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Abstract

Quench dynamics of fermionic superfluids are an active topic both experimentally and
theoretically. Using the BCS theory, such non-equilibrium problems can be reduced
to nearly independent spin dynamics, only with a time-dependent mean-field pairing
term. This results in persisting oscillations of the pairing strength in certain parameter
regimes. However, experiments have observed that the oscillations decay rapidly when
the interaction becomes strong, such as in the unitary Fermi gas [1]. Theoretical analysis
on this matter is still absent. In this work, we construct an SYK-like model to analyze the
effect of strong interactions in a one-dimensional BCS system. We employ the large-N
approximation and a Green’s function-based technique to solve the equilibrium prob-
lem and quench dynamics. Our findings reveal that a strong SYK interaction suppresses
the pairing order. Additionally, we verify that the system quickly thermalizes with SYK
interactions, whether it involves intrinsic pairing order or proximity effect, resulting in
a rapid decay of the oscillation strength. The decay rates exhibit different scaling laws
against SYK interaction, which can be understood in terms of the Boltzmann equation.
This work represents a first step towards understanding the attenuating dynamics of
strongly interacting fermionic superfluids.
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1 Introduction

Non-equilibrium dynamics in systems with strong interactions is one of the most intriguing
subjects in the realm of condensed matter and ultracold atoms. In particular, there is a grow-
ing interest in comprehending the quench dynamics, which involves observing the evolution
resulting from a rapid change in parameters. Several seminal works from decades ago have
explored novel quench dynamics in superconductors [2–9]. Different dynamical phases are
classified when adjusting the initial and final strength of attractive interactions according to
the behavior of the pairing strength. In the phase diagram, one can observe the presence of
persisting oscillations in the order parameter. This occurrence can be explained by the fact
that the pioneering BCS theory can also be interpreted using the language of Anderson spins,
where the oscillation corresponds to a collective mode of the Anderson spins within the mean
magnetic field.

However, the Fermi superfluids realized in ultracold gases may not be in a collisionless
regime [10] if a magnetic field is used to tune the scattering length between atoms [1]. In
particular, the unitary fermi gas is a typical strongly interacting system that can be realized
in the experiment [11–17]. Unfortunately, the theoretical treatments of quench dynamics in
unitary fermi gas don’t reach a consensus yet. For a simple trial, we consider adding extra
interaction between Anderson spins in addition to the BCS type mean-field interaction. For
simplicity, we treat these additional interactions as all-to-all and Gaussian random interactions,
inspired by the famous exact solvable Sachdev-Ye-Kitaev (SYK) model [18–37]. We assume the
interaction is intra-spin and is independent for different spin componenets, which is different
from models for the eternal traversable wormholes [38–50].

We analyze the effect of SYK-type interactions in a one-dimensional BCS system, employ-
ing the large-N approximation and a Green’s function-based technique to investigate both the
equilibrium problem and quench dynamics. Firstly, we examine the superconductivity transi-
tion point by calculating the critical hypersurface of the parameters. Subsequently, we explore
the equilibrium phase diagram of pairing, considering both finite order parameters and BCS
interaction. These phase diagrams consistently demonstrate that SYK interaction weakens the
superconductivity. Furthermore, we numerically investigate the non-equilibrium quench dy-
namics, observing that the oscillation amplitude is suppressed by the SYK interaction J , which
aligns with the findings from the equilibrium phase analysis. Finally, we observe that the decay
rate exhibits distinct scaling laws with respect to the interaction J , depending on whether the
pairing arises intrinsically or through the proximity effect. We argue that this behavior can be
comprehended within the framework of the Boltzmann equation [51].

2 Model

Here we study the model in a one-dimensional spin-1/2 fermionic lattice model with up and
down spin l =↑,↓. Depicted in Fig. 1, the Hamiltonian is composed of two parts: the one-
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Figure 1: A pictorial representation of the model described by Eq. (1), (2) and (4).
Different dots with arrows represent different spin 1/2 fermion in each unit cell. The
blue and red blobs represent the intracell random interactions among the same spin
and the solid lines with arrows denote the constant intercell hopping in the lattice. In
this large-N limit, the onsite attraction can be treated in the mean-field level, defined
with interaction strength g > 0.

dimensional BCS Hamiltonian and the intracell complex SYK-type interaction without any
correlation between coupling constants for fermions with different spins. The Hamiltonian
reads

Ĥ = ĤBCS + ĤI . (1)

The BCS Hamiltonian is

ĤBCS =
∑

p,i,l

(εp −µ)ĉ
†
p,i,l ĉp,i,l −
∑

p,i

�

∆ĉ†
p,i,↑ ĉ

†
−p,i,↓ +∆

∗ ĉ−p,i,↓ ĉp,i,↑

�

, (2)

where i = 1,2, ..., N labels different modes on a single site for each spin flavor. As a 1-d
model, we assume the band dispersion as εp = −2th cos(p), where th is the hopping strength,
and p ∈ (−π,π]. µ = 0 corresponds to half-filling because of the particle-hole symmetry
after the disorder average. To proceed with equilibrium calculations, we need to distinguish
two possible origins of order parameters ∆. The type I comes from the background quantum
proximity effect with a fixed order parameter, and the type II considers the self-consistent of
the order parameter in evolution, which is

∆= g/Ns

∑

p

〈ĉ−p,i,↓ ĉp,i,↑〉i , (3)

where Ns is the number of sites associated with momentum summation. We take the conven-
tion g > 0 to represent the attractive interaction strength. We define the intercell disorder
average 〈· · · 〉i ≡ 1/N

∑N
i 〈· · · 〉. We take the large-N limit in the later calculations and fix

Ns = 32 when performing numerical simulations for the quench dynamics.
The intracell SYK-type interaction reads

ĤI =
∑

x ,i< j;k<l

J (1)x ,i j;kl ĉ
†
x ,i,↑ ĉ

†
x , j,↑ ĉx ,k,↑ ĉx ,l,↑

+
∑

x ,i< j;k<l

J (2)x ,i j;kl ĉ
†
x ,i,↓ ĉ

†
x , j,↓ ĉx ,k,↓ ĉx ,l,↓ ,

(4)
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where the random couplings in ĤI obey the following relations

expectation J (1)x ,i j;kl = J (2)x ,i j;kl = 0 ,

variance J (1)x ,i j;kl J
(1)
x ′,i j;kl = J (1)x ,i j;kl J

(1)
x ′,i j;kl = 2J2/Nδx x ′ .

(5)

We have introduced two random couplings J (1)x ,i j;kl , J (2)x ,i j;kl , which correspond to uncorrelated
random interactions for fermions with different spins.

There are two reasons for considering Eq. (1). Firstly, it provides a concrete model for
studying superconductors with strong interactions, allowing for investigations into both equi-
librium properties and quantum dynamics within the large-N limit. Secondly, it is known that
the original SYK model exhibits non-Fermi liquid behavior [20], with its low-energy mani-
fold being dual to the Jackiw–Teitelboim gravity theory in 1+1-D [21]. By generalizing this
model to higher dimensions, it becomes a valuable tool for understanding strongly correlated
materials [37]. Therefore, our model sheds light on the understanding of superconductivity
in higher-dimensional non-Fermi liquids. Recently, several works have also proposed similar
constructions for the superconductivity SYK model, albeit in different dimensionality or with
correlated SYK interactions through Yukawa interaction with soft boson. [52–54].

2.1 Methods for thermal equilibrium properties

Following the standard approach elaborated in related works [24, 38, 55], we define the re-
tarded Green’s function in terms of Nambu spinor representation (ψ̂p, j,1, ψ̂p, j,2) =

�

ĉp, j,↑, ĉ†
−p, j,↓

�

G>j j′;ss′(p; t, t ′)≡ −i〈ψ̂p, j,s(t)ψ̂
†
p, j′,s′(t

′)〉δ j j′ ,

G<j j′;ss′(p, t, t ′)≡ i〈ψ̂†
p, j′,s′(t

′)ψ̂p, j,s(t)〉δ j j′ ,
(6)

where s = 1,2 represents two components of the Nambu spinor. In the thermal equilibrium,
all Green’s functions are only functions of t − t ′ due to the time-translational symmetry, with
G≷j j′;ss′(p; t, t ′) = G≷ss′(p, t − t ′)δ j j′ . The diagonal of intracell index j in Green’s function is due
to the disorder average, and later on, we will ignore the intracell index j in Green’s function
for convenience. Furthermore, we introduce the retarded Green’s function GR/A related to G≷

as
GR/A

ss′ (p; t, t ′) = ±Θ
�

±(t − t ′)
� �

G>ss′(p; t, t ′)− G<ss′(p; t, t ′)
�

, (7)

where Θ (t) is the Heaviside step function. By performing the Fourier transformation, Green’s
function can be represented on the momentum and frequency domain.

GR/A
ss′ (p,ω) =

∫

dt GR/A
ss′ (p, t)e−iωt .

Then we can have the self-consistent Schwinger-Dyson equation for the retarded Green’s func-
tion

(GR)−1(p,ω) = ((G0)R)−1(p,ω)−ΣR(ω) . (8)

The bare Green’s function corresponds to the BCS Hamiltonian

((G0)R)−1(p,ω) = (ω+ i0+)σ̂0 − ε(p)σ̂z +∆iσ̂
x . (9)

Here {σ̂0, σ̂r}, with r = x , y, z are the Pauli matrix in the basis of Nambu spinor. In terms of
Green’s function, the equilibrium order parameter ∆i could be separately written as

∆i =

¨

∆i,0 (constant) , Type I ,

−
∑

p i giG
<
12(p; t, t)/Ns , Type II .

(10)
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By taking the large-N limit, and utilizing the tools of Keldysh contour [51], the self-energy on
the time domain could be written as

Σ
≷
ss′(t, t ′) =

x , t ′ x , t
s′ s

= J2G≷ss(x = 0; t, t ′)G≶ss(x = 0; t ′, t)G≷ss(x = 0; t, t ′)δss′

=
1

N3
s

∑

p1,p2,p3

J2G≷ss(p1; t, t ′)G≶ss(p2; t ′, t)G≷ss(p3; t, t ′)δss′ ,

(11)

where G≷ss(x; t, t ′) is the Fourier transformation of G≷ss(p; t, t ′) and the retarded/advanced self-
energy are similarly defined as

Σ
R/A
ss′ (t, t ′) = ±Θ
�

±(t − t ′)
� �

Σ>ss′(t, t ′)−Σ<ss′(t, t ′)
�

. (12)

We notice the self-energy Eq. (11) only has spin diagonal terms, since the coupling
J (1)x ,i j;kl , J (2)x ,i j;kl are not correlated. Besides, the x = 0 in the Green’s function results from the
intercell disorder average in the Eq. (5).

To solve the real-time Green’s functions self-consistently, we introduce the spectral function
as

GR
ss′(p,ω) =

∫

dz
ρss′(p, z)

z −ω+ i0+
, (13)

which implies ρss′(p,ω) = −ImGR
ss′(p,ω)/π. The greater and lesser Green’s functions are

associated with spectral function by the fluctuation-dissipation theorem as

G<ss′(p,ω) = 2πinF (ω)ρ(p,ω)ss′ ,

G>ss′(p,ω) = −2πinF (−ω)ρ(p,ω)ss′ ,
(14)

where nF (ω) is the Fermi-Dirac distribution function. By using Eq. (8) and Eq. (11), one can
iteratively obtain the equilibrium spectral functions and Green’s functions.

2.2 Methods for non-equilibrium dynamics

To study the quench dynamics, we choose the real-time approach and utilize the Kadanoff-
Baym equation on the Keldysh contour [51], which describes the real-time evolution of G≷.
Using Eq. (11) and applying the Langreth rules [56] on the Schwinger-Dyson equation, we
find that [38]:

i∂t1
G≷(p; t1, t2) + (−ε(p)σ̂0 +∆ f (t1)σ̂

x)G≷(p; t1, t2) =
∫

d t3(Σ
R(t1, t3)G

≷(p; t3, t2) +Σ
≷(t1, t3)G

A(p; t3, t2)) ,

−i∂t2
G≷(p; t1, t2) + G≷(p; t1, t2)(−ε(p)σ̂0 +∆ f (t2)σ̂

x) =
∫

d t3(G
R(p; t1, t3)Σ

≷(t3, t2) + G≷(p; t1, t3)Σ
A(t3, t2)) .

(15)

Similarly, we consider both the quantum proximity effect and self-consistent procedure of∆(t).
We summarize the two cases as

∆ f (t > 0) =

¨

∆ f ,0 (constant) , Type I ,

−
∑

p i g f G<12(p; t, t)/Ns , Type II .
(16)
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J

g

Figure 2: Critical BCS phase diagram with SYK type interaction. To illustrate the
critical hyper-surface in the g − T − J space, we project the hyper-surface into the
g − J plane using a contour plot. We fix the hopping strength th = 0.1.

The quench protocol can be realized in the following manner. For t1, t2 < 0, we require that
G≷(p; t1, t2) = G≷(p, t12). In other words, G≷(p; t1, t2) is given by the equilibrium solution
with initial order parameter ∆i defined in the Eq. (10) correspondingly, which serves as the
initial conditions for the real-time dynamics. For t1, t2 > 0, the system drives away from
the equilibrium with the new order parameter ∆ f (t). Solving the differential equation of
G≷(t1, t2) with the Eq. (11) and (15) gives the quantum dynamics. We apply the second order
Euler’s method and choose the time domain cutoff to be t/∆t ∈ [−nt , nt] with nt = 2000
and discrete time step∆t = 20β/(nt J). We have benchmarked the numerical error by testing
the time translation invariance for Green’s functions when we evolve the Green’s functions
without changing any parameters of the system.

3 Numerical results

In this section, we present numerical results both in thermal equilibrium and for quench dy-
namics. In both cases, we find the pairing strength is suppressed by the SYK random interac-
tions. This qualitatively matches the observation in the cold atom experiment [1].

3.1 Phase diagram in thermal equilibrium

It is known that systems with attractive interactions exhibit superconducting transition at criti-
cal temperature Tc for given BCS interaction strength g, or equivalently at critical BCS interac-
tion strength gc at given temperature T [57]. In this part, we aim to explore the effect of SYK
interaction J on the transition temperature Tc by computing the equilibrium phase diagram
for type II models. The phase diagram for the traditional BCS system can be restored by taking
J → 0.

The transition temperature Tc can be determined by solving the gap equation with ∆ = 0
[57, 58]. Here we determine Tc by taking a finite but small order parameter ∆ = 10−3 and
perform the iteration for Green’s functions for a fixed J in the limit of Ns→∞ (see appendix
A for the details in taking the limit). After the Green’s functions converge, g is computed by
using the relation (10) (type II). In numerics, we fix the hopping strength th = 0.1. In fig. 2, we
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Figure 3: The pairing α in the type I and II system. The color of the heatmap indicates
the value of α. We fix th = 0.1, β = 10 and choose finite Ns = 32. (a) Type I
system with proximity effect. The open markers label the initial order parameter
∆i = 0.1 (circle) and quench to the final order parameter ∆ f = 0.1, 0.2 (square and
diamond). (b) Type II system with BCS iteration. The open markers label the initial
BCS interaction gi = 0.66 (circle) and quench to the two sets of final BCS interactions
g f = 0.2, 1.0 (square and diamond). Green, orange, and blue colors indicate SYK
interaction J = 0.1,0.2, 0.5 separately.

show critical hypersurface in the g−T−J space through a contour plot on the g−J plane. We
find with fixed T , larger J leads to larger critical BCS interaction gc . Since superconductivity
occurs when the BCS interaction exceeds gc , it suggests that the SYK interaction weakens
superconductivity. This can be understood as the SYK interaction introduces a finite lifetime
for fermions near the Fermi surface at a fixed temperature T . Consequently, it diminishes the
pairing instability near the Fermi surface and leads to an increase in the critical BCS interaction
gc .

We further compute the pairing strength for different SYK interaction strength J with finite
order parameter ∆ or BCS interaction g in type I and type II systems correspondingly. We
define the pairing strength α ∈ (−0.5, 0.5) as a ’normalized’ order parameter, which reads

α≡ 1/Ns

∑

p

〈ĉ−p,i,↓ ĉp,i,↑〉i . (17)

It corresponds to observing the magnetization in x direct in the language of Anderson’s
pseudospin [3]. This also indicates the close relation between the attenuating dynamics of
fermionic superfluids and the magnetization dynamics of the random spin model [38,59]

The fig.3 (a), (b) show equilibrium pairing α in type I and type II system respectively.
There are two remarks on the results. First, the proximity effect leads to a smooth change
in the non-zero pairing α against the fixed order parameter ∆. This can be understood as
the magnetization induced by an external traverse magnetic field in the Anderson spin model,
which is always non-zero. As a comparison, with BCS self-consistency, there is a typical second-
order phase transition phenomenon at g = gc with each SYK interaction J . This is consistent
with the original BCS theory [58, 60]. Secondly, here we choose finite discretization of mo-
mentum Ns = 32, for benchmarking the later calculation of quench dynamics. However, we
find the Ns = 32 result in fig. 3(b) still qualitatively agree with the phase diagram illustrated
in fig. 2 obtained in the limit of Ns →∞. Both of them show a positive correlation between
critical g and SYK interaction J . It provides a check for the validity of the finite Ns calculations
for the quench dynamics in the following subsection.
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Figure 4: Quench dynamics of pairing in two types of system. We also fix th = 0.1,
β = 10 and choose finite Ns = 32 according to fig. 3. (a, c) Quench dynamics with
proximity effect. The system is initially prepared at ∆i and quenched to ∆ f . (a):
(∆i ,∆ f ) = (0.1,0.05); (c): (∆i ,∆ f ) = (0.1,0.2). (b, d) Quench dynamics with
order parameter self-consistency. The interaction strength is initially gi and then
quench to g f . (b): (gi , g f ) = (0.66, 0.2); (d): (gi , g f ) = (0.66, 1.0).

3.2 Attenuating dynamics

In the limit of J → 0, our model is equivalent to the standard BCS mean-field theory. Using the
time-dependent Bogoliubov theory, previous literature shows that small-amplitude oscillations
of order parameter persist with a frequency of 2∆, which is the energy of the Higgs mode [2,
61–63]. Later studies propose phase diagram with three dynamical phases classified according
to the dynamics of the order parameter after a quantum quench. [4–7]. The order parameter
can disappear rapidly, damply oscillate, or persistently oscillate. However, these conclusions
are obtained at the limit of large Ns and assume a constant density of state. Here we can only
take small Ns and free fermion lattice dispersion in Eq. (2), limited by the Green’s function-
based numerical method. We hereby focus on the dependence of the decaying rate on the SYK
interaction parameter J .

In fig. 3, we mark several open markers as the initial and final parameters for the quench
dynamics numerics. We choose two sets of parameters: one set quenches to the system with
a large order parameter (circle to diamond), and another one quenches to the system with a
smaller order parameter(circle to square). In practice, it is realized by quenching supercon-
ducting order ∆ induced by proximity effect in type I system, and by quenching BCS interac-
tion g in type II system. Besides, we are interested in the effect of SYK interaction J on the
non-equilibrium dynamics. Therefore, we also mark J = 0.1,0.2, 0.5 in the equilibrium phase
diagram for comparison in the quench dynamics.

The fig. 4 shows the oscillation is pervasive in different parameter regions. However, our
numerical results show that the SYK-type interaction strongly attenuates the oscillation ampli-
tude compared to the traditional BCS system. This qualitatively matches the absence of oscil-
lation observed in the BCS-BEC quench experiment [1]. Here we discuss the result of quench
dynamics both with or without order parameter self-consistency. We fix hopping th = 0.1 and
inverse temperature β = 10 but leave J as an adjustable parameter. From fig. 4, we simulate
the quench dynamics with different J and different iterative types. Fig. 4(a), (c) belongs to the
type I system which quenches the background proximity order parameter, whereas Fig. 4(b),
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(d) represents the type II system which quenches the BCS interaction strength. For both types
of systems, we find that when SYK-type interaction J increases, the amplitude of the oscillation
decreases. We recall that such decreasing in amplitude is consistent with the equilibrium phase
diagram in fig. 3, which indicates that the SYK interaction weakens the superconductivity.

It’s worth exploring the decay rate against the SYK interaction. We fit the decay rate Γ with
formula α(t) ∼ α0e−Γ t cos(Ωt + θ ) + c, and the detail parameters are left to the appendix B.
As shown in fig. 5, we find type I and II system exhibits different scaling laws for J ≳ th. The
system with proximity effect shows perfect linear law, while the self-consistent BCS system
shows quadratic scaling law. We argue this can be understood by a semi-classical Boltzmann
equation in the limit of th → 0 [58]. We start with the type I model describing the proximity
effect. Given an order parameter ∆ f , the system consists of Bogoliubov particles with energy
Ek = |∆ f |. Without the SYK interaction J , the lifetime of the Bogoliubov particles is infinite.
The quantum state after the quench can be viewed as a non-equilibrium state of Bogoliubov
particles. The relaxation of α is then because of the decay of Bogoliubov particles induced by
the SYK interactions. Under the semi-classical approximation, this can be estimated by

Γk =2πJ2

∫

dk2dk3dk4

(2π)3
δ(Ek + Ek2

− Ek3
− Ek4

)

×
�

nF (Ek3
)nF (Ek4

)(1− nF (Ek2
)) + (1− nF (Ek3

))(1− nF (Ek4
))nF (Ek2

)
�

.

(18)

Here we focus on a two-to-two scattering for concreteness. Other scattering channels lead
to a similar contribution. Unfortunately, the delta function diverges since Ek = |∆ f |. This
divergence appears because we have assumed the quasi-particles have infinite lifetime:

δ(Ek + Ek2
− Ek3
− Ek4

) =

∫

dω2dω3dω4 δ(Ek +ωk2
−ωk3

−ωk4
)
∏

i

δ
�

ωi − Eki

�

, (19)

where δ(ωi − Eki
) is the corresponding spectral function. When we take into account the

finite lifetime of quasi-particles, the delta functions are smeared out and the divergence is
cured. By dimensional counting, we expect the regularization δ(Ek + Ek2

− Ek3
− Ek4

)→ 1/Γ
for th → 0. As a result, we find Γ ∼ J2/Γ , which indicates Γ ∝ J . A similar phenomenon
appears in the high-temperature limit of the Majorana SYK model [64]. On the other hand,
for the type II model, the order parameter ∆ is dynamical. As a result, the instantaneous
spectral function of fermions in non-equilibrium dynamics is generally continuous in time.
This indicates the lifetime of quasi-particles can be finite even without J . If this is the case,
we expect the contribution from finite J takes the form of Γ ∼ Γ0 + J2/Γ0, which explains the
quadratic dependence of Γ with respect to J .

4 Discussion

In this work, we analyze the effect of SYK interactions in a one-dimensional BCS system. We
employ the large-N approximation and Green’s function-based technique to solve the equi-
librium problem and quench dynamics. Firstly, we calculate the critical hypersurface in the
g − T − J parameter space, which represents the superconductivity transition. Additionally,
we investigate the equilibrium phase diagram of pairing with finite order parameters or BCS
interaction. All these phase diagrams demonstrate that SYK interaction suppresses the super-
conductivity order. Using the phase diagram as a guide, we further explore the non-equilibrium
quench dynamics. Our findings reveal that the oscillation of the pairing strength is damped by
the SYK interaction J , which is consistent with the equilibrium phase diagram. This damping
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Figure 5: The decay rate in terms of different SYK interaction J . We also fix th = 0.1,
β = 10 and choose finite Ns = 32. The initial and final conditions correspond to
fig. 4(c) in the Quench ∆ line, and correspond to fig. 4(d) in the Quench g line.

effect can be attributed to the introduction of interaction between Anderson spins, resulting
in the thermalization of the Anderson spin system.

Our results represent the initial step towards achieving a comprehensive understanding
of the attenuating dynamics observed in strongly interacting superconductors (or fermionic
superfluids). For instance, it is reasonable to anticipate that the unitary Fermi gas would also
undergo rapid thermalization due to the strong interactions between its constituent atoms
[1]. As a consequence, the relaxation of the pairing strength in this system should occur at a
much faster rate compared to what is predicted by the traditional BCS theory. However, the
development of a microscopic description for the quench dynamics in the unitary Fermi gas at
low temperatures is deferred to future studies.
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A Critical parameter obtained in Np→∞ limit

In this appendix, we show the technique to realize Np →∞ in equilibrium calculation. We
take care of the whole band dispersion and perform integration on the momentum space.

Recalling the Schwinger-Dyson equation (8), (9), now we will perform integration on the
momentum index.

GR(x = 0,ω) =

∫ π

−π

dp
2π

�

−ε(p)−ΣR
11(ω) +ω+ i0+ ∆

∆ ε(p)−ΣR
11(ω) +ω+ i0+

�−1

.

(A.1)
Here we use the symmetry of Green’s function, which is referred to previous work [38,59]

G>s1s2
(t1, t2) =

�

G>22(t1, t2) G>21(t1, t2)
G>12(t1, t2) G>11(t1, t2)

�

s1s2

, (A.2)
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(a)

(b)

Figure 6: The fitting of decay rate in terms of different SYK interaction J . We
fix th = 0.1, β = 10 and choose finite Ns = 32. The initial and final condi-
tions of (a) correspond to Quench ∆ line in the fig. 5, and (b) corresponds to
the Quench g line of fig. 5. The right panel illustrates the detailed fitting for-
mulas. From top to bottom, each curve corresponds to different SYK interactions
J = 0.1, 0.2,0.25, 0.3,0.35, 0.4,0.45, 0.5.

G>s1s2
(t1, t2) =

�

−G<11(t2, t1) G<12(t2, t1)
G<12(t2, t1) −G<11(t2, t1)

�

s1s2

. (A.3)

Therefore we only need to consider the 11 and 12 components of the Green’s function and
self-energy. Also we remember ΣR

12 = 0 due to the format of SYK interaction Eq. (5).
Integrate over momentum leads to the final result

GR(x = 0,ω)11 = −
∫ π

−π

dp
2π

ε(p) +ω−ΣR
11(ω)

ε(p)2 +∆2 −
�

ω−ΣR
11(ω)
�2

= −
ω−ΣR

11(ω)
p

A(A+ 4t2)
(−1)Floor
h

π+Arg[A+4t2]−Arg[A]
2π

i

,

(A.4)

and

GR(x = 0,ω)12 =

∫ π

−π

dp
2π

∆

ε(p)2 +∆2 −
�

ω−ΣR
11(ω)
�2

=
∆
p

A(A+ 4t2)
(−1)Floor
h

π+Arg[A+4t2]−Arg[A]
2π

i

,

(A.5)

where the polynomial A = ∆2 −
�

ω−ΣR
11(ω)
�2

. We have already known that self-energy
only depends on Green’s function located at x = 0. Hence, the integrated Schwinger-Dyson
equation gives rise to a close form and can be solved self-consistently.
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B Details of fitting decay rate

Different scaling laws of decay rate in quench∆ and quench g protocols are revealed in fig. 5.
Here we fit each α(t) curve with the first 280 data points for both quench protocols, as shown
in fig. 6. The fitting formula is

Γ =

¨

0.0799397+ 2.67588J , (Quench ∆) ,
0.197641+ 2.00575J2 , (Quench g) ,

(B.1)

which is obtained by Mathematica FindFit formula.
For concreteness, we have tested the robustness of our conclusion by adjusting different

fitting time periods in the data. There is no qualitative difference between different fitting
regions.
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