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Pfaffian invariant identifies magnetic obstructed atomic insulators
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Abstract

We derive a Z4 topological invariant that extends beyond symmetry eigenvalues and Wil-
son loops and classifies two-dimensional insulators with a C4T symmetry. To formulate
this invariant, we consider an irreducible Brillouin zone and constrain the spectrum of
the open Wilson lines that compose its boundary. We fix the gauge ambiguity of the Wil-
son lines by using the Pfaffian at high symmetry momenta. As a result, we distinguish
the four C4T -protected atomic insulators, each of which is adiabatically connected to
a different atomic limit. We establish the correspondence between the invariant and
the obstructed phases by constructing both the atomic limit Hamiltonians and a C4T -
symmetric model that interpolates between them. The phase diagram shows that C4T
insulators allow ±1 and 2 changes of the invariant, where the latter is overlooked by
symmetry indicators.
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Topological crystalline insulators are phases of matter where it is impossible to define expo-
nentially localized Wannier functions that respect the crystalline symmetries [1,2]. Obstructed
atomic insulators, on the contrary, allow symmetric and exponentially localized Wannier func-
tions whose centers occupy maximal Wyckoff positions, such that a continuous and symmetric
deformation cannot move them [3–5]. The symmetry representations of the occupied orbitals
at high symmetry momenta—symmetry indicators [6–8]—distinguish part of the obstructed
atomic insulators, but not all [9]. Reference [9] constructed Berry phase-based topological
invariants that distinguish these phases in specific examples and put forward the conjecture
of the universality of this approach.

Two-dimensional magnetic insulators belonging to the magnetic plane group p4′ that are
symmetric under the product of four-fold rotation (C4) and spinful time-reversal symmetry (T )
support distinct obstructed atomic insulating phases. A general Wyckoff position has an orbit
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Figure 1: Different atomic limits of the C4T -symmetric insulator. The system is
made out of atoms (empty circles) placed in the center of the Wigner-Seitz unit cell
(square). The C4T symmetry (grey dashed arrow) rotates the system by 90◦ around
the atom and flips the spins. The four distinct atomic insulators are: (a) spin singlet
located on the atom, (b) spin singlet at the corner of the unit cell, and (c-d) spins
pointing in ±z-direction. The two spins (red/blue) in a unit cell are of different or-
bital characters in all panels. The phases shown in panels (b) and (d) are related to
the ones in panels (a) and (c) by a fractional lattice translation (grey solid arrows).

of size four, hence a crystal with two occupied orbitals must have the Wannier centers located
at maximal Wyckoff positions. This restriction allows the four distinct phases labeled by ν
shown in Fig. 1: a spin singlet in the center or the corner of the Wigner-Seitz unit cell, and two
phases with z-oriented spins located at the middle of the unit cell edge. The product δ of the
eigenvalues of C2 = (C4T )2 at the C2-invariant momenta X = (π, 0) or Y = (0,π) differentiate
the singlet phases from the spin-polarized ones [10]. However, even the full set of symmetry
indicators only provides an incomplete topological classification: phases ν = 0 and ν = 2
have identical representation content at every high-symmetry momentum. The crystalline
symmetry guarantees that all the Wilson loops along reciprocal lattice vectors provide the
same information as the symmetry indicators, and therefore distinguishing all four phases
requires extending the approach of Ref. [9] to construct the topological invariant.

Our main result is a topological invariant ν that captures all the obstructed phases in a
C4T -symmetric two-dimensional magnetic insulator. We identify the invariant by constructing
a discrete quantity that utilizes the symmetry constraints on the wave functions, following a
reasoning similar to the Z2 invariant in topological insulators [6,11,12]. Instead of the time-
reversal symmetry operator T , we use the operator

Θ =
C4T − (C4T )−1

p
2

, (1)

that protects the Kramers-like pairs at the high symmetry momenta Γ = (0, 0) and
M = (π,π) [13, 14]. This definition of Θ is different from Θ = (C4T + C−1

4 T )/
p

2 used
in Refs. [13, 14], which relies on using the operators C4 and T absent within the symmetry
group, but it is equivalent otherwise.

To exploit the symmetry, we formulate the invariant by using the occupied states only in the
irreducible Brillouin zone (IBZ). Without loss of generality, we choose the irreducible Brillouin
zone shown in Fig. 2, with the boundary path Γ → M → X → M → Γ . Stokes’ theorem applied
to the IBZ equates the Berry flux to the boundary Berry phase:

∫

IBZ

trF dk2 −
∮

∂ IBZ

trA dk= 0 mod 2π , (2)

where Amn(k) = i 〈mk|∂k |nk〉 is the non-Abelian Berry connection, Fmn(k) =∇×Amn(k) is
the non-Abelian Berry curvature, and |nk〉 is an orthonormal basis of the occupied eigenstates
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Figure 2: The irreducible Brillouin zone (yellow) spans the Brillouin zone together
with its C4T -images. Its boundary is constrained by C4T -symmetry (grey dashed
arrow), so we split the Wilson loop W∂ IBZ (black arrows) at the high symmetry mo-
menta Γ and M . Two C4T -equivalent Wilson lines, WΓ→M and WM→Γ , (brown ar-
rows), and a Wilson loop, WM→X→M , (purple arrow), compose the resulting path.

of the Bloch Hamiltonian. Since the Berry connection integral may change by multiples of 2π
upon singular gauge transformations, while the Berry flux is fully gauge-invariant, Eq. (2) only
holds modulo 2π. We rewrite the Stokes’ theorem in terms of the Wilson line

WC = exp

�

i

∫

C
A dk

�

, (3)

where the exponent is path-ordered along C. Under a gauge transformation of the oc-
cupied wavefunctions |nk〉 →

∑

m |mk〉Umn(k), the Wilson line transforms according to
WC → U†(k f )WCU(ki), where ki and k f are the initial and final points of C. If the path
C is closed, Eq. (3) defines a Wilson loop, whose eigenvalues are gauge invariant, while the
Wilson line spectrum is gauge dependent [15]. Substituting Eq. (3) into Eq. (2) yields

∫

IBZ

trF dk2 + i log detW∂ IBZ = 0 mod 2π . (4)

This identity defines the discrete quantity that we use for the topological invariant. How-
ever, without applying symmetry constraints, Eq. (4) carries no information due to the gauge
ambiguity of 2π.

To resolve the gauge ambiguity, we split the Wilson loop W∂ IBZ into symmetry-constrained
parts. Specifically, we consider the Wilson lines from Γ → M , M → X → M , and M → Γ .
Because all of these Wilson lines start and end at C4T -invariant momenta, we constrain their
spectrum using the Θ operator. We define the dressed Wilson line determinant as

ÝdetWC = pf−1 w(k f )detWC pf w(ki) . (5)

Here ki and k f must be either Γ or M , the start and end points of the path C, respec-
tively. The antisymmetric overlap matrix w(k) is the projection of the Θ operator on the
occupied states wmn(k) = 〈nk|Θ|mk〉, and pf is the Pfaffian. An alternative approach to
define the dressed Wilson line is to use the generalized Pfaffian [16] of the C4T overlap
matrix w′mn(k) = 〈nk|C4T |mk〉, or the Pfaffian of the antisymmetrized overlap matrix [17],
(w′ − w′T )/2. Due to the gauge transformation property w(k) → U†(k)w(k)U∗(k), and the
identity pf(CAC T ) = det(C)pf(A), the dressed Wilson line determinant is gauge invariant.
Furthermore, because the three paths combine into the contour of the IBZ,

detW∂ IBZ =ÝdetWΓ→M
ÝdetWM→X→M
ÝdetWM→Γ =Ýdet

2
WΓ→M
ÝdetWM→X→M . (6)
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Here we used that M → Γ is the C4T -image of Γ → M , and thereforeÝdetWΓ→M =ÝdetWM→Γ .
Finally, we recognize that the initial and final momenta of M → X → M are the same, so that
ÝdetWM→X→M = detWM→X→M is the Wilson loop determinant. The C2-invariance of this path
further constrains the Wilson loop determinant

detWM→X→M =
∏

n∈occ

ζn(X )
ζn(M)

=
∏

n∈occ

ζn(X )≡ δ , (7)

where ζn(k) = ±i is the eigenvalue of the operator C2 of the nth occupied band at C2-invariant
momenta [18]. For the second equality, we observe that the product of C2 eigenvalues at the
M point is always trivial due to the Kramers-like degeneracy. As a consequence, the Wilson
loop determinant is equal to the C2 symmetry indicator δ = ±1.

To construct the invariant we substitute Eq. (6) into Eq. (4), subtract the logarithm of
Eq.(7), and obtain

ν=
1
π

�∫

IBZ

trF dk2 + 2i logÝdetWΓ→M

�

mod 4 . (8)

This is our main result. The invariant is defined modulo 4 because each dressed Wilson line
determinant is well-defined modulo 2π. The invariant is also quantized to integer values and it
stays constant as long as the spectrum is gapped. However, at this point, the relation between
the invariant and the different phases is not yet established.

To show that ν distinguishes the four atomic insulators shown in Fig. 1, we test it by
applying it to the corresponding phases. We construct the Hamiltonians of each atomic limit
from coupled spinful p-type orbitals. The orbitals are located at the center of the unit cell and
transform into each other under C4 rotations. Using the standard representation of spin 1/2,
yields

C4T = τy e−iσzπ/4σyK , (9)

where τi are the Pauli matrices in orbital space in the basis px , py , σi are the Pauli matrices in
spin space, and K is complex conjugation. In the trivial limit, we couple opposite spins within
each orbital in the unit cell to obtain a spin singlet located on each atom, as shown in Fig. 3(a).
In the obstructed atomic limits the spins are localized in between unit cells, hence we couple
opposite spins from the same orbital type that belong to neighboring unit cells, as shown in
Fig. 3(b-d). Specifically, to couple opposite spin-polarized states in all the atomic limits, we
use the operator

S(r ,δr ,Ω) = |r +δr ,Ω〉 〈r ,−Ω|+ |r ,−Ω〉 〈r +δr ,Ω| , (10)

where |r 〉 is the state localized at a unit cell with coordinates r , δr is the displacement between
the coupled unit cells, and |Ω〉 is a spin oriented in the x y-plane along the direction Ω. We
require |Ω〉 = −iC2 |−Ω〉. This guarantees that the occupied eigenstate of S is a +i eigenstate
of a C2 rotation around r + δr/2 or, in other words, it is a +z-spin located at r + δr/2.
Without loss of generality, we choose Ω= ŷ . Since the occupied states in the atomic limits are
z-aligned spins of different orbital characters, as shown in Fig. 3, we use the projector on the
two orthogonal p-orbitals

T± =
1
2

�

1± (τz cosφ +τx sinφ)
�

, (11)

to couple spins within orthogonal orbitals. Here φ is an arbitrary orbital polarization in x y-
plane that we choose as φ = 0. The atomic limits shown in Fig. 3 are then given by the
Hamiltonians

H(ν) =
∑

r

�

T+S(r ,δrν,Ω)− T−S(r , ẑ ×δrν, ẑ ×Ω)
�

, (12)
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Figure 3: Construction of the atomic limits from coupling opposite spins within px
and py orbitals (orthogonal pairs of arrows) located at the center of the unit cell
(square). Positive couplings (red ellipses) result in +z-oriented spins, while negative
ones (blue ellipses) result in −z-oriented spins.

for ν = 0, 1,2,3, where δr0 = 0, δr1 = x̂ , δr2 = x̂ + ŷ , and δr3 = ŷ . We recognize that
H(3) = −H(1), in agreement with the atomic limits in Fig. 1(c-d) being the time-reversed images
of each other.

To confirm that the invariant is quantized and that it only changes under gap closing tran-
sitions, we construct a model of a C4T -invariant planar magnetic insulator with no other sym-
metries. Its Hamiltonian interpolates between the four atomic limits and contains additional
onsite terms breaking extra symmetries

H = αH(0) + βH(1) + γH(2) +
N=23
∑

i=4

λiH
(i) . (13)

Here α, β , and γ are the weights of the atomic limit Hamiltonians, and λi are the amplitudes
of the 19 other C4T -invariant onsite terms H(i), which we generate using Qsymm [19]. We
choose α ∈ [0,1], β ∈ [−1,1], and γ = 1 − α − |β | ∈ [0,1], such that the ν = 3 atomic
limit is included in the negative range of β . We use Adaptive [20] to sample Hamiltonians
whose energy gaps we find via numerical minimization. We numerically compute the invariant
using occupied band projectors to discretize the Wilson lines [15] over a Brillouin zone grid
of 20× 20 momenta, where we choose the upper right quadrant of the Brillouin zone as the
IBZ for simplicity. Choosing a different IBZ does not change the invariant because all the
possible IBZ are smoothly connected to one another, but Eq. (8) only takes integer values.
The phase diagram in Fig. 4(a) shows the interpolation between the atomic limits without
additional C4T -invariant terms (λi = 0), where the conservation of the orbital polarization
protects the gapless region. To break additional symmetries we set λi = 0.08 and obtain the
phase diagram in Fig. 4(b). Our results confirm that ν is quantized and it labels the four
phases, each adiabatically connected to an atomic limit. The phase diagrams show transitions
with ν changing by ±1 or by 2, where the former are accompanied by a gap closing at the X
point that changes the C2 indicator of Eq. (7). If the gap closes at a different momentum, the
transition is overlooked by the C2 indicator, but not by the invariant ν, which changes by 2.

The construction of the atomic limits shown in Fig. 3, suggests that the boundary charge
of each phase depends on the lattice termination. To determine the bulk-boundary correspon-
dence of the phases, we compute the charge density in square and rhombus-shaped lattices,
such that the termination cuts a different number of bonds along the boundary. We place the
Fermi level inside the gap, EF = 0.15, and compute the deviation of charge per unit cell from
2e—the charge density at half-filling. We use Kwant [21] to construct square and rhombus
geometries of L2 = 7×7 and L2 = 9×9 unit cells, respectively, for each phase. We choose the
amplitudes α, β , and γ as 0.6, 0.2, 0.2, where the biggest amplitude determines the phase, and
set the symmetry breaking terms λi = 0.01. While the trivial phase lacks boundary modes in
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Figure 4: Phase diagram of the C4T model without (a) and with (b) additional sym-
metry breaking terms. The invariant is quantized and it distinguishes the four atomic
limits at the corners of panel (a). Away from the atomic limits, the invariant stays
quantized and the energy gap becomes smaller (increasing transparency). Across
phase transitions the invariant changes by ±1 and 2 via energy gap closings (white)
at X or a different momentum, respectively.

either geometry, the obstructed phases localize 1/2e per bond cut by the boundary, as shown
in Fig. 5.

In summary, we derived an invariant that distinguishes the inequivalent atomic insulating
phases of the p4′ planar magnetic group. We applied Stokes’ theorem to the Berry connection
over the irreducible Brillouin zone and exploited the C4T symmetry to constrain the phase
contributed by the open Wilson lines and a Wilson loop. While the Wilson loop contribution is
equal to that of the eigenvalues of C2 at the X point, and is therefore insufficient to distinguish
all phases, the Berry flux and the Wilson lines complete the Z4 invariant. Alternatively, our in-
variant is equivalent to the vorticity of the Pfaffian of the overlap matrix w over half a Brillouin
zone modulo 4, similar to the Z2 invariant Refs. [6,11–14], although this formulation has the
disadvantage of requiring a smooth gauge. We constructed models away from the atomic lim-
its and found that the obstructed phases may undergo both transitions changing the invariant
by ±1 or 2, depending on whether the energy gap closes at X or a different momentum.

Our work confirms that the Berry phase alone is insufficient to classify obstructed atomic
insulators protected by magnetic space groups. Applying the approach presented here to other
magnetic groups will allow to complete the construction of topological invariants that distin-
guish all obstructed atomic insulating phases. Different values of the topological invariant may
exist in neighboring domains of altermagnets [22], where the T symmetry is spontaneously
broken. The bulk-boundary correspondence will then govern the spin and charge properties
of the domain walls, and therefore influence their energetic stability.
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Figure 5: The local charge density of the four phases depends on the termination of
the lattice, in agreement with the construction procedure. In the obstructed phase
ν= 2, 1e per unit cell localizes at the edge, and 1/2e at the corner in a square lattice
(a), and vice versa in a rhombus geometry (b). In the obstructed phases ν = 1 and
ν= 3, 1/2e per unit cell localizes at the edge, and 1e at the corner in a square lattice
(c), and vice versa in a rhombus geometry (d).
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