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Abstract

We present the Wilsonian effective action as a solution of the exact RG equation for the
critical O(N) vector model in the large N limit. Below four dimensions, the exact effective
action can be expressed in a closed form as a transcendental function of two leading
scaling operators with infinitely many derivatives. From the exact solution that describes
the RG flow from a UV theory to the fixed point theory in the IR, we obtain the mapping
between UV operators and IR scaling operators. It is shown that IR scaling operators are
given by sums of infinitely many UV operators with infinitely many derivatives.
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1 Introduction

The renormalization group (RG) equation describes the change of effective theories as the
energy cutoff is lowered [1–3]. In particular, the infrared (IR) fixed points of the RG equa-
tions embody the notion of universality classes, and play the central role in the classification
of phases of matter and our understanding of critical phenomena [4–11]. In condensed mat-
ter physics, it is also important to understand the RG flow from microscopic theories usually
defined on lattices to continuum theories at long distance scales. However, understanding the
exact RG flow of effective actions is generally hard for interacting theories. The challenge lies
in the fact that operators composed of arbitrary numbers of fields and space derivatives are
generated under the exact RG flow.

If a theory comes with a small parameter such as 1/N with N being the number of fields,
a great deal of simplification arises. The best understood example is the O(N) vector model
in the large N limit. In this theory, the exact RG equation for the quantum effective potential
for spacetime-independent fields can be written in a closed form thanks to the local potential
approximation that becomes exact in the large N limit [3, 12–14]. It allows for a systematic
computation of the effective potential in the power series of the field [12, 15–25]. However,
the full scale dependent solution of the exact RG equation has not been obtained yet. At the IR
fixed point of the exact RG equation, the formal expression of the quantum effective action has
been written down as a functional of one collective variable being the O(N) singlet [20, 26].
However, the full relation between the collective field and fundamental microscopic field in
the O(N) vector representation is still unknown.

In this paper, we provide additional insights into the exact effective action of the O(N)
vector model. The new results of our work are three-folded. Firstly, we obtain the exact
solution of the RG equation in the large N limit in terms of the collective variable. The IR limit
of our scale dependent effective action is related to the effective action [20, 26] through the
Legendre transformation. Then, the saddle point equation allows us to express the collective
field in terms of the fundamental fields. Secondly, the full effective action is obtained not
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only at the IR fixed point but at general scales. This finds us the exact mapping between
UV operators and IR scaling operators. Here, UV operators refer to operators that can be
added to a UV Lagrangian while IR operators are the scaling operators that arise in the long-
distance limit of the theory, meaning that they are the ones whose form do not change under
the coarse graining and dilatation. We note that the relation between UV operators and IR
scaling operators is highly non-trivial: turning on a local operator in a lattice model generally
amounts to turning on a linear superposition of many IR scaling operators in the continuum
theory and conversely, an IR scaling operator corresponds to a sum of multiple UV operators
that involve infinitely many derivatives. Based on the exact mapping derived from the solution
of the RG equation, we explicitly compute two leading IR scaling operators in terms of the UV
fields. As expected, the IR scaling operators involve arbitrarily many fundamental fields and
derivatives. Finally, we go beyond the large N limit to compute the leading 1/N corrections
to the effective action by including fluctuations of the collective field.

To achieve these goals, we use a recently developed quantum RG scheme [27–29], which
allows us to keep track of the RG flow starting from a UV theory to the O(N) Wilson Fisher fixed
point1. As an exact reformulation of the Wilsonian RG, the quantum RG significantly reduces
the number of operators that need to be included along the exact RG flow as couplings are
promoted to dynamical variables. The information of the operators that are not explicitly
kept within the RG flow is encoded in fluctuations of the dynamical couplings. We note that
most of the results obtained in our paper for the O(N) vector model through the quantum RG
can be in principle obtained through alternative methods that use collective fields. However,
the quantum RG can be readily extended to more complicated theories such as matrix models
[27,30] for which the method of the collective field used for the vector model is not applicable.

The outline of this paper is as follows. In Sec. 2, we apply the quantum RG method to the
O(N) vector model. Subsequently, Sec. 3 gives us the effective action in the IR. In the large N
limit, we are able to express this action in terms of the UV field and more surprisingly it can be
written in a closed form in terms of scaling operators as discussed in Sec. 4. Furthermore, in
Sec. 5, we obtain the generating function from the effective action which allows us to compute
correlation functions. Sec. 7 summarizes our main results.

2 Quantum renormalization group

Consider the partition function of the O(N) vector model defined on a D-dimensional Eu-
clidean lattice,

Z =

∫

Dφe−
m2
2

�

∑

i φ
2
i +
∑

i j Mi jφiφ j

�

− λN
∑

i(φ
2
i )

2
, (1)

where φa
i is the fundamental field with flavour a = 1,2, .., N defined at site i, φiφ j ≡

∑

a

φa
i φ

a
j ,

m is the on-site mass, −m2

2 Mi j is the hopping amplitude between site i and j, and λ is the on-
site quartic interaction. In describing the RG flow, it is convenient to divide the action into a
reference action and a deformation added to the reference action. Here we choose the insu-
lating fixed point action, Sre f =

m2

2

∑

iφ
2
i as the reference action. The hopping (kinetic) term

and the quartic interaction are regarded as deformations, S1 =
λ
N

∑

i(φ
2
i )

2 + m2

2

∑

i j Mi jφiφ j ,
which is not necessarily small. Depending on its magnitude, the theory can flow to one of the
fixed points in the long-distance limit. Above two dimensions, the possible fixed points include

1The Wilsonian effective action that satisfies the exact Polchinski RG equation [2] is related to the 1PI effective
action through the Legendre transformation.
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the insulator, the critical point, and the long-range ordered state. Choosing a reference theory
is equivalent to picking a point in the space of theories as the origin. Physics does not depend
on this choice2.

In quantum RG, every local action is associated with a short-ranged entangled quantum
state [29]. For the reference action and the deformation, we introduce |Sre f 〉=

∫

Dφ e−Sre f |φ〉
and |S1〉=
∫

Dφ e−S1 |φ〉, respectively, where |φ〉 is the basis state defined in the D dimensional
lattice with the inner product 〈φ′|φ〉 =

∏

i,a δ(φ
′a
i − φ

a
i ). These are D-dimensional states

whose wavefunctions are given by the exponentials of the actions. Then the partition function
is an overlap between the two states,

Z = 〈Sre f |S1〉. (2)

The renormalization group transformation can be described as a quantum evolution of states
associated with actions. An infinitesimal RG transformation is implemented by a quantum
evolution operator e−dzĤ , where Ĥ is an RG Hamiltonian and dz is the infinitesimal RG time.
As will be shown later, z corresponds to the logarithmic length scale. Since we have chosen the
ultra-local action as the reference theory, it is natural to use a coarse graining transformation
under which the insulating fixed point action is invariant. The RG Hamiltonian that leaves the
insulating fixed point invariant is given by

Ĥ =
∑

i

�

1
m2
π̂2

i + iφ̂iπ̂i

�

. (3)

π̂a
i is the conjugate momentum of φ̂a

i that satisfies the commutation relation,
[φ̂a

i , π̂b
j ] = iδi jδab. More details about its derivation can be found in Appendix A.1. This RG

Hamiltonian is the generator of the exact Polchinski equation [2] in real space [29]. e−dzπ̂2
i /m

2

has the effect of partially integrating out modes at each site without reducing the number
of sites. The remaining ‘low-energy’ degrees of freedom have less fluctuations and hence a
larger mass medz . On the other hand, e−idzφ̂iπ̂i scales the field as φi → e−dzφi so that the
increased mass in the reference action is put back to the original value. Because Ĥ†|Sre f 〉= 0,
the partition function is invariant under the insertion of the RG evolution operator between
the overlap,

Z = 〈Sre f |e−Ĥz∗ |S1〉 , (4)

where z∗ increases along the RG flow. Applying the RG evolution operator to |S1〉 in Eq.
(4), one obtains the state at scale z∗, |Sz∗

1 〉 = e−Ĥz∗ |S1〉. The state gives the renormal-
ized deformation at scale z∗ as Sz∗

1 = − ln〈φ|Sz∗
1 〉 from the state-action correspondence

[29]. Sz∗
1 corresponds to the effective action obtained with the IR cutoff m2 e−2z∗

1−e−2z∗ (Ap-
pendix A.2). The renormalized action includes infinitely many new higher order interac-
tions,
∑∞

m=2 Ji1, j1;..;im, jm(z
∗) 1

N m−1

∏m
k=1(φikφ jk), which remain important in the large N limit.

In quantum RG, one does not need to keep track of all operators. This simplification arises
from the fact that i) the space of theories is viewed as a Hilbert space, and ii) the Hilbert space
of O(N) invariant states can be spanned by basis states labeled by the hopping field only,

|t〉=
∫

Dφ ei
∑

i j t i jφiφ j |φ〉. (5)

Therefore, |Sz
1〉 can be expressed as a linear superposition of |t〉 at all z, and one only needs to

keep track of the hopping fields along the RG flow. The price to pay is to sum over all RG paths

2In the appendix, we present the effective action obtained with the choice of the critical Gaussian fixed point
theory as the reference action.
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for the hopping fields. In other words, the exact Wilsonian RG flow defined in the space of an
infinite tower of higher order couplings is expressed as a path integration over the dynamical
hopping field only. The β-functions are then replaced with an action that governs the dynamics
of the z-dependent hopping field defined in a (D+1)-dimensional bulk [27,28,31], where the
extra direction corresponds to the length scale ln z. The fact that the β-functions for all higher
order couplings can be encoded in the dynamics of a much smaller subset of couplings also
implies that the original β-functions are highly constrained even in the presence of arbitrary
irrelevant deformations [30]. In the phase space path integral representation, |Sz∗

1 〉 can be
written as

|Sz∗
1 〉=
∫

Dt Dp e−NSUV−NSbulk |tz∗〉 . (6)

Here, Dt =
∏

z Dtz and Dp =
∏

z Dpz represents the sum over all RG paths. tz
i j is the z-

dependent dynamical hopping fields between site i and j. pz
i j is the conjugate variable that

corresponds to the operator 1
N (φiφ j). As derived in Appendix B, Sbulk is the action that deter-

mines the weight of each RG path,

Sbulk =

∫ z∗

0

dz

�

i
∑

i j

pz
i j∂z tz

i j −
2i
m2

∑

k

tz
kk + 2i
∑

kl

tz
kl p

z
kl +

4
m2

∑

k ji

tz
ik tz

k j p
z
i j

�

. (7)

SUV =
∑

i j(i t
0
i j+

m2

2 Mi j)p0
i j+λ
∑

i(p
0
ii)

2 is the action for the fields defined at z = 0. It imposes
a dynamical boundary condition for the interacting O(N) model [32,33]. The quadratic term
in p0

ii allows t0
ii to have non-trivial fluctuations at the UV boundary. On the contrary, Sbulk is

linear in pz
i j [34], and tz

i j in the bulk is fixed by t0
i j . This fact is a special property of vector

models in which the complete basis states are Gaussian in the fundamental field as is shown in
Eq. (5) [35–37]. For matrix models, basis states are non-Gaussian, and there exist non-trivial
fluctuations of dynamical couplings both at the UV boundary and in the bulk [27]. Sbulk in
Eq. (7) is related to the one derived in Ref. [29] through a similarity transformation. The
bulk theory is finite and well-defined as the original D-dimensional field theory is properly
regularized [29,31].

3 IR deformation in the large N limit

The bulk path integration in Eq. (6) can be readily performed. This allows one to write |Sz∗
1 〉

in terms of the integration over t0 and p0 only,

|Sz∗
1 〉=
∫

Dt0Dp0e
−N
�

SUV−
∑

i

∫ z∗

0 dz
2i tzii
m2

�

|tz∗〉 . (8)

Here tz
i j is the solution of ∂z t i j + 2t i j −

4i
m2

∑

k t ik tk j = 0 given by

itz = (it0)
�

e2z − 2
m2 (e2z − 1)(it0)

�−1
, where tz is a square matrix whose elements are {tz

i j}
and t0 is the hopping matrix at z = 0. The fluctuations of the hopping fields encode higher
order operators in Eq. (8). At z∗ = 0, the action for t0 consists of SUV only. Because SUV
is Gaussian, integrating over t0 and p0 reproduces the quartic interaction at UV . At z∗ > 0,
however, the action for t0 becomes non-Gaussian because of the the on-shell bulk action in
Eq. (8). The non-Gaussian fluctuation of the hopping fields is what captures higher order
couplings in z∗ > 0.
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With this picture in mind, we proceed to compute the fixed point action that the theory
flows into in the large z∗ limit. In the large N limit, the remaining integration can be replaced
with the φ-dependent saddle-point. In Eq. (8), SUV is linear in p0

i j for i ̸= j, and the off-

diagonal elements of t0
i j is fixed by the hopping field at UV : −i t0

i j =
m2

2 Mi j for i ̸= j. This

leaves only the diagonal elements of t0
ii and p0

ii non-trivial. To isolate the deviation of −i t0
i j

from m2

2 M for i = j, we write −it0 = m2

2 (M+ X), where Xi j = X iδi j is a diagonal matrix. The
deformation at z∗, Sz∗

1 = − log〈φ|Sz∗
1 〉 becomes

Sz∗
1 =

m2

2
1

e2z∗ − 1

∑

i j

�

I −
e2z∗

(e2z∗ − 1)
1

K+X

�

i j
φiφ j +

N
2

tr log
�

(e2z∗ − 1)(K+X)
�

−
Nm4

16λ

∑

i

X 2
i ,

(9)

up to a constant, where K =
h

M+ e2z∗

(e2z∗−1) I
i

with I being the identity matrix, and X is the

saddle point solution satisfying

m2e2z∗
∑

kl

(K+X)−1
ik (φkφl)(K+X)−1

l i + N(e2z∗ − 1)2
�

(K+X)−1
ii −

m4

4λ
X i

�

= 0 , (10)

for each and every site i (not summed over). The solution of Eq. (10) can be written in pow-
ers of (φiφ j) as X i(z) =

∑∞
m=0

∑

j1,.., jm

∑

k1,..,km
x j1−i, j2−i,.., jm−i

k1−i,k2−i,..,km−i(z) (φ j1φk1
)(φ j2φk2

)..(φ jmφkm
),

where the rank 2m tensor x j1−i, j2−i,.., jm−i
k1−i,k2−i,..,km−i(z) does not depend on i separately because of the

translational invariance. The zeroth order coefficient x(z), which is a z-dependent function,
satisfies the self-consistent equation,

�

1
x(z)I +K

�

ii
−

m4

4λ
x(z) = 0 . (11)

For D > 2, x(z) = x0+ x2e−2z∗ +O(e−4z∗), where x0∝ λΛD−2, and Λ is the large momentum
cutoff at z∗ = 0 (Appendix D.1).

In the continuum, Mi j can be written as M(ri , r j) =
�

a−
∇2

j

m2 +O(
∇4

j

m4 )
�

δ(ri − r j), where

a is a constant fixed by the UV hopping, and the coefficient of ∇2 is set to be − 1
m2 without

loss of generality. The bare mass of the UV theory is given by m2(1+ a), and a can be used
to tune the system across the insulator to symmetry breaking phase transition. The first term
in Eq. (9) can be written as m2

2

∫

drφ(r)Lφ(r), where L is a differential operator which
in the large z∗ limit takes the following form to the leading order in φ and the number of

derivatives : L =
e2z∗
�

1+a+x(z∗)−∇
2

m2 +O(∇
4

m4 )+O(φ2)
�

(e2z∗−1)
�

1+a+x(z∗)−∇2

m2 +O(∇
4

m4 )+O(φ2)
�

+1
. Next, we would like to discuss different

cases characterized by zero or nonzero δ.

3.1 Massive theory

For δ ≡ 1 + a + x0 > 0, L = 1 + O(e−2z) in the large z∗ limit. In this case, the first term in
Eq. (10) is suppressed by e−2z∗ compared to the second term at large z∗. Consequently, X i
becomes independent of φ, and its saddle-point equation reduces to Eq. (11). In this case,
the effective action is simply given by Sre f . This shows that small hopping and interaction are
irrelevant at the ultra-local insulating fixed point. With the strength of hopping increased, the
critical point and the long-range ordered state can be reached [29].
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3.2 Critical theory

At the critical point, the fixed point action becomes qualitatively different. With δ = 0,
Σz∗ ≡ e2z∗
�

x(z∗) + a + 1
�

+ 1 approaches Σ̃ ≡ x2 + 1 in the large z∗ limit. In this case, L

is local only at length scale larger than ez∗

Σ
1/2
z∗ m

. This implies that at the critical point the range

of the renormalized hopping keeps increasing without a bound with increasing z [29]. In or-
der to have a well-defined large z∗ limit at the critical point, one has to scale the coordinate
and the field as r̃ = re−z∗ , φ̃r̃ = φr e

D
2 z∗ . This shows that the RG parameter z indeed plays the

role of the logarithmic length scale. Accordingly, the rescaling of the effective action and the
saddle point equation is carried out in Appendix F. At the critical point, the effective action in
Eq. (9) can be written in terms of the scaled variables as

S̃z∗
1 =−

1
2

m2

∫

dD r̃dD r̃ ′
h
�

T̃+X′
�−1

r̃ r̃ ′
φ̃r̃φ̃r̃ ′

i

+
N
2

∫

dD r̃
�

log
�

T̃+X′
��

r̃ r̃ (12)

− N

∫

dD r̃

�

m4

16λ
e(D−4)z∗(X ′r̃ − x2)

2 +
1
2

�

T̃+ x2 I
�−1

r̃ r̃ (X
′
r̃ − x2)

+
λ

m4
e(4−D)z∗
�

�

T̃+ x2 I
�−1

r̃ r̃

�2
�

.

Here, T̃r̃ r̃ ′ =
∫ Λez∗

dDQ̃
(2π)D eiQ̃(r̃−r̃ ′)
�

Q̃2

m2 + 1
�

. X′r̃ r̃ ′ = δ(r̃ − r̃ ′)X ′r̃ , where X ′r̃ = e2z∗ (X r − x0). Mod-

ulo constant term, the effective action is finite in the large z∗ limit3. The equation for X′

becomes

m2

N

∫

dD r̃1dD r̃2

�

T̃+X′
�−1

r̃ r̃1
φ̃r̃1
φ̃r̃2

�

T̃+X′
�−1

r̃2 r̃ +
�

T̃+X′
�−1

r̃ r̃ −
�

T̃+ x2 I
�−1

r̃ r̃ (13)

=
m4e(D−4)z∗

4λ

�

X ′r̃ − x2

�

.

The z∗ dependence of its solution in the large z∗ limit is determined by the sign of D− 4.

3.2.1 D > 4

For D > 4, the last term in Eq. (13) grows exponentially while other terms remain order one.
This forces X ′r̃ = x2 in the large z∗ limit. In this case, the deformation reduces to a simpler
form,

S̃z∗
1 = −

m2

2

∫

dD r̃φ̃r̃
1

−∇̃2/m2 + Σ̃
φ̃r̃ +O
�

e−(D−4)z∗φ̃4
�

. (14)

As z∗ increases, the quartic interaction of φ̃ decays exponentially, and the action approaches
the Gaussian form in φ̃.4

3The second to last term in Eq. (12) is UV divergent in the large z∗ limit because T̃r̃ r̃ evaluates the matrix
element at a coincident point. However, this UV divergence is cancelled by the X′-linear term in log

�

T̃+X′
�

, and
the fixed point action is UV finite.

4At finite z∗, the small but non-zero quartic term generates a mass renormalization. This is why the apparent
mass term (Σ̃ − 1) does not vanish in general at the critical point. If one starts with the Gaussian theory at UV,
(Σ̃− 1) = 0.
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3.2.2 D < 4

For D < 4, the last term in Eq. (13) can be dropped, and X ′r̃ depends on φ̃. It can be computed

order by order in (φ̃r̃φ̃r̃ ′) as X ′r̃ = x2 +
∑∞

k=1 X (k)r̃ , where X (k)r̃ ∝ (φ̃φ̃)
k. We can define the

Feynman rules as

m
p

N
φ̃a

r̃ = ,

(T̃+ x2 I)−1
r̃ r̃ ′ = r̃ r̃ ′ ,

�

(T̃+ x2 I)−1
�2

r̃ r̃ ′ = r̃ r̃ ′ . (15)

The straight line represents the propagator of the free boson field. In the momentum space,
it is Gφ(p) = p−2. While the wavy line stands for the propagator of the singlet field which is
given by GX (p)∝ p4−D. Diagrammatically, the first and second order terms contributing X ′r̃
are given by

X (1)r̃ = r̃ ,

X (2)r̃ = −2 r̃ +
r̃

. (16)

More details are given in Appendix D.2. X (k) is well defined for all k in terms of the scaled
variables in the large z∗ limit.

We can further expand Eq. (12) in terms of φ̃r̃ field. Up to the quartic order, we can get

1
N

S̃z∗
1 = −

1
2

∫

dD r̃dD r̃ ′( r̃ r̃ ′ ) +
1
4

∫

dD r̃1dD r̃2dD r̃3dD r̃4





r̃1 r̃2

r̃3 r̃4



+ O
�

φ̃6
�

.

(17)

Higher ordered terms are contributed by all the connected Feynman diagrams with certain
numbers of external field φ̃ represented by black dots. This reproduces the previous result of
the effective action as a series of the UV field [14,20,25].

4 Scaling operators in the large N limit

The exact fixed point effective action in Eq. (12) is a function of φ̃r̃ and X ′r̃ . In order to
understand the physical meaning of them, let us deform the hopping amplitude at UV by
−m2

2 δMi j = ε
�

δi,0δ j,∞ +δi,∞δ j,0

�

+ ε′δi j . The ε-term is an infinite-range hopping, which is
equivalent to inserting a pair of fundamental fields : one at the origin and the other at infinity.
ε′ is a uniform mass deformation. Under these variations, M and X are varied. However, only
the variation of M contributes to the change in the renormalized action to the linear order in
ε and ε′ because the action is stationary with respect to X at the saddle-point. The variation
of the action is studied in Appendix E. In the large z∗ limit, it becomes

δSz∗
1 = −2ε e−2∆φz∗φS

0φ
S
∞ − ε

′e(D−∆X )z∗m
2N

2λ

∫

dD r̃ X ′r̃ , (18)
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where

φS
r̃ ≡
∫

d r̃ ′
�

T̃+X′
�−1

r̃ r̃ ′ φ̃r̃ ′ , (19)

X ′r̃ = x2 +
m2

N

�

1
−∇̃2/m2+Σ̃ φ̃r̃

�2

Γ (2− D
2 )

(4π)D/2
∫ 1

0 du
�

−u(1− u)∇̃2/m2 + Σ̃
�

D
2 −2
+ . . . (20)

φS
r̃ is an operator that has the same quantum number as φ, and is made of φ̃ and X ′ with

smearing at length scale Σ̃−1/2 in the scaled variable. X ′r̃ is an O(N)-singlet composite operator
which involves infinitely many φ̃’s and derivatives (see Appendix D.2 for the expression). Eq.
(18) shows that φS

r̃ and X ′r̃ corresponds to the scaling operators whose forms are invariant
under the coarse graining and dilatation. φS

r̃ and X ′r̃ have scaling dimensions ∆φ =
D−2

2 and
∆X = 2, respectively. They are the leading scaling operators in the fundamental and singlet
representations of the O(N) group, respectively. We note that Eq. (18) is obtained by taking
the large z∗ limit of the effective action in the presence of the insertion of two UV operators. At
a finite z∗, Eq. (18) is corrected by extra terms that are further suppressed by higher powers
of e−z∗ . Since the scaling operators are eigen-operators whose forms do not change under
the coarse graining and dilatation, those corrections only contribute to the sub-leading scaling
operators with larger scaling dimensions. The expressions for the leading scaling operators in
Eqs. (19) and (20) are exact in the large N limit.

The first two terms in Eq. (12) can be written as
m2

2

∫

d r̃d r̃ ′ φS
r̃

�

−(T̃+X′) + (T̃+X′)2
�

r̃ r̃ ′ φ
S
r̃ ′,

and the entire fixed point action in Eq. (12) becomes a function of the two scaling opera-
tors only. From Eq. (13), one can further find the relation between the two leading scaling
operators,

m2

N
φS

r̃ ×φ
S
r̃ +
�

T̃+X′
�−1

r̃ r̃ −
�

T̃+ x2 I
�−1

r̃ r̃ = 0 . (21)

This gives the exact operator product expansion of two O(N) vector fields in terms of the
singlet scaling operator and its descendants.

5 Physical observables

The effective action determines all n-point functions of the theory in the scaling limit. This
follows from the fact that the full generating function,

W [J] = − ln

∫

Dφ e−
m2
2

∑

i φ
2
i −S1[φ]+
∑

i Jiφi , (22)

can be obtained from the scale dependent generating function

W z[J] = − ln

∫

Dφ e−
m2

z
2

∑

i φ
2
i −S1[φ]+
∑

i Jiφi

= − ln

∫

Dφ e
−
∑

i J2
i

2m2
z
−m2

z
2

∑

i φ
2
i −S1[φ+J/m2

z ] , (23)

by taking the scaling limit, where mz =
mp

1−e−2z . Thus, it is related to the effective action Eq.
(12) through

W [J] = lim
z→∞

¨

−
1

2m2
z

∑

i

J2
i + S1[e

zJ/m2
z ]

«

. (24)
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Then, n-point functions can be obtained by taking derivatives of W with respect to J . For
example, the 2-point correlation function is given by Gab

2 [r1, r2] = 〈φa
r1
φb

r2
〉= − δ2W

δJa
r1
δJ b

r2
where

a and b are O(N) indices. Using Eq. (9), we can get Gab
2 [r1, r2] =

δab
m2 [K + x I]−1

r1,r2
where x

is the constant part of the saddle point solution of X. Similarly, we can also compute 4-point
function of φ (Appendix G.2) which is given by

Gabcd
4 [r1, r2, r3, r4] =

2
Nm4

∑

r r ′



δabδcd

r3

r1

r4

r2

r ′
r +δacδbd

r2

r1

r4

r3

r ′
r +δadδbc

r2

r1

r3

r4

r ′
r



 ,

where
r3

r1

r4

r2

r ′
r = −(K+ x I)−1

r3,r(K+ x I)−1
r,r4
L−1

r r ′ (K+ x I)−1
r ′,r1
(K+ x I)−1

r2,r ′ (25)

and L is a matrix with elements Lr r ′ = [(K+ x I)−1
r r ′]

2 + m4

4λδr r ′ . General n-point function can
be obtained in the same way.

6 1/N corrections

In the large N limit, the integration of the collective variable in Eq. (8) has been evalu-
ated through the saddle-point approximation. For a finite N , one has to include fluctuations
of the collective fields. Writing fluctuations around the saddle point as X = X̄ + δX with
δXi j = δX iδi j , we express the effective action as

|Sz∗
1 〉=
∫

DφDδX i exp

�

Nm4
∑

i(X̄ i +δX i)2

16λ
−

N
2

tr log
�

(1− e−2z∗)(K+ X̄+δX)
�

−
m2

2(e2z∗ − 1)

∑

i j

�

I −
e2z∗

(e2z∗ − 1)
[K+ X̄+δX]−1

�

i j
φiφ j

�

|φ〉

=

∫

DφDδX i exp
¦

− NS̄[φ, X̄ ]−∆S[φ, X̄ ,δX ]
©

|φ〉 , (26)

where ∆S is the action for the fluctuating field,

∆S[φ, X̄ ,δX ] =
N
2





∑

i j

G−1
i j [φ, X̄ ]δX iδX j +

∑

i jkl

Γi jkl[φ, X̄ ]δX iδX jδXkδX l +O[(δX )6]



 .

(27)

Here, Gi j[φ, X̄ ] and Γi jkl[φ, X̄ ] are the φ-dependent propagator and quartic vertex for δX ,

G−1
i j [φ, X̄ ] = −

m4

8λ
δi j −

1
2

�

e2z∗

e2z∗ − 1

�

K+ X̄
�−1

i j

�2

−
m2e2z∗

2N(e2z∗ − 1)2
∑

kl

[K+ X̄]−1
ki [K+ X̄]−1

i j [K+ X̄]−1
jl φkφl ,

Γi jkl[φ,δX ] = −
∑

a

[K+ X̄]−1
ai [K+ X̄]−1

i j [K+ X̄]−1
jk [K+ X̄]−1

kl

×

�

1
4

� e2z∗

e2z∗ − 1

�4
δa,l +

m2e2z∗

2N(e2z∗ − 1)2
∑

b

[K+ X̄]−1
l b φaφb

�

. (28)
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The first two 1/N corrections to the effective action are obtained by integrating over δX up to
the quartic order in δX ,

|Sz∗
1 〉 ≈
∫

Dφ exp
¦

− NS̄[φ]−δS[φ]
©

|φ〉 , (29)

where

δS[φ] = − log

√

√

√ (2π)L2

NdetG−1[φ, X̄ ]

�

1+
N
2

∑

abcd

Γabcd[φ, X̄ ]〈δXaδX bδX cδXd〉

�

=
1
2

�

log
�

detG−1
�

+ const
�

�

1+
1

2N

∑

abcd

Γabcd

�

GabGcd + GacGbd + Gad Gbc

�

�

. (30)

Higher order corrections can be similarly obtained.
The fluctuating collective variable δX makes the hopping field t i j dynamical in the bulk.

Since the emergent geometry that the low-energy field is subject to at scale z is controlled
by the hopping field at that scale, the fluctuating hopping field makes the bulk spacetime
geometry dynamical [28, 29]. However, the nature of the dynamical spacetime that emerges
from Eq. (26) is rather special because the collective field in the bulk fluctuates only through
fluctuations of δX at z = 0 in Eq. (8). For a configuration of the hopping field at the UV
boundary, the hopping field in z > 0 is completely fixed5. This peculiarity arises due to the
fact that in the vector model the theory that only includes the single-trace operators is free [28].

There is a way to obtain an alternative bulk theory in which the hopping field exhibit non-
trivial fluctuations even in the bulk. This can be achieved by including a quartic interaction in
the reference action as [29]

S′re f =
m2

2

∑

i

φ2 +
λ

N

∑

i

�

φ2
i

�2
,

S′1 =
m2

2

∑

i j

Mi jφiφ j . (31)

Here, the quartic interaction is moved from S1 to Sre f and the partition function
Z = 〈Sre f |S1〉 = 〈S′re f |S

′
1〉 is unchanged. The RG Hamiltonian that leaves the new reference

action invariant is obtained from Eq. (3) through a similarity transformation,

Ĥ ′ = e
λ
N

∑

i(φ
2
i )

2
Ĥe−

λ
N

∑

i(φ
2
i )

2

=
∑

i

�

iφiπi −
4λ
N
(φ2

i )
2 +

1
m2
π2

i +
i

m2

8λ
N
φ2

i φiπi +
4λ
m2
(1+

2
N
)φ2

i −
16
m2

λ2

N2

�

φ2
i

�3
�

.

(32)

Accordingly, the bulk action becomes

S′bulk[z
∗] =

∫ z∗

0

dz

�

i
∑

kl

pz
kl∂z tz

kl −
2i
m2

∑

k

tz
kk + 2i
∑

kl

tz
kl p

z
kl +

4
m2

∑

i jk

tz
ik tz

k j p
z
i j

+
∑

k

�

4λ(1+ 2
N )

m2
pz

kk −
16λ2

m2
(pz

kk)
3 − 4λ(pz

kk)
2

�

+
16iλ
m2

∑

kl

tz
kl p

z
l l p

z
kl

�

. (33)

5Inside the bulk, pi j acts as a Lagrangian multiplier that suppresses the fluctuations of t i j [34].
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In this alternative but exactly equivalent formulation, the bulk theory includes the
hopping field that is genuinely dynamical. The UV action is now linear in pi j :

S′UV =
∑

i j(i t
0
i j +

m2

2 Mi j)p0
i j . Integration over p0

i j at the UV boundary imposes the Dirichlet

boundary condition for the dynamical source at z = 0, t0
i j = i m2

2 Mi j . The partition function is
given by the functional integration of the dynamcal source in the bulk,

�

�Sz∗
�

=

∫

Dφ
�∫

Dtz>0Dpz>0 e−NS′bulk[t,p]+i
∑

i j t i jφiφ j |
t0
i j=i m2

2 Mi j

�

|φ〉 . (34)

In the large N limit, this expression is reduced to

|Sz∗〉 ≈
∫

Dφe−NS′bulk[ t̄,p̄,z∗]+i
∑

i j t̄z∗
i j φiφ j |φ〉 , (35)

with fields t and p replaced by t̄ and p̄ as a saddle point solution of equations [29]

i∂z pz
i j = −

2i
m2
δi j + 2ipz

i j +
4

m2

∑

k

(tz
jkpz

ik + tz
ki p

z
k j) +

8iλ
m2

�

pz
ii + pz

j j

�

pz
i j ,

i∂z tz
i j = −2i tz

i j −
4

m2

∑

k

tz
ki t

z
k j −

4λ
m2
δi j + 8λδi j

�

6λ
m2

pz
ii + 1
�

pz
ii

−
8iλ
m2
δi j

∑

k

(tz
ki p

z
ki + tz

ikpz
ik)−

8iλ
m2

tz
i j

�

pz
j j + pz

ii

�

. (36)

The 1/N corrections can be incorporated by including fluctuations of the collective fields as

|Sz∗
1 〉=
∫

DφDδtz>0Dδpz>0e−NS′bulk[ t̄+δt,p̄+δp,z∗]+i
∑

i j t̄z∗
i j φiφ j |φ〉 , (37)

where

S′bulk[ t̄ +δt, p̄+δp, z∗] (38)

= S′bulk[ t̄, p̄, z∗] +

∫ z∗

0

dz
�

i
∑

kl

δpz
kl∂zδtz

kl + 2i
∑

kl

δtz
klδpz

kl +
4

m2

∑

i jk

δtz
ikδtz

k j p̄
z
i j

+
4

m2

∑

i jk

(δtz
ik tz

k jδpz
i j + tz

ikδtz
k jδpz

i j)− 4λ
∑

k

�

12λ
m2

p̄z
kk + 1
�

(δpkk)
2

+
16iλ
m2

∑

kl

�

δtz
klδpz

l l p̄
z
kl +δtz

kl p̄
z
l lδpz

kl + t̄z
klδpz

l lδpz
kl

�

�

+O
�

(δt)3, (δp)3
�

. (39)

Integration over δt and δp gives the leading 1/N correction to the effective action as in Eq.
(30).

7 Summary and discussion

The main result of the paper is Eq. (12), which is a closed form of the Wilsonian effective
action for the vector O(N) model in the large N limit. Two comments are in order. First, the
effective action evaluated at z∗ is local at length scales r ≫ ez∗/m (equivalently, r̃ ≫ 1/m).
This is because the effective action in Eq. (12) is obtained with the IR cutoff me−z∗ . The full
effective action obtained for z∗ =∞ is non-local at the critical point. Second, the form of
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the effective action depends on the RG scheme because the way IR cutoff is imposed depends
on the scheme (i.e., the choice of Sre f ). Nonetheless, the effective action for the modes with
q≫ me−z∗ (q̃≫ m) should be independent of RG scheme. Furthermore, the effective action
at large momenta takes non-local form as expected.

In conclusion, we obtained the exact Wilsonian effective action of the interacting O(N)
vector model. It takes a closed form of a transcendental function of the two leading scaling
operators in the large N limit, where one is in the fundamental representation of O(N) and the
other is the singlet. It will of great interest to extend the present result to fermionic systems
and theories with non-local/imaginary couplings [38,39].
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A RG scheme

A.1 RG Hamiltonian

In this section, we review the derivation of the RG Hamiltonian in Eq. (3), and elaborate
why the quantum evolution generated by the RG Hamiltonian can be understood as a coarse
graining transformation [29]. Consider a theory of a scalar whose partition function is

Z =

∫

Dφ e−Sre f −S1 , (A.1)

where Sre f =
1
2 m2
∑

iφ
2
i is the reference action chosen to be the insulating fixed point action,

and S1 includes the kinetic term and all interactions. As is discussed in the main text, this
partition function can be written as the overlap between two quantum states, Z = 〈Sre f |S1〉,
where |Sre f 〉=

∫

Dφe−Sre f |φ〉 and |S1〉=
∫

Dφe−S1[φ]|φ〉.
In the real-space RG à la Kadanoff, a block of sites is merged into a coarse grained site at

each step. This forces the RG step to be discrete. To avoid this, we adopt the real space RG
scheme that keeps the number of sites unchanged under coarse graining. In this scheme, the
field at each site is partially integrated out by an infinitesimal amount without removing the
site. To facilitate this, we introduce an auxiliary field Φ with mass µ to the action as

S′ =
1
2

m2
∑

i

φ2
i +

1
2

∑

i

µ2Φ2
i + S1[φ] . (A.2)

Now the physical field and the auxiliary field are rotated into low-energy mode (φ′) and high-
energy mode (φ̃) as

φi = φ
′
i + φ̃i , Φi = Aφ′i + Bφ̃i , (A.3)

where A= m2

µ̃µ and B = − µ̃µ with µ̃ = mp
e2dz−1

≈ mp
2dz

. Through this basis transformation, the

low-energy mode acquires a new mass, medz . The increased mass suppresses fluctuations of
the low-energy mode slightly. The missing fluctuation has been transferred to the high-energy
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mode, which has a heavy mass with order of m/
p

dz. In order to restore the reference action
for the low-energy mode, the fields are scaled as

φ′i = e−dzφ′′i , φ̃i = e−dzφ̃′′i . (A.4)

In the new basis, the action reads

S′′ =
1
2

m2
∑

i

(φ′′i )
2 +

1
2

∑

i

µ̃2(φ̃′′i )
2 + S1[e

−dz(φ′′i + φ̃
′′
i )] . (A.5)

Integrating out the heavy mode φ̃′′, the action is renormalized by δS1 which is given by

e−S1[φ′′i ]−δS1[φ′′i ] =

�

1− dzφ′′i
∂

∂ φ′′i
+

dz
m2

�

∂

∂ φ′′i

�2�

e−S1[φ′′] . (A.6)

This is the real space version of the exact Polchinski RG equation [2]. The renormalization
of the deformation can be understood as a result from a quantum evolution acting on the
wavefunction e−S1 : e−S1[φ]−δS1[φ] = e−Ĥdze−S1[φ], where Ĥ is the RG Hamiltonian,

Ĥ =
∑

i

�

iφiπi +
1

m2
π2

i

�

, (A.7)

with πi = −i ∂∂ φi
. One can readily check H†|Sre f 〉 = 0. It is straightforward to generalize this

to the case for the N -component scalar fields as is shown in Eq. (3).

A.2 IR cutoff of the effective action

The renormalized deformation at scale z is given by Sz
1 = − ln〈φ|Sz

1〉, where |Sz
1〉 = e−Ĥz|S0

1〉.
In this section, we show that this renormalized action indeed represents the effective action
obtained with a z-dependent IR cutoff. From the discussion in the previous subsection, the
renormalized action after one infinitesimal RG step can be written as

e−Sdz
1 [φ

(1)] =

∫

Dφ̃(1)e−
µ̃2

2

∑

i(φ̃
(1)
i )

2−S1[e−dz(φ(1)+φ̃(1))] . (A.8)

After one more step of coarse graining, the renormalized action becomes

e−S2dz
1 [φ(2)] =

∫

Dφ̃(1)Dφ̃(2)e−
µ̃2

2

∑

i

�

(φ̃(1)i )
2+(φ̃(2)i )

2
�

−S1[e−2dzφ(2)+e−2dzφ̃(2)+e−dzφ̃(1)] . (A.9)

Repeating this for n steps, we obtain

e−Sndz
1 [φ(n)] =

∫

∏

k

Dφ̃(k)e−
µ̃2

2

∑

i

∑n
k=1(φ̃

(k)
i )

2−S1[e−ndzφ(n)+
∑

k e−kdzφ̃(k)] . (A.10)

Defining φi,< = e−ndzφ
(n)
i and φi,> =
∑

k e−kdzφ̃
(k)
i with n= z∗/dz, we obtain

e−Sz∗
1 [e

z∗φ<] =

∫

Dφ> e−
m2

z∗
2

∑

i φ
2
i,>−S1[φ<+φ>] , (A.11)

where mz∗ =
mp

1−e−2z∗
. To obtain Eq. (A.11), we insert 1=

∫

Dφ>Dγ ei
∑

i γi(φ>,i−
∑

k e−kdzφ̃
(k)
i ) in

the integrand of Eq. (A.10), replace
∑

k e−kdzφ̃(k) with φ> in S1, and integrate over φ̃(k) and
γ. We note that Eq. (A.11) is the effective action of a background field φ< for a theory whose
mass is greater than the mass of the original theory by δm2 = m2 e−2z

1−e−2z . If the original theory
is at the critical point, the new theory defined at z∗ has an IR cutoff δm2. The IR cutoff varies
from infinity to zero as z∗ changes from zero to infinity. The one particle irreducible effective
action with the z-dependent IR cutoff, which satisfies the exact Wetterich RG equation [3], can
be readily obtained from Sz

1 through the Legendre transformation [12].
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B Bulk action

In this section, we derive the bulk action in Eq. (7). We start with |S0
1〉 that defines the defor-

mation added to the insulating fixed point action at UV,

|S0
1〉=
∫

Dφe
−
h

λ
N

∑

i(φ
2
i )

2+m2
2

∑

i j Mi jφiφ j

i

|φ〉 . (B.1)

This state can be expanded as a linear superposition of |t〉 at z = 0 defined in Eq. (5) as

|S0
1〉=
∫

Dt0
i j

∫

Dp0
i j

∫

Dφ e−i
∑

i j t0
i j(N p0

i j−φiφ j)e
−
h

m2
2

∑

i j Mi jφiφ j+
λ
N

∑

i(φ
2
i )

2
i

|φ〉

=

∫

Dt0
i j

∫

Dp0
i j e−NSUV [t0

i j ,p
0
i j]|t0〉 , (B.2)

where SUV [t0
i j , p0

i j] =
∑

i j(i t
0
i j +

m2

2 Mi j)p0
i j +λ
∑

i(p
0
ii)

2. The O(N) symmetry guarantees that

the wavefunction for |Sz
1〉 = e−Ĥz|S0

1〉 is a function of the bi-linear φiφ j , and |Sz
1〉 can be also

spanned by |t〉 at z as

|Sz
1〉=
∫

Dtz
i j

∫

Dpz
i j

∫

Dφ e−i
∑

i j tz
i j(N pz

i j−φiφ j)e−Sz
1[φiφ j]|φ〉

=

∫

Dtz
i j

∫

Dpz
i j e−N
∑

i j i tz
i j p

z
i j−Sz

1[N pz
i j]|tz〉 , (B.3)

where Sz
1[φiφ j] = − ln〈φ|Sz

1〉, and the superscript z for t, p and |t〉 denotes RG time. There-
fore, it is enough to understand the evolution of the basis state under the RG Hamiltonian.
The evolution from z to z + dz of the basis state is given by

e−Ĥ[φ̂,π̂]dz|tz〉

=

∫

Dφ
�

1−
∑

k

�

φk
∂

∂ φk
−

1
m2

∂ 2

∂ φ2
k

�

dz

�

ei
∑

i j tz
i jφiφ j |φ〉

=

∫

Dφ exp



−2
�

−
iN
m2

∑

k

tz
kk + i
∑

kl

tz
klφkφl +

2
m2

∑

k ji

tz
ki t

z
k jφiφ j

�

dz



 ei
∑

i j tz
i jφiφ j |φ〉

=

∫

Dtz+dz
i j Dpz+dz

i j e−dzNLbulk |tz+dz〉 , (B.4)

where Lbulk is the bulk Lagrangian with

Lbulk = i
∑

i j

pz+dz
i j ∂z tz+dz

i j −
2i
m2

∑

k

tz+dz
kk + 2i
∑

kl

tz+dz
kl pz+dz

kl +
4

m2

∑

k ji

tz+dz
ki tz+dz

k j pz+dz
i j . (B.5)

From this, one can write |Sz
1〉 as the path integration shown in Eq. (6).

C Derivation of the saddle-point equation in Eq. (10)

In Eq. (7), pi j acts as a Lagrange multiplier that enforces the constraint

∂z t i j + 2t i j −
4i
m2

∑

k

tki tk j = 0 (C.1)
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in the bulk. We treat t i j as a matrix. The solution itz[t0] = (it0)
�

e2z − 2
m2 (e2z − 1)(it0)

�−1
can

be written as a function of z and t0. The partition function becomes

Z =

∫

Dt0
i jDp0

i j



Sre f |e
−NSUV [t0,p0]+N 2i

m2

∑

i

∫ z∗

0 dztz
ii[t

0]|tz∗[t0]
·

. (C.2)

Next, we integrate over p0
i j at the UV boundary to obtain

Z =

∫

Dφ
∫

Dt0
i j e−Stot





∏

i ̸= j

δ

�

t0
i j − i

m2

2
Mi j

�



 , (C.3)

where the total effective action is given by

Stot[φ,X] =
1
2

m2
∑

i

φ2
i +

1
2

m2
∑

i j

�

(X+M)
�

(e2z∗ − 1)(X+M+ I) + I
�−1�

i j
φiφ j (C.4)

+ N
∑

i

∫ z∗

0

dz
�

(X+M)
�

(e2z − 1)(X+M+ I) + I
�−1�

ii
−

Nm4

16λ

∑

i

X 2
i .

Here, the diagonal element of t0
i j which is not fixed by the delta function is singled out as

−2it0

m2 = X+M and Xi j = X iδi j is a diagonal matrix. Integrating over t0
i ̸= j and X in the large

z∗ limit gives the the IR fixed point action. In the large N limit, we can use the saddle point
approximation. The variation of the first two terms with respect to X gives

∑

jk

∂Xii

h

(X+M)
�

I + (e2z∗ − 1)(X+M+ I)
�−1i

i j
φiφ j

= e2z∗
∑

jk

�

I + (e2z∗ − 1)(X+M+ I)
�−1

i j φ jφk

�

I + (e2z∗ − 1)(X+M+ I)
�−1

ki , (C.5)

without summation of i index, and the third term gives

∂XTr log
�

(e2z∗ − 1)(X+M+ I) + 1
�

= (e2z∗ − 1)
�

I + (e2z∗ − 1)(X+M+ I)
�−1

. (C.6)

Collecting these two contributions, we obtain the saddle-point equation in Eq. (10).

D Saddle point solution

In this section, we present the saddle-point solution for X. We will separately discuss x(z),
which is the φ independent part, and X− x(z) which is φ dependent.

D.1 Field independent part

The field independent part of X denoted as x satisfies Eq. (11),

(e2z − 1)
�

(e2z − 1)(x I +M+ I) + I
�−1

ii −
m4

4λ
x = 0 . (D.1)

Fourier transformation of the matrix can be implemented through a unitary transformation,
and the LHS becomes
�

(e2z − 1)(x I +M+ I) + I
�−1
= U
�

(e2z − 1)(x I +M′ + I) + I
�−1

U−1 , (D.2)
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where Uin =
1p
V

eiQnri , V is the number of sites, and M′ = U−1MU which is given by

M ′mn =
∑

i j U−1
mi Mi jU jn =

1
V

∑

i j e−iQmri Mi je
iQnr j = M ′Qn

δmn. Above, we use the fact that Mi j
depends only on the separation between i and j in the presence of the translational invariance.
In the momentum space, the equation for x becomes

1
V

∑

n

1

x + e2z

e2z−1 +M ′Qn

=
m4

4λ
x . (D.3)

Here we use the simple dispersion M ′Q = a+ Q2

m2 with a hard momentum cutoff Λ. For D > 2,
the left hand side of the equation becomes

∫ Λ
dDQ
(2π)D

1
Q2

m2 + x + e2z

e2z−1 + a
=c1m2ΛD−2 + c2m4

�

x +
e2z

e2z − 1
+ a

�

ΛD−4 +O
�

ΛD−6
�

,

(D.4)

where ci are constants. Writing x = x0 + x2e−2z + .., at the critical point, we obtain

x0 = c1
4λ
m2
ΛD−2 , x2 =

c2Λ
D−4

1
4λ − c2ΛD−4

, (D.5)

to the leading order in Λ.

D.2 Field dependent part

In D > 4, X′ = x2. Here we compute X′ in D < 4. At large z∗, the saddle point equation in
Eq. (13) becomes
∫

dD r̃1dD r̃2

�

T̃′ +X′′
�−1

r̃ r̃1
φ̃′r̃1
φ̃′r̃2

�

T̃′ +X′′
�−1

r̃2 r̃ +
�

T̃′ +X′′
�−1

r̃ r̃ − (T̃
′)−1

r̃ r̃ = 0 , (D.6)

where T̃′ = T̃+ x2 I , X′′ = X′ − x2 and φ̃′r̃ =
mp
N
φ̃r̃ . Writing X′′ = X(1) + X(2) + X(3) + .., where

X(k) is the k-th order term in φ̃′r̃φ̃
′
r̃ ′ , we obtain an infinite series of recursion relations that

determines X(k) in terms of X(n) for 1≤ n≤ k− 1. The first few equations read

�

(T̃′)−1X(1)(T̃′)−1
�

r̃ r̃ =

∫

dD r̃1dD r̃2(T̃
′)−1

r̃ r̃1
(φ̃′r̃1
φ̃′r̃2
)(T̃′)−1

r̃2 r̃ ,

�

(T̃′)−1X(2)(T̃′)−1
�

r̃ r̃ = −2

∫

dD r̃1dD r̃2

�

(T̃′)−1X(1)(T̃′)−1
�

r̃ r̃1
(φ̃′r̃1
φ̃′r̃2
)
�

(T̃′)−1
�

r̃2 r̃

+
�

(T̃′)−1X(1)(T̃′)−1X(1)(T̃′)−1
�

r̃ r̃ ,

�

(T̃′)−1X(3)(T̃′)−1
�

r̃ r̃ = −2

∫

dD r̃1dD r̃2

�

(T̃′)−1X(2)(T̃′)−1
�

r̃ r̃1
(φ̃′r̃1
φ̃′r̃2
)
�

(T̃′)−1
�

r̃2 r̃

+

∫

dD r̃1dD r̃2

�

(T̃′)−1X(1)(T̃′)−1
�

r̃ r̃1
(φ̃′r̃1
φ̃′r̃2
)
�

(T̃′)−1X(1)(T̃′)−1
�

r̃2 r̃

+ 2

∫

dD r̃1dD r̃2

�

(T̃′)−1X(1)(T̃′)−1X(1)(T̃′)−1
�

r̃ r̃1
(φ̃′r̃1
φ̃′r̃2
)
�

(T̃′)−1
�

r̃2 r̃

+ 2
�

(T̃′)−1X(2)(T̃′)−1X(1)(T̃′)−1
�

r̃ r̃

−
�

(T̃′)−1X(1)(T̃′)−1X(1)(T̃′)−1X(1)(T̃′)−1
�

r̃ r̃ . (D.7)
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Let us solve X(1) explicitly. If we view X (1)r̃ as the r̃-th element of a vector X⃗ (1), the first equation
in Eq. (D.7) is written as LX⃗ (1) = Φ⃗, where

Lr̃ r̃ ′ =
�

(T̃′)−1
r̃ r̃ ′
�2
=

�∫

dDQ̃
(2π)D

eiQ̃(r̃−r̃ ′)

Q̃2/m2 + Σ̃

�2

,

Φ⃗r̃ =

�∫

dD r̃ ′(T̃′)−1
r̃ r̃ ′φ̃
′
r̃ ′

�2

=

�∫

dD r̃ ′
∫

dDQ̃
(2π)D

eiQ̃(r̃−r̃ ′)

Q̃2/m2 + Σ̃
φ̃′r̃ ′

�2

. (D.8)

The solution can be obtained by inverting L as

X (1)r̃ =
m2

N
1

Γ (2− D
2 )

(4π)D/2
∫ 1

0 du
�

−u(1− u)∇̃2/m2 + Σ̃
�

D
2 −2

�

1

−∇̃2/m2 + Σ̃
φ̃r̃

�2

, (D.9)

where the answer is written in terms of φ̃r̃ . It is noted that 1
N L−1

r̃ r̃ ′ actually gives the propagator
of singlet field in the large N limit while T̃−1

r̃ r̃ ′ is the free propagator. One can use Feynman

diagrams to represent X (k)r̃ as is shown in Fig. 1.

E Leading scaling operators at the Wilson-Fisher fixed point

The Wilson-Fisher fixed point has two relevant scaling operators. In this section, we compute
them in D < 4. In order to extract a scaling operator with a certain symmetry charge, we
perturb the UV action with an operator that has the same symmetry charge, and study the RG
flow induced by it. The RG flow can be decomposed into eigen-modes each of which has a
definite scaling dimension.

E.1 O(N) singlet

To extract the leading singlet operator, let us perturb the system with a uniform mass :
−m2

2 M′i j = −
m2

2 Mc
i j + ε

′δi j , where −m2

2 Mc is a hopping matrix that flows to the Wilson-Fisher
fixed point. In the presence of the perturbation, the saddle point solution of X is modified to
X+δX. However, the variation of X does not contribute to the change of the effective action to
the linear order in ε′ because the effective action is stationary with respect to X at the saddle
point. As a result, the variation of the effective action caused by the change in M becomes

∆εStot = −
2

m2
ε′
∑

i

∂Mii
Stot

= −
2

m2
ε′
∫

dDr

�

e2z∗

(e2z∗ − 1)2
×
∫

dDr1dDr2 m2 [K+X]−1
r r1
(φr1
φr2
) [K+X]−1

r2r + N [K+X]−1
r r

�

= −ε′
m2N
2λ

∫

dD r̃
�

eDz∗ x0 + e(D−2)z∗X ′r̃
�

. (E.1)

From the second line to the last line, the saddle point equation in Eq. (10) is used. The
final answer is expressed in terms of the rescaled coordinate, r̃ = re−z∗ . The first term is the
correction to the identity operator with scaling dimension 0. It describes the change of the
free energy. The second term shows that X ′r̃ is the next leading singlet scaling operator with
the scaling dimension ∆X = 2.
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(1)

(2)

(3)

Figure 1: The Feynman diagrams representing the solution X (k)r̃ in Eq. (D.7). Black
dots denote φ̃r̃ . The solid lines represent the free propagators of φ, T̃−1

r̃ r̃ ′ . The wave
lines are the propagators of the singlet field, − 1

N L−1
r̃ r̃ ′ . There is an extra minus sign

for each propagator in red.

19

https://scipost.org
https://scipost.org/SciPostPhys.15.3.111


SciPost Phys. 15, 111 (2023)

E.2 O(N) non-singlet

In order to extract the scaling operator in the fundamental representation of O(N), we add
a non-local hopping term between the origin and R in the R →∞ limit. This is equivalent
to inserting two fundamental fields far from each other. For this, we consider a deformation
given by −m2

2 M′r r ′ = −
m2

2 Mc
r r ′ + ε
�

δ(r)δ(r ′ − R) + δ(r ′)δ(r − R)
�

. In the large R̃ limit, the
change in the IR action becomes

∆εStot = −
4

m2
ε

�

e2z∗

(e2z∗ − 1)2
m2

2

∫

dDr1dDr2 [K+X]−1
0r1
(φr1
φr2
) [K+X]−1

r2R +
N
2
[K+X]−1

0R

�

= −2εe(2−D)z∗
∫

dD r̃1dD r̃2

�

T̃+X′
�−1

0r̃1
(φ̃r̃1
φ̃r̃2
)
�

T̃+X′
�−1

r̃2R̃ . (E.2)

In the last line, limR̃→∞
�

T̃+X′
�−1

0R̃ = 0 is used for which large R limit is taken first before the
large z limit. In this limit, ∆εStot can be viewed as two local operators each of which inserted
at the origin and the infinity, respectively. This shows that φS

r̃ =
∫

dD r̃1[T̃+ X′]−1
r̃ r̃1
φ̃r̃1

is the

scaling operator in the fundamental representation of O(N)with scaling dimension∆φ =
D−2

2 .

F Rescaling of spacetime and field

In this appendix, we elaborate on the derivations of Eqs. (12) and (13) from Eqs. (9) and
(10). For convenience, the lattice spacing is chosen to be 1 at UV. Matrix multiplications in
real space are written as integrations as (AB)r1r2

=
∑

r Ar1r Br r2
=
∫

drAr1r Br r2
in which the

identity matrix becomes Ir r ′ = δ(r − r ′). In order to make it manifest that the effective action
is scale invariant at the critical point, we use the rescaled momentum, coordinate and field
defined by Q̃ = Qez∗ , r̃ = re−z∗ and φ̃r̃ = φr e

D
2 z∗ . Taking the large z limit with fixed Q̃ is

tantamount to zooming in toward the neighbourhood of Q = 0 which contains the dynamical
information on the universal long-distance physics.

The kernel in the first term of Eq. (9) is written as
�

(e2z∗ − 1)(K+X)
�−1

r r ′ =
�

(e2z∗ − 1)(K+ x0 I) + (e2z∗ − 1)(X− x0 I)
�−1

r r ′ . (F.1)

Treating

T̃−1
r̃ r̃ ′ ≡ eDz∗
�

(e2z∗ − 1)(K+ x0 I)
�−1

r r ′ =

∫ Λez∗

dDQ̃
(2π)D

eiQ̃(r̃−r̃ ′)

Q̃2/m2 + 1
(F.2)

as the zero-th order term, one can expand Eq. (F.1) in powers of X′r̃ r̃ ′ ≡ e2z∗δ(r̃ − r̃ ′)(X r − x0)
as

e−Dz∗
�

T̃−1
r̃ r̃ ′ −

∞
∑

M1≥1

(−1)M1−1

∫

dDR̃ T̃−1
r̃ R̃

X′
R̃R̃

∫

dDR̃1 T̃−1
R̃R̃1

X′
R̃1R̃1

∫

dDR̃2 T̃−1
R̃1R̃2

× · · · ×
∫

dDR̃M1−1T̃−1
R̃M1−2R̃M1−1

X′
R̃M1−1R̃M1−1

T̃−1
R̃M1−1 r̃ ′

�

= e−Dz∗
�

T̃+X′
�−1

r̃ r̃ ′ . (F.3)

Consequently,
�

(e2z∗ − 1)(K+X)
�−1

r r ′ = e−Dz∗
�

T̃+X′
�−1

r̃ r̃ ′ . (F.4)

The second term of Eq. (9) can be written as
∑

r

log
�

(e2z∗ − 1)(K+X)
�

r r =
∑

r

log [I + A] , (F.5)
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where A= (e2z∗ − 1)(K+X)− I . An expansion in powers of A gives

∑

r

log [I + A] =
∑

M ′≥1

(−1)M
′−1

M ′

∑

r1,..,rM ′

Ar1r2
..ArM ′ r1

. (F.6)

In the rescaled coordinate, the elements of A becomes Ar r ′ = e−Dz∗
�

(T̃+X′)r̃ r̃ ′ −δ(r̃ − r̃ ′)
�

and
∑

r = eDz∗
∫

dD r̃. From this, we obtain

∑

r

¦

log
�

(e2z∗ − 1)(K+X)
�

©

r r
=

∫

dD r̃
¦

log
�

T̃+X′
�

©

r̃ r̃
. (F.7)

Using Eq. (F.2), Eq. (F.4) and Eq. (F.7), we can obtain Eq. (12) and Eq. (13) from Eq. (9) and
Eq. (10).

G Correlation functions from generating function

The n-point function can be expressed as derivatives of the generating function,

〈φa1
r1
φa2

r2
. . .φan

rn
〉= −

δnW [J]
δJ a1

r1
δJ a2

r2
. . .δJ an

rn

�

�

�

J=0
, (G.1)

where the full generating function is given by the effective action in the large z limit as is
shown in Eq. (24). In this appendix, we explicitly compute the 2-point function and the 4-
point function using the exact effective action in Eq. (9).

G.1 2-pt correlation function

The generating function is a function of J a
i and Xk[J], where Xk[J] satisfies the saddle

point equation in Eq. (10). The derivative of W with respect to a source is written as
δW [J]
δJa

i
= ∂W
∂ Ja

i
+
∑

k
∂W
∂ Xk

∂ Xk
∂ Ja

i

�

�

�

X=X̄
, and the 2-pt correlation function can be expressed as

Gab
2 [r1, r2] = −

δ2W
δJ a

r1
δJ b

r2

�

�

�

J=0
= −

�

∂

∂ J a
r1

+
∑

r

∂ X r

∂ J a
r1

∂

∂ X r

��

∂W
∂ J b

r2

+
∑

r ′

∂W
∂ X r ′

∂ X r ′

∂ J b
r2

�

J=0
X=X̄

= −
� ∂ 2W
∂ J a

r1
∂ J b

r2

+
∑

r

∂ 2W
∂ J a

r1
∂ X r

∂ X r

∂ J b
r2

+
∑

r

∂ X r

∂ J a
r1

∂ 2W
∂ X r∂ J b

r2

+
∑

r r ′

∂ 2W
∂ X r∂ X r ′

∂ X r

∂ J a
r1

∂ X r ′

∂ J b
r2

+
∑

r

∂W
∂ X r

∂ 2X r

∂ J a
r1
∂ J b

r2

�

J=0
X=X̄

= −

�

∂ 2W
∂ J a

r1
∂ J b

r2

+
∑

r

∂W
∂ X r

∂ 2X r

∂ J a
r1
∂ J b

r2

�

J=0
X=X̄

. (G.2)

In the last equality, we used the fact that both W and X are even functions of J a
r . Besides, we

also have ∂W
∂ X l

�

�

�

X=X̄
= 0 because X̄ l satisfies the saddle point equation of W . Thus, only the first

term contributes to the 2-pt correlation of φ,

∂ 2W
∂ J a

r1
∂ J b

r2

= −
δab

m2
z
δr1,r2

+
∂ 2Sz

1[e
zJ/m2

z ]

∂ J a
r1
∂ J b

r2

= −
δab

m2
[K+X]−1

r1,r2
. (G.3)
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Setting J a
r = 0 and X= x(z)I at the critical point with x(z) + a+ 1= x2e−2z , we obtain

Gab
2 [r1, r2] =

δab

m2

∫

dDQ
(2π)D

eiQ·(r1−r2)

Q2

m2 + x2e−2z

z→∞
−−−→

δab

|r1 − r2|D−2
. (G.4)

This is the free propagator of the fundamental field as expected in the large N limit.

G.2 4-pt correlation function

The 3-point function is zero since it does not respect the O(N) symmetry. The 4-point function
is expressed as

Gabcd
4 [r1, r2, r3, r4] = −

δ4W
δJ a

r1
δJ b

r2
δJ c

r3
δJ d

r4

�

�

�

�

�

J=0

, (G.5)

where

δ4W
δJ a

r1
δJ b

r2
δJ c

r3
δJ d

r4

=

�

∂

∂ J d
r4

+
∑

r

∂ X r

∂ J d
r4

∂

∂ X r

��

∂

∂ J c
r3

+
∑

r

∂ X r

∂ J c
r3

∂

∂ X r

��

∂

∂ J b
r2

+
∑

r

∂ X r

∂ J b
r2

∂

∂ X r

�

×

�

∂W
∂ J a

r1

+
∑

r

∂W
∂ X r

∂ X r

∂ J a
r1

�

X=X̄

=
∑

r

�

∂ 3W
∂ X r∂ J c

r3
∂ J d

r4

∂ 2X r

∂ J a
r1
∂ J b

r2

+
∂ 3W

∂ X r∂ J b
r2
∂ J d

r4

∂ 2X r

∂ J a
r1
∂ J c

r3

+
∂ 3W

∂ X r∂ J b
r2
∂ J c

r3

∂ 2X r

∂ J a
r1
∂ J d

r4

+
∂ 3W

∂ X r∂ J a
r1
∂ J b

r2

∂ 2X r

∂ J c
r3
∂ J d

r4

+
∂ 3W

∂ X r∂ J a
r1
∂ J c

r3

∂ 2X r

∂ J b
r2
∂ J d

r4

+
∂ 3W

∂ X r∂ J a
r1
∂ J d

r4

∂ 2X r

∂ J b
r2
∂ J c

r3

+
∑

r ′

�

∂ 2W
∂ X r∂ X r ′

∂ 2X r

∂ J a
r1
∂ J c

r3

∂ 2X r ′

∂ J b
r2
∂ J d

r4

+
∂ 2W
∂ X r∂ X r ′

∂ 2X r

∂ J a
r1
∂ J d

r4

∂ 2X r ′

∂ J b
r2
∂ J c

r3

+
∂ 2W
∂ X r∂ X r ′

∂ 2X r

∂ J a
r1
∂ J b

r2

∂ 2X r ′

∂ J c
r3
∂ J d

r4

��

X=X̄

, (G.6)

where the terms that vanish at J a
r = 0 are dropped. Defining L to be a matrix whose element

is given by Lr r ′ = [(K+ x I)−1
r r ′]

2 + m4

4λδr r ′ , we write

∂ 2X r

∂ J a
r1
∂ J b

r2

�

�

� J=0
X=X̄

=
2δab

Nm2

∑

r ′
L−1

r r ′(K+ x I)−1
r ′r1
(K+ x I)−1

r2r ′ (G.7)

∂ 3W
∂ X r∂ J a

r1
∂ J b

r2

�

�

� J=0
X=X̄

=
δab

m2
(K+ x I)−1

r1,r(K+ x I)−1
r,r2

, (G.8)

∂ 2W
∂ X r∂ X r ′

�

�

� J=0
X=X̄

= −
N
2
Lr r ′ , (G.9)

from Eq. (9) and Eq. (10). In the momentum space, L can be written as

Lr r ′ =
∫ dDq
(2π)D eiq·(r−r ′)Lq, where Lq = c1

∫ 1
0 du [u(1− u) q2

m2 + x2e−2z]
D
2 −2 + m4

4λ = c2
qD−4

mD−4 +
m4

4λ

in the large z limit with c1 = (4π)−D/2Γ [2− D
2 ] and c2 =

Γ [ 4−D
2 ]Γ [

D−2
2 ]

22D−3π
D−1

2 Γ [ D−1
2 ]

. Then, two different

terms that appear Eq. (G.6) are given by
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−
∑

r

∂ 3W
∂ X r∂ J c

r3
∂ J d

r4

∂ 2X r

∂ J a
r1
∂ J b

r2

�

�

� J=0
X=X̄

= −
2δabδcd

Nm4

×
∑

r r ′
L−1

r r ′(K+ x I)−1
r3,r(K+ x I)−1

r,r4
(K+ x I)−1

r ′r1
(K+ x I)−1

r2r ′

=
2δabδcd

Nm4
Iz[r1, r2, r3, r4] ,

∑

r,r ′

∂ 2W
∂ X r∂ X r ′

∂ 2X r

∂ J a
r1
∂ J c

r2

∂ 2X r ′

∂ J b
r3
∂ J d

r4

=
2δabδcd

Nm4
Iz[r1, r2, r3, r4] , (G.10)

where

Iz[r1, r2, r3, r4] =

r3

r1

r4

r2

r ′
r

= −
∫

dDrdDr ′
1

|r1 − r ′|D−2

1
|r2 − r ′|D−2

1
|r − r ′|4

1
|r3 − r|D−2

1
|r4 − r|D−2

.

(G.11)

Note that Iz[r1, r2, r3, r4] is a product of four free propagator and a propagator of the O(N)
singlet, and invariant under the interchange of the first two and the last two coordinates,
Iz[r1, r2, r3, r4] = Iz[r3, r4, r1, r2]. In the momentum space, it can be expressed as

Iz[r1, r2, r3, r4]

= −
∫

dDq
(2π)D

dDp
(2π)D

dDQ
(2π)D

L−1
Q

eiq·(r3−r4)

q2

m2 + x2e−2z

eiQ·(r4−r2)

(q−Q)2
m2 + x2e−2z

eip·(r2−r1)

p2

m2 + x2e−2z (p−Q)2
m2 + x2e−2z

=
m8−D

4(2π)D

∫

dDQ
(2π)D

1

c2
QD−4

mD−4 +
m4

4λ

∫ 1

0

d x

∫ 1

0

d y
�

p

x(1− x)
p

y(1− y)|Q|2

r12r34

�
D−4

2

× K D−4
2

�Æ

x(1− x)|Q|r34

�

K D−4
2

�
Æ

y(1− y)|Q|r12

�

ei|Q|r13 cosθ13 ei x |Q|r34 cosθ34 e−i y|Q|r12 cosθ12 ,

(G.12)

where Kν(z) is the modified Bessel functions of the second kind. In the above expression,
ri − r j = ri j r̂i j where r̂i j is a unit vector connecting points i and j. Q · r̂i j = |Q||ri j| cosθi j ,
where θi j is the angle between Q and r̂i j . Together with other terms from permutation, we
can express the connected 4-pt correlation function as

Gabcd
4 [r1, r2, r3, r4]

=
2

Nm4

�

δabδcd Iz[r1, r2, r3, r4] +δacδbd Iz[r1, r3, r2, r4] +δadδbc Iz[r1, r4, r2, r3]
�

.

(G.13)

In general, the connected 4-point function can be written as

Gabcd
4 [r1, r2, r3, r4] = f abcd

�

r12r34

r13r24
,

r12r34

r14r23

�

∏

i> j

r
− D−2

3
i j , (G.14)

where ri j = |ri − r j| and f abcd(u, v) is a universal function of the cross ratios. As a concrete
example, let us consider a case where the four points lie on a line with r12 = r34 = αr and
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r14 = r23 = r. α is a dimensionless parameter that determines the cross ratios. In this case,
the 4-point function in the large r limit becomes

Gabcd
4 [r1, r2, r3, r4] =

2
N

1
r2D−4

(F1[α] + F2[α] + F3[α]) , (G.15)

where

F1[α] = −
1

4(2π)Dc2

1
αD−4

∫

dDQ′

(2π)D

∫ 1

0

d x

∫ 1

0

d y
�Æ

x(1− x)
Æ

y(1− y)
�

D−4
2

× K D−4
2

�Æ

x(1− x)α|Q′|
�

K D−4
2

�
Æ

y(1− y)α|Q′|
�

ei[(x−y)α+1]|Q′| cosθ ,

F2[α] = −
1

4(2π)Dc2

1

(1−α2)
D−4

2

∫

dDQ′

(2π)D

∫ 1

0

d x

∫ 1

0

d y
�Æ

x(1− x)
Æ

y(1− y)
�

D−4
2

× K D−4
2

�Æ

x(1− x)(1+α)|Q′|
�

K D−4
2

�
Æ

y(1− y)(1−α)|Q′|
�

× ei[α+x(1+α)+y(1−α)]|Q′| cosθ ,

F3[α] = −
1

4(2π)Dc2

∫

dDQ′

(2π)D

∫ 1

0

d x

∫ 1

0

d y
�Æ

x(1− x)
Æ

y(1− y)
�

D−4
2

× K D−4
2

�Æ

x(1− x)|Q′|
�

K D−4
2

�
Æ

y(1− y)|Q′|
�

ei(α+x+y)|Q′| cosθ , (G.16)

for D < 4. Similarly, we can compute other n-point functions from the exact effective action.

H Effective action from an alternative RG scheme

In this section, we derive the fixed point effective action in an alternative RG scheme, where
the free massless theory is used as the reference theory. The partition function is still written as
the overlap between two states as Z = 〈S′re f |S

′
1〉. The state associated with the new reference

theory reads

|S′re f 〉=
∫

Dφ e−
1
2

∫

dDk G−1
M (k)φkφ−k |φ〉 , (H.1)

where k is momentum and G−1
M (k) = e

k2

M2 k2 is a regularized kinetic term that suppresses modes
with momenta larger than UV cutoff M . The deformation includes the bi-linear operators and
the on-site quartic interaction, S′1 =

∑

i j Ji jφiφ j +
λ
N

∑

i(φ
2
i )

2. The state associated with the
deformation at z = 0 is

|S′1
0〉=
∫

Dt0Dp0 e−NSUV [t0,p0]|t0〉 , (H.2)

where the UV boundary action is SUV =
∫

dDrdDr ′ (i t0
r r ′ + Jr r ′)p0

r r ′ + λ
∫

dDr (p0
r r)

2, and |t〉
is defined in Eq. (5). The RG Hamiltonian that satisfies Ĥ†|Sre f 〉= 0 is given by [2,29]

Ĥ =

∫

dDk

�

G̃(k)
2
π̂kπ̂−k − i
�

D+ 2
2
φ̂k + k∂kφ̂k

�

π̂k + C

�

, (H.3)

where G̃(k) = ∂ GM (k)
∂ ln M = 2

M2 e−
k2

M2 and C = −
∫

dDkδD(0)
�

G̃
2 G−1

M + 1
�

is a constant. π̂ is the

canonical conjucate of φ̂ satisfying [φ̂k, π̂k′] = i(2π)DδD(k− k′). The first term in the Hamil-
tonian effectively integrates out modes with momenta between Me−dz and M . The second
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term rescales the momentum and field as k = k̃e−dz and φk = e
D+2

2 dzφk̃. Since the RG Hamil-
tonian is diagonal in the momentum space, it is convenient to express the basis states in Eq.
(5) in the momentum space as

|t〉=
∫

Dφei
∫

dDk1dDk2 tk1,k2
φk1
φk2 |φ〉 , (H.4)

where tr1,r2
=
∫

dDk1dDk2 tk1,k2
eik1·r1+ik2·r2 and φr =

∫ dDk
(2π)Dφke−ik·r .

An infinitesimal RG transformation applied to the basis state at z can be written as a linear
superposition of the basis states at z + dz as

e−Ĥdz|tz〉=
∫

Dtz+dz
k̃1,k̃2

Dpz+dz
k̃1,k̃2

e
−NLz+dz

bulk [t
z+dz
k̃1,k̃2

,pz+dz
k̃1,k̃2

]dz�
�tz+dz
�

, (H.5)

where

Lbulk = i

∫

dD k̃1dD k̃2 (∂z t k̃1,k̃2
)pk̃1,k̃2

− i

∫

dD k̃ G̃(k̃)t k̃,−k̃

+ 2

∫

dD k̃dD k̃1dD k̃2 G̃(k̃)t k̃1,−k̃ t k̃2,k̃pk̃1,k̃2
− i

∫

dD k̃1dD k̃2 (2− D)t k̃1,k̃2
pk̃1,k̃2

+ i

∫

dD k̃1dD k̃2 k̃1

�

∂k̃1
t k̃1,k̃2

�

pk̃1,k̃2
+ i

∫

dD k̃1dD k̃2 k̃2

�

∂k̃2
t k̃1,k̃2

�

pk̃1,k̃2
. (H.6)

Here we use k̃i for momentum to denote the fact that momentum has been already
scaled through the RG Hamiltonian. In the phase space path integration representation,
|S
′z
1 〉 = e−Ĥz|S′1

0〉 can be expressed as the path integration over tz
k1k2

, pz
k1k2

as in Eq. (6),

where the bulk action is given by Sbulk =
∫ z∗

0 dz Lbulk.
The integration over p in the bulk gives rise to the constraint for t,

∂z t k̃1,k̃2
− 2i

∫

dD k̃ G̃(k̃)t k̃1,−k̃ t k̃2,k̃ + (D− 2)t k̃1,k̃2
+ k̃1(∂k̃1

t k̃1,k̃2
) + k̃2(∂k̃2

t k̃1,k̃2
) = 0 . (H.7)

Treating {t k̃1 k̃2
} as elements of matrix t, we can write the solution as

i t k̃1,k̃2
(z) =
�

(it̃0)
�

I − D̃(z)(it̃0)
�−1 �

k̃1,k̃2
, (H.8)

where t̃0
k̃1,k̃2

= e(2−D)z t0
k̃1e−z ,k̃2e−z , and D̃k̃,k̃′ = D̃k̃δ(k̃+ k̃′) with D̃k̃ =

2

k̃2

�

exp(−
k̃2e−2z

M2
)− exp(−

k̃2

M2
)

�

.

We can further integrate over p0
r r ′ in SUV as
∫

Dp0
r r ′e
−NSUV =
∏

r ̸=r ′
δ(t0

r r ′ − iJr r ′)e
− N

4λ

∫

dD r (t0
r r−iJr r )2. In

the large N limit, the integration over t0 can be replaced with the saddle-point solution. The
saddle-point equation for tr r ′ is solved if we write −it0 = J+ X, where Jk1,k2

= Jk1
δ(k1 + k2)

is the UV hopping matrix in the momentum space, and X is a matrix whose elements depend
only on k1 + k2 as Xk1,k2

= Xk1+k2
. X̃k̃1,k̃2

≡ e(2−D)z∗Xk1,k2
satisfies

(2π)D
N
2λ

e(D−4)z∗ X̃−p̃ =
N
2

∫

dD k̃1 D̃k̃1

�

I + D̃(X̃+ J̃)
�−1

p̃+k̃1,k̃1
(H.9)

+

∫

dD k̃1

�∫

dD k̃ φk̃

�

I + (X̃+ J̃)D̃
�−1

k̃,k̃1

��∫

dD k̃′
�

I + D̃(X̃+ J̃)
�−1

p̃−k̃1,k̃′ φk̃′

�

,
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where J̃k̃1,k̃2
≡ e(2−D)z∗Jk1,k2

. The effective action at scale z∗ is written as

Stot = −(2π)D
N
4λ

e(D−4)z∗
∫

dD p̃ X̃ p̃ X̃−p̃ +
N
2

∫

dD k̃ log
�

I + D̃(X̃+ J̃)
�

k̃,k̃ (H.10)

+
1
2

∫

dD k̃ G−1
M (k̃)φk̃φ−k̃ +

∫

dD k̃1dD k̃2

�

(X̃+ J̃)
�

I + D̃(X̃+ J̃)
�−1 �

k̃1,k̃2
φk̃1
φk̃2

.

If we write φ-independent part of X̃ as x̃, it satisfies

∫ Λez∗

dD k̃1D̃k̃1

�

I + D̃(x̃+ J̃)
�−1

p̃+k̃1,k̃1
=
(2π)D

λ
e(D−4)z∗ x̃−p̃ , (H.11)

where (x̃)k̃1,k̃2
= x̃ k̃1+k̃2

and Λ is the UV cutoff at z = 0. In the presence of the translational

symmetry, x̃−p̃∝ δ(p̃). x̃ can be expanded as x̃= x̃0e2z∗ + x̃2+O(e−2z∗). At the critical point,
the exponentially growing part of x̃ cancels with that of J̃, and x̃ + J̃ ∼ O(1). If we define
X̃′ ≡ X̃− x̃0e2z∗ , X̃′ satisfies

N
2

∫

dD k̃1 D̃k̃1

�

T̃+ D̃X̃′
�−1

p̃+k̃1,k̃1
−

N
2

∫

dD k̃1 D̃k̃1

�

T̃+ D̃ x̃2

�−1
p̃+k̃1,k̃1

(H.12)

+

∫

dD k̃1

¦

∫

dD k̃ φk̃

�

T̃T + X̃′D̃
�−1

k̃,k̃1

©¦

∫

dD k̃′
�

T̃+ D̃X̃′
�−1

p̃−k̃1,k̃′ φk̃′

©

= (2π)D
N
2λ

e(D−4)z∗
�

X̃ ′−p̃ − x̃2

�

,

where T̃= I + D̃(x̃0e2z∗ + J̃). When D > 4, X̃′ = x2, and the fixed point action is Gaussian. For
D < 4, X̃′ becomes φ-dependent, and Eq. (H.10) becomes non-Gaussian.

If we deform the UV theory by adding a uniform mass δJk1k2
= ε′δ(k1 + k2), which trans-

lates to δJ̃k̃1 k̃2
= ε′e2zδ(k̃1 + k̃2), the effective action changes by

∆′εStot∝ ε′
�

eDz x̃0 + e(D−2)z X̃ ′0
�

. (H.13)

This implies that X̃ ′r̃ ≡
∫

dD k̃X̃ ′
k̃
eik̃ r̃ is a local operator with with scaling dimension

∆X = 2. If a non-local hopping term is turned on between r and r ′ at UV with strength
ε, δJk1k2

= εe−ik1r−ik2r ′ (δJ̃k̃1 k̃2
= εe(2−D)ze−ik̃1 r̃−ik̃2 r̃ ′), the change of the effective action is

given by

∆εStot∝ εe(2−D)z

∫

dD k̃dD k̃′ e−i(k̃·r̃+k̃′·r̃ ′)φS
k̃
φS

k̃′
, (H.14)

in the |r̃ − r̃ ′| → ∞ limit, where φS
k̃
=
∫

dD k̃′
�

I + D̃(X̃+ J̃)
�−1

k̃′,k̃φk̃′ . Φ
S
r̃ ≡
∫

dD k̃ e−ik̃·r̃φS
k̃

corresponds to the local scaling operator in the fundamental representation of O(N) with
scaling dimension ∆φ =

D−2
2 .
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