSM UV fixed point. This has been discussed in particular in [16,23]. Moreover, matter
contributions of the fixed-point equations of the pure gravity coupling and mass parameters
gh and µh are simply closed matter loops, and the external gravitons couple via avatars of the
Newton coupling. Consequently, the fixed-point equations for these couplings are closed and
only depend on the number of matter fields of a given kind. In the ASSM, this leads us to the
gravitational fixed point

g∗h = 0.147 , µ∗h = −0.656 , (52)
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with the cosmological constant avatars λ⃗∗h,n ≈ 0 for n ≥ 3. With the fixed-point values of
the pure gravity parameters at hand, we can discuss the qualitative properties of the trans-
Planckian asymptotic safety regime. For the physical trajectory, quantum gravity effects grow
large at about the Planck scale, and the flow is dominated by gravity fluctuations, see Figure 11
and [16,23].

In the regime dominated by asymptotically safe quantum gravity, the gauge and Yukawa
couplings are attracted towards the Gaußian fixed point. This is straightforward for the non-
Abelian gauge couplings since they are asymptotically free without gravity and gravity is always
supporting asymptotic freedom [23, 25]. For the Abelian hypercharge coupling, the gravity
fluctuations must exceed the matter fluctuations that drive the hypercharge coupling into a
Landau pole, which indeed happens here. Other works have previously explored the possibility
of a UV fixed point with non-vanishing hypercharge or Yukawa couplings. Such scenarios are
of interest since then the hypercharge or Yukawa coupling belongs to an irrelevant direction
and the respective parameter in the IR is predicted [26,29,96]. In the present work, we also
find these fixed points but they do not lead to a viable IR phenomenology since either the
hypercharge coupling or the top mass is too large. Consequently, we focus on the UV fixed
point where the hypercharge and Yukawa couplings are vanishing.

The UV Higgs sector requires special care, and it is discussed in detail in Section 5. Depend-
ing on the pure gravity fixed-point values it shows different stability and relevance properties.
For the values computed in the present approximation (52), we are left with a peculiar sit-
uation, which to our knowledge has not been discussed before: for increasing Nmax we see
a convergence of the full potential to a flat one for fields within the validity regime of the
Taylor expansion, see Figure 5. For each Nmax we have two relevant parameters whose eigen-
vectors have maximal overlap with µΦ and λΦ,max. This is reminiscent of a standard Gaußian
fixed point, but at the latter only µΦ is relevant while all λΦ,2n>2 are irrelevant. In Figure 3,
we show λΦ,4, which is obtained from the UV-IR flow of the potential (11) within the high
(converged) order of the Taylor expansion with Nmax = 17, see (12). This flow is initiated in
the vicinity of the UV fixed point and the full system is flown down to cutoff scales below the
Planck scale: k ∼ 1017 GeV. Below the Planck scale, gravity fluctuations and the higher-order
(n ≥ 3) Higgs self-couplings decouple rapidly. We have checked this also numerically, and
k = 1017 GeV is more than one order of magnitude below the decoupling regime. Hence the
higher-order couplings can safely be dropped for k < 1017 GeV, which is done here for reducing
the numerical effort. Matter effects on the expanded potential at cutoff scales close to the EW
scale have already been studied [43, 46], and their investigation in the current framework
will be done elsewhere. In this work, for cutoff scales k ≤ 1017 GeV, we continue within the
Φ4-approximation.

In summary, at the ASSM UV fixed point, we have a flat Higgs potential

λ⃗∗Φ = 0 , (53)

and in particular the coupling parameters µ∗Φ and λ∗Φ of the classical Higgs potential, (B.8).
Moreover, the ASSM has as many relevant parameters in the matter sector as the SM, and an
additional three relevant couplings in the gravity sector, that overlap with GN, µh, Λ3. This
concludes our discussion of the physical trajectory of the ASSM. For the first time, we connect
the asymptotically safe UV regime of the full SM coupled to asymptotically safe gravity to the
deep IR regime of the SM with IR-QCD with confinement and dynamical strong chiral symmetry
breaking.
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Figure 5: ASSM fixed point Higgs potential (left) and its critical exponents (right).
The Higgs potential converges towards a flat potential within the reliability regime,
which is indicated by the vertical lines as defined in (55). In contradistinction to a
standard Gaußian Higgs potential with one relevant direction, we find two relevant
directions related to the two negative eigenvalues (right) for all approximations, and
the eigendirections have strong overlap with λΦ,2 (blue triangle) and λΦ,2Nmax

(blue
circle), see Figure 6. The values rapidly converge with increasing Nmax, see (56). This
rapid convergence is also seen for the lower lying positive eigenvalues, while the
convergence of the large ones would require larger Nmax. The parameter space where
such a non-trivial flat potential exist is indicated as the green regime in Figure 9,
which includes the ASSM fixed point.

5 Fixed-point Higgs potential and the properties of the ASSM fixed
point

In this section, we discuss the emergence of the full fixed-point potential of the Higgs field
within a high-order Taylor expansion, see (25). This enables us to discuss the fixed-point
properties of the ASSM, and in particular the number of relevant parameters and their stability.
Moreover, we discuss the location of the ASSM fixed point in the fixed-point landscape.

In particular, the analysis in this section reveals a novel non-trivial fixed point of the ASSM
that has not been seen before: the Taylor expansion of the Higgs fixed point potential u∗(ρ̄)
converges to a flat potential u∗(ρ) ≡ 0 with two relevant directions in contradistinction to
a standard Gaußian fixed point with one relevant direction, see Figure 5. Such a potential
cannot be identified within a low order of the Taylor expansion, and certainly, it cannot be
seen within the standard Φ4 approximation. Moreover, the two relevant directions cannot be
revealed in a global analysis of such a fixed point without a full stability analysis including the
computation of the relevant eigenperturbations, see Figure 7. In short, it is easily overlooked.
Interestingly, a rather similar fixed-point pattern has been seen very recently for an effective
potential u((∂µϕ)2) in a shift-symmetric setting, see [112]. While there the novel fixed point
has been attributed to shift symmetry, in the present case, the flat non-trivial fixed point is
revealed for the ASSM with its explicit breaking of shift symmetry.

Besides being a novel fixed point, its relevance comes from the fact that in the current
approximation this fixed point is indeed connected with the physical SM (with the parameters
fixed by experimental observables) in the IR. In turn, the standard Gaußian fixed point is
obtained with a vanishing coupling for the most relevant (non-polynomial) operator. However,
it is not connected to the physical SM within the present approximation: the resulting Higgs
and top mass are roughly 3 GeV from the central experimental values. Whether this distance is
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close or feasible is subject to the evaluation and interpretation of the systematic error of the
present approximation. This is but one of the reasons for the rather detailed description of the
systematic error estimates in the present work.

We emphasise in this context that the stability aspects of such an analysis are only fully
conclusive if the following three aspects are taken into account:

First, within an Einstein-Hilbert truncation, the gravity-matter fixed point with minimally
coupled matter can be mapped to the pure gravity fixed point, see [23]. Any approximation
that shows instabilities in this approximation, lacks credibility also in improved ones. It is
the R2, R2

µν and C2
µνρσ tensor structures, that can trigger instabilities or qualitative changes

similar to the Bank-Zaks in QCD as also argued in [23].
Secondly, a full Higgs potential is required. In fact, the Φ4 truncation of the Higgs potential

shows an unstable fixed point potential withµ∗Φ = 0.286 andλ∗Φ,4 = −10.8, which is qualitatively
different from the solution it converges to, as we will show in this section.

Finally, one has to include gravity-induced matter interactions as discussed in [21,28,55,77]
that are relevant for the discussion of a potential weak gravity bound, see [77,81,113].

The current work takes the two first aspects partially into account: we consider a high-order
Taylor expansion of the Higgs potential, and the gravity vertices used contain higher order
momentum dependences that are generated by the higher order curvature invariants, for a
respective discussion, see [14,64], where it is argued that the R2

µν is approximately absent at
the fixed point.

5.1 Higgs fixed-point potential

In this section, we discuss the Higgs fixed-point potential as obtained within a high-order Taylor
expansion. We will see that the potential rapidly converges towards a flat potential with two
relevant directions. This analysis is augmented with a resolution of the eigenperturbation,
the respective linear differential equation being of the Sturm-Liouville type. Hence, both the
eigenperturbation as well as the fixed-point potential take the form of Kummer functions, and
the coefficient of the fixed-point potential vanishes.

5.1.1 Taylor expansion of the fixed-point potential

We use a high-order Taylor expansion of the dimensionless Higgs potential u(ρ̄) about vanishing
field, see (25). At the UV fixed point, the other SM couplings are vanishing, see Figure 3, and
the gravity couplings take their fixed-point values, see (52). The fixed-point equation for the
Higgs potential u(ρ̄) reads

FPu(u
∗) = 0 , with FPu(u) =Du− Flowu , (54a)

where Flowu[u(ρ̄), ρ̄] comprises the flow diagrams for VΦ,eff divided by k4, and subtracted at
ρ̄ = 0. This subtraction leads to u(0) = 0 and eliminates the overlap of the Higgs potential
with the cosmological constant. The scaling part is given by Du and reads

Du=
�

4− (2+ηΦ) ρ̄ ∂ρ̄
�

u(ρ̄) . (54b)

The operator D generates full scalings on the potential u including the anomalous part, and
hence Du comprises the scaling parts of the fixed-point equation. Note that the part 4 entails
the canonical dimension of the potential, and in general we have 4→ dϕ for Dϕ, where dϕ is
the full scaling dimension of the function ϕ(ρ̄).

As the Yukawa and gauge couplings vanish at the fixed point, Flowu only receives contribu-
tions from Higgs and graviton loops. In the present work, we use a high-order Taylor expansion
of the potential. While this converges rather quickly for small ρ̄, we have to carefully evaluate

29

https://scipost.org
https://scipost.org/SciPostPhys.15.3.105


SciPost Phys. 15, 105 (2023)

the reliability regime and the radius of convergence of the expansion. Accordingly we define
the reliability regime by ρ̄ ∈ [0, ρ̄max] with ∆u= u− u0,

ρ̄max =max
ρ̄

(

ρ̄

�

�

�

�

|FPu(∆u∗)|
q

(D∆u∗)2 + Flow2
u(∆u∗)

≤ 1%

)

, (55)

i.e., we aim at a relative accuracy of 1% in our fixed-point search. Furthermore, we only
take into account potential fixed-point solutions for which the lower critical exponents display
convergence, in particular the relevant (negative) ones. Naturally, the higher ones are less
stable as they are sensitive to the dropped even higher-order couplings ΛΦ,n with n > Nmax.
Fixed-point potentials that do not satisfy these criteria are not considered.

At the ASSM fixed point, we find one non-trivial fixed-point solution, displayed in Figure 5
for Nmax = 2, ..., 17. We observe that the solution converges towards a flat potential within
the reliability regime of the Taylor expansion and only outside of the regime we encounter
an instability. Moreover, the reliability regime is growing with each order of the expansion.
This is observed in the Nmax-dependence of the ratio of the highest-order coupling and the
second-highest one, ru(Nmax) = |λΦ,2(Nmax−1)/λΦ,2Nmax

|. For ρ̄ = ru, the highest-order term is
equal to the second-highest one, and we expect convergence for ρ̄≪ ru(Nmax). We find that ru
grows and reaches ru ≈ 0.1 at Nmax = 17. A simple extrapolation to Nmax →∞ leads us to
ru ≈ 0.23. We expect the same tendency for the convergence radius of the Taylor expansion.
Furthermore, we analysed the potential at a fixed field value ρ̄ ⊂ [0, ρ̄max] as a function of the
expansion order Nmax. The functional behaviour is roughly given by 1/Nmax for any ρ̄ chosen
and thus the potential value in the Nmax →∞ limit is compatible with zero. This provides
further evidence that the fixed-point potential is indeed converging towards a flat potential.

The eigenvalues are discussed in detail in Section 5.1.3 and are displayed in the right panel
of Figure 5. The eigenvalues converge well, in particular, the most relevant ones. Importantly,
the fixed point potential has two relevant parameters with eigenvalues

θ1 = −1.93± 2 · 10−3 , θ2 = −0.811± 7 · 10−5 . (56)

Flat potentials with two relevant directions are qualitatively different from the standard Gaußian
potential. The latter potential only has one relevant direction at the ASSM fixed point with

the eigenvalue θΦ2,Gauß = −2+
3g∗h

(1+µ∗h)
2π
≈ −0.811 equal to θ2 in (56). Naturally, this FP is

embedded in the two-dimensional critical surface of the non-trivial flat fixed point if using a
vanishing coupling for the operator related to θ1.

This begs the question of how the solution in Figure 5 can converge towards the flat potential
but retain a stable second relevant direction. For that purpose, we investigate eigenvectors v(i)

and eigenfunction ϕi(ρ̄), which are related with

ϕi(ρ̄) = ci(Nmax)
Nmax
∑

l=0

v(i)l ρ̄
l , (57)

with an Nmax-dependent normalisation ci. For our evaluations within the Taylor expansion,
the coefficient of the constant part, v(i)0 , drops out and hence we do not consider it here. In
Section 5.1.2, we will discuss the full (global) solution of the eigenfunctions including their
constant parts. The constant part u0 = u(ρ̄ = 0) of the potential is related to the cosmological
constant

u0 =
λh,0

8πgh
, u∗0 =

1
16π2

�

24−
3

1+µ∗h

�

, (58)
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with λh,0 as defined in (22). Note that λh,0 or rather its dimensionful version Λh,0 = k2λh,0 is
the observable cosmological constant at k = 0. It is an irrelevant coupling, as its dynamical
role is taken by µh = −2λh,2.

The normalisation with ci is required as the fixed-point potential vanishes in the limit
Nmax →∞, and so does the norm of all eigenvectors v(i). Accordingly the normalisation ci
has to be chosen such that the eigenvectors v̄(i) converge with a finite norm, leading also to
converging eigenfunctions ϕi. Accordingly, a convenient choice for ci is given by the inverse
of a specific v(i)li

(Nmax) with a fixed li. It is suggestive to choose li = 1 for all i. However,

since potentially v(i)1 = 0 for some eigenfunctions ϕi , this choice may not work globally. In the
present case, we are only interested in i = 1, 2, where we indeed can choose

ci(Nmax) =
1

v(i)1

, for i = 1, 2 . (59)

We remark that the above construction only works if the respective eigenfunctions are well-
defined in the limit Nmax→∞. We shall see that this is indeed the case, which provides further
non-trivial evidence for the existence of the novel ASSM fixed point with a flat Higgs fixed
point potential with two relevant directions.

5.1.2 Eigenperturbations and the full fixed-point potential

We briefly discuss the computation of the eigenfunctions from their respective fixed-point
equations. Any potential can be expanded about the fixed-point solution in terms of the
eigenfunctions,

u(ρ̄) = u∗(ρ̄) +
∑

i

bi ϕi(ρ̄) , (60)

where the eigenfunctions carry the scaling of the respective eigenperturbation with the eigen-
value θi . Hence, the flow of the ϕi(ρ̄) in the vicinity of u∗(ρ̄) is given by

∂tϕi(ρ̄) = θi ϕi(ρ̄) . (61)

This entails that the relevant perturbations die out with exp(θi t) when approaching the UV
fixed point as θi < 0. In turn, the irrelevant ones grow with exp(θi t) as θi > 0.

We have shown above how the eigenfunctions ϕi(ρ̄) can be constructed from the v(i). They
can also be derived from the respective fixed-point equation. For this derivation, we start with
a potential that simply is the sum of the fixed-point potential u∗(ρ̄) and a perturbation in a
given eigendirection i,

u(ρ̄) = u∗(ρ̄) + ϵϕi(ρ̄) , (62)

with an infinitesimal parameter ϵ. This is inserted in the flow and expanded in ϵ. The zeroth
order in ϵ is simply the fixed-point equation for the Higgs potential, leading to a potential
converging to u∗(ρ̄)≡ 0. This implies that the fixed-point equation for the potential can also be
expanded in powers of u∗ and hence we can relate u∗ to the eigenfunction ϕ0 with vanishing
eigenvalue in (61),

u∗(ρ̄) = u∗0 +ϕ0(ρ̄) , with θ0 = 0 , (63)

with u∗0 related to the cosmological constant, see (58). In (63), we have used that u(ρ̄)→ u∗0
when approaching the UV fixed point.
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Figure 6: Weighted and normalised eigenvectors at order Nmax = 17. The most
relevant eigenvalue θ1 = −1.93 has the largest overlap with the highest order coupling
λΦ,34. Otherwise we observe a clear correspondence between order of the coupling
and relevance, i.e., θ2 = −0.811 has the largest overlap with µΦ, θ3 = 1.20 with λΦ,4,
etc.

The linear order of the flow equation of u(ρ̄) gives the differential equation for the eigen-
perturbations ϕi(ρ̄) with

Dϕi(ρ̄)− Flowu(ϵϕi(ρ̄))
�

�

O(ϵ) = 0 , (64)

where the flow term leads to further terms linear in ϕi , ϕ
′
i , and ϕ′′i . The full scaling Dϕi of the

eigenfunction ϕi reads

Dϕi(ρ̄) =
�

(4+ θi)− (2+ηΦ) ρ̄ ∂ρ̄
�

ϕi(ρ̄) . (65)

In the present case with a vanishing fixed-point potential u∗(ρ̄) ≡ 0, the coefficients of the
different ρ̄-derivatives of ϕi(ρ̄) are at most linear in ρ̄. After an appropriate redefinition of the
eigenvalue, the scaling equation for the eigenperturbations reduce to that in a simple scalar
theory,

(4+Θi)ϕi(ρ̄)− (2+ηΦ) ρ̄ ϕ′i(ρ̄) +
1

16π2

�

2ϕ′i(ρ̄) + ρ̄ ϕ
′′
i (ρ̄)

�

= 0 , (66a)

with the shifted eigenvalues Θi ,

Θi = θi −
3
π

g∗h
(1+µ∗h)

2
. (66b)

In (66a), the full anomalous dimension of the Higgs field is proportional to u′0 = ∂ρ̄u∗(0),

ηΦ =
3gh

π

(2+µh)
(1+µh)2

u′0
�

1+ u′0
�2 , (66c)

and hence vanishes on the fixed point u∗(ρ̄) = 0. This is a peculiarity of the gravity gauge fixing
used here, the de-Donder gauge with α= 0 and β = 1 [16]. For general α and β , the Higgs
anomalous dimension is present but this does not change the solution of (66) qualitatively.

In (66a), we have dropped the constraint u∗(0)≡ 0 by simply omitting the subtraction of
the flow at ρ̄ = 0. The latter would lead to ϕ′(ρ̄)→ ϕ′(ρ̄)−ϕ′(0) in the square bracket. Apart
from the slight simplification of the equation, dropping the subtraction also allows us to discuss
the cosmological constant with the eigenvalue Θ0 = −4.
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With (66b), the scaling equations (66a) are identical to those in a scalar SU(2) theory: the
square bracket contains the contribution 3/2ϕ′i(ρ̄) from three Goldstone modes, while the rest,
1/2ϕ′i(ρ̄) + ρ̄ ϕ

′′
i (ρ̄), stems from the radial Higgs field.

The scaling equations (66) are of the Liouville-Sturm type for general Θ, and the solutions
ϕi(ρ̄) are Kummer’s function of the first kind [114–116],

ϕi(ρ̄) = ci M
�

−
4+Θi

2
, 2, 32π2ρ̄

�

, (67)

with free normalisations ci. In (67), we have used ηΦ = 0 for the present setup, the general
solution is provided in Appendix D.

We are specifically interested in the ρ̄→∞ behaviour of the eigenperturbations ϕi(ρ̄). For
Θi = −4+2n with n ∈ N, Kummer’s function M in (67) reduces to a polynomial of order 2+Θi/2.
In turn, for all other Θ’s the solutions grow exponentially with exp

�

32π2ρ̄
�

for ρ̄→∞. Hence,
the eigenfunctions and the potential are best expanded in Hermite polynomials, and the basis
is square integrable with a unique solution for the potential. More details are provided in
Appendix D.

The above analysis enables us to extend the fixed-point solutions u∗(ρ̄) = u∗0 +ϕ0(ρ̄) with
c0→ 0 and the eigenperturbations ϕi>0 to the full ρ̄-range. We concentrate on the fixed-point
potential and fix the sign of the prefactor c0 → 0 with the first derivative ϕ′0(0) > 0. This
entails sign(c0)< 0 and hence the fixed point potential diverges with −exp

�

32π2ρ̄
�

for large
ρ̄. Evidently, this cannot be the global solution, while u∗(ρ̄) = 0 is. It is suggestive that as in
Dilaton gravity the coupling of the Higgs to the curvature scale as well as a ZΦ(ρ̄) is needed to
arrive at a global solution. While this still suggests a potential with two relevant directions as
the qualitative properties of the Taylor expansion remain unchanged, this global solution may
also incorporate a non-trivial potential. While this is a highly relevant question, its resolution
is beyond the scope of the present work and is left for future work.

5.1.3 Critical exponents and relevance

We introduce the weighted and normalised eigenvectors [117] of the critical exponents. This
rescaling and normalisation are determinant to quantify the real overlap of each operator within
each direction. The ‘ad hoc’ determined eigenvectors are known to be spuriously dominated by
the highest orders of the expansion and therefore an equal weight of each operator must be
imposed. The normalised eigenvector associated with the i-th critical exponent is defined as

w̄(i)l =
ζl v(i)l

s

∑N−1
m=0

�

�

�ζmv(i)m

�

�

�

2
, (68)

where ζl are the rescaling vectors to the ‘ad hoc’ determined eigenvector v(i)l with directions
l ⊂ (µΦ,λΦ,4,λΦ,6, . . . ), see [117] for a detailed derivation.

The coefficients of the weighted eigenvectors are depicted in Figure 6. We observe that
the eigenvector ω̄(2) of the eigenvalue θ2 = −0.811 has the largest overlap with µΦ. Indeed,
solving the fixed-point equation for the respective eigenfunction ϕ2(ρ̄) in (67) for the exact
eigenvalue Θ2 = −2 with c2 = −1/(16π2), we find the exact solution

ϕ2(ρ̄) = ρ̄ −
1

16π2
. (69)

The constant comprises the overlap with the cosmological constant which is not present in u(ρ̄)
with its normalisation u(0) ≡ 0. Accordingly, it should be subtracted. Thus, the eigenvector
v(2) of the full solution points exactly in the µΦ direction, as does ω̄(2) = (1, 0, ....). In turn, the
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Figure 7: Eigenfunction 1+ ϕ1(ρ̄) of the most relevant critical exponent θ1: full
solution (dashed black), see (67), and different expansion orders Nmax = 2, ..., 17.
The properties of ϕ1 are best seen if plotted on a double logarithmic scale, hence we
show 1+ϕ1(ρ̄)≥ 0 with the normalisation c1 = −1 in (68). The rapid convergence
of the Taylor expansion towards the full solution is clearly seen. We also depict the
reliability regime of the Higgs fixed-point potential u∗ with the vertical lines as defined
in (55).

numerical solution of the fixed-point equation for ϕ2 and the eigenvector ω̄(2) derived from
the fixed-point potential u∗ and depicted in Figure 6 also includes higher-order terms. The
latter originate in the subleading corrections in θ2 in comparison to the anomalous dimensions
in the fixed-point equation and give an estimate for the numerical accuracy of the θi. These
terms grow large for large ρ̄ and are an additional source for the finite validity range of the
current Taylor expansion observed in the fixed-point potential, see the left panel in Figure 5.

The eigenvectors ω̄(i) of the higher eigenvalues θi>2 are not exactly aligned with one
coupling as it is the case for ω̄(2). Hence, the respective eigenfunctions ϕi are not monomials.
However, the normalised eigenvector ω̄(3) of the eigenvalue θ3 = 1.20 has the (by far) largest
overlap with λΦ,4, the eigenvector ω̄(4) of the eigenvalue θ4 = 3.37 overlaps dominantly with
λΦ,6, and in general the normalised eigenvectors ω̄(i) of θi have the largest overlap with λΦ,2i−2
for i ≤ 2. This matches the expectation from the mass dimension of the operator.

The eigenvector ω̄(1) of the most relevant direction with the eigenvalue θ1 = −1.93 has
the largest overlap with the highest-order coupling, that is with λΦ,Nmax

. We emphasise that in
the present case with a flat effective potential this is expected and almost required: in a Taylor
expansion this is arranged (for small enough fields) by a cancellation between all monomials,
leading to relatively large Taylor coefficients which trigger the observed relevance ordering.
Indeed, this is confirmed within a comparison of the global solution ϕ1(ρ̄) in (67), which is not
a polynomial, and hence features growing Taylor coefficients. Indeed, the high-order Taylor
expansion approaches the global solution (67) as depicted in Figure 7. There we also depict
the reliability regime of the Higgs fixed-point potential with the vertical lines as defined in
(55). We could have defined a reliability regime analogously to (55) by simply substituting
∆u∗(ρ̄)→ ϕi(ρ̄) and D (∆u∗(ρ̄)) with (65). A more conservative estimate arises from using
the reliability regime of the Taylor expansion of ∆u∗(ρ̄). Evidently, the latter leads to a smaller
reliability regime since ∆u∗(ρ̄)→ 0 and the denominator in (55) is vanishing in the large Nmax
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Figure 8: The fixed-point potential ϕ0(ρ̄) defined with (63). We compare the full
solution (dashed black), see (67), and with different orders in the Taylor expansion
Nmax = 2, ..., 17. We choose a fixed normalisation with a negative c0 = −1 which im-
plies ϕ′0(0) = 221.9. This captures the sign of the actual normalisation c0(Nmax)→ 0−:
it goes to zero from below in agreement with the vanishing fixed-point potential u∗ ≡ 0.
The rapid convergence of the Taylor expansion towards the full solution is clearly
seen.

limit, apart from the absolute convergence of the fixed-point equation. Hence, we resort to the
reliability estimates from the potential throughout as a conservative estimate.

The same analysis can be done for the fixed-point potential u∗(ρ̄) with the form (63): for
k→∞ the potential converges towards its constant part u∗(ρ̄) = u∗0 which is related to the
cosmological constant with (58). Accordingly, the ρ̄-dependent part converges towards ϕ0(ρ̄)
with a prefactor c0(Nmax)→ 0. This expectation is confirmed by the explicit comparison, see
Figure 8. There, we show the Taylor expansion of the potential for various Nmax in comparison
to the full solution ϕ0(ρ̄). In Figure 8, we fix the normalisation c0 of ϕ0(ρ̄) defined in (67) as
c0 = −1, implying ϕ′0(0) = 221.9. A fixed negative c0 is taken as the Taylor expansion implies
that c0(Nmax) approaches zero from below. As is evident from Figure 8, the Taylor expansion is
converging rapidly towards ϕ0(ρ̄) with c0(Nmax)→ 0−. This fully confirms the structure of the
solution already seen in the Taylor expansion.

Finally, this global analysis entails that for finite k the potential cannot approach the
fixed-point potential in terms of the Kummer function. This is reminiscent to the situation
in dilaton gravity where the effective potential had to be augmented with a field-dependent
scalar wave functions and a field-dependent Newton coupling in order to access the global
solution [118,119]. The highly relevant question, whether the present solution can be extended
to a global one, will be discussed elsewhere.

5.2 Higgs potential landscape

We now proceed with an analysis of the landscape of possible Higgs fixed-point potentials
in dependence of the gravity parameters, g∗h and µ∗h. This analysis explores the stability of
the Higgs fixed-point solution under the variation of gravity parameters given that there is a
big uncertainty on the gravity fixed-point values. We investigate the regime g∗h ∈ [0,1] and
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Figure 9: Fixed-point phase diagram of the scalar potential. In the green region,
we observe the existence of a flat potential with two relevant directions, while in
the lime region additionally a stable potential with zero relevant directions exists.
In the red region, we find an unstable potential with one relevant direction. The
boundary curves are described with (71) and (73). The effective gravity coupling is
approximately given by g∗h/(1+µ

∗
h)

2, see (75a), and it grows from the green to the
red region. The blue circle segment avoids this redundancy as it is close orthogonal to
the boundary lines. The Higgs potential corresponding to (SM) is shown in Figure 5,
while the potentials for (A) and (B) are shown in Figures 14 and 15 in Appendix E.

µ∗h ∈ [−1,0]. We will argue later that g∗h and µ∗h can be combined into an effective gravity
coupling and therefore the range of parameters gives us a complete view on the Higgs fixed-point
solutions. The resulting phase structure of the UV fixed point is depicted in Figure 9.

Apart from the standard Gaussian fixed-point potential, that exists for all values of g∗h and
µ∗h, we find three further non-trivial types of fixed-point potentials. The first is the non-trivial
flat potential discussed in the previous section, see Figure 5, whose two-dimensional critical
manifold naturally includes the standard Gaußian FP with one relevant direction mentioned
above. This non-trivial FP with a flat fixed-point potential exists in a rather large parameter
space, depicted in green in Figure 9. At the upper and lower boundary of the green region, one
of the critical exponents approaches zero and it is suggestive that the fixed point vanishes due
to a fixed-point collision. At the upper boundary, the second smallest eigenvalue θ2 approaches
zero, while at the lower boundary, the third smallest eigenvalue θ3 approaches zero.

We also find a stable fixed-point potential with no relevant directions. This fixed-point
potential exists only in the small lime-green band where it exists simultaneously with the
non-trivial flat potential discussed before. We display the potential and the critical exponents
of point (B) in Figure 15 in Appendix E. The upper boundary of this region coincides with
the upper boundary of the green region: it is precisely the collision of these two fixed-point
solutions that determine the end of these regions. At the lower boundary, the stable potential
solution is lost, resembling a fixed point going to infinity.

The stable fixed-point potential has no relevant directions, and hence all parameters of the
IR Higgs potential are fixed by the other couplings: It is a predictive fixed point, and specifically
the ratio between Higgs and top mass as well as the ratio between EW and Planck scale are
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predictions. However, we find that in the current approximation the potential does not enter a
symmetry-breaking regime in the IR and can therefore not be connected to SM physics.

The third fixed-point potential is unstable with one relevant direction, present in the red
region of Figure 9. We display the potential and the critical exponents of point (A) in Figure 14
in Appendix E. Due to the instability of the potential, we consider this solution to be unphysical.

In summary, in the present approximation only the non-trivial solution in the green region
is physical and compatible with the SM in the IR. We remark that the stability analysis here
only takes into account the convergence regime of the Taylor expansion, no conclusion about
the global stability properties of the potentials can be drawn.

The boundary between the red and lime-green region is determined by a fixed-point collision
and the eigenvalue corresponding to the Φ2 direction approaching zero. This allows us to
analytically determine the boundary. For a fixed order in the Taylor expansion, both, the
non-trivial flat potential and the stable potential, become flatter and we can evaluate the
eigenvalue of the Φ2 direction for vanishing Higgs couplings. Then the eigenvalue is given by

θΦ2 = −2+
3 g∗h

π(1+µ∗h)
2

, (70)

where −2 is the canonical value and the second term is the shift due to gravity. Solving for
θΦ2 = 0, we obtain the boundary

3
2π

g∗h = (1+µ
∗
h)

2 , (71)

which is precisely the boundary line between the red and lime-green region in Figure 9.
The lower boundary of the green region is given by θΦ4 = 0, which we can again evaluate

for vanishing Higgs couplings in the vicinity of the boundary. The eigenvalue is given by

θΦ4 =
3 g∗h

π(1+µ∗h)
2

. (72)

Therefore the boundary extends up to vanishing Newton coupling. Note also, that the solution
does not exist on the boundary, g∗h = 0.

We could not obtain the lower boundary of the lime-green region analytically. In fact, we
found that the boundary is well described by a fractional power

0.6 g∗h = (1+µ
∗
h)

1.85 , (73)

which indicates a non-trivial competition between diagrams with g∗h/(1+µ
∗
h)

2 and those with
g∗h/(1+µ

∗
h).

The above analysis emphasises, that Figure 9 is effectively a one-dimensional plot since
typical diagrams contain

(g∗h)
n

(1+µ∗h)
m

, n, m ∈ N . (74)

Typical combinations are (n, m) = (1,1) and (n, m) = (1,2), a detailed analysis can be found
in [23]. Accordingly, a smaller Newton coupling g∗h is similar to a larger mass parameter µ∗h.
We define the effective fixed-point (Newton) coupling

ĝ∗ ≈
g∗h

(1+µ∗h)
2

, (75a)
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which grows from the green to the red region

ĝ∗green ≲ ĝ∗lime-green < ĝ∗red , (75b)

potentially implying a weak gravity bound ĝ∗ < ĝ∗red. Note that in an on-shell approximation the
two-dimensional plot Figure 9 collapses to a line as this approximation lacks any µ∗h-dependence,
and (75b) follows.

6 IR-predictivity & systematics

In this section, we discuss the physics of the UV fixed point that has been presented in Section 5
and also evaluate the systematic error in the current truncation. In the present approximation,
the ASSM lies in a regime with a non-trivial but flat Higgs potential with two relevant directions.
Consequently, the matter sector of the ASSM has as many relevant parameters as the SM.
Additionally, the gravity sector shows another two relevant directions: the cosmological constant
and the scalar curvature (Ricci scalar). The number of relevant directions in the gravity sector
is expected to increase to three, including the Ricci-scalar squared term, upon improving the
truncation [64,117,120–122].

The non-trivial flat Higgs potential has two relevant parameters but nonetheless, we need
to study which IR values can be reached from this fixed point. We observed in Figure 5 that
the fixed point is approached from below. This translates into the requirement of a negative
quartic Higgs-self coupling around the Planck scale. Lowering the top mass leads to a larger
metastability scale and eventually to a positive quartic coupling at the Planck scale. The
values of the pole masses MH and Mt that can be reached are displayed by the green regime in
Figure 10. The boundary of this green region is given by the plain white line which contains
all points that connect to the standard Gaußian Higgs potential in the UV. The white dashed
lines in Figure 10 display our estimated error on this Gaußian line based on the uncertainty
of the strong coupling. Additionally, for illustrative purposes, we show green and red shaded
regimes for ±1,2,3,4,5% variations of the top mass determination. The standard Gaußian Higgs
potential has a higher predictivity since it has one relevant parameter less and therefore it
relates the values of the Higgs and top masses, as displayed in Figure 10. The values of MH and
Mt in the red region connect neither to the non-trivial flat Higgs potential nor to the standard
Gaußian Higgs potential. In fact, we did not find any viable UV completion for these points.

The blue ellipses in Figure 10 display the experimental uncertainties of MH and Mt at 1σ,
3σ, and 5σ. The ellipses are in the green region and the central values are at an approximate
distance of 2.9 GeV to the standard Gaußian fixed point marked by a white line. Due to this
vicinity, it is highly important to discuss the uncertainties going into the present computation.

We have identified four systematic error sources within our computation, and below we
discuss their influence on the top-mass determination:

(i) The first systematic error source concerns the location of the UV gravity fixed point. We
expect the errors on the values of the gravity fixed point to be rather large, and this influences
the running of the SM couplings in particular through threshold effects around the Planck scale.
We tested this error source by varying the UV fixed-point values and found a very subleading
effect on the location of the standard Gaußian line in Figure 10. The reason is that the threshold
effects at the Planck scale are washed out through the long RG running to the IR. We estimate
that this effect is smaller than 0.1 GeV. Importantly, the gravity fixed-point values determine
the existence of the non-trivial but flat Higgs fixed-point potential, see Figure 9, and thus the
existence of a green regime in Figure 10.

(ii) The second error source relates to the conversion from Euclidean curvature mass to
pole mass discussed in detail in Appendix G: the wave function Zt(p) of the top quark has a
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Figure 10: Values of MH and Mt that can be reached from the non-trivial flat Higgs
potential presented in Figure 5 (green region), that can be reached from the standard
Gaußian fixed-point Higgs potential (white line), and that cannot be reached from
either fixed point (red region). The white shadings show the 1%, . . . , 5% error bands.
The blue ellipsis displays the SM experimental measurement at 1σ, 3σ, and 5σ. The
upper and lower dashed lines correspond to the Gaußian fixed-point trajectory for
αs,k=MZ

= 1.1 ᾱs and αs,k=MZ
= ᾱs respectively.

negligible cutoff dependence for k ≤ kSSB = 930 GeV, see Figure 18. This also entails a negligi-
ble momentum dependence for p ≲ 103 GeV, see Section 2.2.1 and Appendix G. Hence, we have
approximated the wave function with a constant one in this regime also for timelike momenta
of the same size, Zt(p)≈ 1 for at least |p2| ≤ (200GeV)2. From the minimal variation of the
cutoff dependence in Figure 18 in this regime, we estimate the respective systematic error with
0.5%, which translates into an error of roughly 0.8 GeV for the top pole mass determination,
see also Section 2.2.1. An additional uncertainty stems from the strong coupling, as discussed
in the next point. For the translation of Euclidean curvature mass to pole mass, this leads to an
error of +0.9

−0.2 GeV, see (45g).

(iii) The largest systematic error stems from the uncertainty on the strong coupling, due
to the translation of the MS-value at p = MZ , ᾱs, to the MOM2 value used here, αs, see Ap-
pendix F.3. From results in pure Yang-Mills and 2+ 1 flavour QCD [67,70], we extrapolated
that the conversion factor is given by αs,k=MZ

= 1.07 ᾱs in the ASSM, see (45j). This choice
corresponds to the central white line in Figure 10. We use the interval αs,k=MZ

∈ [ᾱs, 1.10 ᾱs],
see (46), to estimate our error in this identification. Using αs,k=MZ

= ᾱs shifts the standard
Gaußian line by −2.6 GeV in the top mass, see the lower white dashed line in Figure 10, while
using αs,k=MZ

= 1.1 ᾱs shifts the standard Gaußian line by +0.9 GeV in the top mass, see the
upper white dashed line in Figure 10, which touches the 5σ band of the experimental error.
For αs,k=MZ

≈ 1.15 ᾱs, the standard Gaußian line goes through the central experimental values
since the metastability scale reaches the Planck scale, see (51), and the non-trivial flat potential
needs to be approached from below, see Figure 5. A better control over this error would require
a fully self-consistent computation of the strongly coupled IR-QCD sector with all SM flavours.

(iv) The last source is the remaining truncation error of the running couplings after taking
into account the errors (i) to (iii). Here we neglected, for example, some momentum depen-
dences and higher-order contributions due to the anomalous dimension, see the discussion in
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Appendix F.1. We observed that the inclusion of the next order in the anomalous dimensions
only had a subleading effect. Note that the matter couplings approach their Gaußian fixed
point in the trans-Plankian UV regime with a power-law and the uncertainty of the gravity fixed
point is already taken into account in (i). From this we conclude that the remaining truncation
error comes predominantly from the sub-Planckian regime. In this regime, perturbation theory
is mostly applicable, and the dominant errors are already taken into account with (ii) and (iii).
Furthermore, our truncation includes all IR threshold effects, and therefore we believe that
this source of error is subleading and smaller than 1 GeV.

In summary, the experimental values of the Higgs and top mass can be reached from the
non-trivial flat Higgs potential with two relevant directions (56). The standard Gaußian fixed
point has a distance of roughly 2.9 GeV from the central experimental values, which is similar
but smaller than the sum of the errors listed above. This gives us confidence that the ASSM is
not in the red regime, which we consider as non-trivial evidence for the existence of the ASSM.
With the systematic errors listed above, we also consider it viable, while not most likely, to
reach the SM values of MH and Mt from the standard Gaußian Higgs potential.

In the present work, we have solely discussed the minimal ASSM. Hence, physics properties
such as the stability considerations and the location and properties of the UV fixed points may
change even qualitatively with the introduction of beyond SM degrees of freedom. These are
relevant for a comprehensive discussion of open cosmological questions such as dark matter. A
survey of asymptotically safe beyond SM theories, and in particular the impact on the stability
of the Higgs potential and the physics properties of the UV fixed point is a natural and highly
relevant extension of the present work. We hope to report on this in the near future.

7 Conclusions

In the present work, we have presented a comprehensive analysis of the phase structure of the
Asymptotically Safe Standard Model (ASSM). The present analysis includes several qualitative
improvements:

Firstly, RG-consistent flows have been derived and all flows carry the physical threshold
effects required for a quantitative determination of the physical point in the parameter space
of the ASSM. Secondly, in the deep IR the present approximation to the ASSM contains QCD
with confinement and chiral symmetry allowing for a determination of most parameters at the
physical cutoff scale k = 0 at vanishing momentum, p = 0. Thirdly, we have directly computed
the pole mass of the top quark, which eliminates all ambiguities that go with mapping Euclidean
curvature masses to the physical pole masses. Finally, our approximation includes a non-trivial
Higgs potential for the transplanckian regime which is required for a predictive stability analysis
of the Higgs fixed-point potential.

A detailed discussion of our results on the phase structure of the ASSM and the nature of
the UV fixed points has been presented in Sections 3 to 5, culminating in an evaluation of the
systematics in Section 6. In short, the ASSM lies in a regime of a novel UV fixed point with
a non-trivial but flat Higgs potential with two relevant directions with the eigenvalues (56),
see Section 5. Consequently, the matter sector of the ASSM has as many relevant parameters
as the SM, and the gravity sector shows another three relevant directions with overlap to the
cosmological constant, the scalar curvature (Ricci scalar) term and the Ricci-scalar squared
term. The distance of the solution to the standard Gaußian fixed point regime with one relevant
parameter less (also called ‘predictive regime’) is depicted in Figure 10. For a smaller top pole
mass, we leave the non-trivial stable regime, cross the standard Gaußian line, and eventually
enter the unstable regime. We remark, that while not excluded, we consider the distance of
roughly 2.9 GeV as rather large. While the current approximation is not fully quantitative,
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significant changes would be required for entering the ‘predictive’ regime. Note also, that
this regime is but one step away from the unstable one, and we consider the relatively large
distance from the latter as a positive outcome of the present analysis.

The current minimal ASSM does not provide an answer to fundamental open problems
as for example the nature of dark matter or the fermion mass hierarchies. Nevertheless,
the framework here presented shows great potential for beyond SM studies in the need of
non-perturbative methods or mass dependent schemes. It provides an easily adaptable and RG-
consistent playground in which the viability of models phenomenology can be tested. Moreover,
this setup can be easily modified towards the study of effective field theories, different matter
contents or other types of UV completions thanks to its versatility. Investigations of non-trivial
Higgs potentials [43,46] which follow this line have already been performed.

In conclusion, the present comprehensive analysis of the ASSM constitutes a further im-
portant step towards the quantitative construction of the ASSM. Moreover, this RG-consistent
set-up can be systematically improved. Important next steps in the SM sector of the ASSM
are the inclusion of the CKM matrix, the inclusion of the full Higgs potential at all scales, the
resolution of further pole masses, as well as general momentum dependences. On the gravity
side, the momentum dependences of the fixed-point solutions have to be used in the flow,
gravity-induced matter vertices have to be added and a more complete tensor basis for the
gravity vertices has to be used. All the above steps either have already been investigated in
parts of the ASSM, or are work in progress. The present set-up also allows for a comprehensive
study of scattering amplitudes giving access to the chiefly important question of unitarity in
the ASSM. We hope to report on the respective progress soon.
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A Summary of Approximations

We summarise the approximations made in this work and refer to the sections where they are
addressed.

General expansion scheme and diagrams

1. Truncation of the effective action: We employ a vertex expansion of the effective action
and compute the flows of the two- and three-point functions in the symmetric momentum
configuration. For the Higgs potential, we also compute higher-order n-point functions.
See Section 2 and appendices B and C.

2. Anomalous dimensions in diagrams: We have neglected the sub-leading contributions
from the anomalous dimensions in diagrams, that originate in the t-derivative of the
regulator. See Appendix F.1.

Gravity sector
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1. Gravity avatars: We have identified all couplings of the different gravity modes with
that of the transverse-traceless one. The flow of the Newton coupling is computed from
the transverse-traceless three-point function, and all avatars of the Newton coupling in
higher graviton n-point functions are identified with this one. The same procedure was
applied to the avatars of the cosmological constant coupling. The flow of the graviton mass
parameter is extracted from the transverse-traceless two-point function. See Section 2.3.2
and appendix B.2.

2. Minimal coupling of gravity and matter: We identify the gravity-matter couplings with
the pure gravity Newton coupling discussed above. We neglect tensor structures from
matter-field–curvature operators and higher-order derivative terms, hence implementing
only the minimal gravity-matter coupling. See Section 2.3.2 and appendix B.2.

3. Gravity tadpole contribution to matter three-point functions: The contributions of the grav-
ity tadpoles to the matter three-point functions are enhanced compared to computations
with momentum-dependences of the vertices. We emulate these improved computations
of the gauge and Yukawa couplings by simply dropping the tadpole contributions in
their flows. For quantitative and qualitative reliability, the implementation of the full
momentum dependences is one of the most urgent points to be addressed in the near
future. See Section 3.4.

Matter sector

1. Higgs potential: For scales above k = 1017 GeV, the Higgs potential is expanded in a
high-order Taylor expansion, which shows convergence. For lower scales, we use the
quartic potential as the higher-order terms decouple rapidly below the Planck scale and
hence are negligible. See Section 2.2.2.

2. Higgs and Goldstone Yukawa couplings: In the symmetric phase, the flows are evaluated
at the vanishing Higgs expectation value, and Higgs and Goldstone Yukawa couplings
agree. In the EW broken phase with k ≲ 1 TeV, the flows are evaluated at the running
Higgs expectation value and the two sets of Yukawa couplings differ by higher-order
derivatives in the Higgs field. We consider these terms to be subleading. We compute
the Higgs Yukawa couplings and identify the Goldstone Yukawas with the Higgs Yukawa.
See Appendix F.4.

3. Euclidean vs pole mass: We compute the pole mass of the top quark. For all other particles,
we have identified the pole mass with the Euclidean curvature mass. In the computation of
the top pole mass, we assume a constant wave function renormalisation and a saturation
scale for the strong coupling contributions. See Section 4.1 and appendix G.

4. Strong coupling: We compute the strong coupling in the MOM2 RG-scheme, that is the
common RG-scheme in the fRG approach, see [70]. The MOM2 coupling is slightly larger
than that in the MS-scheme. Our results are based on that in pure Yang-Mills theory and
2+1 flavour QCD, [67,68,70], that are lifted to the SM value within a linear extrapolation
in the number of flavours. See Section 4.1 and appendix F.3.

5. Infrared QCD: In the deep IR, the heavy quarks decouple successively and below an
interface or decoupling scale, we use the 2+1 flavour results from [68]. See Section 2.3.1
and appendix C.5.

6. Phenomenological approximations: We used a diagonal CKM matrix and massless neutri-
nos. See Appendix B.1.
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B Effective Action of the ASSM

We provide the gauge-fixed classical action (B.1) of the ASSM in Appendix B.1 (gravity-matter
sector) and Appendix B.2 (pure gravity part). The classical gauge fixed-action of the ASSM can
be split into a gravity-matter part and a pure gravity part

SASSM = SSM + Sgravity . (B.1)

The gravity-matter part is the SM action in a given geometry defined by the metric gµν. For the
gauge fixing in the presence of a metric one usually introduces a linear split of the full metric
into a background ḡµν and a dynamical fluctuation hµν as shown in (2) which is then also
taken for the expansion of the pure gravity action in terms of quantum fluctuations in a given
background. The prefactor of the fluctuation term is chosen such that the fluctuation field hµν
has momentum dimension one and its kinetic term has the canonical form of a spin-two field,
a more detailed discussion of general splits can be found in [14].

B.1 Gauge-fixed Standard Model

The Euclidean SM action reads

SSM =
1
4

∫

x
F a
µνF a

µν +
1
4

∫

x
BµνBµν + SEW

gf + SEW
ghosts +

1
4

∫

x
Gb
µνGb

µν + SSU(3)
gf + SSU(3)

ghosts

+

∫

x
(DµΦi)

†(DµΦi) + V
�

Φ†
iΦi

�

+
∑

j=1,2,3

∫

x
ψ̄

L/R
i , j /Dψ

L/R
i , j + SYukawa , (B.2)

where
∫

x
=

∫

d4 x
Æ

|g| . (B.3)

The covariant derivative is defined in a concise form as

Dµ = ∂µ − igAµ , Aµ =Ai
µ t i , (B.4)

with the Lie algebra generators t i ,

[t i , t j] = i f i jk tk , t i ∈ u(1)Y × su(2)L × su(3)C , (B.5)

and the structure constants f i jk of the SM gauge group U(1)Y×SU(2)L×SU(3)C. The coupling
matrix g in (B.4) is diagonal in the Lie algebra with entries gY, g2, g3 in the respective subspaces.
Here, g y is the hypercharge coupling, g2 is the weak coupling, and g3 is the strong coupling.
For the weak hypercharge gauge coupling we employ the normalisation

g1 =

√

√5
3

gY . (B.6)

We compute g⃗1, g⃗2, g⃗3 from the flow of gauge-matter vertices, where the vectors g⃗i comprise
the couplings derived from the different gauge-matter vertices.

The field strength tensor Fµν reads

Fµν = ∂µAν − ∂νAµ − ig [Aµ , Aν] . (B.7)

The ψi, j in (B.2) stands for a general fermion field representing quark qi, j and lepton li, j
doublets with their respective chiralities. The index j is the generation index, and i is the
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isospin eigenvalue. We have included all three generations of leptons and quarks. We only
consider interactions within fermions of the same generations, hence, a diagonal CKM matrix.
This approximation is also used in the effective action discussed below.

The classical Higgs potential VΦ in (B.2) is given by

VΦ(ρ) = µΦρ +λΦρ
2 , (B.8)

with the Higgs doublet Φ and its radial field ρ,

Φ=
1
p

2

�

G1 + iG2
v +H + iG3

�

, ρ = trΦ†Φ . (B.9)

Here, H is the Higgs field that acquires an expectation value and the Gi are the Goldstone
modes.

The Yukawa terms of the SM read

SYukawa =

∫

x
yu q̄L

i ,1 Φ̃i qR
1 ,1 + yd q̄L

i ,1Φiq
R
2 ,1 + yνe

l̄ L
i ,1 Φ̃i lR

1 ,1 + ye l̄ L
i ,1Φi lR

2 ,1 + h.c.+ . . . (B.10)

where we have only shown explicitly one single generation of fermions and where

Φ̃i ≡ iσ2Φ
∗
i . (B.11)

The interaction terms between Goldstones and fermions will be used to read off the background
field dependence of the Yukawa couplings. This subject is discussed within our systematics
overview in Appendix F.4. Moreover, we have checked that the Yukawa interaction and
respective mass terms of the Neutrinos lead to negligible effects in the flow. Thus, we have
dropped them for the results obtained here.

Finally, we have to specify the gauge fixings in the EW and QCD sectors. In the EW sector,
we employ an Rξ-gauge fixing which is adapted to the occurrence of massive modes in the
broken phase

SEW
gf =

1
2ξ

∫

x̄

�

∂µAa
µ − i g2 ξ ta

i j

�

Φ†
i v j − v†

i Φ j

�

�2
+

1
2ξY

∫

x̄

�

∂µBµ −
i
2

gY ξY

�

Φ†
i vi − v†

i Φi

�

�2

.

(B.12)

Here,
∫

x̄
=

∫

d4 x
Æ

| ḡ| , (B.13)

refers to the volume factor of the background metric, which is taken to be the flat metric here.
The associated Faddeev-Popov ghost action reads

SEW
ghosts =

∫

x̄

�

−∂µ c̄Y

�

∂µcY

�

− ξY g2
Y (c̄YcY)φ

†
i vi

�

+

∫

x̄

�

−∂µ c̄a∂µca − ξg2
2 ta

i j t
b
jl (c̄

acb)Φ†
i vl + g2 Ac

µ f abc∂µ c̄acb
�

. (B.14)

Here, vi are the components of the Higgs background field, see (B.9).
For the high-energy regime of QCD, we use the gauge-fixing and ghost action

SSU(3)
gf + SSU(3)

ghosts =
1

2ξ3

∫

x̄

�

∂µGca
µ

�2
+

∫

x̄
c̄ca∂µDcacb

µ ccb , (B.15)

in the Landau limit, ξ3→ 0.
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B.2 Gauge-fixed gravity

The classical Einstein-Hilbert action is given by

SEH =
1

16πGN

∫

x
(2Λ− R) +

1
2α

∫

x̄
ḡµνFµFν +

∫

x̄
c̄ µh Mµν cνh , (B.16)

with the linear de-Donder gauge fixing

Fµ =
1

16π

�

D̄νhµν −
1
2

D̄µhνν

�

. (B.17)

Here, D̄ is the covariant derivative only dependent on the background metric. The Faddeev-
Popov operator for the gauge fixing (B.17) reads,

Mµν = D̄σ
�

gµνDσ + gρνDµ
�

− D̄µDν . (B.18)

C Flow equations in the ASSM

In this Appendix, we describe the projection procedure used to derive the flows for the couplings
and anomalous dimensions from the functional flow (4) for the effective action. The anomalous
dimensions are discussed in Appendix C.1, the flow of matter couplings except the Higgs
self couplings is discussed in Appendix C.2. The flow of the Higgs potential is discussed in
Appendix C.3, and that of the pure gravity parameters is discussed in Appendix C.4. Finally, in
Appendix C.5 we discuss the flows in the strongly correlated IR sector of QCD.

In short, we perform field derivatives of the functional flow (4) to obtain flows for correlation
functions ∂tΓ

(n)(p1, . . . , pn), and all flowing parameters are obtained by evaluating the flow
of the respective correlation functions (or its momentum derivative in the case of anomalous
dimensions) at vanishing momentum, p1 = . . . = pn = 0, in the spirit of the derivative expansion,
with the exception of the gravity couplings. The symbolic expressions of the flows on n-point
functions were derived using the Mathematica package DOFUN [123].

In the present work, we use RG-adapted [82] regulators

Rφ(p) = ZφR(0)
φ
(p) , R(0)

φ
(p) = Pφ(p)r(p

2/k2) , (C.1)

with the classical dispersions Pφ(p), and the shape function of the Litim-type regulator [124,
125],

r(x) = (1− x)Θ(1− x) , x =
p2

k2
, (C.2)

with the Heaviside step function Θ. The Litim-type regulator leads to analytic flows. It is
also optimised for the 0th order derivative expansion [82, 124, 125], however, it is not the
optimal regulator beyond this order. Optimal regulators can be constructed by functional
optimisation [82]. Moreover, in the light of highly interesting further investigations of the
resonance structure of the ASSM, scattering processes and the quantitative determination
of (pole) masses there are further constraints on the analytic structure of the regulator also
for timelike momenta, for related discussions in scalar theories, QCD and pure gravity see
[105,126–133].
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C.1 Anomalous dimensions

The anomalous dimensions

ηφi
= −

∂t Zφi

Zφi

(C.3)

are obtained from the flow of the respective two-point functions ∂tΓ
(2). For leptons and quarks,

we define

ηψ =
i tr
�

/p ∂tΓ
(2)
ψψ̄
(p)
�

Zψ p2 tr1

�

�

�

�

�

�

p=0

, (C.4)

where the trace sums over all internal and group indices. Note also that the evaluation at p = 0
is tantamount to a p2-derivative at p = 0 of the numerator.

For the Higgs field we use

ηΦ =
tr
�

∂tΓ
(2)
ΦΦ (p)− ∂tΓ

(2)
ΦΦ (0)

�

ZΦ p2 tr1

�

�

�

�

�

�

p=0

, (C.5)

where the trace sums over all internal and group indices.
For the gauge fields, we use

ηA =
tr Π⊥(p)

�

∂tΓ
(2)
AA(p)− ∂tΓ

(2)
AA(0)

�

ZA p2 tr Π⊥(p)

�

�

�

�

�

�

p=0

, (C.6)

where the trace sums over all internal and group indices. In (C.6) we have used the transversal
projection operator

Π⊥µν(p) = δµν −
pµpν
p2

. (C.7)

The anomalous dimensions of the auxiliary ghost fields are extracted with the flows

ηC =
tr
�

∂tΓ
(2)
CC (p)

�

ZC p2

�

�

�

�

�

�

p=0

. (C.8)

Finally, we remark that the wave functions completely drop out of the diagrams as they are
multiplicative factors in all vertices and (inverse) propagators. The global wave function factor
Zφi

due to the external legs each carrying a Z1/2
φi

is cancelled by the 1/Zφi
in the definition

of ηφi
. The only remnant dependence on Zφ arises from the t-derivatives of the cutoff line

Gφ ∂tRφ Gφ with propagators Gφ and regulators Rφ . We are led to

1
Zφ
∂tRφ(p) =

�

∂t −ηφ
�

R(0)
φ

, (C.9)

more details on the structure of the equations for the anomalous dimension and possible
systematic extensions have been deferred to Appendix F.
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C.2 Flows of matter couplings

All couplings considered here are computed from three-point functions. The only exceptions are
the Higgs mass µΦ and self-couplings λΦ, 2n in (10). The flow of the four-point function avatars of
the gauge couplings are identified with that computed from the three-point function of the gauge
fields coupled to fermions. In the present approximation, this identification is a consequence
of gauge consistency and can be derived from the respective Slavnov-Taylor identities which
collapse into Ward identities in the present approximation. However, the present projections
also overlap with non-classical tensor structures hence the gauge couplings from different
correlation functions differ, and the Slavnov-Taylor identities are more complicated in improved
approximations.

The flows of the couplings of three-point functions can be obtained from (7a) with

∂t

Γ
(n)
k (p1, ..., pn; λ⃗k)
∏n

i=1

Æ

Zφi ,k
= S(n)(p1, ..., pn;∂t λ⃗k) . (C.10)

The left-hand side is simply given by

∂t

Γ
(n)
k (p1, ..., pn; λ⃗k)
∏n

i=1

Æ

Zφi ,k
=

1
2

n
∑

i=1

ηφi ,kS(n)(p1, ..., pn; λ⃗k) + Flow(n)
�

p1, ..., pn; λ⃗k

�

, (C.11)

where the second line is simply the flow diagrams of the given n-point function divided by the
wave functions

Æ

Zφi
for each of its external legs,

Flow(n)(p1, ..., pn; λ⃗k) =
∂tΓ

(n)
k (p1, ..., pn; λ⃗k)
∏n

i=1

Æ

Zφi ,k
. (C.12)

As in the case of the anomalous dimensions this division, together with the use of RG-adapted reg-
ulators, eliminates all Zφ-dependence from the diagrams at the expense of an ηφ-dependence.

Given the flow of a three-point function of the fields φi1 ,φi2 ,φi3 with the coupling
λ123 = λφi1φi2φi3

we arrive at

 

∂t −
1
2

3
∑

j=1

ηφi j
,k

!

λ123 = tr
�

P123(p)Flow(n)
φi1φi2φi3

�

(p = 0) , (C.13)

where P123 is a projection operator or rather procedure such as used for the anomalous dimen-
sions. We performed consistency checks to confirm the veracity of our setup. We found the
expected universal results up to one loop in agreement with the literature [111].

In the solutions to the flows presented in Figures 3 and 4, we made different gauge fixing
choices for each of the phases. In the symmetric phase, we chose the Landau gauge ξY = ξ = 0.
Note that in this regime the gauge dependency appears beyond one loop. In the broken phase,
to facilitate a correct cancellation between the unphysical modes of the Goldstone bosons and
EW ghosts and longitudinal polarisations we chose the Feynman gauge ξY = ξ= 1.

C.3 Flow of the Higgs potential

In this section we derive the flow of the scalar field parameters: couplings, curvature mass and
vacuum expectation value. Starting from the renormalised potential (9) and its dimensionless

version (25a), the minimum ρ̄0 =
ZH v2

2 k2 is defined by

∂ρ̄ u (ρ̄)
�

�

ρ̄0
= 0 . (C.14)
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Figure 11: Dimensionless Newton coupling gh and graviton mass parameter µh as
a function of the RG scale k. Above the Planck scale, the couplings approach an
interacting fixed point while in the IR both coupling decrease quadratically towards
the Gaußian fixed point.

Taking a t-derivative, we obtain

∂t ρ̄0 = −
∂ρ̄
�

∂t |ρ u(ρ̄)− ∂t |ρ ρ̄ ∂ρ̄u(ρ̄)
�

∂ 2
ρ̄u(ρ̄)

�

�

�

�

�

ρ̄0

. (C.15)

Introducing the definition of the diagrammatic flows

∂t |ρ u(ρ̄) + 4u(ρ̄) =
Flow

�

VΦ,eff

�

k4
, (C.16)

where Flow
�

VΦ,eff

�

= ∂t |ρVΦ,eff(ρ) and

∂t |ρ ρ̄ = − (2+ηΦ) ρ̄ , (C.17)

we reach the final expression for the flow of the vacuum expectation value of the Higgs field in
the broken (µΦ < 0) regime.

The flow of the scalar coupling λΦ,4 and the curvature mass µΦ have been obtained from
the flow of scalar two- and four-point functions. For the higher n-point functions, this becomes
tedious due to the large number of diagrams and external legs. Instead, we derive the flow
of the scalar couplings λΦ,2n directly from (C.16). Considering a vanishing background for
simplicity, the flow of any arbitrary λΦ,2n can be derived by performing field derivatives of the
flow of the effective potential,

�

∂t |ρ̄ λ2n

��

�

ρ̄=0
=

1
n!
∂ n
ρ̄

�

1
k4

Flow
�

VΦ,eff

�

�

+λ2n (nηΦ + (2 n− 4)) . (C.18)

This procedure gives identical results to the derivation from n-point functions. On the technical
side, it is important to take properly into account the mixing between the Higgs field and the
scalar modes of the graviton.
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C.4 Flow of gravity parameters

We extract the flow of the Newton coupling gh from the transverse-traceless graviton three-point
function and the flow of the graviton mass parameter µh from the transverse-traceless graviton
two-point function. All gravity flows and anomalous dimensions take into account momentum
dependences and are evaluated bilocally between p = 0 and p = k. The flows are identical
to [73] with the approximation λh,n≥3 = 0, and the identification of all avatars of the Newton
coupling with the avatar from the three-graviton vertex, see (24). This entails that the matter
fields only contribute in their minimally coupled versions to gravity flows and in the end only
enter via their field multiplicities. In the SM, these multiplicities are given by Ns = 4, N f = 45/2,
and Nv = 12. In the IR, we tune the Newton coupling and the graviton mass parameter such
that we reach the physical value of the Newton coupling and a vanishing cosmological constant,
see (45d). In Figure 11, we display the trajectories of gh and µh.

C.5 Infrared regime of QCD

The IR regime of QCD with confinement and dynamical chiral symmetry breaking has been
evaluated both qualitatively and quantitatively with functional approaches, for recent reviews
see [13,134]. We are solely interested in the running of the quark-gluon coupling, which is
dominated by the gluon anomalous dimension ηA,k and its IR flow below an interface scale
kinter defined in (17).

It has been argued and checked in [68,71], that the gluon anomalous dimension ηA,k is
well described as a function of the running coupling αs and the mass gaps of quarks and gluons,

ηA,k ≈ ηA

�

α⃗s,k, ⃗̄m2
k

�

, m̄2 = m2/k2 , (C.19)

with

m⃗2
k =

�

m2
A,gap, m⃗2

q,k

�

. (C.20)

The gluon mass gap in (C.20) should not be confused with a gluon mass. The vector α⃗s,k again
comprises all avatars of the strong coupling; related to the primitively divergent part of the
ghost-gluon, three-gluon, four-gluon and quark-gluon vertices. In the matter sector, we have
avatars for each quark flavour, that differ below the mass thresholds of the quarks,

αAqi q̄i
=

1
4π

λAqi q̄i

Z1/2
A Zqi

, with q = (d, u, s, c, b, t) , (C.21a)

and in the pure glue sector we have three- and four-gluon couplings as well as the ghost-gluon
coupling,

αAn =
1

4π
λAn

Zn/2
A

, αAc̄c =
1

4π
λAc̄c

Z1/2
A Zc

, (C.21b)

where the λ’s are the dressings of the classical tensor structures of the respective vertices [61,68].
All the avatars of the strong fine structure constants agree at two loops (in mass-independent
RG schemes), (αs)i = αs, but run differently with the cutoff scale and momenta in the IR due
to physical threshold effects introduced by the gluon and quark mass gaps m⃗2, (C.20).

The above couplings are exchange couplings that describe the scattering of quarks (αs,Aqq̄),
gluons (αs,A3), and ghosts (αs,Acc̄). These couplings occur directly in diagrams with the respective
gluon lines, and carry directly the decoupling of gluons in the diagrams below the mass gap
of QCD. In contradistinction, the electroweak gi ’s, depicted in Figure 3, do not include the
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Figure 12: The quark-gluon exchange coupling α(ex)
Auū defined in (C.21) as a function

of k for interface scales kinter = 5, 15 GeV. The chosen kinter does not affect severely
the IR dynamics.

exchange propagators and are also called effective charges, see e.g. [107,108]. For the definition
and computation of a respective charge in QCD see [109,110].

For the explicit computation, we utilise the 2+1 flavour IR-QCD results of [68]. For that
purpose, we separate the 2+1 flavour part from the contributions η(c,b,t)

A of the heavier quarks

η
(ASSM)
A,k = η(2+1)

A,k +η(c,b,t)
A,k , (C.22)

where the 2+1 flavour contribution in (C.22) depends on the full coupling and mass gaps of
the ASSM,

η
(2+1)
A,k = η(2+1)

A,k

�

α⃗
(ASSM)
s,k ,

�

⃗̄m(ASSM)
k

�2�

. (C.23)

The strong coupling is a multiplicative factor in all (QCD) diagrams and hence we have

ηA,k(αs,k, ⃗̄m2
k)≈ ηA,k( ⃗̄m

2
k)αs,k , (C.24)

where αs,k is the strong coupling avatar of the lightest field, the ghost,

αs,k = αAc̄c,k . (C.25)

The identification of all avatars in (C.21) with the ghost-gluon coupling fails in the IR below
the respective mass thresholds, see [61,68]. There, however, the contributions to ηA,k drop
out. Furthermore, the quark masses in the 2+1 flavour computation are tuned to the physical
ones. In summary, this supports the approximation

η
(ASSM)
A,k ≈ η(2+1)

A,k

α
(ASSM)
s,k

α
(2+1)
s,k

+η(c,b,t)
A,k , (C.26)

also displayed in (19). Here, η(2+1)
A,k is now the genuine 2+1 flavour result and the difference

between the ASSM strong fine structure constant and that in 2+1 flavour QCD is carried by the
ratio of the couplings (C.25). The contribution from the heavier quarks, η(c,b,t)

A,k , is simply that
of the ASSM.
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Figure 13: The exchange couplings of the quark-gluon coupling α(ex)
Auū (green, solid),

the electron-W± coupling α(ex)
W±e−ν̄e

(red, dash-dotted), and the photon-electron cou-

pling α(ex)
Aγe−e+ (blue, dashed) as defined in (C.21) and (C.31). The decrease of the

strong and weak coupling towards small momenta is triggered by the QCD mass gap
and the mass of the W boson, respectively. The electromagnetic coupling does not
decrease in the IR due to the absence of a photon mass.

Finally, we use that in leading order the ghost propagator dressing and ghost-gluon vertex
dressing are insensitive to the number of quarks at all scales, and hence they drop out of the
ratio. This leaves us with our final equation for the anomalous dimension,

η
(ASSM)
A,k ≈ −

∂t Z
(2+1)
A,k

Z (ASSM)
A,k

+η(c,b,t)
A,k , (C.27)

where ∂t Z
(2+1)
A,k is the flow of the wave-function renormalisation in 2+1 flavour QCD, not in the

ASSM. This can be re-arranged as a flow equation for the gluon wave-function renormalisation,

∂t Z
(ASSM)
A,k ≈∂t Z

(2+1)
A,k −η(c,b,t)

A,k Z (ASSM)
A,k . (C.28)

The right-hand side depends on the external input ∂t Z
(2+1)
A,k from 2+1 flavour QCD taken

from [68], while all the other terms are that in the ASSM.
The flow (C.27) is now solved for IR-QCD scales below the interface scale kinter in the range

(17). The flow (C.27) requires as an input the gluon wave-function renormalisation Z (ASSM)
A,k

at the interface scale. This input is fixed by the consistency condition that the anomalous
dimension computed above and below kinter have to agree at the interface scale,

�

η
(ASSM)
A,k+inter

−η(ASSM)
A,k−inter

�

= 0 , k± = lim
ε→0

k± ε . (C.29)

Inserting (C.27) into (C.29) leads us to

Z (ASSM)
A,k−inter

= −
∂t Z

(2+1)
A,k−inter

η
(ASSM)
A,k+inter

−η(c,b,t)
A,k+inter

, (C.30)
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Figure 14: UV potential (left) and critical exponents (right) at different orders of the
Taylor expansion for the gravitational fixed point (A) in Figure 9 with gh = 0.219 and
µh = −0.730. The vertical dashed lines in the left panel show the reliability regimes at
each order of the expansion with a relative error of 1% as defined in (55). The fixed
point has one relevant direction with lowest critical exponent min

�

θ
(A)
i

�

= −1.39.

where the denominator is nothing but the 2+1 flavour part of the gluon anomalous dimension
in the ASSM. This provides us with the initial condition for solving (C.27), also discussed in
Section 2.3.1. For interface scales 5 GeV≲ kinter ≲ 15 GeV, see (17), we find a small dependence
of the IR coupling on the interface scale. This is depicted in Figure 12.

It is convenient to define exchange couplings not only for gluonic couplings but also for the
other gauge fields,

α
(ex)
i =

g2
i

4π

�

1

1+m2
i /k

2

�

, (C.31)

which account for the masses of the mediating field in the scattering process with the inter-
mediate gauge field coupled via gi: the prefactor g2

i /(4π) are the fine structure constants
derived from the gi ’s shown in Figure 3. The factor 1/(1+m2

i /k
2) constitutes the dimensionless

exchange propagator of the gauge field.
In Figure 13, we depict the strong, weak, and hypercharge exchange couplings from fermion-

gauge vertices. For scales below the threshold of the propagating field, the exchange coupling
decreases reflecting the suppression of the interaction in the diagrams.

D Eigenperturbations and the global UV Higgs potential

The scaling equations (66) are of the Liouville-Sturm type for general Θi , and the solutions ϕi
are Kummer’s function of the first kind. Here, we recall the solution (67) including the Higgs
anomalous dimension, which is vanishing due to the de-Donder gauge (B.17) with α= 0 and
β = 1. The solution reads

ϕi(ρ̄) = ci M
�

−
4+Θi

2+ηΦ
, 2, 32π2

�

1+
ηΦ
2

�

ρ̄

�

, (D.1)

with a free normalisation ci. For Θ = −4+ (2+ ηΦ)n with n ∈ N, the Kummer function M
reduces to a polynomial with the ρ̄→∞ limit

ϕi →
1

Γ
�

4+ Θi
2

�(32π2ρ̄)
4+Θi
2+ηΦ . (D.2)
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In turn, for all other Θ’s the solutions grow exponentially for ρ̄→∞,

ϕi →
1

Γ
�

−2− Θi
2

�

1

(32π2ρ̄)4−
Θi
2

e32π2(1+ ηΦ2 )ρ̄ , (D.3)

for

Θi ̸= −4+ (2+ηΦ)n , n ∈ N . (D.4)

Hence, the eigenfunctions and the potential are best expanded in Hermite polynomials Hn(φ̄),

Hn(φ̄) = (−1)neφ̄
2
∂ n
φ̄

e−φ̄
2
, φ̄2 = 32π2aρ̄ , (D.5)

with a < 1. This basis is square integrable and orthogonal with
∫

R
dφ̄ Hm(φ̄)Hn(φ̄) e

−φ̄2
= 2nn!

p
πδnm , (D.6)

and hence we can expand the ϕi in the Hermite polynomials. We arrive at

ϕi(ρ̄) =
∞
∑

n=0

c(i)n Hn(φ̄) , (D.7)

with

c(i)n =
1

2nn!
p
π

∫

R
dφ̄ ϕi(ρ̄)Hn(φ̄) . (D.8)

This concludes our analysis of the Higgs fixed-point potential and the eigenperturbations.

E UV Higgs potentials at different gravity parameters

In Section 5, we have discussed the rich landscape of Higgs fixed-point potentials. Here, we
study the potentials at the gravity parameters (A) with

g∗h = 0.219 , µ∗h = −0.730 , (E.1)

and (B) with

g∗h = 0.190 , µ∗h = −0.695 , (E.2)

marked in Figure 9 which characterise each of the regimes found.
The potential at point (A) belongs to the red regime and is shown in Figure 14. The scalar

mass parameter and all scalar couplings λΦ, 2n are negative. In particular, for the lowest-order
expansion, we find

µ∗Φ = −0.230 , λ∗Φ,4 = −2.22 . (E.3)

The critical exponents show a reasonable convergence pattern and in particular, the six lowest
values are well converged. Remarkably, the higher-order critical exponents always form complex
conjugate pairs. All critical exponents are strongly shifted towards irrelevance compared to their
canonical value, for example, θ17 =O(100) while the canonical value is 30. Moreover, a single
relevant direction is found. Recall from the discussion in Section 5.2 that the transition from
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Figure 15: UV potential (left) and critical exponents (right) at different orders of
the Taylor expansion for the gravitational fixed-point (B) in Figure 9 with gh = 0.190
and µh = −0.695. The vertical dashed lines in the left panel show the reliability
regimes at each order of the Taylor expansion with a relative error of 1% as defined
in (55). The minimum critical exponent is min

�

θ
(B)
i

�

= 0.043 and therefore, the fixed
point (B) has no relevant direction and shows a maximal predictivity. As discussed in
Section 5.1, the IR trajectory of this FP does not lead to a physical IR.

green to red regimes is given by the disappearance of a relevant direction. To further investigate
this regime and in particular the boundary to the green region, it would be interesting to use a
non-trivial background for the scalar field.

Point (B) falls in a regime where two fixed-point potentials exist. Additionally to the
non-trivial flat potential discussed in Figure 5, a stable potential is found, shown in Figure 15.
The fixed-point values for the lowest order expansion parameters read

µ∗Φ = 0.0487 , λ∗Φ,4 = −0.0758 . (E.4)

Note their similar absolute magnitude. This property is preserved for higher orders and shows
the peculiarity of this solution. This potential is stable within the reliability regime of the Taylor
expansion but no statements can be made beyond this regime.

The critical exponents display a very quick convergence even at low orders of the Taylor
expansion, see the right panel of Figure 15. Compared to the critical exponents of point (A),
the critical exponents remain close to their canonical values. Interestingly, this potential has no
relevant directions as the minimal critical exponent reads

min
�

θ
(B)
i

�

= 0.043 . (E.5)

Therefore this fixed point shows maximal predictivity as all SM parameters related to the Higgs
potential are predicted by the fixed point, namely, the ratio between the top and Higgs mass as
well as the ratio between the Planck and EW scale. However, the trajectory emanating from this
fixed-point potential does not lead to a physical IR limit in the present truncation. Particularly,
this trajectory shows a negative quartic coupling for all scales below the Planck scale and does
not generate a kSSB scale.

F Systematics

In this section, we discuss the systematics of the present approximations as well as consistency
checks and partial systematic error estimates. Specifically, we comment on the general structure
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of the flows in the combined vertex and derivative expansion, and the systematic extension
of the current approximation in Appendix F.1. In Appendix F.2, we discuss specifics of the
gravity-matter intersection couplings and the embedding of this part in other works as well
as the algorithmic effort, mainly due to this sector and pure gravity. In Appendix F.3 we
discuss the systematic error introduced by adjusting the present MOM2 strong coupling to MS
values. In Appendix F.4, we discuss the effects of a non-trivial background on the Higgs- and
Goldstone-type of Yukawa couplings.

F.1 Anomalous dimensions

In this expansion scheme the flows projected on the dimensionless couplings λ⃗ = (µ, g3,λ3, ..., )
of the gravity-SM system (including the mass parameters) read

�

∂t + dλi
+

1
2

ni
∑

n=1

ηφin
(0)

�

λi = F (0)
λi
+
∑

n

ηφn
(k)F (1)

λi ,n
, (F.1)

where dλi
are the canonical dimensions of the couplings λi and we have split the right-hand

side into the contributions at vanishing anomalous dimensions F (0)
λi

and proportional to the

anomalous dimensions F (1)
λi

. The anomalous dimension on the left-hand side is evaluated
at p = 0 and arises from the scale derivative of the wave-function renormalisation. On the
right-hand side, the anomalous dimensions are evaluated at the cutoff momenta k and come
from the regulator insertion in the diagrams. The latter is an approximation as the anomalous
dimensions are integrated over the loop momentum q. Since the integrands of the flow peak at
about q2 ≈ k2, it is a well-working approximation to approximate ηφi

(q2)→ ηφi
(k2).

The equation for the momentum-dependent anomalous dimensions has a similar structure,

ηφi
(p) = F (0)ηφi

(p) +
∑

n

ηφn
(k)F (1)ηφi

,n(p) . (F.2)

Due to the loop momentum approximation ηφi
(q2)≈ ηφi

(k2) we only obtain a closed set of
equations for p = k. Its solution can be obtained by inverting the resulting matrix from coupled
system of anomalous dimensions. Given the large field content of the ASSM, the complete
system of coupled equations cannot be solved exactly and we resort to an iterative process.
Specifically, we replace ηφn

(k)→ ηφn
(0) on the right-hand of (F.1) and, at lowest order, use

(F.2) evaluated at p = 0 with ηφn
(k) = 0. At the next order, we do not set ηφn

(k) = 0 in (F.2)
but instead replace ηφn

(k)→ ηφn
(0) and use again (F.2) evaluated at p = 0 with ηφn

(k) = 0 for
it. This defines the iterative process that we use. We used the first-order approximation of this
iteration and found a good agreement with the zeroth-order approximation. This highlights
the subleading role of the higher-order anomalous dimensions in the sub-Planckian regime of
the ASSM, and in consequence we use the zeroth-order approximation for the results presented
here.

F.2 Gravity-matter couplings

In our implementation of the interplay of gravity and matter, we distinguish the effects of
matter on gravity from the gravity on matter. For the former we rely on particular studies of
scalar-fermion- [16,76] and gauge-gravity [23] systems to compute the effect of the SM matter
content on the Newton coupling and the cosmological constant. The results there presented
are easily extendable to arbitrary matter contents and provide a consistent RG-scheme with
inclusion of mass thresholds.

For the effects of gravity on matter, we employed the same truncation as the cited literature
and proceeded to compute the full entangled SM-gravity system. The number of n-point
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functions relevant to the theory significantly increases and needs for automatization. For
example, the SM alone presents∼ 130 n-point functions while coupled to gravity∼ 270. For the
derivation of the n-point functions we relied on the Mathematica package VERTEXPAND [135].

There are some subtle points in the inclusion of gravity along the EW sector and non-trivial
backgrounds of the Higgs field that require further explanation. The gauge-fixing and ghost
actions do not produce graviton interactions due to the background metric used in these
terms. It is important to note that as this does not affect standard gauge-fixings (as the used
in the strong sector), it does in the special Rξ-gauge. Since the full metric is implicit in the
contraction of the covariant derivatives applied on the scalar kinetic term, mixings between
Goldstone, gauge and graviton fields do not cancel with the corresponding term generated
from an Rξ-gauge-fixing action containing the full metric. This naturally creates additional
diagrams contributing to the self-energy of gauge and Goldstone bosons.

In general, these diagrams do not pose a severe problem as they are proportional to the
background of the Higgs field. Moreover, in the EW broken phase, the gravitational coupling is
negligible, and at Planckian scales, the flow of the curvature mass indicates that µΦ > 0, e.g. a
vanishing trivial minimum.

F.3 IR-QCD

In Section 4.1, we have discussed the determination of the strong coupling in the present
approach: its value in the MS-scheme at k = MZ is given by

ᾱs := αs,k=MZ
=

�

gMS
3,k=MZ

�2

4π
≈ 0.118 . (F.3)

It has been shown in [70], that the MOM2 RG-scheme used in the fRG, leads to an enhancement
of the running gauge couplings αs(p) compared to the MS value. In pure Yang-Mills, the
respective enhancement factor for αs is approximately 4/3 [67], dropping to an enhancement
factor of approximately 1.2 in the 2+1 flavour case (measured in the regime between 10-
40 GeV). Moreover, in these works it is also shown that αs,k(0) ≲ αs,k=0(p = k), leading to a
further (subleading) enhancement.

Being short of a full analysis, which requires the full implementation of IR-QCD, we use a
linear extrapolation in flavour numbers, which leads to an enhancement factor of 1.07 in the
ASSM compared to the MS value at the MZ scale

αs,k=MZ
= 1.07 ᾱs . (F.4)

Furthermore, we use a variation of the strong MOM2 coupling αs at k = MZ as an error estimate
for our computation. We vary the strong coupling in the range

αs,k=MZ
∈
�

ᾱs, 1.10 ᾱs

�

. (F.5)

The main impact of this variation is the shift of the zero crossing of the quartic Higgs coupling,
commonly referred to as metastability scale kmeta. In Figure 16, we show kmeta as a function
of the strong coupling (F.5). For our central value (F.4), we find a metastability scale slightly
above 1010 GeV in good agreement with perturbative computation in the MS-scheme [111].
Interestingly, for 1.15αs this scale hits the Planck scale,

kmeta(1.15 ᾱs) =
1

p

GN

, (F.6)

where GN is the physical value of the Newton constant at p = 0. The metastability scale
is computed in a φ4 approximation of the Higgs potential, which is a good approximation
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Figure 16: Metastability scale as a function of αs,k=MZ
/ᾱs. Here, ᾱs ≈ 0.118 is the

MS-value with at the EW scale p = MZ (and k = 0), see (F.3). For each value of
αs,k=MZ

the remaining parameters of the ASSM are set to reproduce the experimental
values. Throughout this work, we use αs,k=MZ

= 1.07 ᾱs marked by a plain line, see
(F.4). The shaded interval, defined in (F.5), is used as a systematic error estimate.

below the Planck scale. Around the Planck scale, this approximation cannot be trusted but we
nonetheless might expect the disappearance of a metastability scale for a large enough strong
coupling. This concludes our systematic error analysis of the strong coupling.

F.4 Yukawa couplings

The Yukawa couplings in the fermion-scalar interactions are subject to a scalar-field dependence
y⃗(ρ). Such is key to reproducing multi-scalar production from fermion scattering, see for
example [45, 136]. Although this dependency is not explicitly considered in the Yukawa
couplings defined in (B.10) the flow equation is known to generate such non-trivial contributions.
As the flow is evaluated on the equations of motion, the scalar field dependency is only generated
in the modes with a non-trivial background. To quantify such difference, we take advantage of
the previous point and define two Yukawa couplings, the coupling to Higgs and Goldstones

∂t y(H)t (ρ̄) = Tr
�

PHt t̄(p)Flow(3)Ht t̄

�

+
1
2
(ηH +ηtL

+ηtR
)y(H)t (ρ̄) ,

∂t y(G)t (ρ̄) = Tr
�

PG0 t t̄(p)Flow(3)G t t̄

�

+
1
2
(ηG0 +ηtL

+ηtR
)y(G)t (ρ̄) . (F.7)

While the former contains the complete dependency in the broken phase, by subtracting the
latter we find

∂t y(H)t (ρ̄)− ∂t y(G)t (ρ̄) = ρ̄ ∂t |ρ̄
�

∂ρ̄ y(G)t (ρ̄)
�

. (F.8)

In fact, one single Yukawa coupling enters the theory but distinguishing as in (F.7) and comput-
ing two different flows allows us to obtain the differences caused by a non-trivial background.
All flows in (F.7) and (F.8) are shown in Figure 17. The flow of the Higgs Yukawa coupling
shows a maximum at k ∼ 100 GeV, which is not present in the Goldstone coupling. In the
symmetric phase k > kSSB, both couplings agree due to equal vanishing background. This
shows that there is a small qualitative difference between the two couplings. In the SM flows
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Figure 17: Flow of the top-quark Godstone (plain) and Higgs (dashed) Yukawa
couplings defined in (F.7) and their difference (dot-dashed) (F.8). The difference is
given by the scalar-field dependence of the Yukawa coupling. In the symmetric phase
both couplings agree due to equal vanishing background.

in Figures 3 and 4, we did not include both couplings separately but assumed them to be equal.
The Goldstone Yukawa couplings were chosen as their appearance in fermion-scalar vertices is
predominant.

G Pole masses

For k → 0, the relevant parameters of the ASSM can be determined by respective particle
physics measurements and the classical (low energy) Newton coupling and the cosmological
constant. The matter and gauge couplings can be determined by selected cross sections with a
scattering momentum of the order ≲ 102 GeV, typically chosen close to the EW scale. Most of
these couplings and masses are not a very sensitive input, with the exception of the pole mass
of the top quark: it has a relatively large experimental error, and its value (as the largest mass
parameter) has a considerable influence on stability estimates of the Higgs potential.

We argue now, that its determination can be obtained with a very small systematic error
from the current approximation: to begin with, the missing momentum dependence of the
matter couplings and propagators discussed in Section 2.2 has a subleading impact on the flow
of couplings, wave-function renormalisation and masses at vanishing momentum. This has
been checked thoroughly in IR-QCD (p ≲ 10 GeV), where the genuine momentum dependence
is far stronger than here due to the significantly larger coupling and the resonant hadronic
correlations, see in particular [68], utilising also the momentum dependent QCD correlation
functions from [61].

However, while the feedback of the momentum dependences is subleading, they are required
for a determination of the coupling strengths via scattering processes and the determination
of the pole masses. Specifically, for the present task of computing the top-pole mass Mt,pole,
the momentum-dependent mass function of the top quark is required. We parametrise the
two-point function as

Γ
(2)
t t̄ (p) = Zt,k(p)

�

i/p+Mt,k(p)
�

, (G.1)
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with the cutoff- and momentum-dependent wave function Zt,k(p) and mass function Mt,k(p).
For momentum-independent dressing functions this reduces to the approximation used in the
present work,

Zt,k = Zt,k(p = 0) , mt,k = Mt,k(p = 0) . (G.2)

At k = 0, (G.1) leads us to the propagator

Gt(p) =
1

Zt(p)
1

p2 +Mt(p)2
�

−i/p+Mt(p)
�

, (G.3)

with Zt(p) = Zt,k=0(p) and Mt(p) = Mt,k=0(p). The pole mass M (pole)
t is extracted at k = 0

from
�

p2 + Mt(p)
2
�

p2=−
�

M (pole)
t

�2 = 0 , (G.4)

or equivalently from
�

Zt(p)p
2 + Zt(p)Mt(p)

2
�

p2=−
�

M (pole)
t

�2 = 0 , (G.5)

which follows from (G.4) by multiplying with Zt(p).
In the following, we determine the pole mass by using (G.5): The combination Zt(p)Mt(p)2

is obtained analytically from the integrated flow of the top two-point function

∂t[Zt(p)Mt(p)] =
1
4

trD ∂tΓ
(2)
t t̄ (p) , (G.6)

with the Dirac trace trD. The analytic momentum dependence allows us to resolve the mass
function for timelike momenta p2 < 0.

The second ingredient in (G.5) is the wave function renormalisation Zt(p). Here we use that
the momentum dependence of correlation functions Ok=0(p) with a mild cutoff dependence
Ok(p = 0) at vanishing momentum is typically well approximated by

Ok=0(p)≈Ok=αp(p = 0) . (G.7)

This has also been discussed in Section 2.2.1, and is well-tested in QCD, where quantitative
correlation with the full momentum dependence as well as the cutoff dependence have been
computed and compared, see in particular [59, 61, 67, 68]. In the present case of the wave
function renormalisation of the top quark, its cutoff dependence is negligible in the symmetry
broken phase for k ≤ kSSB = 930 GeV, see (47). Indeed, the k-dependence of Zt,k is very small,
as shown in Figure 18, where Zt,k is shown for k ≲ kSSB.

In summary, the above analysis suggests that a quantitative estimate is already obtained with
Zt(p) = 1 also for timelike momenta within the regime |p2| ≤ (200 GeV)2. From the minimal
variation of the cutoff dependence in Figure 18 in this regime, we estimate the respective
systematic error with 0.5%, which translates into an error of roughly 0.8 GeV for the top pole
mass determination. A direct computation will be presented elsewhere, together with further
pole mass determinations.

Within this approximation we are led to
�

p2 + Zt(p)Mt(p)
2
�

p2=−
�

M (pole)
t

�2 ≈ 0 , (G.8)

and it is left to compute the combination Zt(p)Mt(p)2 for timelike momenta p2 ≤ 0, in particular
including the pole position. We utilise that the sub-Planckian structure of the flow facilitates
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Figure 18: Wave-function renormalisation Zt,k of the top quark as a function of
the cutoff scale k. The k-dependence in the broken phase is negligible, and is well
approximated by Zt,k = 1, leading to the estimate Zt(p) = 1 in (G.8).

the Wick rotation. First, the mass function does not receive contributions for cutoff scales
k ≥ kSSB ≈ 103 GeV, see (47). For larger scales, the theory is chiral and hence Mt,k≥kSSB

(p) = 0.
Accordingly,

Zt(p)Mt(p) =

∫ 0

kSSB

dk
k
∂t

�

Zt(p)Mt,k(p)
�

. (G.9)

For scales k ≤ kSSB, the SM couplings quickly settle at their IR value and can be taken to be
k-independent with the exception of the strong coupling, see Figure 3.

The strong coupling changes significantly between kSSB and k = 0, see Figure 3. We now
use, that the flow of the top mass quickly saturates, see Figure 19, and does receive negligible
contributions below the top scale. More specifically, the QCD contributions in the flow are
proportional to

αs,k
�

1+
M2

t,k

k2

�3 , (G.10)

and higher powers in the denominator. These terms drop rapidly for k < Mt,k towards smaller
cutoff scales despite the rising coupling, which is responsible for the saturation of the QCD part
of the flow of mt,k. Accordingly, we can estimate its contribution by using an average coupling
at the saturation scale ksat. We estimate this saturation scale ksat very conservatively as

ksat ∈ [170 , 300]GeV , (G.11)

and use a respective constant strong coupling g3(ksat) in the following computation of the pole
mass. Varying this coupling for cutoffs in the range (G.11) provides us with a very conservative
systematic error estimate. Moreover, the above argument implies that the minimal value

ksat = 170GeV , (G.12)

is a good choice for the computation of the mass parameter mt from the pole mass condition
(G.8). Finally, we have to also take into account the uncertainty in the size of the coupling due
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Figure 19: Top mass parameter mt,k measured in units of mt = mt,k=0 as a function
of the cutoff scale. The mass parameter saturates at cutoff scales k ≈ 200 GeV, and
the vertical lines indicate the borders of the cutoff range (G.11) for ksat. In the inlay,
we depict the variation of mt required for the experimental pole mass (45e) as a
function of the saturation scale ksat used for g3,k=ksat

in (G.21). The upper dashed
line is obtained for αs = ᾱs, the lower dot-dashed line is obtained for αs = 1.1 ᾱs
(see (F.5)) and the central plain line for the ASSM flavour number extrapolation
αs = 1.07 ᾱs. This covers the uncertainty in mapping the MS-value of the coupling to
the MOM2 value used in the fRG computation.

to mapping the MS-coupling to that in the MOM2 scheme in the fRG. Hence, we additionally
employ the conservative estimate (F.5) and vary the coupling between its MS-value ᾱs and
1.1 ᾱs.

In summary this leaves us with the explicit cutoff dependence of the regulator in the loops
contributing to ∂t

�

Zt(p)Mt,k(p)
�

. Then, the flow is (explicitly) a total derivative w.r.t. to the
cutoff scale,

∂t

�

Zt(p)Mt,k(p)
�

=
d
dt
[Zt Mt]

1loop
k (p) , (G.13)

where [Zt Mt]
1loop
k (p) are the standard one-loop diagrams with all couplings and parameters

taken at k = 0 and the only cutoff dependence in the loops comes from the regulators, either
Rk=0 = 0 or Rk=kSSB

in the second term. Consequently, in this regime the flow can be integrated

analytically, and leads to a difference of standard one-loop diagrams [Zt Mt]
1loop
k (p),

∆ [Zt Mt]
1loop (p) = [Zt Mt]

1loop
k=0 (p)− [Zt Mt]

1loop
k=kSSB

(p) . (G.14)

Now we use that for p≪ kSSB the second term is well approximated by its value at p = 0. This
leads us to a simple one-loop expression with the full (fRG-resummed) couplings and vertices
at k→ 0,

[Zt Mt]
1loop (p ≲ kSSB) = Zt mt +∆ [Zt Mt] (p) , (G.15)

with the wave function Zt = Zt,k=0(p = 0) and top mass parameter mt = Mt,k=0(p = 0) in our
approximation, and

∆ [Zt Mt] (p) = [Zt Mt]
1loop (p)− [Zt Mt]

1loop
t (0) . (G.16)
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The first term Zt mt in (G.15) is a direct result from the ASSM flow. The second term,
∆ [Zt Mt] (p) has the form of the one-loop gap equation for the t-quark, subtracted at p = 0;
however with the full coupling and mass parameters of the SM at k = 0. It is a finite differ-
ence of loops and can be evaluated within dimensional renormalisation for computational
convenience. Its momentum dependence can be read off from the scalar parts of the one-loop
self-energy diagrams in (G.6). Generically, the momentum structure of the diagrams reads

I(p, mi) =µ
2ϵ

∫

ddq
(2π)d

∫ 1

0

dx

�

1

[q2 +∆(p)]2
−

1

[q2 +∆(0)]2

�

= −
1

(4π)2

∫ 1

0

dx log
∆(p)
∆(0)

, (G.17)

where d = 4− 2ϵ, µ is the RG scale in dimensional regularisation, and ∆ is

∆(p) =m2
i (1− x) + x m2

t + x(1− x)p2 . (G.18)

The right-hand side of (G.17) does not depend on µ as the integral does not require renormali-
sation in the first place and the use of dimensional regularisation was only for computational
means.

In (G.17), ∆(p) with mi = 0 occurs in the top self-energy diagrams with massless modes
such as gluons and photons (at the relevant scales), and the general case with mi ̸= 0 is used in
top self-energy diagrams with massive modes such as the intermediate vector bosons Z0, W±.

For general masses mi , the self-energy diagrams are computed as

I(p2, mi) =1+
1
2

�

m2
t +m2

i

m2
t −m2

i

+
m2

t −m2
i

p2

�

log
m2

t

m2
i

−

Ç

m4
i +

�

m2
t + p2

�2
+ 2m2

i

�

p2 −m2
t

�

p2

× arcoth





m2
t +m2

i + p2

Ç

m4
i +

�

m2
t + p2

�2
+ 2m2

i

�

p2 −m2
t

�



 . (G.19)

For massless modes, mi = 0, (G.19) reduces to

I(p2) = 1−
�

1+
m2

t

p2

�

log

�

1+
p2

m2
t

�

, (G.20)

where we have introduced I(p2) = I(p2, 0). With (G.19) and (G.20), we arrive at the final
expression for the momentum-dependent mass function,

∆[Zt(p)Mt(p)] =
mt

16π2

�

4 g2
3 I(p

2) + 3
�

2 g2 sinθW

3

�2

I(p2)

−
h2

t

2
I(p2, mH) +

h2
t

2
I(p2, mZ) + h2

b I(p
2, mW )

−
g2

Y (1+ 2 cos2θW )

9
I(p2, mZ)

�

, (G.21)

computed in the gauge (B.12). The first two terms on the right-hand side stem from gluon
and photon mediated diagrams, and the terms in the second line stem from Higgs, G0, G±,
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and Z0. Vertices, wave functions and the mass function are given by the full couplings and
wave functions at k = 0 and p = 0 except for the strong coupling g3(ksat) which is evaluated at
ksat = 170 GeV, see (G.12).

Equation (G.15) with (G.21) allows us to resolve (G.8) for the pole position. This fixes the
Euclidean mass parameter to

mt = 165.4+0.9
−0.2 GeV , (G.22)

for the PDG pole mass (cross section measurements) Mt = 172.5 GeV, see (45e). The error in
(G.22) is solely due to the error estimate of the value of the strong coupling used in (G.21). It
is discussed below (G.9), and is summarised in the inlay of Figure 19: The upper variation
comes from the variation of the saturation scale up to ksat = 300 GeV with αs = ᾱs(300GeV),
while the lower error is related to the estimate of the maximal MOM2-value of the strong fine
structure constant in (F.5) with αs = 1.1 ᾱs(170 GeV).

We consider the (systematic) error estimate in (G.22) a very conservative one. Note also
that the theoretical systematic error is of the size of the experimental one.

A first prediction concerns the decay width Γt of the Higgs. We obtain

Γ
(theo)
t,pole = 1.72+0.09

−0.41 GeV , (G.23)

which agrees quantitatively with that in the PDG one, Γ (exp)
t,pole = 1.42+0.19

−0.15 GeV in (45f). Note,
that while the error in (G.22) constitutes a systematic error estimate, the error in (G.23) only
describes the relative weighting of QCD and non-QCD contributions. In a pure QCD system,
our analysis would lead to a vanishing error on the decay width in (G.23).
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