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Abstract

We consider a model of free fermions in a ladder geometry coupled to a non-uniform
cavity mode via Peierls substitution. Since the cavity mode generates a magnetic field,
no-go theorems on spontaneous photon condensation do not apply, and we indeed ob-
serve a phase transition to a photon condensed phase characterized by finite circulating
currents, alternatively referred to as the equilibrium superradiant phase. We consider
both square and triangular ladder geometries, and characterize the transition by study-
ing the energy structure of the system, light-matter entanglement, the properties of the
photon mode, and chiral currents. The transition is of first order and corresponds to a
sudden change in the fermionic band structure as well as the number of its Fermi points.
Thanks to the quasi-one dimensional geometry we scrutinize the accuracy of (mean field)
cavity-matter decoupling against large scale density-matrix renormalization group sim-
ulations. We find that light-matter entanglement is essential for capturing corrections to
matter properties at finite sizes and for the description of the correct photon state. The
latter remains Gaussian in the the thermodynamic limit both in the normal and photon
condensed phases.
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1 Introduction

One of the aims of the paradigm of cavity control is to modify the properties of quantum mate-
rials using cavity embedding [1–3]. In strong coupling regimes, vacuum effects [4] can modify
the properties of the material even without external illumination, e.g., by affecting magneto-
transport of a two dimensional (2D) material [5] or suppressing topological protection of the
integer quantum Hall effect [6]. Recently, coupling to a cavity mode has been demonstrated
to affect the critical temperature and the phase transition in charge-density wave systems [7].
Theoretical proposals have focused on the possibility of controlling electronic instabilities and
ordered phases by quantum fluctuations of the cavity field, including superconductivity [8–10]
and ferro-electricity [11, 12], or even inducing phase transitions in both light and matter de-
grees of freedom by onset of the so called superradiant phase where the ground state has a
macroscopic number of coherent photons, hence photon condensed phase. The equilibrium
superradiant phase transition, originally introduced in the context of the Dicke model [13–15]
describing an ensemble of two-level atoms collectively coupled to a common cavity mode, has
been recently discussed for electronic systems coupled to single-mode cavity [16–22].

A proper description of photon condensation requires a gauge invariant framework for the
light-matter interaction, an issue which poses key theoretical challenges for truncated models
which only retain a subset of degrees of freedom. In the ultrastrong coupling regime [23],
where the light-matter coupling is comparable to the transition energies of the atoms, this
truncation could lead to violations of gauge-invariance [24–26], thus questioning the valid-
ity of such a description. Indeed, the theoretical predictions of photon condensation have
been hindered by the use of truncated models lacking gauge invariance, leading to inaccurate
results.

To tackle this issue, Refs. [27, 28] considered an underlying microscopic model without
relying on any truncation and proved that photon condensation is prohibited as long as a
single-mode spatially uniform vector potential is considered. In order to reproduce this result
within a truncated model, it is crucial to use a gauge-invariant descriptions of the light-matter
interaction such as the Peierls phase and its extensions [29–31].

More recent works [32–37] have relaxed the strong assumption of the spatially uniform
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vector potential and show that photon condensation is analogous to the Condon magnetostatic
instability [38]. According to these studies, photon condensation can occur only in presence
of a magnetic field, while a purely electric field cannot condense as a results of no-go theorems
[27,28]. As a corollary, photon condensation is prohibited in a strictly one dimensional (1D)
geometry [27,39]where the orbital motion of electrons cannot be affected by a magnetic field.
Therefore, one needs to consider at least two dimension or the spin degree of freedom [36].

Here we investigate the occurrence of photon condensation in a minimal setting beyond
1D – i.e., a two-leg ladder [40–44] – where the orbital motion of spinless fermions is coupled
through Peierls substitution to a non-uniform cavity mode which generates a fluctuating uni-
form magnetic field. Similar cavity set-ups have been proposed in Refs. [45, 46]. Moreover,
recent developments have demonstrated ultra-strong coupling between magnons and the mag-
netic field of a superconducting resonator [47]. In contrast to 1D chains, two-leg ladders allow
us to analyze transverse response to non-uniform vector potentials, while still being amenable
to a thorough numerical investigation beyond typical mean-field approximations by means of
the density-matrix renormalization group (DMRG) techniques [48–51] (recently being also
employed in cavity quantum electrodynamics (QED) systems [52–57]).

Our results show that ladder geometries can indeed host an equilibrium superradiant tran-
sition (or photon condensation [27]), not to be confused with the non-equilibrium phase tran-
sition observed in dye filled microcavities [58]), via a first-order transition from a normal
metallic phase. The first order nature of this transition arises from the strongly non-linear or-
bital paramagnetic response of the ladder system and provides therefore a different scenario
for condensation with respect to those discussed so far in the literature [33, 34, 36]. While a
photon mean-field (PMF) decoupling of the photon and matter degrees of freedom captures
qualitatively the phase transition, we find that for finite sizes the correct treatment of quantum
fluctuations is essential to estimate physically relevant quantities, such as current and photon
properties. This demonstrates how, in these settings, the light-matter entanglement and pho-
ton squeezing cannot, in general, be neglected. In the thermodynamic limit, we show that the
photon condensation allows to modify the properties of an extensive system with a single cav-
ity mode in the collective strong coupling regime. Remarkably, even in this thermodynamic
limit, where the photon state is Gaussian, it is necessary to consider both the light-matter
entanglement and photon squeezing to determine the photon properties.

The structure of the paper is the following. In Sec. 2 we describe the Hamiltonian of the
light-matter coupled system and introduce the main physical gauge-invariant quantities. In
Sec. 3 we first introduce the PMF approximation and the DMRG numerics. Then we discuss
the result comparing the two approaches and recover a qualitative agreement between the
two by adding quantum fluctuations on top of the PMF solution. In Sec. 4 we move to the
triangular ladder geometry highlighting the similarities with the square ladder case. In Sec.
5, we draw the conclusions and discuss possible future directions.

2 Hamiltonian

We consider a hybrid light-matter system where the light component is represented by a sin-
gle cavity mode and the matter component is described by a tight-binding model of charged
(q = −1) spinless free fermions on a ladder geometry. The ladder sits on the x − y plane,
extends in the x direction with a lattice spacing d and the spacing between the two legs is also
d. Depending on the alignment of the sites on the two legs of the ladder and on the nature
of inter-leg hoppings, we consider either a square or triangular geometry, see Fig. 1. The
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(b)

(a)

Figure 1: Sketch of the ladder plus cavity system under consideration. (a) With-
out any coupling to the cavity, the two legs of the ladder have the same intra-leg
hopping t0 (solid lines), an inter-leg hopping between corresponding site t1 (dashed
lines), and (for the triangular ladder) a diagonal inter-leg hopping t2 (dotted lines).
The cavity mode has frequency ωc and a space profile given by the vector potential
A0(r) = −B0 y x̂. (b) Upon coupling to the cavity, the intra-leg hopping terms are
modified by the photon in a different way for the top (t+0 ) and bottom (t−0 ) leg.

Hamiltonian describing the fermion dynamics reads:

Ĥ0 =
�

∑

σ=±
Ĥσ

�

+ Ĥ⊥ , (1)

Ĥσ = −t0

L−1
∑

j=1
ĉ†
σ, j ĉσ, j+1 , (2)

Ĥ⊥ =

�

−t1

L
∑

j=1
ĉ†
+, j ĉ−, j − t2

L−1
∑

j=1
ĉ†
+, j ĉ−, j+1 + h.c.

�

, (3)

whereσ = +(−) indicates the top (bottom) leg of the ladder, j = 1, . . . , L is the site/rung index
on each leg, and ĉ†

σ, j (ĉσ, j) creates (destroys) a fermion on the site j and on the leg σ. We
consider open boundary conditions and one fermion per rung so that N = L, unless specified
otherwise. Moreover, we set equal hopping amplitudes t0 = t1, while t2 = 0 or t2 = t0 for the
square and the triangular geometry, respectively.

The cavity setup we consider is that of a single mode where the cavity Hamiltonian is
represented by a single quadratic bosonic mode with frequency ωc:

Ĥc =ωcâ†â . (4)

Correspondingly, the cavity vector potential is Â(r) = A0(r)(â + â†) where A0(r) retains
the spatial structure of the cavity mode and â is the annihilation operator for a photon in this
cavity mode. We consider a spatially varying mode function that in the vicinity of the ladder
can be written as A0(r) = −B0 y x̂. The cavity is, therefore, magnetic since the cavity mode has a
non-zero curl which in classical electrodynamics gives rise to a magnetic field. In our quantum
light model, this means that cavity photons generate a fluctuating magnetic flux through the
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ladder plaquettes. We remark here that the single-mode approximation is not always valid
and it in general depends on the specifics of the system [1,3,16–22,39,59]. In order to have
a gauge-invariant coupling between matter and light, we implement the light-matter coupling
by means of the Peierls substitution:

ĉ†
i,σ ĉ j,σ′ → exp
�

iq

∫ R j,σ′

Ri,σ

dr · Â(r)
�

ĉ†
i,σ ĉ j,σ′ , (5)

where Ri,σ denotes the position of the electronic site i,σ. In our case, the Peierls phase is non-
zero only for intra-leg hoppings which are along the x direction. The Peierls phase as discussed
by Luttinger [60] is only an approximation of the coupling to electromagnetic fields when
the value of the magnetic flux over an area, comparable to the typical size of the fermionic
orbitals, is comparable to π [29]. However the corrections strongly depend on the nature of
the localized orbitals, and since neglecting these corrections does not spoil the gauge-invariant
properties of the coupling, we keep only the Peierls phase.

The full light-matter coupled Hamiltonian then reads:

Ĥ =ωcâ†â−
�

t1

L
∑

j=1

ĉ†
+, j ĉ−, j + t2

L−1
∑

j=1

ĉ†
+, j ĉ−, j+1

+ t0

L−1
∑

j=1

∑

σ=±
eiσg(â+â†)/

p
L ĉ†
σ, j ĉσ, j+1 + h.c.
�

, (6)

where we have introduced the dimensionless coupling constant g = |q|d2B0
p

L/2 which is
the parameter that drives the transition. Note that g does not grow explicitly with L given the
scaling of the field intensity B0 ∝ 1/

p
L provided that the density N/V = L/V is fixed. In

optical cavities, the frequency of the mode ωc and the field intensity B0 are, in general, not
independent parameters (ωc∝ B2

0). Still we can, in principle, tune the light-matter interac-
tion strength g independently of ωc, for example, by varying the fermionic charge q. In the
following we will in any case stick with q = −1 and use g as an independent parameter1. The
Hamiltonian (6) is invariant under the combined application of (1) the parity transformation
of the photon Pph : â→−â and (2) the leg inversion Pσ : σ→−σ, so that (c.f. [44])2:

P ≡ PphPσ , P ĤP−1 = Ĥ . (7)

We now define two important quantities that are physically related in this light-matter
system. The first one is the magnetic flux per plaquette Φ̂ pointing in the z direction:

Φ̂=

∫

□
d xd y ∇× Â(r ) =

2g
p

L
(â+ â†) , (8)

where the□ indicates the integral on a plaquette. The light-matter coupling in the Hamiltonian
(6) only depends on the magnetic flux Φ̂ which is a well-defined physical (and thus gauge-
invariant) quantity. The second quantity is the chiral charge current:

Ĵχ =
L−1
∑

j=1

Ĵ□, j . (9)

1One could think of changing the lattice spacing d, but this would in turn change the hopping integrals. This is
one of the main issue of the Peierls phase, it inevitably links the light-matter interaction and hopping integrals as
discussed in [31].

2However, it is to be noted that independent applications of Pph or Pσ do not leave the Hamiltonian invariant.
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The chiral current is defined as the sum of the plaquette currents Ĵ□, j = −Ĵ+, j−Ĵ⊥, j+1+Ĵ−, j+Ĵ⊥, j

flowing in a anticlockwise direction, where Ĵ⊥, j is the inter-leg current flowing from the top
σ = + to the bottom leg σ = − at sites j and Ĵ±, j is the intra-leg longitudinal current flow-
ing from site j to site j + 1. The gauge-invariant currents can be derived starting from the
charge density n̂σ, j ≡ qĉ†

σ, j ĉσ, j with q = −1, which fulfills a discrete continuity equation

∂t n̂σ, j = −Ĵσ, j + Ĵσ, j−1 −σĴ⊥, j . By comparing this expression with the Heisenberg equation
for the density ∂t n̂σ, j = i[Ĥ, n̂σ, j] and carrying out the explicit calculation, we find for the
currents:

Ĵσ, j = −i t0

�

eiσg(â+â†)/
p

L ĉ†
σ, j ĉσ, j+1 − h.c.
�

, Ĵ⊥, j = −i t1(ĉ
†
+, j ĉ−, j − h.c.) .

Performing the sum, the contributions from the inter-leg current cancel out except for the
boundary contributions and we are left with

Ĵχ = i t0

∑

j,σ

�

σeiσ gp
L
(a+a†) ĉ†

σ, j ĉσ, j+1 − h.c.
�

− i t1

�

ĉ†
+,1 ĉ−,1 − ĉ†

+,L ĉ−,L − h.c.
�

. (10)

The chiral current and the magnetic flux operators defined above correspond to physical,
gauge invariant, observables, and as such their expectation values do not depend on the choice
of the gauge [61–63]. Different gauge choices are indeed implemented through unitary trans-
formations which act on both operators and states, and leave invariant physical observables. In
the following, we will use the expectation values of the chiral current and the magnetic flux as
the order parameters for the photon condensation, making it a gauge-invariant phenomenon.

The presented Hamiltonian, although a minimal toy model, serves as a powerful tool in
understanding the physics of magnetic photon condensation and the collective strong cou-
pling regime of itinerant electrons coupled to a single quantized cavity mode. Despite its
simplicity, realizing such a model in solid state materials embedded in optical cavities could
be challenging. Nonetheless, recent advancements have demonstrated ultra-strong magnetic
coupling with a superconducting resonator [47], suggesting a potential practical feasibility of
our model. Another potential platform lies in cold-atom setups. However, atoms are neu-
tral and our Hamiltonian cannot be straightforwardly realizes if not with dynamical synthetic
gauge fields3. Here, our primary objective is to have a clearer interpretation of the results and
a better understanding of the underlying physics. Therefore, we leave the question of exper-
imental realizations open for future studies and focus on the theoretical aspects of the model
in the present work.

3 Square ladder

We start by looking at the half-filled (N/L = 1) square ladder geometry (t2 = 0). We solve
for the ground state of the model with two approaches: (i) using an approximate photon
mean-field decoupling where the fermionic problem is non-interacting and the light-matter
entanglement is neglected; (ii) performing numerical simulations with DMRG where the light-
matter entanglement is taken into account and the problem is fully many-body.

3Note that “dynamical" semi-classical gauge fields for cold atomic set-ups have been studied (see e.g. Ref.
[64, 65]) but the dynamics is linked to their driven-dissipative nature and hence differs from the model object of
this work.
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3.1 Methods

3.1.1 Photon mean-field

In the photon mean-field approximation (PMF) the quantum correlations between photon and
matter are neglected by assuming a product ground state

�

�ΨPMF
�

= |ψm〉
�

�ψph

�

[33, 34, 59].
This gives rise to two mean-field Hamiltonians for photon ĤPMF

ph ≡ 〈ψm| Ĥ |ψm〉 and matter

ĤPMF
m ≡



ψph

�

� Ĥ
�

�ψph

�

that must be solved self-consistently. Up to irrelevant constants they
read:

ĤPMF
m = −t0R
∑

j,σ
eiσφ/2 ĉ†

σ, j ĉσ, j+1 − t1
∑

j
ĉ†
+, j ĉ−, j + h.c. , (11)

ĤPMF
ph =ωcâ†â+ J1 cos

h

g(â+â†)p
L

i

+ J2 sin
h

g(â+â†)p
L

i

, (12)

where we introduced the mean-field parameters R, φ, J1 and J2. The first two depend on the
photon state and are defined as

R≡
�

�

�

�




ψph

�

� ei g(â+â†)p
L
�

�ψph

�

�

�

�

�

, φ ≡ 2arg
�




ψph

�

� ei g(â+â†)p
L
�

�ψph

�

�

, (13)

such that R eiφ/2 =



ψph

�

� ei g(â+â†)p
L
�

�ψph

�

. The matter mean-field parameters J1 and J2 are
defined as

J1 ≡ −t0

L−1
∑

j=1

∑

σ
〈ψm|
�

ĉ†
σ, j ĉσ, j+1 + h.c.
�

|ψm〉 , (14)

J2 ≡ −i t0

L−1
∑

j=1

∑

σ
〈ψm|
�

σĉ†
σ, j ĉσ, j+1 − h.c.
�

|ψm〉 . (15)

The photon parameters φ and R have respectively the interpretation of a magnetic flux
per plaquette and of the cavity renormalization of the hopping process. Whenever the pho-
ton quantum state is Gaussian, the expectation values of an exponential can be expressed in
terms of expectation values of the two quadratures X̂ ≡ (â + â†)/

p
2, P̂ ≡ i(â − â†)/

p
2, and

their fluctuations. In particular for Gaussian states |ψG
ph〉, our mean-field parameters R and φ

become:

RG = exp
�

−
2g2

L

�

〈ψG
ph|X̂

2|ψG
ph〉 − 〈ψ

G
ph|X̂ |ψ

G
ph〉

2
��

, (16)

φG =
g
p

2
p

L
〈ψG

ph|X̂ |ψ
G
ph〉=
¬

ψG
ph

�

�

� Φ̂
�

�

�ψG
ph

¶

. (17)

Note that if the photonic state is not Gaussian, in principle, we can have φ ̸=



ψph

�

� Φ̂
�

�ψph

�

.
The physical interpretation of the matter parameters J1 and J2 in terms of the chiral current
Ĵχ depends on the values of φ and R as




ΨPMF
�

� Ĵχ
�

�ΨPMF
�

= R
�

J2 cos(φ/2)− J1 sin(φ/2)
�

+



ΨPMF
�

� Ĵ⊥,N − Ĵ⊥,1

�

�ΨPMF
�

. (18)

The solution of the PMF Hamiltonians is obtained by a standard self-consistent procedure:

1. Start from a guess R and φ;

2. Solve the single-particle problem given by the matter mean-field Hamiltonian in Eq. (11)
and compute J1 and J2 as Eqs. (14) and (15);
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density matrix 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Figure 2: The matrix-product state (MPS) and the matrix-product operator (MPO)
representations used in our study. The photonic Hilbert space is truncated to accom-
modate maximum number of photons Nph

max = 63, while the fermionic local Hilbert
space dimension is 2. Note that the photon mean-field (PMF) approximation is im-
plicitly setting χ = 1 for the first link that connects the photon and fermionic degrees
of freedom. In this MPS representation, the photon density matrix can be computed
efficiently by tracing out the fermionic degrees of freedom.

3. Solve the photonic mean-field Hamiltonian in Eq. (12) via exact diagonalization and
compute a new R′ and φ′ from Eq. (13);

4. Repeat from 2, using R′ and φ′ as a new mean-field parameters until the desired con-
vergence is reached.

Note that in presence of first-order transitions one needs to be careful and try different initial
guesses as the self-consistency can get stuck in local minima of the energy.

3.1.2 Density-matrix renormalization group

This ladder geometry, being a quasi-1D system, is well-suited to be approached via the density-
matrix renormalization (DMRG) techniques [48–51]. The matrix-product state (MPS) rep-
resentation that we use for this purpose is similar to those employed in previous works on
light-matter systems [52–55], where the single photon site is placed at one end of the MPS
chain, while rest of the MPS is made up of fermionic sites, as depicted in Fig. 2. Addition-
ally, to preserve the global U(1) symmetry associated with the conservation of total fermionic
charge
∑

σ, j nσ, j , we employ U(1) symmetric tensors [66, 67] for the fermionic sites, while a
standard dense tensor is used for the photon site. Moreover, the use of the matrix-product
operator (MPO) representation for the Hamiltonian, as illustrated in Fig. 2, is efficient as the
long-range light-matter interaction term can be expressed exactly in the MPO form [68, 69].
The ground state obtained through DMRG is a variationally computed state, with an error that
can be precisely controlled through the bond dimension χ of the MPS ansatz. By adjusting
the bond dimension, one can verify the convergence and attain the desired level of accuracy.
See App. D for further details on the convergence of DMRG simulations. For the numerical
implementation of the DMRG algorithm we use the ITensor library [70] and the respective
codes can be found at GitHub4.

4The example codes for this work can be found at the GitHub repository: https://github.com/zenobacciconi/
cavity_ladder.git.
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It is important to note that, in a symmetry-broken phase, while strictly speaking, exact
symmetry breaking does not occur in the ground state at finite sizes, it is a well-established
characteristic of DMRG to converge to one of the symmetry-broken states, as these states have
significantly less entanglement compared to the macroscopic superposition of two (or more)
symmetry-broken states. In the following discussion, while considering the symmetry-broken
phase, we will focus solely on these symmetry-broken ground states, which can be reached
either automatically through the DMRG algorithm or with the aid of a small symmetry breaking
term5.

The DMRG solution allows us then to easily access the photon density matrix by tracing
out the matter degree of freedom as (see Fig. 2):

ρph = Trm

�

|Ψ〉 〈Ψ|
�

. (19)

From this we can, for example, calculate the entanglement entropy of the cavity with respect
to matter S(ρph) = −Tr

�

ρph lnρph

�

that in the PMF decoupling is exactly zero.

3.2 Results: Photon mean-field vs. DMRG

Phase diagram. A sample of the results obtained with DMRG and PMF are depicted in Fig. 3.
Overall, we observe that the two approaches match in determining the structure of the phase
diagram – both show a first-order phase transition from a normal metallic phase for g < gc
to a photon condensed phase for g > gc characterized by a Z2 symmetry breaking where the
symmetry P (see Eq. (7)) gets spontaneously broken. The energy kink shown in Fig. 3(d)
support the first-order nature of the transition for both DMRG6 and PMF. The normal phase is
connected to the state at g = 0 and display metallic properties. The photon condensed phase
is a Condon phase where a finite current 〈Ĵχ〉 ̸= 0 (Fig. 3(b)) is linked to a finite magnetic
flux 〈Φ̂〉 ̸= 0 (Fig. 3(a))7. In particular, we have |〈Ĵχ〉| =

L
2 (π− |〈Φ̂〉|) from both DMRG and

PMF with small finite-size corrections, where |〈Φ̂〉| ≤ π and 〈Ĵχ〉 and 〈Φ̂〉 have the same sign.
The matter state is a diamagnetic band insulator, also called the Hofstader flux state in the
context of fermionic ladder with static magnetic fields [41]. The notion of diamagnetism,
however, in the present context is an unusual one. While usually one defines diamagnetism
when the magnetization of a material is opposite with respect to an applied magnetic field,
here the magnetization is in the same direction but proportional to the difference π − |〈Φ̂〉|.
Diamagnetism must be interpreted as a response of the system trying to bring the magnetic
flux not to 0 but to π.

Finite size effects. The chiral current shown in Fig. 3(b) has finite size corrections which
compare well between PMF and DMRG, but the exact transition point is shifted towards lower

5For large enough system-size L, DMRG may randomly converge to one of the symmetry-broken ground states,
which can also be influenced by the choice of initial input state. To eliminate such arbitrariness, we add a very
small symmetry breaking term in our simulations and select only a specific symmetry-broken state.

6To mitigate the negative impacts of metastability near the first-order phase transition, we employ a two-fold
approach for each value of g within a range close to gc . We simultaneously run two separate DMRG simulations,
each initialized with a state deep within a distinct phase. From these two simulations, we select the outcome that
results in the lowest energy.

7It is straightforward to check that under the symmetry operation P , 〈Ĵχ〉 and 〈Φ̂〉 change their sign. There-
fore, all the symmetry-preserving eigenstates must have vanishing chiral current and magnetic flux. In the photon
condensed phase, the Z2 symmetry associated with P gets spontaneously broken, and the ground state exhibits a
two-fold degeneracy. This degeneracy arises from the presence of two symmetry-broken states, denoted by |Ψ+〉 and
|Ψ−〉, which have positive and negative values of the order parameters 〈Ĵχ〉 and 〈Φ̂〉 respectively. Under the sym-
metry operation, we have P |Ψ±〉= |Ψ∓〉, so that the symmetric and anti-symmetric combinations 1p

2
(|Ψ+〉 ± |Ψ−〉)

belong to the even and odd symmetry sectors respectively, each having zero magnetic flux and chiral current.

9

https://scipost.org
https://scipost.org/SciPostPhys.15.3.113


SciPost Phys. 15, 113 (2023)

0.0 0.5 1.0 1.5 2.0 2.5

g

0

1

2

3

|〈Φ̂
〉|

(a)

L = 40

L = 52

L = 64

L = 76

PMF L = 76

0.0 0.5 1.0 1.5 2.0 2.5

g

0.0

0.1

0.2

0.3

0.4

S
ph

(c)

0.0 0.5 1.0 1.5 2.0 2.5

g

0.0

0.1

0.2

0.3

|〈Ĵ
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〈Ĥ
〉/
L

(d)

1.425 1.450
0.29

0.30

1.425 1.450

−1.43

−1.42

Figure 3: DMRG results for different system sizes and their comparison with the
photon mean-field (red dashed line). (a-b) The magnetic flux per plaquette and
chiral current as the cavity and the matter order parameters respectively. They both
show a discontinuity at the first-order transition point gc ≃ 1.44 that slightly shifts at
finite sizes. The relation |〈Ĵχ〉|=

L
2 (π−|〈Φ̂〉|) is satisfied in the thermodynamic limit.

Note that here we plot the absolute values of the order parameters since they can take
on both negative and positive values in the photon condensed phase depending on
the degenerate symmetry-broken state, but always have the same sign as each other.
(Inset) Zoom near the thermodynamic limit transition point gc = 1.44 marked with a
vertical black line. Note that finite size corrections to the transition point and value of
the current are different between DMRG and PMF. (c) Photon entanglement entropy
with respect to the matter. It is finite in the thermodynamic limit for both phases,
although much smaller in the photon condensed phase. (d) Total energy density
showing a kink at the transition point as expected for a first-order transition both in
DMRG and the photon mean-field. Note that finite size corrections are different.

(PMF) and higher (DMRG) values of the coupling strength. The reason is that while the photon
condensed phase has low photon entanglement (Fig. 3) and is well captured by the PMF,
the normal phase has high photon entanglement and then finite-size corrections are different
between PMF and DMRG. In particular the finite size effect of the PMF comes mainly from
the mean-field hopping renormalization R that tends to 1 in the thermodynamic limit as the
squeezing of the cavity remain finite (Eq. (16)). The same happens for the total energy and
the magnetic susceptibility (not shown).

Magnetostatic instability. We refer to the instability to a ground-state displaying a finite
magnetic flux 〈Φ̂〉 ≠ 0 as a “magnetostatic instability" [32, 33, 37, 71]. In Fig. 4 we show
the mean-field picture of the magnetostatic instability characterizing the first-order transition.
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Figure 4: The mean-field picture of the transition. (a) Mean-field energy
per particle as a function of a cavity generated ‘classical’ magnetic flux φ at
g = gc = 1.44. The photon energy is Eph = ωc(φ/4g)2 and the matter energy
Ematt = 〈ψm| ĤPM F

m |ψm〉/L is obtained from the single-particle problem of Eq. (11)
fixing R = 1. (Inset) E(φ) shown from g = 1.2 (light color) to g = 2.8 (dark color)
across the transition. After the transition the solution at φ = 0 does not immediately
become unstable, signaling metastability – a typical feature of first-order phase tran-
sitions. (b) Metallic and (c) insulating band structure at two fluxes corresponding
to the two minima of the total energy at g = gc in periodic boundary conditions.
Horizontal lines mark the chemical potential.

Differently to a second-order transition [33] the instability is not controlled by the linear orbital
magnetic susceptibility (which is a property of the Fermi-surface [34]) of the normal state
φ = 0. Conversely, the first-order nature is given by a strong non-linear response of the
system at strong magnetic fluxes. In particular, the non-linear behavior comes together with
an indirect gap opening in the band structure at φ = 2π/3. Once fixed the fermionic bare
energies, the transition point only depends on the energy of the cavity per unit of flux, which
is controlled by the combinationωc/g2 as the cavity PMF energy density in the thermodynamic
limit is Eph =ωc(φ/4g)2.

The numerical results from DMRG simulations confirm the photon mean-field picture for
the instability. Our findings show that the only way for a single cavity mode in the collective
strong coupling regime to change the macroscopic properties of a thermodynamically large sys-
tem is via a macroscopic classical state. Quantum fluctuations and light-matter entanglement
give only O(1) contributions [59,72,73], which can be important near quantum criticality, as
recently discussed in Ref. [74].

Cavity quantum state. As shown in Fig. 5, the density matrix ρph obtained via DMRG shows
that the cavity can be can be accurately approximated by a Gaussian state (see App. A). In order
to quantify the non-Gaussianity of the state, we compute the Quantum relative entropy [75]:

∆G = S(ρG
ph)− S(ρph) , (20)

where ρG
ph is the Gaussian density matrix that has the same expectation values 〈X̂ 2〉, 〈P̂2〉, 〈X̂ 〉,

〈P̂〉 of ρph. The non-Gaussian nature of the state is a finite size correction (see Fig. 5(a)) and
it arises from the non-linear nature of the Peierls phase. The non-Gaussianity revealed to be
sensitive to numerical details at sizes higher than L = 76 for which a more careful analysis is
needed (App. D). Then in order to have more information on the nature of the corrections we
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Figure 5: Cavity quantum state obtained with DMRG. (a) Quantum relative entropy
∆G as a measure of cavity non-Gaussianity for different system sizes. The state
is Gaussian in the thermodynamic limit in both phases. (Inset) The numerical ex-
trapolation of the non-Gaussianity to the thermodynamic limit by using a linear fit
f (1/L) = a + b/L. Errors of 10−5 on the DMRG points have been considered to
account for slight dependency on numerical parameters (see App. D). (b-d) Wigner
functions of the photon at finite system-size L = 40 for the uncoupled system g = 0
(b), in normal phase g = 1.4 (c), and in the photon condensed phase g = 2 (d).
Even at the smallest presented size when the non-Gaussianity is larger, the Wigner
function is positive everywhere. White contours display the width of the correspond-
ing Gaussian state ρG

ph having same 〈X̂ 2〉−〈X̂ 〉2 and 〈P̂2〉−〈P̂〉2 as the actual photon
state ρph, and the white arrow shows the displaced nature of the photon condensed
state. Red dots mark the origin (x , p) = (0, 0).

also show, in Figs. 5(b)-(d), the Wigner function [76] of the cavity at the smallest investigated
system size. The corrections do not spoil the positivity of the Wigner function nor the qual-
itative shape. Also in the PMF (not shown) the non-Gaussianity goes to zero in the L →∞
and the squeezing remain constant so that R → 1. The dashed lines in Figs. 5(b)-(d) mark
the width of the respective Gaussian states and they encode the nature of the Gaussian state.
A finite light-matter entanglement is represented by a lager area enclosed in the dashed lines
as it increase the variance of both quadratures (see App. A), while squeezing reduce the fluc-
tuations in one quadrature while increasing the other one to keep the product constant. The
gaussianity of the cavity state can be an important starting point for semiclassical treatments
of light-matter problems [77]

3.3 Results: Gaussian fluctuations

In order to gain further insights into the entangled light-matter ground state one can try to
calculate pertubative contribution to the ground state |Ψ0〉 in powers of g. Leaving a more
detailed discussion in App. C at first order (with periodic boundary conditions) we obtain:

�

�Ψ(1)
�

= |Ψ0〉 −
g
p

L

∑

k

2 fk

ωk +ωc
|PHk, 1c〉 , (21)

where |PHk, 1c〉 = ˆ̃c†
k,2

ˆ̃ck,1â† |Ψ0〉 is a polaritonic state with one photon in the cavity and with

one direct particle-hole excitation over the Fermi see at momentum k, ˆ̃ck,a with a = 1,2 are the
fermionic operators that diagonalize HPMF

m , ωk is the direct band gap, and fk are the matrix
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elements for the magnetic transition. This matches the DMRG solution at small values of
g (not shown), but it becomes useless at higher values of g, in particular after the photon
condensation transition.

As an alternative method to gain analytical insight on the system dynamics, we examine
the Gaussian fluctuations above the mean-field solution which, in the normal phase, at first
order in g actually recover the above perturbative result. This treatment is motivated by the
observation that, for all values of g considered, the photon state is always Gaussian in the
thermodynamic limit. We then expand the photon operator as:

â = α0 +δâ , (22)

where α0 = φ
p

L/4g is the solution of the photon mean-field decoupling restricted to coherent
states and δâ the bosonic quantum fluctuations around it fulfilling the bosonic commutation
relations [δâ,δâ†] = 1. Note that the coherent state around which we are expanding does
not, in general, correspond to the full solution of the PMF as that is a generic pure quantum
state of the cavity Hilbert space.

To simplify the treatment, we work in periodic boundary conditions (details in App. B)
and introduce the creation operator in momentum space ĉσ,k =

1p
L

∑

j e−ik j ĉσ, j . and the

pseudospin representation σ̂αk = (ĉ
†
+,k ĉ†

−,k)σ
α(ĉ+,k ĉ−,k)T with σα being the Pauli matri-

ces (α = 0,1, 2,3). Now in order to obtain a quadratic Hamiltonian, we expand the Peierls
phase up to second order in δâ/

p
L obtaining up to constants:

Ĥ ≃ωcδâ†δâ+
∑

k,α

σ̂αk hαk +
g
p

L
(δâ+δâ†)
∑

k,α

σ̂αk dαp,k −
g

2L
(δâ+δâ†)2
∑

k,α

σ̂αk dαd,k , (23)

where

hk = −(2t0 cos(k) cos(φ/2), t1, 0, 2t0 sin(k) sin(φ/2)) ,

dp,k = −(−2t0 cos(k) sin(φ/2), 0, 0, 2t0 sin(k) cos(φ/2)) ,

dd,k = −(2t0 cos(k) cos(φ/2), 0, 0, 2t0 sin(k) sin(φ/2)) . (24)

Since the light-matter coupling remains diagonal in the momentum space, the occupation will
be conserved at each momentum, and it will be Nk = 〈σ̂0

k〉 = 0,1, 2 depending on the mean-
field solution encoded in φ. The only non-trivial momentum sectors are those singly occupied
where a direct particle-hole excitation is allowed, for the others 〈σ̂1,2,3

k 〉 = 0. For every mo-
mentum sector with occupation Nk = 1, we can rotate the pseudospin degree of freedom to
a new basis ˆ̃σk, so that every term in the Hamiltonian, except for the ones containing cavity
fluctuations δâ, becomes diagonal. Then we use a Holstein-Primakoff transformation of the
particle-hole pseudospin for which ˆ̃σ3

k = −(1−2b̂†
k b̂k) and ˆ̃σ1

k = (b̂k+ b̂†
k) which is exact if one

consider b̂k as hard core bosons. Since the occupation of a single particle-hole is not expected
to be more than O(1/L) we lift the hard core boson constraint. As a last step, we discard
non-quadratic terms to obtain a quadratic Hamiltonian:

Ĥ(2) =ωcδâ†δâ+
∑

k

ωk b̂†
k b̂k − D

g2

2

�

δâ+δâ†
�2
+ g
�

δâ+δâ†
�

∑

k

Pk

�

b̂k + b̂†
k

�

, (25)

with

ωk = 2

√

√

√

√

3
∑

α=1

(hαk )
2 , Pk = δNk ,1

2
p

L

d3
p,kd1

α,k

ωk
,

D =
1
L

∑

k

Nkd0
d,k −

2
L

∑

k

δNk ,1

d3
d,kd3

d,k

ωk
. (26)
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The quadratic Hamiltonian in Eq. (25) can be diagonalized with a Hopfield-Bogoliubov
transformation [78] obtaining:

Ĥ(2) = E0 +
M+1
∑

µ=1

εµd̂†
µd̂µ , (27)

where d̂µ is the polariton annihilation operator and

M =
∑

k

δNk ,1 (28)

is the number of available particle-hole transition which depends on the mean-field phase. The
latter is M = L/3 in the normal phase and M = L in photon condensed phase. The vacuum
of polaritons, defined by d̂µ

�

�0pol

�

= 0 for all µ, corresponds to a multi-mode Gaussian state of
cavity photon and particle-hole excitations, and is different from the mean-field ground state
�

�ΨPM F
�

̸=
�

�0pol

�

. In the limit of small g, the ground state wavefunction
�

�0pol

�

coincides with
the first-order perturbative result of Eq. (21), and then corrects it with O(g2) terms that give
rise to the squeezing of the cavity mode. In order to check the validity of this treatment, we can
directly compare the photon observables in the thermodynamic limit (Fig. 6). Note that finite
system comparisons should be done carefully as finite size corrections arise both from different
boundary conditions and from higher order terms discarded in Eq. (25). Minor discrepancies
appear to emerge in the thermodynamic limit, but these are likely due to insufficiently large
sizes in our numerical results. Since the system is non-additive due to the cavity’s presence,
we cannot rule out non-trivial corrections that may not be captured by straightforward 1/L ex-
trapolations, particularly for non-linear observables such as entanglement entropy. However,
this does not contradict the result presented in Fig. 5, as it is, in general, unable to spoil the
Gaussianity of the cavity density matrix. Nonetheless, up to this minimal errors, the treatment
of Gaussian fluctuations is able to faithfully capture the nature of the light-matter correlated
ground state (see the comparisons in Fig. 6).

Now given the quadratic Hamiltonian in Eq. (27) we can also get information on the excited
states of the light-matter system. In particular, we show, in Fig. 7, the zero temperature spectral
function of the photon, calculated in the Lehmann representation as:

A(ω) =
M+1
∑

µ=0

�

�〈µ| â†
�

�0pol

��

�

2
δ(ω− εµ)−
�

�〈µ| â
�

�0pol

��

�

2
δ(ω+ εµ) , (29)

where |µ〉 = d̂†
µ

�

�0pol

�

for µ > 0 and µ = 0 corresponds to the vacuum
�

�0pol

�

. In the nor-
mal phase g < gc we clearly see two polariton lines. The lower polariton starts at the cavity
frequency ωc = 1 and the upper polariton at the energy ω = ωk = 2 that corresponds to
the excitation energy of all direct particle-hole excitations, as clear from the band structure
of Fig. 4(b). The hybridized degree of freedom is then a superposition of all M available
particle-hole excitations leaving M − 1 dark polariton dark states, akin to what happens for
intersubband exciton-polaritons [79] where intersubband particle-hole excitations provide a
macroscopic electric dipole moment. In the photon condensed phase g > gc instead one po-
lariton mode brings almost all the photon spectral weight and crosses the rest of the polariton
modes made up by the particle-hole continuum. Indeed, whether or not a clear polariton
doublet can form depend on the band structure presented in figure 4(b,c). The energy of the
brightest polariton in the photon condesed phase is increasing with g as the cavity fluctuations
are more and more squeezed due to the term proportional to D in Eq. (27). Consistently with
the first order nature of the transition the polariton gap does not close.
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Figure 6: (a-b) The photon entropy Sph and the variance of the quadrature X for
the three different methods: DMRG (red), mean-field (blue), and mean-field plus
Gaussian fluctuations (green). Sph is zero by definition for the PMF, and hence is not
shown. Note that while the system-size is fixed at L = 76 for all three methods, the
boundary condition for the treatment with Gaussian fluctuations have been set to pe-
riodic instead of open. (c-f) The scaling analysis at two representative points inside
each phase: g = 1 (c,e) and g = 1.6 (d,f). Dashed lines are linear fits to a function
f (1/L) = a+ b/L, and have been extrapolated to L→∞. For g = 1, the extrapola-
tion of 〈X̂ 2〉−〈X̂ 〉2 for the PMF is not plotted and its extrapolated value is a = 0.279.
The difference with the bare mean-field is most evident in the normal phase, where
the photon entanglement is higher. Discrepancies between MF+gaussian fluctuations
are on the order of 10−3, hence we cannot exclude some non-trivial corrections be-
yond 1/L in particular for non-linear observables as Sph.

4 Triangular ladder

We now discuss the similar case of a triangular ladder geometry with t0 = t1 = t2 = ωc = 1.
We do not present explicitly all the calculations for the PMF and for the Gaussian fluctuations,
as these can be done in close analogy with the square ladder case. We only mention here that
the inclusion of the t2 hopping changes hk, and the parameters ωk, D, and Pk appearing in
Eq. (25). As shown in Fig. 8, we find again a first order transition to a photon condensed
state with 〈Φ̂〉 ≠ 0. The main qualitative difference is in the state of the matter which now
goes from a metallic state with 4 Fermi points to a metallic state with 2 Fermi points as evident
from the band structure in Fig. 8. Again the normal phase has more photon entanglement
with respect to the photon condensed phase, and indeed the PMF does not correctly capture
the fluctuations of the cavity quadrature X̂ below the transition but Gaussian fluctuations are
in good agreement. We remind the reader here that the treatment with Gaussian fluctuations
is done with periodic boundary conditions while PMF and DMRG are with open boundary
conditions. However, in the thermodynamic limit (not shown) results are compatible with the
interpretation given for the square ladder case.

Now by looking at the photon spectral function it is now clear that high photon entan-
glement in the normal phase is not directly linked to a strong coupling to a single collective
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Figure 7: The photon spectral function A(ω) obtained from the treatment with Gaus-
sian fluctuations, for the square lattice case. Each polariton energy is smeared with
a Lorentzian of width η= 10−2. In the normal phase, there are two bright polariton
modes starting at frequencies ωc = 1 and ω = ωk = 2, and M − 1 dark modes at
ω = ωk = 2 signaled by a white dashed line (see Eq. (28) for the definition of M).
In the photon condensed phase only the one polariton mode is clearly visible while
the the other one is shared between all the particle-hole excitations that now have
a non-uniform energy structure. The polariton gap does not close at the first-order
transition. System size here is L = 400.

excitation. While for the square only one collective excitation was mixing with the cavity, here
it is evident that the whole continuum of particle-hole excitations is contributing as there is
no polariton doublet in the spectrum at g < gc . In the photon condesed phase, the ground
state of the cavity is strongly squeezed and hence its excitation energy is pushed to higher
frequencies as we increase g.

5 Conclusion

In this work, we have proposed a class of minimal toy models for charged fermions coupled
through a Peierls phase to a non-uniform cavity mode. The cavity hosts a fluctuating magnetic
flux which above a critical light-matter coupling develops a non-zero expectation value, lead-
ing to a first-order transition. The crucial element to overcome no-go theorems, as also noted
in [34–36], is the presence of a magnetic coupling. To the best of our knowledge, this is the
first example of an equilibrium first-order photon condensation for an electronic system. Al-
ternative examples of first-order photon condensation have been proposed [80,81]. However,
these examples do not involve itinerant electronic systems and, more importantly, have been
demonstrated to be artifacts resulting from Hilbert space truncation of the model. [28]. We
have shown how the key element for such transition is a strong non-linear magnetic response
of the ladder band structure, coming with a sudden change of the number of Fermi points as
a function of the photonic order parameter, 4 to 0 (2) for the square (triangular) ladder case.
Thanks to the quasi-1D nature of the ladder geometry, we have been able to study the ground
state via DMRG, hence fully taking into account light-matter entanglement and all kinds of
quantum fluctuations. Our numerical results confirms that quantum fluctuations of a single
cavity mode alone in the so-called collective strong coupling regime (g = const for L →∞)
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Figure 8: Results for the triangular ladder geometry. (a) The photonic order param-
eter showing the first-order photon condensation at g = 1.26 for both DMRG and
PMF. (b) Variance of the cavity quadrature X̂ with the three different methods. We
show only one system size and the PMF+fluctuations is done with periodic bound-
ary conditions while DMRG and PMF are in open boundary conditions. (c-d) Band
structures of the PMF problem for fixed R = 1 and two values of φ corresponding
to the two minima at the transition. Horizontal lines mark the chemical potential.
(e) Photon spectral function obtained via the Gaussian fluctuations. Again the gap
does not close at the transition due to its first order nature. Each polariton energy
has been smeared with a Lorentzian of width η= 10−2

do not alter the phase diagram of a thermodynamically large system [59, 72] and mean-field
solutions are accurate up to finite size corrections [73].

Indeed the transition we discussed is agnostic to the PMF decoupling. Still, we find that
light-matter entanglement is essential to properly describe the quantum state of a strongly
coupled cavity mode as discussed in Fig. 6. As already found in other systems with linear
dipole-like light-matter couplings [56] the cavity state is Gaussian. Here we have shown how
the non-linear nature of the Peierls phase gives a small non-Gaussian correction at finite sizes
without any qualitative changes in the Wigner function that remains positive in all the explored
phases.

Supported by the Gaussian nature of the cavity ground state in the thermodynamic limit,
we analytically derived the quadratic fluctuations on top of the mean-field solution. This
highlights the role of polariton states whose ground state gives a qualitatively correct result
for the photon entropy and gives access to the cavity spectral function. The latter reflects the
first-order nature of the transition.

The presented model is a valid starting point to study photon condensations for large
enough system sizes in a numerically exact way. Although not shown in the main text the
magnetic instability of the ladder geometry exists for a wide range of geometries and Hamil-
tonian parameters, including both metal-metal and insulator-insulator first and second order
transitions. Interacting electrons coupled to static magnetic fields have also been investigated
in higher-dimensional systems [82], showing similar first-order behaviour. This finding sup-
ports the notion that first-order photon condensation could be prevalent in various settings,
and solely examining instabilities of the normal phase might be restrictive. Moreover, local
fermion-fermion interactions can be included without any added cost to the DMRG simula-
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tions, as recently done in [83] for a single XXZ chain. Another element that would be interest-
ing to add to the model is the electronic spin which should favor the paramagnetic response
of the system and could have a non-trivial interplay with the orbital magnetism subject of this
work.

Finally, we note that a recent study [84], that appeared on the same day on arXiv, have
obtained similar results in a system of Van Vleck paramagnetic molecules, showing the impor-
tance of cavities with a significant magnetic component.
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A Gaussian states and Wigner function

Given a bosonic degree of freedom â, a Gaussian state can be identified by two complex pa-
rameters α, ξ, and one real positive parameter Nth. For a single mode, the density matrix of a
generic Gaussian state can be written as a displaced and squeezed thermal state:

ρG = D̂(α)Ŝ(ξ)
N â† â

th

(1+ Nth)â
†a

Ŝ†(ξ)D̂†(α) , (A.1)

where D̂(α) and Ŝ(ξ) are respectively the displacement and the squeezing operators:

D̂(α)≡ exp
�

αâ† −α∗â
�

,

Ŝ(ξ)≡ exp
�

(ξ∗ââ− ξâ†â†)/2
�

. (A.2)

The covariance matrix of the quadratures X̂ and P̂ for a generic state is defined as:

σ ≡
�

〈X̂ 2〉 − 〈X̂ 〉2 〈X̂ P̂ + P̂ X̂ 〉 − 〈X̂ 〉〈P̂〉
〈X̂ P̂ + P̂ X̂ 〉 − 〈X̂ 〉〈P̂〉 〈P̂2〉 − 〈P̂〉2

�

. (A.3)

For Gaussian states, every property can be expressed in terms of expectation values of the
quadratures and their covariance matrix. In terms of the parameters α, ξ = reiθ and Nth, we
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have:

〈X̂ 〉=
p

2Re[α] , 〈P̂〉=
p

2 Im[α] , (A.4)

σ11 =
�

1
2
+ Nth

�

�

cosh(2r) + sinh(2r) cos(θ )
�

, (A.5)

σ22 =
�

1
2
+ Nth

�

�

cosh(2r)− sinh(2r) cos(θ )
�

, (A.6)

σ12 = σ21 =
�

1
2
+ Nth

�

sinh(2r) sin(θ ) . (A.7)

The von Neumann entropy of the photon in a Gaussian state reads:

S
�

ρG
�

= (Nth + 1) ln(Nth + 1)− Nth ln Nth . (A.8)

We remark here that the origin of a finite entropy, i.e., Nth > 0, is not generically guaran-
teed to be the entanglement with some other quantum system, unlike the closed cavity sys-
tem in the main text, since it can also have a classical contribution. For example, a har-
monic oscillator with frequency ωc and at inverse temperature β is in a Gaussian state with
(α,ξ, Nth) = (0, 0, e−βωc).

Another definition for the Gaussian states is that their Wigner function:

W (x , p) =
1
π

∫

d ye2ip y 〈x + y| ρ̂ |x − y〉 (A.9)

is a Gaussian:

W (x , p) =
1
π

exp
�

−
1
2
(x − x0, p− p0)σ

−1(x − x0, p− p0)
T
�

, (A.10)

where σ it the covariance matrix, x0 = 〈X̂ 〉 and p0 = 〈P̂〉. We also recall that for a symmetri-
cally ordered operator Ô(â, â†) such as the Peierls phase the Wigner function can be used to
compute expectation values as averages over the phase space:

〈Ô(â, â†)〉=
∫

d xdpW (x , p)O
�

x + ip
p

2
,

x − ip
p

2

�

. (A.11)

In the main text, therefore, we need to perform just Gaussian integrals to arrive at Eq. (16).

B Photon mean-field in periodic boundary conditions

In this appendix, we expand on the case of periodic boundary condition without specifying the
geometry. Using the same pseudo-spin representation defined in the text in momentum space
we have that the light-matter Hamiltonian reads:

Ĥ = Ĥc +
∑

k,α

Hαk (â, â†)σ̂αk , (B.1)

where at each momentum sector k we have:

Hk(â, â†) = −
�

2t0 cos(k) cos
�

Φ̂/2
�

, t1 + t2 cos(k), t2 sin(k), 2t0 sin(k) sin
�

Φ̂/2
�

�

. (B.2)

Note that this representation is possible because the cavity mode has zero momentum in the
direction of the ladder. Focusing on the thermodynamic limit and the matter state, we can work
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in the PMF approximation and restrict ourselves to coherent states for the cavity |α0〉 with the
identification of the mean-field parameter defined in the main text: φ = 4gα0/

p
N and R= 1.

In this way the mean-field electronic Hamiltonian with periodic boundary conditions is

ĤPMF
m =
∑

k,α

hαk σ̂
α
k . (B.3)

The two bands are:

εk,a = 2t0 cos(k) cos(φ) + (−1)a
q

t2
1 + t2

2 + 2t1 t2 cos(k) + 4t2
0 sin2(k) sin2(φ) , (B.4)

with a = 1,2. For the square ladder case discussed extensively in the main text with t1 = t0 = 1,
the chemical potential is µ = 0 at every φ, and an indirect gap in the dispersion opens at
φ = 2

3π. The minimization of the total energy as a function of φ then gives the PMF ground
state.

C Perturbation theory

The Hamiltonian at g = 0 has a factorized ground state that reads:

|Ψ0〉=
∏

π
3<|k|<

2π
3

ˆ̃c†
1,k

∏

|k|<π3

ˆ̃c†
1,k

ˆ̃c†
2,k |0m, 0c〉 , (C.1)

where |0m, 0c〉 is the state with zero electrons and photons, and ˆ̃c†
a,k is the creation operator

that diagonalize the bare electronic Hamiltonian and a = 1,2 the band index. Different points
in momentum space can have Nk = 0,1, 2 number of electrons and this is a conserved quan-
tity. Starting from |Ψ0〉 and the expansion of the light-matter interaction in Eq. (23) we can
compute perturbative corrections at small g. In particular we have H ≃ H0 + Vg with:

V̂g =
g
p

L

∑

k,α

σ̂αk dαp,k(φ = 0) . (C.2)

The only non-zero matrix matrix element at first order are those with a single direct particle-
hole excitation for the matter and one photon in the cavity:

fk = 〈PHk, 1c| (δâ+δâ†)
∑

α

σ̂αk dαp,k(φ = 0) |Ψ0〉= 2sin(k)θ
�

|k| −
π

3

�

θ

�

2π
3
− |k|
�

, (C.3)

with θ (x) the Heaviside function. Summing over all momenta we arrive to the expression in
the text for the ground state corrections:

�

�Ψ(1)
�

= |Ψ0〉 −
g
p

L

∑

k

2 fk

ωk +ωc
|PHk, 1c〉 . (C.4)

The second-order expansion involves also the g2 contribution and populate also the two-
photon sector of the cavity, needed for the squeezing of the mode.

D Details about DMRG simulations

For all the DMRG simulations performed here, the energy density difference between the final
two DMRG sweeps has been kept below 10−8 to ensure convergence. In order to maintain
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Figure 9: Absolute value of the difference |Dnm − Dexp
nm | for three values of g/

p
L

where Dnm = 〈n| D̂(i g/
p

L) |m〉 and Dexp
nm is obtained by exponentiating the finite

matrix Xnm = 〈n| X̂ |m〉 in a truncated photon Hilbert space with Nph
max = 9.

computational feasibility, the dimension of the photon Hilbert space has been truncated to a
maximum photon number of Nph

max = 63. The photon Hilbert space must be large enough to
describe coherent states found in the photon condesed regime but also the strong squeezing.
We have verified that this truncation level is sufficient to obtain converged results for all values
of g and system sizes up to L = 76.

In most of the presented figures, the bond dimension used for the MPS ansatz is χ = 600,
sufficient to achieve converged results for system sizes up to L = 76 with a tolerance of 10−8

on the energy density and a maximum truncation error of 10−6. These are worse case values
which are found in the normal phase where the fermions are gapless and entangled with the
cavity. However, to better capture the thermodynamic limit, we have also analyzed larger
system sizes up to L = 136. For these system sizes, we increased the bond dimension to
χ = 1000 to converge most observables, except for the non-Gaussianity of the photon state.
This observable has been found to be particularly sensitive to a combination of numerical
parameters including the number of DMRG sweeps and the bond dimension. This problem
of convergence is particularly pronounced for values of g in the normal phase, where the
entanglement in the system is higher. To account for this difficulty in the analysis, we have
considered an empirical error of 10−5 in the data for Fig. 5.

We then also comment on the non-linear nature of the Peierls phase. This is represented
in our code by using the exact matrix elements in the photon number basis {|n〉} of the dis-
placement operators D̂(i g/

p
L) which reads [85]:

〈n| D̂(α) |m〉=

√

√ n!
m!
αm−n exp

�

−
|α|2

2

�

L(m−n)
n

�

|α|2
�

, for m≥ n , (D.1)

with L(m−n)
n (x) a generalized Laguerre polynomial and for m < n one can just take the com-

plex conjugate since D̂ is unitary. When one works at finite size or considers g/
p

L fixed
(“single-particle" strong coupling) the matrix elements of the displacement operator should be
evaluated carefully in a truncated Hilbert space. For example the exponentiation of the matrix
i gX̂/
p

L as 〈n|exp
�

i gX̂/
p

L
�

|m〉 in a truncated Hilbert space does not exactly corresponds to
〈n| D̂(i g/

p
L) |m〉. To be more quantitative in Fig. 9 we plot the difference between the matrix

elements obtained by exponentiating i gX̂/
p

L and the exact ones from Eq. (D.1) at a small
photon Hilbert space cutoff Nph

max = 9. This illustrates the necessity for a large photonic cut-off
in the numerical simulations.
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