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Abstract

The weak ergodicity breaking hypothesis postulates that out-of-equilibrium glassy sys-
tems lose memory of their initial state despite being unable to reach an equilibrium
stationary state. It is a milestone of glass physics, and has provided a lot of insight on
the physical properties of glass aging. Despite its undoubted usefulness as a guiding
principle, its general validity remains a subject of debate. Here, we present evidence
that this hypothesis does not hold for a class of mean-field spin glass models. While
most of the qualitative physical picture of aging remains unaffected, our results suggest
that some important technical aspects should be revisited.
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1 Introduction

Mean-field spin glasses are prototypes of complex materials. Their rough Hamiltonian function
(or “energy landscape”) features a multitude of local minima. At finite temperature, this results
in a rough free energy landscape, with a multitude of metastable states that can trap the
dynamics for times diverging exponentially with system size [1]. In equilibrium, mean-field
spin glasses have been solved by several techniques, including the replica and cavity methods,
and the structure of thermodynamic states is now well understood [2,3].

However, such thermodynamic states are by construction inaccessible, because equilib-
rium cannot be achieved at temperatures below the glass transition. In fact, glassy materials
(e.g., window glasses) are usually prepared by cooling from high temperature [4], and the
same cooling protocol can also be used to solve optimization problems under the name of
simulated annealing [5]. A particular case of such cooling is an instantaneous quench from
infinite temperature to zero temperature, i.e. gradient descent dynamics starting from a ran-
dom initial state. Such dynamics has recently attracted a lot of interest because it is routinely
used to train modern deep neural networks [6]. Hence, understanding where, in the rough
landscape of a disordered system, a cooling or quench dynamics would end is a problem of
primary importance in a broad field of problems, ranging from material science to artificial
intelligence [7].

A milestone in this line of research is the exact solution by Cugliandolo and Kurchan of
the out-of-equilibrium quench dynamics of the so-called pure spherical p-spin-glass model [8].
Here, p refers to the number of interacting spins in the Hamiltonian, and spherical refers to
the fact that spins are continuous variables constrained on the N -dimensional sphere. These
authors were able to solve numerically the exact dynamical mean field theory (DMFT) equa-
tions that describe such dynamics when the thermodynamic limit N →∞ is taken first (at
fixed time after the quench). Moreover, they could analytically construct an exact asymptotic
solution when time goes to infinity (after the thermodynamic limit) [8,9]. This solution gave,
for the first time, a coherent picture of the low-temperature out-of-equilibrium evolution of
disordered systems towards the bottom of their energy landscape, and revealed a series of
highly non-trivial physical properties of the dynamics. It shows that (i) the system never be-
comes stationary but instead ages indefinitely, reaching lower and lower regions of the energy
landscape; (ii) it asymptotically gets stuck at a “threshold” value of energy that sharply sep-
arates high-energy saddle-rich and low-energy minima-rich regions of the landscape [9, 10];
(iii) the threshold level is characterized by “marginal stability”, i.e. the spectrum of eigenval-
ues of the Hessian matrix touches zero, resulting in the presence of arbitrarily soft excitation
modes that make the system extremely sensitive to small perturbations; (iv) at long times,
any non-linear transformation of time leads to the same result, i.e. the system possesses
an internal “clock” that is independent of the actual parametrization of time, the so-called
“reparametrization invariance” symmetry [11]; (v) the threshold energy level is asymptotically
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sampled uniformly, hence giving rise to a notion of “effective equilibrium” and an associated
“effective temperature” [8,12]; (vi) correspondingly, memory of the initial state is completely
lost. This phenomenon of persistent and memoryless aging has been dubbed “weak ergodicity
breaking” [9, 13] and has become a central concept in glass physics. In fact, many numeri-
cal and experimental studies suggest that structural glasses undergo a similar kind of aging
when quenched to low temperatures [4,14]. Similar results have been obtained for deep neu-
ral networks in the under-parametrized regime [15]. The weak ergodicity breaking scenario
is particularly attractive because the manifold on which the system evolves asymptotically is
independent of the initial condition and can thus be characterized by entirely geometrical
methods, without the need for an explicit solution of the dynamics that is difficult to obtain in
more complex models [16–21].

Motivated by these considerations, recent work has investigated whether the weak ergod-
icity breaking scenario, and its asymptotic aging structure, holds more generally in spin glass
models. The Ising p-spin-glass has been investigated numerically by Rizzo [22] (for p = 3)
and by Bernaschi et al. [23] (for p = 2, corresponding to the Sherrington-Kirkpatrick model).
The results of both works suggest either strong ergodicity breaking, i.e. non-vanishing cor-
relation between the initial configuration and that at asymptotically divergent times, or a
long-time crossover to a much slower time decay (e.g. logarithmic), thus suggesting that a
different asymptotic solution than the Cugliandolo-Kurchan one [24] might apply to these
models. Folena et al. [25] studied the mixed spherical (p + s)-spin-glass, i.e. a mixture of
two pure p-spin-glasses, with different values of the number of interacting spins, chosen to be
p = 3 and s = 4. For this (3+4)-spin-glass, Folena et al. identified what they called an “onset”
temperature Tonset, such that for initial configurations prepared in equilibrium at temperature
T > Tonset, weak ergodicity breaking seemingly applies to gradient descent dynamics, while
for T < Tonset one has strong ergodicity breaking [25]. Because of these results, the gen-
eral validity of the weak ergodicity breaking hypothesis beyond the case of the pure spherical
p-spin-glass remains undecided.

In this work, we revisit the situation by considering mixed spherical (p+s)-spin-glass mod-
els with fixed p = 2 or p = 3, and varying s over a wide range of values. We restrict ourselves
to the simplest case of gradient descent (i.e., zero-temperature) dynamics starting from an ini-
tial random configuration (i.e., infinite initial temperature). We solve the DMFT equations for
these models (hence taking the thermodynamic limit first, at fixed times), both via numerical
integration [8] and using series expansions [26]. Our results from both methods consistently
suggest that either strong ergodicity breaking holds at any s > p, or that weak ergodicity break-
ing is only restored at very large (unobservable) times via some poorly understood crossover.
The phenomenon is most visible at large s, but it seems to remain present (although very
weakly) even for the 3+ 4 model investigated by Folena et al. [25].

We show that most of the physical ingredients of the Cugliandolo-Kurchan solution listed
above also apply to the mixed (p + s)-spin model, namely (i) the system ages indefinitely,
(iii) the dynamics approaches a marginally stable manifold, and (v) a modified fluctuation-
dissipation relation suggest the emergence of an effective thermal regime. Yet, although our
results are not fully conclusive, they strongly suggest that the weak ergodicity breaking hy-
pothesis does not apply, at least on observable time scales, and as a result the system ends up
surfing on a non-universal manifold that depends on the initial condition, and whose proper-
ties cannot be computed from a simple geometrical scheme. Whether these manifolds can be
described by a proper generalization of the Cugliandolo-Kurchan asymptotic solution of DMFT
remains an open problem [25].

We note that numerical results on finite-dimensional models of structural glasses seem to
agree with the weak ergodicity breaking hypothesis, in the sense that correlation with the
initial state is lost at large times, see e.g. [27–29]. While it has been established that in the
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infinite-dimensional limit such models are described by a DMFT [30–33], the type of ergodicity
breaking in this setting has not been fully investigated, but preliminary results [21] suggest
strong ergodicity breaking in infinite dimensions similar to the one we report here for the
mixed (p + s)-spin glass model. Hence, either weak ergodicity breaking is restored by non-
mean-field effects in finite-dimensional glasses, or strong ergodicity breaking is present in
these systems but it is too small to be detected numerically. It is important to note that in
finite dimensions, under general hypotheses, the asymptotic aging dynamics is connected to
the structure of the equilibrium Boltzmann distribution, see Ref. [34] for a review. Progress
along these lines would give additional insights on the aging dynamics of glasses and other
similarly complex systems.

The rest of this paper is organized as follows. In Sec. 2 we introduce the models we study
and review some known properties of their energy landscape and the DMFT equations. In
Sec. 3 we present our main results. We conclude by a brief discussion in Sec. 4. A few more
technical details are discussed in Appendix.

2 Definitions

2.1 Models

The Hamiltonian of the pure p-spin model is

Hp =
∑

i1<i2<...<ip

Ji1 i2...ipσi1σi2 · · ·σip , (1)

where the σi are N real variables satisfying the spherical constraint
∑

i σ
2
i = N . The couplings

Ji1 i2...ip are i.i.d. Gaussian variables with zero mean and variance 1/(2N p−1p!). We consider
two classes of mixed (p+ s)-spin spherical models whose Hamiltonian is a linear combination
of two p-spin models, each with independent random couplings. The 2+ s (with s > 2) has
Hamiltonian

Hλ2+s =
p

λH2 +
p

1−λHs , (2)

where the parameter 0≤ λ≤ 1 interpolates between the two pure models H2 and Hs, and the
3+ s (with s > 3) whose Hamiltonian is

Hλ3+s =
p

λH3 +
p

1−λHs , (3)

again with the interpolating parameter λ. Following Ref. [35] we define the characteristic
polynomial as the covariance between Hamiltonians at different configurations σ,σ′ on the
hypersphere

f λp+s

�

σ ·σ′

N

�

≡ N−1Hλp+s(σ)H
λ
p+s(σ′) , (4)

where the overline • stands for an average over the Js disorder. This is equal to

f λp+s(q) =
λqp + (1−λ)qs

2
, with q =

σ ·σ′

N
, (5)

where p = 2 or p = 3 depending on the considered model, and q is the overlap between two
configurations on the hypersphere. The definition and use of the characteristic polynomial
f (q) for multi-particle interactions in spin glasses was firstly introduced in Ref. [36].

For each class of models Hλ2+s and Hλ3+s, we have selected a value of λ for each s such as
to maximize

∆Eλs =
f (1)

p

f ′′(1)
f ′(1)

−
f ′(1) + f (1) + 2

p

f ′′(1)
. (6)
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Figure 1: Ground-state of the models studied in this paper. (a) Phase diagram for the
ground-state of (2+ s)-spin models for different values of s and λ. (b) Same phase
diagram for (3+ s)-spin models. The plots are derived following Ref. [37].

Table 1: Selected values of λ for the (2+ s) and (3+ s) models.

s 2 3 4 5 6 7 8 9 10 11 12 13

2+ s λ 0.500 0.634 0.710 0.760 0.795 0.821 0.841 0.857 - - - -

3+ s λ - 0.500 0.587 0.649 0.696 0.730 0.760 0.781 0.800 0.816 0.829 0.841

Notice that here and in the following, f ′(q) = ∂q f (q). The rationale for this choice of λ will
be discussed in the following; the selected λs are reported in table 1.

2.2 Energy landscape

The ground state of the selected models displays different types of replica symmetry breaking
(RSB), as shown in Fig. 1. The selected (2 + s)-spin models present a 1-step RSB (1-RSB)
ground-state for s = 3 and 1-step+full RSB (1-FRSB) for s > 3, with the fullRSB part being
located at small values of the overlap [38, 39]. The pure 2-spin (s = 2) is peculiar because
it presents a trivial landscape with only two minima, and its out-of-equilibrum dynamics is
exactly integrable [40]. The selected (3+ s)-spin models present a 1-RSB ground-state for all
s < 13, while s = 13 presents a 2-RSB ground-state [37].

Above the ground state, each of the selected models presents a rough energy landscape,
with an exponential (in the system size) number of local minima. In order to characterize this
complex landscape we define three different energies:

• Egs, the ground-state energy, is the lowest energy of the landscape [39,41].

• Eth, the threshold energy, is the energy above which typical stationary points are saddles,
and below which they are minima [8,25,42–44].

• Eal g , the algorithmic energy, is the lowest energy reachable by an optimization algorithm
which computes the gradient of the Hamiltonian a finite number of times [45–48].

Each of these energies can be exactly evaluated for arbitrary mixed models. Below we
only report calculations for both Egs and Eth in the simplest case of a 1-RSB landscape, but the
expressions can be generalized to any level of RSB. We define the complexity as the average
over the disorder of the logarithm of the number N of stationary points with given energy
(per spin) EIS. This is evaluated by the Kac-Rice formula

Σ(EIS)≡ N−1log
�

N (EIS)
�

, with N (EIS) =

∫

σ∈SN

dσ δ(H − N EIS) δ(∇H) |det(∇2H)| ,

(7)
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with
∫

σ∈SN dσ the integral over the space of configurations (hypersphere).
Assuming a 1-RSB ansatz, the complexity of the energy landscape in mixed p-spin models

is [25,49,50]

Σ(1)(χ) =
1
2

�

χ2 f ′(1) + log
�

1
χ2 f ′(1)

�

− f (1)
�

1
χ f ′(1)

−χ
�2

− 1

�

, (8)

where χ is the linear susceptibility associated to typical local minima with energy

E(1)IS (χ) = − f (1)
�

1
χ f ′(1)

−χ
�

−χ f ′(1) . (9)

The superscript (1) reminds that these expressions hold under the 1-RSB ansatz, and the sub-
script IS stands for inherent structure, the name usually given to local minima in the glass
literature. A parametric plot of Σ versus E, eliminating χ, gives the complexity of local min-
ima as a function of the energy level in the landscape. If the ground-state, or some of the
higher-energy states, present a more complex RSB structure, then Eqs. (8) and (9) are not ex-
act, and we must resort to more involved calculations, see Ref. [39] for 1-FRSB and Ref. [44]
for 2-RSB.

The ground-state energy corresponds to the energy at which the complexity vanishes,
therefore within the 1-RSB ansatz

E(1)gs = E(1)IS (χ
(1)
gs ) , with χ(1)gs s.t. Σ(χ(1)gs ) = 0 . (10)

The energy Eth is defined as the energy at which dominant minima become saddles, i.e.
the vibrational spectrum is marginal. The vibrational spectrum (see e.g. Ref. [35]) follows a
semicircular law ρµ(λ) of radius R= 2

p

f ′′(1) centered at µ, where µ is given in terms of the
susceptibility by inverting

χ(µ) =

∫

dλ
ρµ(λ)

λ
=
µ−

q

µ2 −µ2
mg

2 f ′′(1)
, (11)

with the marginal value thus corresponding to µmg = R = 2
p

f ′′(1). Note that the results
on the spectrum hold for any level of RSB. The corresponding energy (at 1-RSB level) and
susceptibility are

E(1)th = E(1)IS (χmg) , with χmg =
1

p

f ′′(1)
. (12)

The algorithmic energy Eal g is the minimal energy reachable by a search algorithm running
in polynomial time in system size. This energy can be reached by moving in the Thouless-
Anderson-Palmer (TAP) free energy landscape from magnetization 〈σi〉 = mi = 0 (center
of sphere), in N orthogonal unit steps until reaching the surface of the sphere defined by
∑

i m2
i = N . In physical terms, this is a sort of annealing in temperature with a re-weighting

of the Hamiltonian, see Ref. [45,48]. The algorithmic energy reads

Eal g =

∫ 1

0

dq f ′′(q)1/2 , (13)

and the corresponding ansatz is intrinsically of the continuous fullRSB kind. We notice that in
the case of a continuous fullRSB ground state, one has Egs = Eth = Eal g [45], i.e. the ground
state energy (up to subleading corrections in 1/N) can be reached in polynomial time.

Finally, we can define a value of energy at which the 1-RSB complexity has a maximum,

E(1)max = E(1)IS (χ
(1)
max) , where χ(1)max =

p

f (1)
p

f ′(1)2 − f (1) f ′(1)
, s.t. ∂ χΣ(1)(χ) = 0 . (14)
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This value of energy is located above E(1)th and has no particular physical meaning, because
the complexity is ill-defined and unstable towards further RSB in that region [51,52]. Yet, we
take the quantity ∆Eλs = E(1)max − E(1)th reported in Eq. (6) as an estimate of the energy range in
which “non-trivial” effects may take place in the landscape, and this is why we choose λ such
as to maximize ∆Eλs . We stress once again that this choice has no obvious physical meaning
and is just one among several possible ways to choose a value of λ for each s, which is helpful
to reduce the parameter space of the model.

2.3 Gradient descent dynamics

In this work we consider the simplest form of local greedy dynamics, the gradient descent
(GD) dynamics defined by

∂tσi = −µσi −∇Hi , µ=∇H(t) ·σ(t)/N , (15)

where the term µ(t), also called “radial reaction”, is added in order to enforce the spherical
constraint. The system is prepared in an initial random configuration (on the sphere) and the
gradient of the Hamiltonian is then followed until reaching a local minimum. In the N →∞
limit, for any mixed model of covariance f (q), the GD dynamics can be rewritten in terms
of correlation Ct t ′ = 〈

∑N
i=1 si(t)si(t ′)〉/N and response Rt t ′ = 〈

∑N
i=1δsi(t)/δhi(t ′)〉/N , being

〈〉 the average over different random initial conditions and different quenched disorder of
the couplings Js. An external field hi is added to the GD equations to compute the linear
response [8]. The resulting DMFT equations for the GD dynamics read [8]

∂t Ct t ′ =−µt Ct t ′ +

∫ t

0

ds f ′′(Cts)RtsCst ′ +

∫ t ′

0

ds f ′(Cts)Rt ′s ,

∂tRt t ′ =δt t ′ −µtRt t ′ +

∫ t

t ′
ds f ′′(Cts)RtsRst ′ ,

µt =〈∇H(t) ·σ(t)〉/N =
∫ t

0

�

f ′′(Cts)RtsCtsds+ f ′(Cts)Rts

�

ds ,

(16)

where µt is the average Lagrange multiplier enforcing the spherical constraint. The energy is
given by

Et = 〈H(t)〉= −
∫ t

0

ds f ′(Cts)Rts . (17)

We notice that these equations do not present any explicit dependence on the starting config-
uration, while a term proportional to Ct0 is found if the dynamics is initialized in equilibrium
at finite temperature [25]. For a broader and pedagogical introduction to GD in mean-field
spin-glass models, see e.g. Ref. [7,53,54].

These equations were first studied in the out-of-equilibrium setting in Ref. [8] (for an
arbitrary temperature of the thermal bath). There, an ansatz for the long-time dynamics was
proposed, resulting in an asymptotic energy that coincides with the 1-RSB threshold energy
E(1)th that separates minima from saddles. These studies were carried out on the pure p-spin

model, which has the special property that all the marginal minima have exactly energy E(1)th .
In Refs. [25,35], the situation was shown to be different for the more general mixed (3+4)-spin
model, for which marginal minima can be found in a broad range of energies. Yet, Refs. [25,35]
concluded that for this (3 + 4)-spin model, GD initialized in random configurations would
converge to the asymptotic solution of Ref. [8] and thus to energy E(1)th .

In more general models, it is known that E(1)th can go below the ground state energy. Be-
cause the correctness of Eqs. (16) has been mathematically proven [55], the ansatz of Ref. [8]
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Figure 2: Asymptotic energy reached by the gradient descent (GD) dynamics from
random initial condition, compared to the ground state energy Egs, the threshold

energy E(1)th and the algorithmic energy Eal g . Black dots and crosses indicates two
different extrapolations of the gradient descent dynamics, respectively with radial
reaction µ and with time as abscissa. (a) Asymptotic energies reached by (2+s)-spin
models. For Egs the continuous line is the 1-RSB solution while the dashed-dotted
is the 1-FRSB solution (barely distinguishable from Eal g). (b) Asymptotic energies
reached by (3 + s)-spin models. Note that the (3 + 13) model has a 2-RSB ground
state, but here we reported the 1-RSB result (see [44] for further details). While for
s = p (and, within numerical precision, for s ≳ p) gradient descent reaches Eth, for
s > p the gap between the two energies increases quickly.

cannot apply in such cases and must be generalized. In this work, we thus revisited the results
of Refs. [25,35] by numerically integrating Eqs. (16) in a similar way as done before, but con-
sidering a broader range of values of p and s in the mixed (p+s)-spin model. Furthermore, we
also considered a series expansion of the equations as in Ref. [26]; the details of this method
can be found in appendix B.

3 Results

Starting from a random configuration and performing a GD dynamics, we observe that the
energy asymptotically reaches values above the threshold energy E(1)th predicted by the asymp-
totic solution derived in Ref. [8] (Fig. 2). Yet, it remains true that the asymptotically reached
local minima are marginal, i.e. their spectrum has almost flat directions. This is not in contra-
diction with the structure of the energy landscape, which presents a large number of marginal
minima (exponential in N) even above the threshold energy [25].

The main claim of Ref. [25] is that preparing a system in equilibrium at a finite temperature
(below Tonset) and then running GD dynamics, it will asymptotically reach marginal minima
with energies below E(1)th , aging in a confined space. However, starting from random initial
conditions (or preparing above the onset temperature Tonset) the system reaches the threshold
energy E(1)th . Here we claim instead that preparing the system in a random configuration, the

GD dynamics reaches energies above E(1)th . The fact that such behaviour was not observed in
Ref. [25] is because in mixed (p+ s)-models with close p and s the effect is very small, as can
be seen in Fig. 2.1 Furthermore, contrarily to what was proposed in Ref. [25], we propose that

1Notice that the (3+ 4)-spin model of Ref. [25] corresponds to λ = 0.5 (here instead we fix λ = 0.587 for the
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the long-time limit of the correlation Ct0 between the initial and final configurations does not
vanish; again, for close p and s the effect is so small that it went undetected in previous work.
In the scenario we propose here, initializing the GD dynamics in equilibrium at temperature
T would always result in a T -dependent asymptotic energy, with E(1)th playing no special role,
and no sharp Tonset would then be defined.

The results presented in this section are obtained by numerically integrating the DMFT
Eqs. (16) with a fixed time step d t as detailed in [25]. We have chosen a time step d t = 0.05,
which approximate ‘well’ the long time dynamics for all considered models (see appendix A). In
order to support our numerical findings (obtained via integration of the DMFT), we have solved
the same equations by using a series expansion in the two times t, t ′ as was first suggested in
Ref. [26]. The obtained results confirm the findings from the numerical integration. The two
methods, the “integration" and the “series expansion", give different insight on the problem.
The first allows for a longer time span (up to 1500 time units, with time step 0.05), while the
second (that can span up to 100 time units) allows one to precisely evaluate derivatives on
the spanned region, which are needed to precisely evaluate power-law decays.

We would like to stress, however, that both methods give access to a limited time interval,
and in absence of an analytic solution, the infinite-time limit remains inaccessible. The possi-
bility that the scenario we propose is only a pre-asymptotic regime that would crossover to a
weak ergodicity regime thus remains open.

3.1 Power-law decay with series expansion

Focusing on the GD dynamics starting from a random initial configuration, three independent
observables are considered: energy E(t), radial reaction µ(t) and overlap with the initial con-
dition C(t, 0) = Ct0. In the long time limit (in the aging regime), according to the asymptotic
analysis of Ref. [8], we expect them to asymptotically follow three independent power laws:

∆E(t)∼ t−αE , ∆µ(t)∼ t−αµ , ∆C(t, 0)∼ t−αC , (18)

where∆O(t) = O(t)− limt→∞O(t) for each observable. In the case of a quench to the critical
temperature (for a fullRSB transition), exact relations between the αE and αC exponents were
found in Ref. [56].

In order to numerically study the power laws describing the asymptotic dynamics, we
adopt the idea –firstly introduced in Ref. [26]– of expanding the integro-differential DMFT
equations describing the out-of-equilibrium dynamics in powers of the two times t, t ′. The
obtained series has a small radius of convergence (of order one). A Padé approximation is
thus performed in order to extract useful information for the long-time dynamics, which con-
sists in rewriting polynomials of degree L in terms of fractions of polynomials of degree L/2,
such that they have the same Taylor expansion. The attempt in Ref. [26] was conditioned
by two important limitations, the computing power and a probable floating-point approxima-
tion error in the evaluated coefficients that has biased the Padé approximations and therefore
the asymptotic results. In order to overcome this second difficulty we use a multiple-precision
floating-point library (GNU MPFR) that allows one to keep an arbitrarily large number of digits
for every coefficient in the expansion, thus avoiding numerical errors in the resummation. The
only limitation is then due to the number of terms that can be computed (between 1000 and
2000 coefficients), which when resummed with the Padé approximation, gives access to times
∼ 100, to be compared to the times ∼ 1000 reached by a simple integration algorithm. The
advantage of the series expansion is that we can also evaluate derivatives without suffering

same model), which results in an even smaller discrepancy between E(1)th and the extrapolated EGD than the one
shown in Fig. 2. More generally, the values of λ that we choose in this paper “almost” maximize the discrepancy
for each given mixed (p+ s) model.
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Table 2: Power-law exponents in the (2 + s) and (3 + s) models. The exact results
for the 2-spin model are shown in parenthesis (see Ref. [40]). Values have errors
between 0.001 and 0.05 as shown in the error bars of Fig. 3, estimated by comparing
different fitting ranges.

s 2 3 4 5 6 7 8 9 10 11 12 13

2+ s
αE 0.999 (1) 0.681 0.604 0.547 0.508 0.481 0.462 0.447 - - - -

αµ 0.999 (1) 0.702 0.678 0.663 0.652 0.636 0.647 0.632 - - - -

αC 0.748 (3/4) 0.506 0.464 0.424 0.407 0.401 0.380 0.369 - - - -

3+ s
αE - 0.666 0.657 0.617 0.566 0.538 0.503 0.474 0.453 0.436 0.423 0.411

αµ - 0.666 0.670 0.663 0.655 0.650 0.643 0.637 0.631 0.624 0.618 0.615

αC - 0.375 0.338 0.313 0.299 0.285 0.283 0.277 0.284 0.266 0.271 0.266
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Figure 3: Exponents αE ,αµ,αC extrapolated from the series expansion of the DMFT
equations (see appendix B and table 2). These describe the decay of the energy E(t),
the radial reaction µ(t) and the correlation with the initial condition. (a) Power-law
exponents in (2+ s)-spin models. (b) Power-law exponents in (3+ s)-spin models.

from discretization errors due to integration. In appendix B we explain in details the proce-
dure we used to extract the exponents αE ,αµ,αC from the series expansion. In a nutshell, we
extract the exponents from the asymptotic limit of the ratio t∂ 2

t O(t)/∂tO(t), O(t) being either
E(t), µ(t) or C(t, 0).

The results are shown in Fig. 3 and numerical values are given in table 2. The error bars
are based on a fitting procedure over a Padé series (as reported in appendix B), and therefore
must be considered as attempted estimation of the errors. Only in pure models αE = αµ,
because the energy is proportional to the radial reaction [35]. For the special case of the pure
2-spin the fitted power law agrees with the analytically known one [40], i.e. αE = αµ = 1 and
αC = 3/4. For the pure 3-spin we conjecture that the exact values are αE = αµ = 2/3 and
αC = 3/8. These coefficients are not universal, and it remains an open question whether there
exists some equations relating them, in the spirit of Ref. [56].

3.2 Is the asymptotic dynamics marginal?

In Fig. 4 we show the time evolution of the radial reaction µ(t). We confirm that the gradient
descent dynamics from random configurations asymptotically approaches configurations that
have a marginal spectrum [8], i.e. the radial reaction approaches asymptotically its marginal
value µmg ≡ 2

p

f ′′(1) [25, 35, 49]. The convergence of µ(t) towards µmg is controlled by
different power-law decays depending on the model. In the inset of Fig. 4 we show that
the exponents αµ derived from the series expansion can be used to confirm the convergence
towards the marginal value: indeed, the curves appear perfectly linear when plotted as a
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Figure 4: Reduced radial reaction (µmg − µ(t))/µmg vs time t. It is asymptotically
expected to reach zero if the final configuration is marginal. In the inset, the time
axis is rescaled as t−αµ , to show a linear decay. Notice that αµ is evaluated without
any assumption on the marginality, i.e. without assuming limt→∞µ(t) = µmg , as
explained in appendix B. (a) Time dependence of the rescaled radial reaction in
(2+ s)-spin models. (b) Time dependence of the rescaled radial reaction in (3+ s)-
spin models.
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Figure 5: Reduced energy vs reduced radial reaction. The inset shows the same data
rescaled with the power-law exponent αE/αµ in order to obtain a linear behavior,
which once fitted gives the estimates of the asymtotic energy shown in Fig. 2 (black
dots). Dotted lines shows the results for the same system with a different local dy-
namics, as described in section 3.5. (a) Results for (2 + s)-spin models. For s > 3
the threshold is evaluated with the 1-FRSB ansatz [39]. (b) Results for (3+ s)-spin
models, all the thresholds are evaluated with the 1-RSB ansatz.

function of t−αµ , and the linear extrapolation to infinite times coincides with µmg . We notice
that the evaluation from series expansion of αµ (for each model) does not assume µ = µmg ,
therefore the linear convergence towards zero (in the inset of Fig. 4) is a strong confirmation
of the system being asymptotically marginal.

3.3 What is the asymptotic energy?

Having established that the gradient descent dynamics is asymptotically marginal for every
model considered, we can employ the reduced radial reaction µ̃(t) = (µmg − µ(t))/µmg as a
measure of time. It is µ̃(0) = 1 at the initial time and reaches µ̃(∞) = 0 asymptotically. We
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Figure 6: Correlation with the initial condition vs reduced radial reaction. The insets
shows the same data rescaled with the power-law exponent αC/αµ in order to display
a linear behaviour. The dotted lines correspond to the same system with a persistent
short-time dynamics, as described in section 3.5. For s > p, the results suggest an
asymptotic memory of the initial configuration, consistent with a strong ergodicity
breaking scenario. (a) Results for (2 + s)-spin models. (b) Results for (3 + s)-spin
models.

can then study the energy decay as a function of µ̃, as shown in Fig. 5. Increasing s for both
(2+ s) and (3+ s) models has the effect to increase the disagreement with the hypothesis of
convergence to the threshold Eth, both in the case of a 1-RSB and 1-FRSB ansatz, the second
being used for s > 3 in the (2+ s)model. The insets of Fig. 5 show the same data as a function
of µ̃ rescaled with the power-law exponents deduced from the series expansion. The resulting
linear behavior is fitted to obtain the asymptotic estimates shown in Fig. 2 (black dots). A
similar analysis has been done using the rescaled time t−αE to obtain a slightly different fit,
also shown in Fig. 2 (black crosses). Despite not being exactly coincident, the estimates of the
asymptotic energy from the two fits suggest that the energy reaches values that are well above
the threshold.

3.4 Is there a strong ergodicity breaking?

One very important question is whether the aging dynamics can decorrelate from any pre-
viously reached configuration over a long enough time. This is referred to as the weak er-
godicity breaking ansatz, and it is one of the main ingredients that allowed the derivation of
the asymptotic solution of the DMFT equations of the pure p-spin model [8, 9]. Recently, in
Refs. [22,23,25], it has been suggested that weak ergodicity breaking could be non-universal,
and some systems could age in a confined part of the phase space, thus showing strong er-
godicity breaking, i.e. a persistent correlation with the initial condition. Our results for the
GD dynamics of mixed (p + s)-spin models starting from a random configuration seem to
confirm strong ergodicity breaking. In Fig. 6 we show the correlation with the initial con-
figuration C(t, 0) as a function of the reduced µ̃. The inset shows the same data rescaled
with the power-law exponent αC/αµ derived from the series expansion. The linearized curves
suggest a non-zero asymptotic value for the correlation, i.e. limt→∞ C(t, 0) ̸= 0, at least if
we assume that the time of integration (t = 1500) is long enough to observe the asymptotic
behavior. In order to further support this observation we have looked at the two-time corre-
lation C(t, tw) = Ct tw

for different waiting times tw. The results are shown in Fig. 7, with as
abscissa the radial reaction “time difference” (1/µ̃(t)− 1/µ̃(tw))−1. As observed in Ref. [23],
for increasing waiting time tw the system decorrelates less and less, which once again suggests
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Figure 7: Two-time correlations C(t, tw) vs (1/µ̃(t)−1/µ̃(tw))−1 for different waiting
times tw = 0, 0.8,12.8, 204.8. For s > p, the data suggest a strong ergodicity breaking
scenario, i.e. limt→∞ C(t, tw) ̸= 0, for all tw. (a) Results for (2 + s)-spin models.
(b) Results for (3+ s)-spin models.
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Figure 8: Reduced energy vs correlation with the initial condition. A power-law fit
(dashed lines) is performed on the last 500 points of each curves. The fits suggest
that even in the limit C(t, 0)→ 0 the asymptotic energy would be above the threshold
one. (a) Results for (2+ s)-spin models. (b) Results for (3+ s)-spin models. The red
dashed-dotted line shows the extrapolated (d t → 0) curve for s = 11. In appendix A
we discuss the d t-scaling of the error due to the discretization.

strong ergodicity breaking. Furthermore, notice that even assuming that the dynamics eventu-
ally become uncorrelated with the initial condition, the asymptotic behavior of the parametric
curve E(t) versus C(t, 0) indicates an asymptotic energy above the threshold value (Fig. 8).

3.5 Are the results robust against a change of the short-time dynamics?

In this section we investigate to what extent the asymptotic dynamics is influenced by changes
in the short-time dynamics. We modify the thermal bath by adding an exponential persistence,
i.e. the time-derivative operator is changed into

∂t C −→
�

∂t +

∫ t

−∞
dsKts∂s

�

C , where Kt t ′ = γexp(−|t − t ′|/τ) . (19)
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At finite temperature, in order to preserve the detailed balance condition, the thermal noise is
changed accordingly as

〈ξ(t)ξ(t ′)〉= 2Tδ(t − t ′) −→ 2T
�

δ(t − t ′) + Kt t ′
�

, (20)

but since we work here at T = 0, this change is irrelevant. The parameters τ and γ can be
tuned to define the strength of the persistence. The resulting equations for correlation and
response are

∂t Ct t ′ =−µt Ct t ′ +

∫ t

0

ds
�

f ′′(Cts)Rts − Kts∂s

�

Cst ′ +

∫ t ′

0

ds
�

f ′(Cts)− T Kts

�

Rt ′s ,

∂tRt t ′ =δt t ′ −µtRt t ′ +

∫ t

t ′
ds
�

f ′′(Cts)Rts − Kts∂s

�

Rst ′ ,

(21)

to be compared with Eqs. (69) and (71) of Ref. [57]. We have integrated and expanded in
series the Eqs. (21) for γ = 1 and τ= 1. We found that the exponential persistence gives just
a linear rescaling of the characteristic time (for t > τ), i.e. given a one-time observable O(t)
of the original GD dynamics, its analog Opers(t) in the persistent dynamics has an asymptotic
behaviour Opers(t) = O(t/tpers) with tpers > 1 (that depends on the specific model). This
behavior is confirmed by looking at parametric plots where the time has been substituted by
the reduced radial reaction µ̃. In Fig. 5 and Fig. 6 the dotted lines corresponds to the persistent
GD dynamics and are asymptotically matching the original GD dynamics (continous lines).

We conclude that a modification of the short-time dynamics does not seem to have any
impact on the asymptotic behavior, suggesting that a possible closure of the asymptotic DMFT
equations is still possible, despite the lack of weak ergodicity breaking. In other words, while
the dynamics remains confined in a region of space that depends on the initial condition,
such region is asymptotically explored in a way that does not depend on short-time details,
suggesting some kind of effective thermal behavior. In this regard, in order to completely
overcome the short-time dynamics, a possible solution would be to study the quasi-equilibrium
dynamics introduced in Ref. [58–61].
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Figure 9: Parametric plot over waiting time tw of the rescaled integrated re-
sponse χ(t, tw)/χmg vs the correlation C(t, tw), for several fixed values of time
t = 25.6,204.8, 1500. (a) Results for (2+ s)-spin models. (b) Results for (3+ s)-spin
models. For both classes of models the linear 1-RSB ansatz is not able to describe the
asymptotic behaviour (see Fig. 10 for a detailed comparison). The dynamics seems
to asymptotically reach a different unknown ansatz.
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Figure 10: Parametric plot over waiting time tw of the rescaled integrated re-
sponse χ(t, tw)/χmg vs the correlation C(t, tw), for several fixed values of time
t = 25.6, 204.8,1500, compared with several known asymptotic references: static
(χgs), dynamical 1-RSB (χ(1)th ) and algorithmic (χal g) ansatz. (a) (2+9)-spin model.
(b) (3+12)-spin model. The GD dynamics with persistence (red dotted line), shows
the same asymptotic FDR shape. For q close to 1 the FDR is concave, which is incom-
patible with any known thermodynamic calculation (see Appendix C).

3.6 Is there a well defined effective temperature?

A standard way to analyze the aging dynamics [8] is by looking at the parametric plot of
integrated response χ(t, tw) =

∫ t
tw

dsR(t, s) versus the correlation C(t, tw). These are shown
in Fig. 9 for different models. One can introduce an effective temperature that quantifies the
violation of the equilibrium fluctuation-dissipation relation (FDR), and is given by

x t[C(t, tw)] = −
dχ(t, tw)
dC(t, tw)

. (22)

In pure p-spin models the 1-RSB ansatz for the GD dynamics gives, at long times, a unique
effective temperature independent on the correlation, x = 1

χmg f ′(1)−χmg , which is also equal to

the derivative of the complexity at the threshold energy Eth [8]. In Fig. 9b we see that general
mixed (3+ s)-spin models do not exhibit a unique effective temperature (as given by a 1-RSB
anstaz) but rather a varying temperature x t[q] that depends on the correlation q = C(t, tw).
The same can be said for the FDR of (2 + s) models. Moreover, as shown in Appendix C,
even more refined “thermodynamic solutions” to the asymptotic behavior (such as a 1-FRSB
dynamical ansatz [39]), do not agree with dynamical observations. In other words, the GD
dynamical overlap probability P t

GD(q) = x ′GD = −χ
′′
GD does not converge to any expected replica

ansatz.
This is not only true because the support of Pd

t (q) does not reach q = 0 (due to strong
ergodicity breaking), but also because of the actual shape of the solution. This is shown in more
details in Fig. 10 where χGD(q) for different times t = 25.6,204.8, 1500 are compared with the
static ground state (χgs), threshold (χth) and optimal ansatz (χal g). The most clear evidence
that P t

GD(q) is not converging to the known χth ansatz is given by χGD(q) for 0.8 < q < 1, for
which the curves for different times t = 25.6, 204.8,1500 seem to have converged to a concave
(not 1-RSB nor 1-FRSB) solution. This gives further evidence that our actual understanding of
the asymptotic dynamics is far from being complete. We note that similar results are obtained
by looking at the fluctuation-dissipation ratio for the persistent GD dynamics (red dotted line)
in Fig. 10, which supports the claim that the asymptotic limit of P t

GD(q) is also independent of
the short-time details of the dynamics.
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Figure 11: Correlation vs rescaled time (t − tw)/tw for different waiting times
tw = 25.6, 51.2,102.4, 204.8,409.6, 819.2 shown with different dashed and dotted
lines. The inset shows the same data with the time rescaled with αC . For comparison
the continuous lines show the correlation with the initial configuration C(t, 0). (a)
(2+ s)-spin models. (b) (3+ s)-spin models.

3.7 What kind of aging do we observe?

As conjectured in Ref. [8] and shown in Ref. [62],2 the dynamics of the pure 3-spin model
presents a simple aging in the asymptotic regime, i.e. two-time observables such as C(t, tw)
depend only on the ratio (t − tw)/tw. An intermediate sub-aging crossover appears for finite
times, only for quenches near the critical temperature T ≲ TMCT. (The relative scaling can be
exactly studied in the case of continuous fullRSB transitions [56]). Because we are considering
quenches to T = 0, we assume that crossover behavior is suppressed. We observe (Fig. 11)
that both (2+ s) and (3+ s) models seem to present simple aging in the asymptotic dynamics,
at least over the available time scales.

4 Conclusions

In this paper we presented a detailed analysis of the gradient descent dynamics starting from
a random initial condition, revisiting and extending previous work [8,9,25] to a general class
of mixed (p+ s)-spin glass models.

Our main results are the following (Fig. 12).

• We confirm that, in all cases, the dynamics converges asymptotically to a marginally
stable minimum, such that the support of its density of vibrational modes touches zero.
Correspondingly, all quantities converge to their asymptotic limits as power laws, with
exponents that we estimate from a series expansion [26].

• We confirm that in pure p-spin models (p = s) the energy converges to the threshold
energy Eth that separates minima (E < Eth) from saddles (E > Eth). (This is a con-
sequence of the fact that in pure models, marginal states only exist at the threshold
level [8, 9].) The threshold level is asymptotically uniformly sampled by the dynamics,
leading to weak ergodicity breaking, loss of memory of the initial condition, the emer-
gence of a single effective temperature associated to the slow degrees of freedom, and

2Notice that Ref. [62] presents a numerical integration of the DMFT equations reaching times of order 107.
However, their adaptive algorithm is not robust and in particular is unstable if used in the zero temperature GD
dynamics, as commented in Ref. [25].
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Figure 12: Scheme for the gradient descent dynamics from random initial condition
in mixed (p+ s)-spin spherical models. The system reaches marginal energies above
the energy of dominant marginal minima Eth, and it does not lose memory of the
initial condition.

time-reparametrization invariance, as predicted by the asymptotic solution of Cuglian-
dolo and Kurchan [8].

• For mixed (p+ s)-spin models with s≫ p, we obtain quite strong numerical indications
against weak ergodicity breaking. The correlation between the initial and final states of
the dynamics seem to remain finite, indicating that the dynamics remain confined in a
restricted manifold that depends on the initial condition. One should of course keep in
mind that our results are limited to finite times, and it is impossible to completely ex-
clude that the dynamics could present a crossover to a weak ergodicity breaking regime
at much larger times. We note, however, that such a crossover would already be a quite
non-trivial phenomenon that is not captured by current existing theories of the asymp-
totic aging dynamics. Furthermore, even if weak ergodicity breaking is restored at very
large time, the asymptotic manifold cannot be the 1-RSB threshold associated to the
Cugliandolo-Kurchan solution, because this energy goes below the ground state energy
for large enough s.

• Moreover, as far as we can integrate, the extrapolated asymptotic energy lies above the
energy at which typical minima become marginal. The convergence to this marginal
manifold follows a power-law decay t−α, with a power α ≤ 2/3 that depends on the
specific model.

• Yet, our results suggest that the large-time asymptotic dynamics is largely independent of
the short-time details, suggesting that despite strong ergodicity breaking, the asymptotic
manifold is sampled in some effectively thermal way.

• As in the Cugliandolo-Kurchan solution, the effective temperature function χ(q) con-
verges to a finite limit for large times, but the asymptotic function does not seem to be
described by any known ansatz for the long-time dynamics.

• For models with s close to p, such as the (3+4) model studied in Ref. [25], we find that
the strong ergodicity breaking, if present, is very weak. It is difficult to decide, but our
feeling is that there is strong ergodicity breaking at any s > p, which means that the claim
made in Ref. [25] of the existence of a finite Tonset separating weak and strong ergodicity
breaking might be incorrect, i.e. Tonset =∞. In fact, the semi-phenomenological ap-
proximation adopted in Ref. [25] to extract the onset temperature makes use of a 1-RSB
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structure of the aging dynamics (one effective temperature), which we have shown to
be not valid for large s− p.

The coherence of our results suggests that the regime of times we can access is close to the
asymptotic one, which calls for a rethinking of the asymptotic dynamics in mean-field models.
We believe that our results are compatible with several scenarios:

a) The most likely scenario, in our opinion, is that of strong ergodicity breaking. In that
case, one should look for an asymptotic solution with a finite q̃ = limt→∞ C(t, 0).
This asymptotic solution would also be characterized, as in the Cugliandolo-Kurchan
scheme [24], by a hierarchy of time scales with time-reparametrization invariance [11]
and a non-trivial effective function x[q]. First steps in this direction have been taken in
Refs. [25,63], but the analysis is far from being complete.

b) The other option is that weak ergodicity breaking (q̃ = 0) is restored at large times.
As pointed out before, this requires a non-trivial crossover, e.g. to a logarithmic time
decay [22, 23]. The corresponding asymptotic solution cannot be that of Cugliandolo
and Kurchan with a single slow time scale (1-RSB) [8], because the asymptotic energy
corresponding to that solution is the 1-RSB threshold that goes below the ground state
for large s. Hence, a different solution should be constructed, probably with multiple
slow time scales and, again, a non-trivial x[q] [24,63].

We believe that constructing such a solution is an important problem for future work,
because it would shed light on problems such as the mean-field dynamics near to jamming,
and the corrections to mean-field aging in finite-dimensional structural glasses [34].
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A Numerical integration

In order to systematically study the long time GD dynamics we have numerically integrated
Eqs. (16) by a fixed time-step d t algorithm [25, 64]. Each integral in Eqs. (16) is computed
with linear order in d t, resulting in an integrated dynamics that converges linearly in d t to
the exact value (d t → 0). The computation cost of the algorithm scale as L3, L being the
size of the 2d-grid of C(t, t ′) and R(t, t ′) with discrete time couples t = i × d t, t ′ = j × d t.
We have used L = 30000, which corresponds to 15 GB of RAM and a computing time of
2/3 days on a standard computer. We have chosen d t = 0.05 to be a ‘good’ compromise
between d t → 0 convergence and final time t f = Ld t = 1500. A consistency check of the
results obtained with d t = 0.05 is presented in Fig. 13 for the (3 + 11)-spin model, where
the quadratic extrapolation for d t → 0 given d t = 0.3, 0.4,0.5 is compared with the linear
extrapolation given d t = 0.3,0.4 (red line) and with not extrapolated results for each d t. We
notice that for d t = 0.05 the dynamics asymptotically converges to the extrapolated one. For
the energy E and the radial reaction µ this convergence is very fast, instead for the correlation
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Figure 13: Extrapolation of the integrated dynamics for d t → 0 in the (3 + 11)-
spin model. Three different d t = 0.03, 0.04,0.05 are considered. Both a quadratic
interpolation and a linear in d t = 0.03, 0.04 are evaluated and compared with the
non-extrapolated curves. (a) The correlation function. (b) The energy. (c) The
radial reaction. The red lines represents the difference between quadratic and linear
extrapolation. For each observable, increasing time the error given by the step d t
decreases. Notice that for the correlation the decrease is slower. This analysis support
the choice of d t = 0.05 as a ‘good’ step for the asymptotic analysis.

C(t, 0) it is slower. However for times ≳ 100 the error is ∼ 10−3. Similar behaviour is found
for any considered (2+ s) and (3+ s) model, with a slow increase in the error by increasing s.

B Series expansion

In this appendix we explain how to evaluate the solution of the DMFT integro-differential
equations by finding a recursive relation on the polynomial coefficients of a short-time series
expansion, as first suggested in Ref. [26].

B.1 Equilibrium

We start by the simpler one-dimensional example that corresponds to the equilibrium dynam-
ics,

∂t C(t) = −C(t)− β2

∫ t

0

ds f ′(C(s))∂sC(t − s) , (B.1)

with f (q) =
∑

p α
2
pqp/2. Given a Taylor expansion around t = 0, in the form C(t) =

∞
∑

k=0

Ck tk,

this equation reads

∞
∑

k=0

(k+ 1)Ck+1 tk = −
∞
∑

k=0

Ck tk − β2

∫ t

0

ds

� ∞
∑

m=0

Cmsm

�p−1�∞
∑

l=0

lCl(t − s)l−1

�

, (B.2)
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where for simplicity we have considered the pure model of degree p. The last term can be
rewritten as

∫ t

0

ds f ′(C(s))∂sC(t − s) =
∑

p

α2
p

∑

k

F p
k tk ,

F p
k =

p
2

∑

m1+m2+...+mp−1+l=k

Cm1
Cm2

...Cmp−1
lCl

 ∑l−1
q=0

�l−1
q

�

(−1)q

m1 +m2 + ...+mp−1 + 1

!

=
p
2

∑

m

Ck−m
� k

m

�

∑

m1+m2+...+mp−1=m

Cm1
Cm2

...Cmp−1
,

(B.3)

where we used the binomial expansion (t − s)l−1 =
∑l−1

q=0

�l−1
q

�

t l−1−q(−s)q and the power
expansion

�∞
∑

l=0

Cmsm

�p−1

=
∑

m1

∑

m2

...
∑

mp−1

Cm1
Cm2

...Cmp−1
sm1+m2+...+mp−1 . (B.4)

The last sum can also be rewritten in an encapsulated form which in a p = 5 case reads

S5
m ≡

m
∑

m123=0

Cm−m123

m123
∑

m12=0

Cm123−m12

m12
∑

m1=0

Cm12−m1
, (B.5)

where m12 = m1+m2, m123 = m12+m3, m= m123+m4. Thus the original equation becomes
a recursive equation for the polynomial coefficients

Ck+1 = −
(Ck + β2

∑

p α
2
pF p

k )

k+ 1
. (B.6)

The obtained series has a small radius of convergence in t, thus to retain the maximum of
information we Padé-approximate it with a rational function of half the degree, as it will be
explained in Sec. B.3.

B.2 Out-of-equilibrium

We now treat the out-of-equilibrium case, in which correlations depend on two times. We
first introduce a useful identity. If we need to evaluate the Taylor series of the product
C(t) = A(t)B(t), we have

Ck =
k
∑

i=0

AiBk−i , (B.7)

where C(t) =
∑

i Ci t
i and similarly for A(t) and B(t). Therefore the power expansion of

any power p of a function C p(t) can be iteratively deduced from the power expansion of
its lower degrees, Ck −→ C2

k −→ · · · −→ C p
k , where each iteration has a computational

cost ∝ k. This rule makes it possible to evaluate Taylor series for large values p of the p-
spin interaction. The same construction can be applied to the product of two-time functions
C(t, t ′) = A(t, t ′)B(t, t ′), giving

Ck,l =
k
∑

i=0

l
∑

j=0

Ai, jBk−i,l− j . (B.8)

In the following we will call total degree w = k + l the sum of the single index degrees. We
now proceed to derive the iterative equations that allow one to obtain the two-time Taylor
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expansion of C(t, t ′) and R(t, t ′) from the out-of-equilibrium Eqs. (16). When we expand in
series the integrals, two classes of integrals appear:

∫ t ′

0

ds f ′(Cts)Rt ′s ,

∫ t ′

0

ds f ′′(Cts)RtsCt ′s −→
∫ t ′

0

dsA(t, s)B(t ′, s) ,

∫ t

t ′
ds f ′′(Cts)RtsCst ′ ,

∫ t

t ′
ds f ′′(Cts)RtsRst ′ −→

∫ t

t ′
dsA(t, s)B(s, t ′) ,

(B.9)

where in each two-time function F(t1, t2) we always have t1 > t2. The first class of integrals
can be expanded in series as

I1,AB(t, t ′)≡
∫ t ′

0

dsA(t, s)B(t ′, s) =

∫ t ′

0

ds
∑

i, j

∑

k,l

Ai, j t
is jBk,l t

′ksl =
∑

i, j,k,l

Ai, jBk,l t
i t ′k

t ′ j+l+1

j + l + 1
,

(B.10)
which gives the coefficients

I1,AB
p,q =

∑

i=p

∑

k+ j+l+1=q

Ai, jBk,l

j + l + 1
. (B.11)

The second class of integrals is expanded as

I2,AB(t, t ′)≡
∫ t

t ′
dsA(t, s)B(s, t ′) =

∫ t

t ′
ds
∑

i, j

∑

k,l

Ai, j t
is jBk,ls

k t ′ l

=
∑

i, j,k,l

Ai, jBk,l t
i t ′ l

�

t j+k+1 − t ′ j+k+1�

j + k+ 1
, (B.12)

which gives the coefficients

I2,AB
p,q =

∑

i+ j+k+1=p

∑

l=q

Ai, jBk,l

j + k+ 1
−
∑

i=p

∑

l+ j+k+1=q

Ai, jBk,l

j + k+ 1
. (B.13)

Given these two expansions, we are able to express all the integrals in the Eqs. (16) as
power series. In the calculation of our series expansion, following Ref. [26], we will proceed
by increasing the total degree w in unit steps, as depicted in Fig. 14. We notice that the
computational cost of the coefficient of order w of each integral scales as w2.

Finally, for the radial reaction µ(t) = T + I1, f ′R
kl (t, t) + I1,( f ′′R)C

kl (t, t), we obtain the series

µq =
∑

k+l=q

I1, f ′R
kl +

∑

k+l=q

I1,( f ′′R)C
kl , ∀q > 0 , (B.14)

and µ0 = T .
The final coefficient equations are

(k+ 1)C(k+1)l = −
∑

k1+k2=k

µk1
Ck2 l + I1, f ′R

kl + I1,( f ′′R)C
kl + I2,( f ′′R)C

kl , (B.15)

and
(k+ 1)R(k+1)l = −

∑

k1+k2=k

µk1
Rk2 l + I2,( f ′′R)R

kl . (B.16)

Moreover, we have the constraints C(t, t) = 1 and R(t+, t) = 1 for all t, which in terms of
Taylor coefficients gives

∑

k+l=w

Ckl = 0 , and
∑

k+l=w

Rkl = 0 , ∀w> 0 . (B.17)

These are used to evaluate the terms C0l and R0l not given by Eqs. (B.15) and (B.16). The
algorithm runs in increasing order of the degree w= k+ l, as shown in Fig. 14.
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Figure 14: Iteration scheme for the progressive evaluation of the coefficients. Dif-
ferent colors refers to different degrees w. A new diagonal is obtain for C and R by
Eqs. (B.15) and (B.16) (black arrows) and the constraint in Eq. (B.17) is then imple-
mented (red arrow.)

B.3 Padé approximation

Once we have the power series in the two times t ′, t, we wish to study its long-time behavior.
However, the series have a small radius of convergence (less than one in both times). This
usually happens since the true function (the exact solution of the dynamics) has some poles at
that distance from the origin in the complex plane.3 In order to get useful results, as suggested
in Ref. [26], we proceed using the Padé approximation, a powerful method to extract the
information hidden in the series. It consists in rewriting the original Taylor polynomial of
degree 2w in terms of a ratio of polynomials of degree w (or of similar degree), in such a way
that the Taylor expansion of this ratio is equal to original one. The underlying idea is that the
Padé rational function can absorbs the poles of the original function, avoiding the divergence
that occurs in the original Taylor series.

We have analysed three main one-time observables:4 the energy E(t), the radial reaction
µ(t) and the correlation with the initial configuration C(t, 0). For every chosen model in the
(2 + s) and (3 + s) class, we have evaluated the first 2w = 1200 orders and thus a w = 600
Padé terms at the numerator and denominator,

E(t)∼
2w
∑

k=0

ek tk ∼

∑w
k=0 en

k tk

∑w
k=0 ed

k tk
, (B.18)

where ∼ means that they have the same Taylor expansion at t = 0. The coefficients en
k , ed

k
are evaluated from the ek by solving a linear equation (one-matrix inversion) [65]. The Padé
approximation is very effective in substantially suppressing the influence of the closest poles,
and allowing one to reach times τ (see Fig.15) that grow linearly with the number of terms 2w
of the original series, roughly as τ≈ w/10. Yet, the values of τ reached in this way are at least
one decade smaller than those reached by numerical integration of the equations with a fixed
time step d t = 0.05. The main advantage of the series analysis is that it allow us to evaluate
the power-law exponents of the decay with much greater precision than the integration, as we

3It is important to notice that having a Taylor expansion with a given radius of convergence and doing a naive
numerical analytical continuation does not give any benefice, in the sense that it is not possible to circumnavigate
a pole by finite series expansion, i.e. a closure for the series is needed.

4We have only considered the 1-dimensional Padé computation, while in principle it would be possible to extend
Padé computations to a multidimensional case, the so-called Canterbury Approximations.
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see in the next subsection. In our analysis we have thus employed a hybrid method, using the
series to evaluate the exponents and the integration to evaluate the correspondent asymptotic
value.

We notice that in order to explore large times, the Padé series needs to have very large
powers in t, up to t600. To obtain meaningful results, the coefficients ek of the series must
thus be evaluated with very high precision. It is not enough to use long-long double precision,
as the number of digits considered should scale with the order w. Therefore, when numerically
evaluating the series (as described in the previous paragraph) we have kept a precision of 2000
digits for each coefficient. This can be achieved by using dedicated multi-precision floating-
point libraries. For this work, we have used the c++ library GNU MPFR.

B.4 Power law evaluation

Despite that the series expansion (even when Padé-transformed) does not allow to reach long
times, it can be used to precisely evaluate the power-law decay of different observables to their
asymptotic value. Following [26,66] we define

αE(t) = −
�

1+
t∂ 2

t E(t)

∂t E(t)

�

, (B.19)

and by definition limt→∞αE(t) = αE defined in Eq. (18). Analogous definitions can be given
for αµ(t) and αC(t). Given the Taylor series for E(t), we evaluate αE(t) and Padé-transform
it. The results for the energy of (3+ s)-models are shown in Fig. 15. Note that for a precise
analysis of the exponents, it is not convenient to analyze directly the Padé transform of the
original series, since by construction the Padé approximation is a rational function that can only
asymptotically behave as an integer power law, while we want to study non-integer power-
law decays. Finally, we fit each α(t) with an exponential function (dashed lines in Fig. 15)
and extract the asymptotic value that correspond to the power-law exponent introduced in
Eq. (18). In table 2 we report the values of the exponents in the (2+ s) and (3+ s) models for
the values of λ given in table 1. We can check the accuracy of the extrapolation in the pure
2-spin model for which we have exact analytical results [40]. The energy exponent is known
to be αE = αµ = 1, and we obtain 0.999 ± 0.001, while the correlation is known to have
exponent αC = 3/4 and we obtain 0.748 ± 0.001. For the pure 3-spin model the exponents
seem to agree with the values αE = αµ = 2/3 and αC = 3/8. Mixed models have variable
exponents smaller than the pure ones, as could be expected because the interplay between
different interactions slows down the dynamics. Since our analysis of the exponents is carried
on for not vary large times (smaller than 100), we cannot exclude that other regimes could
emerge for later times. Yet, the monotonous behaviour of the α(t) functions for t > 10 for any
s seems to support the non-universality of exponents in the relaxation of mixed p-spin models.

C Thermodynamic solution for the dynamics

In order to understand the dynamics in terms of a static (thermodynamic) calculation we start
from the free energy of the mixed p-spin model calculated on a generic Parisi hierarchical
ansatz for the replica overlap matrix Qab. This is conveniently written in functional form in
terms of the susceptibility χ̃(q) = χ(q)/β , with the additional boundary conditions χ̃(1) = 0
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Figure 15: (a) Padé approximation of the energy E(t) in the (3+11)-spin model. The
inferred asymptotic energy Efitµ is subtracted to show the power-law decay. Different
orders w (from 7 to 598, ≈ 1200/2k with k from 1 to 7) of Padé approximations are
shown in different colors. These are compared with the solution obtained by inte-
grating the equations with a finite step size d t = 0.05 (red points). The Taylor series
has a radius of convergence < 0.3. We observe that the order of the Padé approxi-
mation is directly proportional to the time τ below which convergence is observed
(equi-spaced colored lines in log scale). Because the computational complexity of
the series and its Padé approximation scales as w3, the computational complexity of
the integration and of the series both scales as τ3. (b) Time dependence of αE(t) in
(3+s)-spin models, for different s. The dashed lines represents exponential fits in the
range (30,50). From this fit the asymptotic value correspondent to the power-law
decay is extracted.

and χ̃(1)′ = −1 [39,49],

F[χ] = E[χ]− TS[χ] =
1
2

∫ 1

0

dq
�

f ′′(q)βχ̃(q) + (βχ̃(q))−1
�

=
1
2

∫ 1

0

dq f ′′(q)1/2
�

χ̂(q) + χ̂(q)−1
�

,

E[χ] =
∂ βF
∂ β

=

∫ 1

0

dq f ′′(q)βχ̃(q) =

∫ 1

0

dq f ′′(q)1/2χ̂(q) ,

S[χ] = −
∂ F
∂ T
=

1
2

∫ 1

0

dq
�

f ′′(q)β2χ̃(q)− (χ̃(q))−1
�

.

(C.1)

Because the boundary conditions on χ̃(q) do not depend on β , the thermal derivatives can
be taken only over the explicit temperature dependence, while the implicit dependence on χ̃
does not contribute because ∂ F/∂ χ̃ = 0. Then, we can change variable to χ(q) = βχ̃(q)
with boundary conditions χ(1) = 0 and χ(1)′ = −β , which is an implicit statement of FDT
at equilibrium. We have also introduced another scaled function χ̂(q) = χ(q) f ′′(q)1/2, which
is sometimes more convenient. The function χ(q) is in a one-to-one bijection with the Parisi
matrix Qab (corresponding to its eigenvalues). For example considering a piecewise linear
function

χ(q) = χ0 , q ∈ [0, q0] ; χ1 +m(q1 − q) , q ∈ [q0, q1] ; (1− q) , q ∈ [q1, 1] , (C.2)

gives back the 1-RSB free energy, Eq. (25) of Ref. [39]. The first term in Eq. (C.1) is the energy
E[χ] =

∫ 1
0 dq f ′′(q)χ(q) and it is equal to the dynamic definition in Eq. (17) if we consider
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χ(q) as the integrated response. The second term S[χ] corresponds instead to the entropic
contribution, roughly given by the logarithm of the volume of a sphere of radius corresponding
to the overlap q. This second term does not have a clear correspondent in the dynamics,
and we believe it to be responsible for the discrepancy between the static calculation and the
asymptotic limit of the dynamics. Moreover x(q) = −∂qχ(q) is the fluctuation-dissipation ratio
and P(q)∝ ∂q x(q) = −∂ 2

q χ(q) is the probability of finding two states at overlap q. We see
that in order to have a positive probability, the second derivative of χ(q) must be negative
(concave) and its first derivative negative (monotonic). Thus in the functional space of all
regular χ(q) only concave-monotonic ones must be considered when minimizing Eq. (C.1).

In the zero temperature limit (β →∞) the boundary conditions are trivially satisfied by
a jump from χ(1) = 0 to a finite value χ(1−). This jump does not contribute to Eq. (C.1)
and can thus be discarded. The ground state corresponds to the optimum between all concave
solutions. There exists however other possible solutions, corresponding to non-optimal states,
that can be metastable, i.e. have a higher free energy while being locally stable.

An important non-thermodynamic solution is obtained by optimizing Eq. (C.1) without
any constraint on the convexity of χ(q),

2
δF[χ(q)]
δχ(q)

=

∫ 1

0

dq
�

f ′′(q)−χ(q)−2
�

=

∫ 1

0

dq f ′′(q)
�

1− χ̂(q)−2
�

= 0 , (C.3)

which is identically satisfied by the so-called (non-strictly-concave) algorithmic solution
χal g(q) = f ′′(q)−1/2, or equivalently χ̂al g(q) = 1. Note that ∂qχal g(q) < 0 for q ∈ [0, 1],
because f (q) belongs to the class of polynomials with positive coefficients. Its corresponding
energy is exactly the algorithmic energy Eal g defined in Eq. (13). All the other solutions (con-
cave or not) will have a higher free energy, but they can have a smaller energy, as it is the case
for the ground state solution.

We now wish to find a concave solution that corresponds to what is observed in the
GD dynamics. The first observation is that the GD dynamics is asymptotically marginal, i.e.
χ(1−) = χmg = f ′′(1)−1/2. This is our additional constraint in the search for a concave solu-
tion. The classical solution is the so-called 1-RSB dynamical solution derived by Cugliandolo
and Kurchan [8]. This solution can be found in the static concave-minimization scheme by
following the Monasson construction [67], which consists in (i) postulating a linear solution
(thus quasi-concave and monotonic) χ(1)(q) = χ+ x(1−q), (ii) inserting it in Eq. (C.1), which
gives

2F[χ(1)] = f ′(1)χ + x f (1) +
1
x

log
�

χ + x
χ

�

, (C.4)

(iii) extremizing it with respect to χ at fixed x (the effective temperature) obtaining
x∗(χ) = 1

χ f ′(1) − χ and (iv) imposing the marginal condition χ = χmg , thus obtaining the

energy of the marginal state E[χ(1)] = f ′(1)χmg + x∗(χmg) f (1), which is indeed the same as
Eq. (12). In this solution, x∗(χ) = ∂Σ(χ)/∂ E(χ) is the temperature associated to the com-
plexity of metastable states of given linear susceptibility χ. Notice that minimizing Eq. (C.4)
with respect of both χ and x gives the 1-RSB ground-state solution.

In the case of a pure p-spin model with p > 2, this is the only possible solution, since the
correspondent χal g(q) is non-concave everywhere. Hence (as argued in [41]) there cannot be
any (meta)stable solution with more then 1-RSB. The only possibility of having more compli-
cated solutions comes from the presence of concave sectors in the algorithmic solution χal g(q),
i.e. if it exists some q ∈ [0, 1] such that ∂ 2

q χal g(q)< 0, or equivalently

3q f ′′′(q)2 − 2 f ′′′′(q) f ′′(q)< 0 . (C.5)

In the case of the (2+ s) models there always exists such a concave sector near q = 0. Instead
in the selected (3+s)models a concave sector develops in the middle of the q-interval [0, 1] for
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Figure 16: Marginal 1F solution in the (2+9) model. (a) Free energy F[χ(1F)] of
the 1F solution vs the point of contact q̃. The ground state corresponds to the global
minimum q̃gs. The inset shows the relative complexity Σ = (1/x2)∂x F[χ(1F)]. (b)
χ/χmg as a function of q for the marginal q̃th (red line) and the ground-state q̃gs

(blue line). The black line shows the algorithmic solution χ(1F) with the non-concave
sector shown as a dashed line (more visible in panel c). (c) χ̂ = χ/χal g as a function
of q. Same curves as in panel b.

large enough s only. Whenever there is a concave sector, it may be possible –also considering
the monotonicity constraint– to build alternative solutions to the 1-RSB marginal one.

Let us now consider another possible marginal ansatz, namely the 1F “dynamical” solu-
tion [39], which is a possible solution in (2+ s)models. This is defined by a collage of a 1-RSB
and a fullRSB solution, χ(1F)(q) = χal g

[0,q̃](q)+χ
(1)
[q̃,1](q), where the sub-parenthesis indicates the

interval of q in which each solution is considered. Inserting this ansatz in Eq. (C.1), we obtain

2F[χ(1F)] =

∫ q̃

0

dq f ′′(q)1/2−χ̃ f ′(q̃)+χ f ′(1)+x( f (1)− f (q̃))+

∫ q̃

0

dq f ′′(q)1/2+
1
x

log
�

χ̃

χ

�

,

(C.6)
where χ̃ = f ′′(q̃)−1/2 and χ = f ′′(q̃)−1/2 + x(q̃ − 1), hence the linear part is given by
χ
(1)
[q̃,1](q) = χ̃− x(q− q̃). Therefore F[χ(1F)] is a function of the two parameters q̃ and x . Min-

imizing over both of them gives the 1F ground-state. Instead, in order to build the metastable
“dynamical” 1F solution we follow the Monasson construction described above. We minimize
with respect to q̃ while keeping fixed the effective temperature x , thus obtaining5

x∗(q̃) =
1

1−q̃ −
f ′′(q̃)

f ′(1)− f ′(q̃)
p

f ′′(q̃)
. (C.7)

Substituting it back in Eq. (C.6) we obtain the F[χ(1F)] as a function of q̃, as shown in
Fig. 16a. Finally, imposing the marginality condition χ = χmg = f ′′(1)−1/2 gives the equa-
tion f ′′(q̃)−1/2 + x∗(q̃)(q̃− 1) = f ′′(1)−1/2 which fixes the threshold overlap

q̃th s.t.
(q̃− 1)

p

f ′′(q̃)
f ′(q̃)− f ′(1)

=
1

p

f ′′(1)
, (C.8)

where the use of the term threshold is made in analogy with the Cugliandolo-Kurchan picture.
In fact at q̃th we have the maximal complexity for typical minima. The correspondent threshold
energy is

E(1F)
th ≡ E[χ(1F)] =

∫ q̃th

0

dq f ′′(q)1/2 − f ′′(q̃th)
−1/2 f ′(q̃th) + f ′′(1)−1/2 f ′(1) + x∗(q̃th)( f (1)− f (q̃th)) .

(C.9)

5A second solution x∗(q̃) = f (3) q̃)
2 f ′′(q̃)3/2 ≡ χ

′
al g(q̃) —which correspond to χ (1) being tangent to the algorithmic

solution χal g— appears, but it is locally unstable.
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Figure 17: (a) Asymptotic energy reached by the gradient descent (GD) dynam-
ics from random initial condition, compared to the ground state energy Egs, the

threshold energy E(1)th ,E(1F)
th and the algorithmic energy Eal g . Same plot as Fig. 2a,

but with the value of the threshold energy evaluated with the 1F marginal solution
for s > 3. (b) FDR for the (2 + 9) model as in Fig. 10a but compared with a 1F
marginal solution, i.e. parametric plot over waiting time tw of the re-scaled inte-
grated response χ(t, tw)/χmg vs the correlation C(t, tw), for several fixed values of

time t = 25.6,204.8, 1500, compared with the dynamical ansatz (χ(1F)
th ).

In Fig.16a, the free energy of the dynamical solution F[χ(1F)] is plotted as a function of q̃ for
the (2+ 9) model. It has a local minimum at the ground state solution q̃gs (blue point) which
correspond to a vanishing complexity (see inset). Instead at q̃th the solution has maximal
complexity (higher-energy solutions are unstable). The corresponding shape of χ(q) for both
q̃gs (blue) and q̃th (red) is shown in Fig. 16b and with the re-scaled χ̂(q) in Fig. 16c. By looking
at Fig. 16c we note that (meta)stable solutions must lie both above and below χal g , and the
regions must “compensate”, as in the usual Maxwell construction for first order transitions. In
Fig. 17a the 1F energy is compared with the asymptotic GD energy for all (2+s)models, while
in Fig. 17b we compare the shape of the 1F solution with the GD results. It is evident that this
thermodynamic solution does not agree with the GD one.

If we now consider (3+ s) models, we find that χal g(q) has two non-concave sectors, one
near q = 0 and the other near q = 1, which must be replaced by linear regions to satisfy
the convexity requirement. We would then like to consider a solution of the kind 1F1 as an
alternative to the standard 1-RSB solution, i.e. a collage of linear+full+linear. We found that
such a solution is not locally stable (see Fig. 18); the full part vanishes and we are left with
either a standard 1-RSB solution or at most a 2-RSB one. We will not explore here all the steps
of the calculation, but additional comments about the concave minimization of Eq. (C.1) can
be found in section 2.1.7 of Ref. [49].

We conclude that minimizing the free energy in Eq. (C.1) in the space of monotonic and
concave χ(q) with the additional constraint of marginality is not consistent with the solution
we found from the GD dynamics (see Fig. 17), in particular because the χGD(q) obtained
from GD dynamics has a shape near q = 1 that is not linear, but concave, see Fig. 10 and
Fig. 17b. Such a concave shape is not achievable by minimizing the functional in Eq. (C.1).
If we still want to find a static (or geometric) description of the asymptotic non-equilibrium
dynamics, one possibility would be to modify the entropic part of Eq. (C.1). How to do that
remains, however, an open problem. A possible suggestion could come from exploring the
quasi-equilibrium dynamics [58,61].
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Figure 18: Attempt to build a marginal 1F1 solution in the (3+12) model. (a) Free
energy F[χ(1F1)] of the 1F1 solution vs the point of contact q̃ of the left linear branch.
q̃th indicates the point of contact of the right linear branch. Any point of contact of
the left linear branch turns out to be unstable, thus the fullRSB continuous region
shrinks and eventually vanishes. The orange point indicate the solution plotted in
panels b and c. (b) χ/χmg as a function of q for a 1F1 unstable solution. The right
branch (red line) is stable while the left branch (orange line) is unstable. In green
the stable marginal 1RSB solution. (c) χ̂ = χ/χal g as a function of q. Same curves
as in panel b.
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