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Abstract

It has been shown in [1] that shallow water in the Euler description admits a dual gauge
theory formulation. We show in the Lagrange description this gauge symmetry is a mani-
festation of the 2 dimensional area-preserving diffeomorphisms. We find surface charges
associated with the gauge symmetry and their algebra, and study their physics in the
shallow water system. In particular, we provide a reinterpretation of the Kelvin circula-
tion theorem in terms of conserved charges. In the linear shallow water case, the charges
form a u(1) current algebra with level proportional to the Coriolis parameter over the
height of the fluid. We also study memory effect for the gauge theory description of the
linearized shallow water and show Euler, Stokes and Darwin drifts can be understood as
a memory effect and/or change of the surface charges in the gauge theory description.
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1 Introduction

Shallow water systems are fluid systems with a much larger extent in two dimensions than
the third. The atmosphere and oceans are typical examples of shallow fluid systems [2, 3].
See [4] for a recent and nice set of lecture notes on fluid mechanics. In a shallow water
system, the dynamics takes place in the surface of the fluid, surface waves, and we are hence
dealing with an effective 2+1 dimensional system. We usually take the 3 dimensional fluid
to be incompressible. This provides a continuity/conservation equation. There is also Kelvin
circulation theorem [2, 3], stating that an irrotational fluid remains irrotational. This yields
conservation of circulation, the integral of vorticity over a two-dimensional surface. These
two conservation equations, upon Noether’s theorem, may be associated with symmetries of
the system. In an interesting recent paper [1], it was argued that these two conservation
equations may be naturally described by a 2+1 dimensional u(1)×u(1) gauge theory. In this
gauge theory description Kelvin’s theorem corresponds to the Gauss law.

Shallow water system is governed by nonlinear equations but is well approximated by a
linear system when amplitude of the waves is much smaller than the height of the fluid. The
linear system is described by a 2+1 dimensional Maxwell-Chern-Simons (MCS) gauge theory
[1]. The study in [1] was motivated by bridging between the two dimensional condensed
matter systems, in particular quantum Hall system, and the shallow water mechanics focusing
on the topological features of the two sides (for further discussion see [5,6]).

Here we explore what more can one learn from the gauge theoretic description of the shal-
low water system. It is well-known that in gauge theories there exists an infinite set of surface
charges, which may be viewed as a local extension of the usual global charges defined by the
Gauss law, see e.g. [7]. In the fluid case, as we show in section 3, we argue how the gauge
theory description yields an infinite set of conserved charges for the fluid, providing a local
extension of Kelvin’s circulation theorem. In the electromagnetic (as well as in gravitational
systems) the change in these surface charges due to passage of a wave gives rise to the memory
effects, see e.g. [7–12]. We study a similar memory effect for MCS theory describing the lin-
earized shallow water system and show how various drifts discussed in fluid mechanics [2,3]
can be understood as MCS memory effects.
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Outline of the paper. In section 2 we review gauge theoretic description of the Euler for-
mulation of nonlinear and linear shallow water system. In section 3 we study symmetries and
surface conserved charges of the u(1)× u(1) nonlinear theory and the linearized MCS theory.
In section 4 we provide Lagrange formulation of the shallow water system and show that the
gauge symmetry of the linearized MCS in the Euler description is related to area preserving
diffeomorphisms in the Lagrange formulation. In section 5 we discuss memory effect in the
linearized gauge theory description. In section 6 we discuss Stokes drift [13–15] and how it
is realized in the gauge theory description. In section 7 we consider shallow water system in
an external force and compute Darwin drift [16,17] as a memory effect. Section 8 is devoted
to a brief summary and outlook. In appendix A we present derivation of the Green’s function
and in B we briefly discuss memory effect in nonlinear shallow water.

2 Shallow water gauge theory: A review

Nonlinear shallow water system is described by two dynamical fields in 2 + 1 dimensions:
H(x i , t) which describes the height of the fluid and ui(x j , t); i, j = 1,2 the horizontal velocity
of the fluid. In the Euler description, dynamics of this system is governed by

DH
Dt

:=
∂H
∂ t
+ u · ∇H =−H∇ · u , (1a)

Dui

Dt
:=
∂ ui

∂ t
+ (u · ∇)ui = f εi ju

j − g∂iH . (1b)

The first equation (1a) is the mass conservation equation, that the 3 dimensional fluid is in-
compressible and (1b) is Newton’s second law (Navier-Stokes or Euler equation), in which g
is the gravitational constant and f is the Coriolis parameter, which is a constant.1 As we see
these equations are nonlinear for both variables H, ui .

This theory has two global Noether currents which satisfy

∂tH+∇ · (Hu) = 0 , (2a)

∂t(ζ+ f ) +∇ · [(ζ+ f )u] = 0 , (2b)

where ζ= εi j∂iu j is the vorticity of the shallow water. Eq.(2a) is the same as (1a), the incom-
pressibility of the 3 dimensional fluid and hence the associated conserved charge is mass (or
mass density). Eq. (2b) arises from (1b) and its associated conserved Noether charge is

Γ0 :=

∫

Σ

d2 x (ζ+ f ) =

∮

B
dli

�

ui −
f
2
εi j x j

�

, (3)

where Σ is a constant time slice (Cauchy surface), B = ∂Σ is its boundary and dli is the
length element along B. In the second equation, we used Stokes’ theorem. Circulation ΓC
which is subject to Kelvin’s circulation theorem [2,3] is a generalization of Γ0 as,

ΓC :=

∫

S
d2 x (ζ+ f ) =

∮

C
dli

�

ui −
f
2
εi j x j

�

, (4)

where as depicted in Fig. 1, S is a generic section of Σ and C = ∂ S is its boundary. That is, C
a generic closed path in the fluid. The fact that ΓC can be written as a codimension 2 integral
suggests that this system should have a gauge theory description. Indeed as shown in section
3 that ΓC appears as a conserved charge.

1Here we take f to be a constant. However, for the system of oceans on the Earth, the Coriolis parameter f
depends on the latitude θ , g ≃ 9.8m/sec2 and f = 1.45×10−5 sinθ/sec. So, for Equator f is very small and is the
largest near the poles. f is positive (negative) in the northern (southern) hemisphere.
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Figure 1: Σ is a constant time slice, a Cauchy surface, B is its boundary. S is a generic
section of Σ and C is its boundary.

2.1 Nonlinear gauge theory

One may view (2) as Bianchi identities of a 2+1 dimensional u(1)×u(1) gauge theory. In this
sense, this gauge theory provides a (Hodge) dual description of the fluid. Explicitly, let the
electric field of the two gauge theories be denoted by Ei , Ẽi and the corresponding magnetic
fields by B, B̃. The corresponding Bianchi identities are ∂t B− εi j∂i E j = 0 and similarly for the
tilde gauge field. Therefore, upon identifications, see [1] for more details,

B =H , Ei = εi jHu j ,

eB = f + ζ , eEi = εi ju
j( f + ζ) .

(5)

Bianchi identities recover (2). Given the Bianchi identities, one may try to obtain (1) as the
equation of motion (EoM) of this gauge theory. This has been recently studied by David Tong
[1], where the following action was introduced2

S[Aµ,α,β] =

∫

dt d2 x

�

E2

2B
−

1
2

gB2 + f A0 − εµνρAµ∂νβ∂ρα

�

, (6)

where µ = 0, 1,2 and Ei := ∂tAi − ∂iA0 and B := εi j∂iA j are electric and magnetic fields
associated with gauge field Aµ respectively. One can use Clebsch parametrization and rewrite
the two scalars α and β in terms of a new dummy gauge field [1]

eAµ = ∂µχ + β∂µα , eFµν = ∂µeAν − ∂νeAµ ,

eEi := eF0i , eFi j := εi jeB .
(7)

In terms of eAµ the last term in (6) takes the form of a u(1)×u(1)Chern-Simons term εµνρAµ∂νeAρ.
This action is invariant (up to boundary terms) under the gauge transformations

Aµ → Aµ + ∂µΛ and eAµ + ∂µeΛ, where Λ and eΛ are our gauge parameters which are arbitrary
functions on spacetime. One may check that EoM for the gauge field Aµ yields

E i = −∂t

�

E i

B

�

− εi j∂ j

�

E2

2B2
+ gB

�

+ εi j
eE j = 0 . (8)

Using (5) it is straightforward to show that this equation implies (1b), while (1a) appears as
Bianchi identity for Aµ gauge field.

2If we denote dimension of quantity X by [X ], with the conventions used, [ f ] = T−1, [g] = LT−2 and
[B] = L, [Ei] = L2T−1, [B̃] = T−1, [Ẽi] = LT−2. The action (6) will have the correct dimensions if it is multi-
plied by the density of the 3 dimensional water, which we have set equal to 1.
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2.2 Linearized and effective gauge theory

Assuming that the variations of H, ui are small, one may linearize the shallow water equations
(1). This may be achieved through H(x i , t) = H + η(x i , t) and u(x i , t) = 0+ u(x i , t), where
H is a constant height and η≪ H.3 Substituting these quantities in the EoM (1) and keeping
only linear terms in η and u, we get

∂tη+H∇ · u= 0 , (9a)

∂tui = f εi ju
j − g∂iη . (9b)

These linearized EoM yield two global conservation laws which are the linearized version of
conservation laws (2a) and (2b)

∂tη+H∇ · u= 0 , (10a)

∂tζ+ f∇ · u= 0 . (10b)

Therefore the potential vorticity,
Q := Hζ− f η , (11)

is time-independent, ∂tQ = 0, while it can have x i dependence.4 So, for the linearized shallow
water we have only one independent conservation law, and the other is replaced with ∂tQ = 0.
Note also that (10b) can be rewritten as ∇ · ũ= 0 , ũi := ui +

1
f εi j∂tu j = −

g
f εi j∂ jη .

In the linearized level (5) takes the form

B =H +η=
H
f
( f + ζ)−

Q
f

, Ei = Hεi ju
j ,

eB = f + ζ , eEi = f εi ju
j ,

(12)

where in the second equality for B we used (10) which implies η= (Hζ−Q)/ f , with Q being
time-independent. Therefore, eB = f

H B+ Q
H , eEi =

f
H Ei and hence eA0 =

f
H A0, eAi =

f
H Ai−

Q
2H εi j x

j ,
up to a gauge transformation Λ̃. That is, Ãµ may be solved in terms of Aµ. We finally note that
the linearized equations (9) in terms of Ei , B take the form

∇ · E − f (B −H) =Q , (13a)

∂t Ei = εi j

�

f E j − v2∂ jB
�

, v2 := gH . (13b)

Here v is the speed of gravity waves in the shallow water system.
Let us now focus on the Q = 0 sector. In this case, Ãµ =

f
H Aµ, up to a gauge transformation.

Eliminating Ãµ in favor of Aµ (in more standard field theory terminology, integrating out Ãµ),
the linearized equations (9) in this sector may be obtained from a three-dimensional Maxwell-
Chern-Simon (MCS) action [1],5

S = −
g

4v

∫

d3 x
�

FµνFµν −
f
v
εµνρAµFνρ

�

, (14)

where Fµν = ∂µAν − ∂νAµ is the field strength, F0i = Ei with Ei given in (12) and Fi j = εi jη.
We lower and raise the indices with the metric,

gµν = diag(−v2, 1, 1) , (15)

3For the oceans and seas on the Earth, where height of water H is typically much larger than the typical ampli-
tude of waves and tides η, the linearized shallow water approximation is a very good one.

4While here we have introduced Q in the linear theory, one can extend the notion of potential vorticity to the
nonlinear theory [1].

5For the generic Q ̸= 0 case, Q appears as a background electric charge in the MCS theory and the term Q
H A0

should be added to the Lagrangian.
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d3 x =
p
−gd td2 x = v d td2 x , εαβµ =

p
−g[αβµ] = v[αβµ] and εαβµ = −1

v [αβµ], where
[αβµ] is purely antisymmetric symbol which takes values 0 or ±1.6 We note that (14) has a
single u(1) gauge symmetry and eliminating the Ãµ gauge field, has led to the Chern-Simons
term. We will return to this point later.

EoM of the MCS action (14),

Eν := g
�

∇µFµν +
f

2v
εναβ Fαβ
�

= 0 , (16)

by construction, recovers (13) at Q = 0. It is well known that due to the presence of the
Chern-Simon term in the action (14), under the gauge transformation, δΛAµ = ∂µΛ,

δΛS =
f

4H

∫

d3 x∂µ
�

ΛεµνρFνρ
�

. (17)

This boundary term opens the window for the appearance of the edge modes in the presence
of the boundary [1,18–20].

2.3 Poincare and Kelvin coastal waves

Eq. (16) describes various wave solutions in the Q = 0 sector. For solutions with Q ̸= 0, see [1].
Among them, here we discuss two most famous classes of solutions, the Poincare waves and
the Kelvin coastal waves.

Poincare waves [2–4]. To explore wave solutions we start with the following ansatz,

ui = ûie
i(ωt−k·x) , η= η̂ei(ωt−k·x) . (18)

Plugging the above into the linearized shallow water equations (9) we get the eigenvalue
problem





0 Hk1 Hk2
gk1 0 −i f
gk2 i f 0









η̂

û1
û2



=ω





η̂

û1
û2



 . (19)

By solving this equation, the eigenvalues are given by

ω2 = v2k2 + f 2 , and ω= 0 . (20)

The corresponding eigenvectors are

For ω= 0 :





η̂

û1
û2



=





1
i gk2/ f
−i gk1/ f



 . For ω ̸= 0 :





η̂

û1
û2



=





Hk2

k1ω− i f k2
k2ω+ i f k1



 . (21)

Poincare waves (ω ̸= 0 modes) are described by the MCS gauge field (in the temporal
gauge At = 0),

Ai = ξie
i(ωt−k·x) , ξ2 = −

ωk1−i f k2

ωk2+i f k1
ξ1 = −

k1k2v2−i fω

k2
2 v2 + f 2

ξ1 , (22)

6The above action is written in terms of quantities that are more natural for the fluid (shallow water) description.
One needs to make some scalings in Aµ to write it in terms of quantities and units more natural to the usual
MCS theory, where the CS coupling is dimensionless in natural units. In such appropriate units, CS coupling is
proportional to f /H.
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which may be written in a more useful form as,

A1 =
h
ωk

q

v2k2
2 + f 2 cos(ωt − k · x +φ0) ,

A2 = −
h
ωk

q

v2k2
1 + f 2 cos(ωt − k · x +φ0 −ϕ) , tanϕ =

fω
k1k2v2

,
(23)

where h,φ0 are two real k-dependent integration constants. Appearance of the k-dependent
phase ϕ in A2 is a manifestation of the fact that the Coriolis term (the Chern-Simons term)
breaks parity (or time reversal) invariance of the system. The dispersion relation for Poincare
waves is ω2 = v2k2 + f 2, v2 = gH, i.e. the phase of these waves travel at the speed v and f
appears as an “effective mass”. As we see for Poincare waves ω ≥ f , Poincare waves have a
low-frequency cutoff f .

The velocity field ui in the temporal gauge is given by ui = − 1
H ε

i j∂tA j and hence

u1 = −
h

Hk

q

v2k2
1 + f 2 sin(ωt − k · x +φ0 −ϕ) ,

u2 = −
h

Hk

q

v2k2
2 + f 2 sin(ωt − k · x +φ0) ,

η= −h sin(ωt − k · x +φ0−ϕ̂) , tan ϕ̂ =
k1 f
k2ω

.

(24)

As the above explicitly shows, in our parametrization h is the square root of the average of η2

over a period. Note the k-dependent phase difference between u1, u2 and η, ϕ, ϕ̂, and that
this phase difference vanishes in the absence of the Coriolis parameter f . The average of the
velocity-squared over a period is

ū2 =
h2

2H2
(ω2 + f 2)/k2 =

h2

2H2
v2
�

1+
2

k2R2

�

, R :=
v
f

, (25)

where R is the Rossby radius of deformation [21]. Energy density of the gravity waves is pro-
portional to ū2. Therefore, the energy increases as we increase the wave-length. For long wave-
length waves (small k) the energy of the wave becomes large and for short wave-length (large
k), the energy becomes k-independent and takes its lowest value proportional to h2v2/H2. For
typical Poincare waves in oceans on the Earth, kR≫ 1 and hence their energy is essentially k
independent.

Zero frequency modes of (16) which are time-independent solutions are governed by

Ei = vR∂iη , (∇2 − R−2)η= 0 , (26)

or equivalently,

Ai = vR∂iη t + Âi ,
�

∇2 − R−2
�

Âi = 0 , η= εi j∂iÂ j . (27)

The above in the fluid dynamics are called the geostrophic balance equations, see e.g. [4]. Zero
frequency modes can be formally viewed as imaginary wave length Poincare waves such that
k2v2 + f 2 = 0 or k2R2 + 1= 0.

Coastal Kelvin waves [4,21,22]. Assume we have a boundary at x1 = 0 such that the fluid
exists only in the x1 > 0 and for x1 < 0, there is only land. We assume u1|x1=0 = 0, ensuring
that no flow passes the boundary. Let us for simplicity explore solutions that have u1 = 0
everywhere. Then, the linearized shallow water equations (9) reduce to

∂tη+H∂2u2 = 0 , ∂tu2 + g∂2η= 0 , u2 =
g
f
∂1η , (28)
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which yield

u2 = −
h
H

v e−
x1
R cos (k(x2 + vt) +φ0) , η= h e−

x1
R cos (k(x2 + vt) +φ0) , (29)

where h is the amplitude of the wave and φ0 is an initial phase and both are in general k-
dependent constants. Note that to get a wave which falls off in x1 > 0 region, one should
choose left moving waves in x2 direction. (The left moving waves in x2 direction are expo-
nentially damping in the x1 < 0 region.) Kelvin waves may be viewed as a certain class of
Poincare modes with imaginary k1, v2k2

1 + f 2 = 0 and ω= vk2.
The square root of the average of η2 over a period η̄ = h e−x1/R and the average of the

velocity-squared over a period is ū2 = h2

2H2 v2e−2x1/R, which is k-independent for a given h. The
value of η̄ and ū2 have their maximum values at the boundary x1 = 0. The coastal modes, as
the above explicitly shows, describe one dimensional modes, i.e. edge modes.7 Curiously, the
energy of a Kelvin wave of a given amplitude is independent of the frequency.

The most general solution is then given by

u1 = 0 , u2 = e−
x1
R U(x2 + vt) , η= −

v
g

e−
x1
R U(x2 + vt) . (30)

For this solution, circulation is ζ = − 1
R e−

x1
R U(x2 + vt) and in the equivalent gauge field de-

scription it is given by,

E1 = He−
x1
R U(x2 + vt) , E2 = 0 , B = −

1
v

E1 , (31)

or

At = 0 , A1 = He−
x1
R

∫ t

ds U(x2 + vs) , A2 = 0 . (32)

3 Symmetry and conserved charges

The existence of an action principle for the nonlinear shallow water equation allows us to
systematically study the symmetries and their associated conserved charges by the machinery
of the Noether theorem. In this section, we study the symmetries and associated conserved
charges of the shallow water by using actions (6) and (14). We only focus on the gauge
symmetry on the gauge field Aµ, while Ãµ gauge field is viewed as a dummy field introduced
to produce EoM (through Clebsch parametrization).

3.1 Nonlinear theory

The standard machinery of the Noether theorem yields the following Noether current for the
gauge symmetry of (6)

ρ
Λ
= ∂i

�

Λεi ju j

�

,

J i
Λ = −ε

i j

�

u j∂tΛ+

�

u2

2
+ gh

�

∂ jΛ

�

+Λ( f + ζ)ui .
(33)

It is straightforward to show that ∂µJµΛ = −∂i(Λεi jE j), where Ei = 0 is the equation of motion
for the nonlinear shallow water (8). Hence, the Noether current is conserved on-shell. By

7We note that from a condensed matter perspective, the sharp boundary conditions yielding (28) can be delicate,
e.g. see [23].
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virtue of the EoM and as in any gauge theory, the Noether current can be written as a total
derivative, JµΛ ≈ ∂νΓ

µν
Λ ,

Γ 0i
Λ = Λε

i ju j , Γ
i j
Λ = −ε

i j

�

u2

2
+ gh

�

Λ . (34)

The “local circulation”, the charge associated with the above Noether current for a generic
Λ, is then given by

ΓΛ =

∫

Σ

dΣµJµΛ =

∫

Σ

dΣµ∂νΓ
µν
Λ =

∮

B
dΣµνΓ

µν
Λ . (35)

By explicit form of ΓµνΛ in hand (34), one can compute the surface charge (35),

ΓΛ =

∮

B
Λ u · dl . (36)

For constant Λ, ΓΛ reduces to (3).8 To proceed, we assume that the surface Σ has a disk
topology and its boundary B is parametrized by φ ∈ [0,2π]. We define the circulation aspect
charge γ as follows

ΓΛ =

∮

B
Λγdφ , γdφ := u · dl . (37)

To connect ΓΛ to the circulation ΓC (4), we note Λ is an arbitrary (time-independent) function
and hence for any given C there exists a Λ such that ΓΛ = ΓC . Therefore, the constancy of
ΓΛ provides us with a reinterpretation of the Kelvin circulation theorem in terms of Noether’s
theorem and conserved charges.

As is well known in gauge theories, e.g. see [24,25], not all gauge field configurations re-
lated by gauge transformations are physically equivalent. As a nomenclature, the gauge fields
related by proper or trivial gauge transformations, those leading to zero surface charges, are
physically equivalent, whereas those related by physical or improper gauge transformations,
that lead to non-zero surface charges, are physically inequivalent. In this sense, and in our
example, gauge transformations Λ appearing in (37) are nontrivial gauge transformations.
Apparently, one can use the surface charge ΓΛ to label gauge field configurations which differ
by a gauge transformation.

Charge algebra. One can read the algebra of the surface charge (36) by using the standard
definition of the Poisson bracket

{ΓΛ1
, ΓΛ2
}= δΛ2

ΓΛ1
. (38)

From the fact that the charge aspect γ (37) is gauge invariant, as expected, we obtain a u(1)
algebra

{γ(t,φ),γ(t,φ′)}= 0 . (39)

3.2 Linear theory

Symmetries and edge modes for the Maxwell-Chern-Simon theory have been studied, see
e.g. [26–28] and especially [29]. Here we focus on the surface charges of the theory and

8Note that the f term in (3) may also be added to the above for time-independent gauge parameter Λ. That is,
one may add − f Λ2 ε

i j x j with ∂tΛ= 0 into the integral and still get a conserved charge: ΓΛ =
∮

B Λ(u
i − f

2 ε
i j x j)dli .
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construct the Noether charge associated with gauge symmetries for the MCS theory. The anal-
ysis is similar to what we have done for the nonlinear shallow water system in the previous
subsection.

The starting point is the Noether current associated with the gauge symmetry

JµΛ =− g
�

Fµν−
f

2v
εµνρAρ

�

∂νΛ−
v f
2H
Λεµνρ∂νAρ . (40)

The divergence of this Noether current is proportional to the EoM (16), ∂µJµΛ = −E
µ∂µΛ and

hence is conserved on-shell. By applying the EoM, we get the following result

JµΛ ≈ ∂νΓ
µν
Λ , Γ

µν
Λ := −gΛ
�

Fµν−
f

2v
εµνρAρ

�

. (41)

We should crucially note that the above may not be obtained from (34) in the linearized regime.
This may be understood by noting that to obtain the linearized MCS theory (14) we are elimi-
nating Ãµ gauge field in favor of Aµ and that in the nonlinear theory there are two u(1) currents.
Eq.(34) is one of them and we did not discuss the other u(1) current. Our linearization, which
involves also the elimination of Ãµ, mixes up the two u(1) currents which yield the f /v term
in (41).

Finally, the Noether charge associated with gauge transformation Λ is expressed as a co-
dimension two integral

ΓΛ = −g

∮

B
dΣµνΛ
�

Fµν−
f

2v
εµνρAρ

�

. (42)

As the gauge parameter Λ is an arbitrary function, we can interpret this surface charge as an
infinite number of charges for the MCS gauge theory. By using the dictionary (12) for Q = 0
we can find the expression of the surface charges in terms of the Poincare wave variables

ΓΛ =

∮

B
Λ

�

u−
f

2H
A
�

· dl . (43)

The surface charge (43) is not gauge invariant, to see this explicitly, we note that

ΓΛ =

∮

B
Λγ dφ , γdφ :=

�

u−
f

2H
A
�

· dl = −
1
H

�

εi j E j +
f
2

Ai

�

dli , (44)

where we used (12). This charge aspect changes under gauge transformation Λ as follows

δΛγ= −
f

2H
∂φΛ . (45)

This gauge non-invariance of the charge aspect is a familiar feature of Chern-Simons theories
and as we show below it yields a central extension term in the charge algebra.

Charge algebra. For the MCS theory the charge algebra is more interesting as it takes a
central extension term. To get the charge algebra, we use the standard Poisson bracket (38).
Recalling the surface charge expression (43), we find the following result

{γ(t,φ),γ(t,φ′)}= −
f

2H
∂φδ(φ −φ′) . (46)

This is the standard Kac-Moody algebra at a level proportional to f /H. ]We remark that the
appearance of the Kac-Moody level is a result of the elimination of the Ãµ gauge field and its
gauge symmetry, cf. discussions below (41).
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Global charge. The circulation charge is the global Λ= 1 element in the charge ΓΛ

Γ =

∮

B
dφ
�

uφ −
f

2H
Aφ

�

, (47)

reproducing (3). Under gauge transformation Λ, this global charge transforms as

δΛΓ = −
f

2H

∮

B
dφ , ∂φΛ= −

f
2H
∆Λ . (48)

Therefore, for the single-valued gauge transformations, ∆Λ = 0, the global charge (circula-
tion) is gauge invariant, δΛΓ = 0. That is, the zero mode of the charge is a central element in
the Kac-Moody charge algebra.

4 Lagrange description of linearized shallow water

As discussed in the opening of section 2, the gauge theoretic formulation provides us with
a dual description for the fluid system, in the sense that the two Bianchi identities for the
u(1)×u(1) gauge fields appear as the Noether conservation relations of the fluid system. In this
section, we take a different viewpoint and try to find a different physical meaning for the origin
of the u(1) gauge symmetry in the shallow water system. This viewpoint becomes apparent
in the Lagrange (comoving) description of the fluid, while so far we have worked in the Euler
description. As we discuss below, the symmetry of relabelling of fluid particles [30–32] gives
rise to a part of u(1) symmetry one remains with after fixing the temporal gauge [33,34].

To find the Lagrange description of linearized shallow water, we follow ideas outlined
in [33,34] and start with

ui = −
1
H
εi j E j . (49)

In the temporal gauge, we have

ui = −
1
H
εi j∂tA j . (50)

Next, we introduce the comoving coordinates y i:

ui(x(y, t), t) =
∂

∂ t
x i(y, t) , (51)

where y stands for the label of particles constituting the fluid (it could be the initial position
of particles). We can hence write (50) as

∂

∂ t
x i(y, t) = −

1
H
εi j
∂ A j(x , t)

∂ t

�

�

�

x=x(y,t)
. (52)

Integrating over time we obtain,

x i(y, t)− x i(y, 0) = −
εi j

H

∫ t

0

dt
∂ A j(x , t)

∂ t

�

�

�

x=x(y,t)
. (53)

Here we assume the change of the gauge field (or velocity field) on the probe’s path is
slowly varying. In the leading order, we can approximate the integrand of the RHS as
∂ A j(x ,t)
∂ t

�

�

�

x=x(y,t)
=
∂ A j(y,t)
∂ t (see section 7 for more discussion), and finally by performing the

time integral, we get
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x i(y, t)− x i(y, 0) = −
εi j

H

�

A j(y, t)− A j(y, 0)
�

. (54)

In the Lagrange description, x i = y i may be chosen as the equilibrium state of the fluid. This
implies, x i(y, 0) = yi , A j(y, 0) = 0. We then find

x i(y, t) = y i −
1
H
εi jA j(y, t) . (55)

The above is written in a specific (temporal) gauge. Since the initial point (50) is a linear
order equation, the relation among x , y coordinates and the gauge field A works at the linear
level. In the Lagrange description we are dealing with fields of comoving coordinates y while
in the Euler description of previous sections with a field theory over the x space.

Introduction of the comoving coordinates y provides a geometric meaning to the “residual
gauge transformations” on Ai (that one remains with after fixing the temporal gauge) in the
Lagrange description: gauge transformations on Ai(y, t) can be equivalently viewed as a class
of 2 dimensional y-space diffeomorphisms [34],

y i → y i + ξi , ξi = −
1
H
εi j∂ jΛ , (56)

where ∂i =
∂
∂ y i and Λ = Λ(y i). It is manifest that ∂iξ

i = 0. Therefore, we are dealing
with area-preserving diffeomorphisms (APDs). Note that in the 2d sense, a scalar (u(1) gauge
transformations Λ) is Hodge-dual to a divergence-free vector (2d APDs). One should note that
this “residual” symmetry arises as the continuum limit of the freedom in the labeling of fluid
particles in the Lagrange description. As discussed, one can associate conserved charges to
these residual symmetries which can label physical states. The APD is therefore equivalent to
the improper part of u(1) gauge symmetry of the MCS theory in Lagrange description of the
linearized fluid.

5 Fluid memory effect for linearized theory

To explore the physical and possibly observational meaning of the infinite set of surface charges
we discussed in the previous section, as in other similar cases in gauge and gravity theories, we
associate the variations in these charges to memory effect in the fluid system. In this section
we study such a memory in two ways: (1) Memory from EoM; (2) Memory from conservation.
This analysis will be completed and extended in the next two sections.

5.1 Memory, fluid waves and relevant scales

Memory is a “permanent” (long time scales) trace remaining in a system after a perturbation
or fluctuation has passed. When we deal with a massless theory, like Maxwell or Einstein
gravity, with fluctuations being various photon or graviton wave-packets, the memory is in
low frequency end of the spectrum in the wave-packet. If we denote the time scale of the
measurement by T , theoretically T →∞, frequencies relevant to the memory effect are IR
modes with ωT ∼ 1. For the massless waves with dispersion relation ω = vk low frequency
means very long wave-length λ such that λ∼ vT .

In the linearized shallow water system, the waves do not typically have a linear disper-
sion relation and are propagating in the fluid which has a finite size. Let us then review the
time and space scales relevant to the memory effect in this system. Consider a body of fluid
with depth/height H and 2 dimensional span L2. Shallow water approximation then requires
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L ≫ H. The inverse of the Coriolis parameter f defines a time scale in the system, which for
oceans on the Earth is a day or more (depending on the altitude, see footnote 1). This time
scale then yields the other relevant length scale of the system, the Rossby radius of deforma-
tion R= v/ f [21]. It denotes the length the phase of a wave can travel in a day or the length
scale where the effect of Coriolis force and gravity wave (or buoyancy) are comparable.9 For
typical shallow water systems in linearized approximation, R≳ L≫ H.

Besides the characteristic length and time scales of the system, there are length and time
scales associated with the waves or “fluctuations” in the system, the frequency ω, and the
wavelength λ. In the shallow water system, there are in particular the Kelvin coastal waves
and the Poincare waves, reviewed in section 2.3. The former describes waves propagating
along a coast (one dimensional waves) with dispersion relation ω = vk and the latter, in the
linearized theory, are described by two dimensional “massive modes” with dispersion relation
ω2 = v2k2 + f 2. There is hence a low-frequency cutoff f for the Poincare waves. Note that
for the Poincare waves the energy of the wave of a given amplitude h and wave-length λ is
proportional to 1+ 2λ2/R2, cf. (25).10 So, the notions of low energy and long wave-length
are not synonymous. Unlike the massless case (and Kelvin coastal waves in our case), we do
not have the “soft” modes with arbitrarily small frequencies, theoretically ω→ 0.

More importantly, unlike the usually studied memory effects for gravity and electromag-
netism, wave-packets in a shallow water system can’t have arbitrarily long wave-lengths,
they are subject to the size of the system, λ ≤ 2L. This introduces a low-frequency cutoff,
ω > v/λ > v/(2L). Moreover, as discussed, for Poincare waves f appears as another low-
frequency cutoff f , ω > v/R. So, the lowest frequency mode is given by min(v/R, v/(2L))
and for the typical cases where R ≳ L, it is associated with the longest wave-length 2L. On
the other hand, to be able to detect traces of such modes in a time T we should have ωT ∼ 1.
To summarize, the memory effect can be detectable if f T ≳ 1 and λ ∼ L ∼ R. One should,
however, note that typical modes in the system have λ≲ L ≲ R.11

5.2 Memory from EoM

The linearized equation of motion (9) at vanishing vorticity Q = 0 takes the form12

∂tui = f εi ju
j −

gH
f
εkl∂i∂kul . (57)

Next recall that ui = − 1
H ε

i j E j , which in the temporal gauge At = 0 takes the form
ui = −

1
H ε

i j∂tA j . Note that in the temporal gauge we are left with time-independent resid-
ual gauge transformations Λ = Λ(x). The above equation in terms of the gauge field Ai and
the associated circulation charge aspect γi = ui −

f
2H Ai can be written as,

∂tγi =
f

2H
∂tAi −

g
f
∂i∂ j∂tA j . (58)

One can immediately integrate (58) to get

∆γi =
g
f

�

1
ℓ2
∆Ai − ∂i(∇ ·∆A)

�

, (59)

9For the oceans on the Earth with depth H = 1km at around altitude θ = 45◦, v ≃ 100m/sec, f ≃ 10−5/sec and
R= 104km which is of the order of Earth radius but much larger than the depth of the ocean.

10Note also that for typical waves, λ≪ R, and the energy density in the wave is essentially independent of the
wave-length. As discussed in section 2.3 the same is true for Kelvin coastal waves.

11If we have a wave-packet, the spatial (or temporal) width of the wave-packet also introduces another scale in
the system, which we typically take them to be much smaller than L (or T).

12Had we considered Q ̸= 0 sector, one should have added g
f ∂iQ term to the right-hand-side of (57).
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where ℓ :=
p

2R with R being the Rossby radius and ∆Ai is the memory field,

∆Ai := Ai(+T )− Ai(−T ) , (60)

with +T and −T denoting the late and early times and we used gH = v2. Using the Green’s
function analysis in the appendix A one may invert (59) and solve the memory field for ∆γi ,

∆Ai(x) =
f
g

∫

d2 x ′ Gi j(x − x ′)∆γ j(x
′) . (61)

5.3 Memory from conservation

Here we work out the relation between memory fields and conservation of the fluid surface
charges (43) in the Maxwell-Chern-Simon theory. We start with the conservation of the surface
charge ΓΛ (43)

∆ΓΛ =

∮

B
Λ∆γ · dl , (62)

where ∆ΓΛ = ΓΛ(+T )− ΓΛ(−T ) and we have assumed ∂tΛ= 0. From the EoM in terms of the
memory field (59), we obtain the conservation-memory equation

∆ΓΛ =
f

2H

∮

B
Λ
�

∆A− ℓ2∇(∇ ·∆A)
�

· dl , (63)

which relates to the permanent change in the fluid charges due to the passage of fluid waves
parameterized through the memory field ∆A. It is one of the main results of this paper. The
tangent component of (59) on B may be recovered from (63) for Λ = δ(φ − φ′). We note
that ℓ is much larger than the typical wave-length of the waves and as such the second term
in (63) dominates over the first term and ∆ΓΛ ≃ −

f
g

∮

BΛ∇(∇ ·∆A) · dl. Nonetheless, for the
wave lengths relevant to the memory effect, cf. discussion in section 5.1, we are dealing with
waves in which these two terms are of the same order.

6 Memory from probes, memory at nonlinear level and Stokes
drift

Lagrange description of a fluid, cf. section 4, is the convenient framework to follow path-line
of probe particles and the related memory effect. Consider a probe particle in the fluid with
the trajectory x i(y, t) (where y denotes the initial position of the probe). At any time t, the
velocity of this particle is given by the velocity field u evaluated at the position of the particle,
i.e.

dx i(y, t)
dt

= ui(x(y, t), t) = −
1
H
εi j E j(x(y, t), t) = −

1
H
εi j
∂ A j(x , t)

∂ t

�

�

�

x=x(y,t)
. (64)

where we used (12) and in the last equality we fixed the temporal gauge.
We can now solve this equation perturbatively. At the second order of perturbation the

path-line equation yields

∆x i = −
εi j

H
∆A j +

ε jkεil

H2

∫ +T

−T
dt ∂ j E

l(y, t)∆Ak(t) +O
�

u3
�

, (65)

14

https://scipost.org
https://scipost.org/SciPostPhys.15.3.115


SciPost Phys. 15, 115 (2023)

where ∆x i = x i(y, T ) − x i(y,−T ), ∆Ai(t) = Ai(y, t) − Ai(y,−T ) and
∆Ai = ∆Ai(T ) = Ai(y, T ) − Ai(y,−T ). It shows how one may probe memory field (60) by
studying the displacement of particles in the fluid. We will show next that this displacement
which we dub as path-line memory, is related to the Stokes drift.

6.1 Stokes drift as fluid memory

Assume the velocity and its time variations are small. To systematically explore this we con-
sider

dx i(t)
dt

= εui(x(t), t) , (66)

and make an expansion in powers of ε. One can perturbatively solve this equation for x i(t),

x i(t) =
∞
∑

a=0

εa x i
a(t) = x i

0(t) + εx i
1(t) + ε

2 x i
2(t) + . . . (67)

By substituting this perturbative expansion in (66), one obtains the following result in the
zeroth order of expansion

dx i
0(t)

dt
= 0 =⇒ x i

0(t) = y i . (68)

In the first order we find,

dx i
1(t)

dt
= ui(y, t) =⇒ x i

1(t) =

∫ t

0

d t1ui(y, t1) , (69)

and the second order yields,

dx i
2(t)

dt
= x j

1(t)∂ ju
i(y, t) =⇒ x i

2(t) =

∫ t

0

dt1 ∂ ju
i(y, t1)

∫ t1

0

dt2 u j(y, t2) . (70)

Finally, we have

∆x i = x i − x i
0 =

∞
∑

a=1

εa x i
a(t)

=

∫ +T

−T
dt ui(y, t) +

∫ +T

−T
dt

∫ t

−T
dt ′ u(y, t ′) · ∇ui(y, t) +O

�

u3
�

.

(71)

This equation, once written in terms of the gauge fields, as expected, is the same as (65).
Let us now explore the physical meaning of the two terms appearing in (65). To this end,

recall the definition of the Stokes drift ∆x
S

(e.g. see [15,35])

∆x
S

:=∆x
L
−∆x

E
, (72)

where ∆x
L

and ∆x
E

are respectively Lagrange and Euler displacements (drifts). ∆x
L

is the
left-hand-side of (65),

∆x i
E
=

∫ +T

−T
dt ui(y, t) = −

εi j

H
∆A j , (73)

and

∆x i
S
=

∫ +T

−T
dt ∆x j

E(y, t) · ∂ ju
i(y, t)

=
1

H2

�

1
2
∇i(∆A)2 + εi j∆A jB(y,−T )− ∂ j

∫ +T

−T
dt E j∆Ai(t)− εi j

∫ +T

−T
dt E jB

�

,

(74)
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where Ei , B = ε jk∂ jAk,∆Ai which appear under the integrals are functions of t, y and
∆Ai which appears outside the integral is only a function of y . Each of the four
terms in the above are explicitly invariant under time-independent gauge transformations
Ai → Ai + ∂iΛ,Λ= Λ(y).

The Stokes drift ∆x
S

consists of two parts: A part which does not involve time integral
and the part which involves time integrals. Following usual terminology of the memory effect,
let’s dub the former the “soft part” and the latter as the “hard part”. The soft part has two
terms. Assuming that the passing wave has a short (finite) time span, B and Ei of the passing
wave vanishes at −T or T . Therefore, one may drop∆AB(y,−T ) term and the soft part of the
Stokes drift is given by 1

2H2∇i(∆A)2. The hard part, consists of two terms in which
∫

εi j E jB
term is the Pointing vector for the passing wave. This term in the Stokes drift measures how
much energy is transferred to the system due to the passage of the wave.

6.2 Coastal Kelvin wave, Euler and Stokes drifts

One may now compute the Euler and Stokes drifts (74) for the Kelvin wave configuration (31)
and (32). The Euler displacement is given by

∆x1
E
= 0 , ∆x2

E
= e−

x1
R

∫ +T

−T
ds U(vs) . (75)

Assuming that U(x2+vt) vanishes at far past, and noting that Ei , Ai have only x1-component, it
is readily seen that the first three terms in the second line of (74) vanish and only the Pointing
vector term contributes:

∆x1
S
= 0 , ∆x2

S
= −

e−
2x1

R

v

∫ +T

−T
ds U2(vs) = −

1
v

∫ +T

−T
ds u2

2 . (76)

The above results are worked out in the linear theory. One may perform the above com-
putation in a non-perturbative way. To this end, we start from

dx2

dt
= e−

x1
R U(x2 + vt) .

If we call s = t + x2/v and replace t for s and assume T ≫ x2/v we learn,13

∆x2 = e−
x1
R

∫ +T

−T
ds

U(s)

1+ 1
v e−

x1
R U(s)

= e−
x1
R

∫ +T

−T
ds U(s)

�

1−
U(s)

v
e−

x1
R +O(U

2

v2
)

�

=∆x2
E
+∆x2

S
+O
�

U3

v3

�

.

(77)

As an explicit example, consider the Gaussian wave-packet,

U(vs) = u0e−
v2s2

b2 , (78)

where u0 and b are constants with the dimensions of velocity and length respectively. With
this choice, we find the following result for the Euler and Stokes drifts (taking T →∞ limit),

∆x2
E
=
p
π

u0

v
be−

x1
R , ∆x2

S
= −
s

π

2

u2
0

v2
be−

2x1
R . (79)

As we see Euler and Stokes drifts are respectively first and second order in u0/v.

13As mentioned, Kelvin coastal waves are essentially 1+ 1 dimensional phenomena and may hence be studied
in 1+ 1 dimensional fluids. See [36] for analysis of the Stokes drift in a particular 1+ 1 dimensional fluid.
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Figure 2: Stokes drift for a passing wave in one period. Courtesy of [37].

6.3 Poincare waves, Euler and Stokes drifts

Consider the case depicted in Fig. 2 and take ∆T = 2π/ω. The Eulerian displacement due to
the passage of a Poincare wave, recalling (73) and (23), is given by

∆x i
E
= −

1
H
εi j∆A j = −

1
H
εi j
�

A j(x , T )− A j(x , 0)
�

= 0 . (80)

One may compute the Stokes drift using (74). Since the memory field ∆Ai vanishes over a
period, the “soft part” of the drift, the first two terms in (74), vanish. One can also show that
the third term in (74) also yields a zero integral and the drift is only receiving contribution
from the fourth term, the Pointing vector term:

∆x i
S
= −

1
H2
εi j

∫ 2π/ω

0

dt E jB =
πh2

H2k2
ki . (81)

As expected, the drift is along the direction of the wave. Its magnitude is proportional to
the square of the ratio of the amplitude of the waves to the height of water and is linearly
proportional to its wave-length, so the drift is larger for longer wave-lengths. Recalling (25)

and that the energy density transferred through the Poincare waves is∆E = h2

H2
v2

2
2

k2R2 =
h2

H2
f 2

k2 ,
then ∆x i

S
= π∆Eki/ f 2.

One may consider a smooth wave-packet with a short time span compared to the total time
T . Since the Poincare waves have frequencies bigger than f , ω≥ f , the memory field∆Ai for
a generic wave packet will be zero and therefore, Euler displacement ∆x i

E
≃ 0. For a similar

reason, the Stokes drift (74) is given by the Pointing vector (last term) and is proportional to
the energy transferred by the wave and is along the wave direction.
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7 Memory in forced linearized shallow water, Darwin drift

In shallow water systems Darwin drift14 [16] refers to the permanent displacement of a fluid
parcel as a result of the passage of a body through a fluid. See the animation in [38]. To study
this, we need to consider the shallow water system in the presence of an external force Fi
density which may be formulated by,

∂tη+H∇ · u= 0 , (82a)

∂tui = f εi ju
j − g∂iη+Fi . (82b)

Kelvin’s circulation theorem implies that Fi should come from gradient of a potential density,
pressure field P, i.e. Fi = −∂i P. These equations may be obtained from the action

S = −
g

4v

∫

d3 x
�

FµνFµν −
f
v
εµνρAµFνρ +

2
g
εi j Fi j P
�

, (83)

which is a direct generalization of (14). The gauge invariance of the above action is a mani-
festation of Kelvin’s circulation theorem.

With this gauge-invariant action, we can compute the relation between the memory and
EoM,

∆γi =
g
f

�

−∂i(∇ ·∆A) +
1
ℓ2
∆Ai

�

− ∂i∆P , ∆P(x) :=

∫ +T

−T
dt P(x , t) , (84)

and

∆ui =
g
f

�

−∂i(∇ ·∆A) +
1
R2
∆Ai

�

− ∂i ∆P . (85)

This equation can be solved for ∆Ai as follows

∆Ai(x) = −
f
g

∫

d2 x ′ G̃i j(x − x ′)
�

∆u j(x
′) + ∂ j∆P(x ′)
�

=
1
f
εi j∆E j(x)−

H
f
∂iX (x) ,

(86)

where G̃i j(X ) =
R2

(2π)2 ∂i∂ j I(X ) + R2 δi jδ
2(X i) with I(X ) = 2πK0(X/R), see appendix A for

more details, ∆Ei = Ei(x , T )− Ei(x ,−T ) and

X =∆P(x) +
1

2π
∂i

∫

d2 x ′ K0

�

|x − x ′|
R

��

−
1
H
εi j∆E j(x

′) + ∂i∆P(x ′)
�

. (87)

Eq.(86) indicates that if ∆Ei vanishes, then ∆Ai is a pure gauge transformation.
As the next task, we relate the memory field to the conservation of the circulation charge

aspect

∆ΓΛ =
f

2H

∮

B
Λ

�

∆A− ℓ2∇(∇ ·∆A)−
2H
f
∇(∆P(x ′))
�

· dl , (88)

which is a direct generalization of (63) for the forced case. Finally, we connect the displace-
ment memory effect to the change of charge aspect in presence of the external potential,

∆x i =
f
v2
εi j

∫

d2 y G jk(x − x ′)
�

∆γk(x
′) + ∂k∆P(x ′)
�

=
2
f
εi j

�

∆γ j(x) + ∂ j∆P(x) +
1

2π
∂ j

∫

d2 x ′ K0

�

|x − x ′|
ℓ

�

∂k

�

∆γk(x
′) + ∂k∆P(x ′)
�

�

.

(89)

14This was introduced in 1953 by Charles G. Darwin who is a grandson of the renowned biologist Charles R.
Darwin.
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We note that this is a first order displacement (unlike the Stokes drift which is second order).15

The terms proportional to ∆P give the Darwin drift [16,17]:

∆x i
D
=

2
f
εi j∂ j

�

∆P(x) +
1

2π
∇2

∫

d2 x ′ K0

�

|x − x ′|
ℓ

�

∆P(x ′)

�

=
1

2π
f

gH
εi j∂ j

∫

d2 x ′ K0

�

|x − x ′|
ℓ

�

∆P(x ′) .
(90)

Memory implants in shallow water. Consider an external potential with a shock-wave pro-
file

P = P̄(x)δ(t − t0) , (91)

so that∆P(x) = P̄(x). Next, assume that the velocity field is zero at the initial times (−T ≪ t0)
long before the wave turns on and also at the late times (+T ≫ t0) when the wave effect has
left the system, i.e. ∆ui = 0. Then, (85) yields

f
H
∆Ai −

g
f
∂i(∇ ·∆A)− ∂i P̄ = 0 . (92)

∆ui = 0 also implies ∆Ei = 0, that is, the initial and final states of the fluid can differ only up
to gauge transformations, ∆Ai = ∂iΛ. Λ, however, is not an arbitrary function and depends
on the external potential pressure. From (86) one learns,16

Λ(x) = −
H
f

�

P̄(x) +
1

2π
∇2

∫

d2 x ′ K0

�

|x − x ′|
R

�

P̄(x ′)

�

= −
f

2πg

∫

d2 x ′ K0

�

|x − x ′|
R

�

P̄(x ′) .
(93)

The above shows how the shallow water system responds to a shock-wave, where the initial
and final states are both stationary and have the same velocity. These states differ by a large
gauge transformation (93) which arises due to the external potential.17 In other words, these
equations describe how the shallow water remembers the traces of the passage of the shock.
In this regard, we call these equations the memory implant equations. We finally note that (90)
and (93) are related exactly as given in (56). That is, the Darwin drift may be understood as
a area-preserving diffeomorphism in the Lagrange description of the fluid.

We end by showcasing computation of the Darwin drift (90) for functions P̄(x). Let P̄(k)
denote the Fourier transform of P̄(x) and assume P̄(k) is only a function of |k|, then

∆x i
D
=

2π f
gH
εi j∂ j

∫

dk
k

k2 + 1/ℓ2
J0(kr)P̄(k) , (94)

where r = |x |. The above may be written as

∆xφ
D
=

f
gH

2π
r

∫

dk
k2

k2 + 1/ℓ2
J1(kr)P̄(k) . (95)

Interestingly, as we see the drift is not in the radial direction, it is along the φ direction.

15Comparing (84) and (85) we learn that (89) may be written in terms of ∆ui instead of the charge aspect
variation ∆γi by simply replacing ℓ with the Rossby radius R.

16Note that ∆x i
D
̸= − 2

H ε
i j∂ jΛ(x), due to the appearance of R instead of ℓ in the argument of the Bessel function

K0.
17The above is written for g ̸= 0. For g = 0 (92) implies Λ= H

f P̄.
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Hardball example. For P̄ = P0θ (r0 − r), where θ is the step function,

P̄(k) = P0

∫

r dr dφ e−ikr cosφθ (r0 − r) = 2πP0r2
0

J1(kr0)
kr0

, (96)

and hence

∆xφ
D
=

f P0

gH
4π2r0

r

∫

dk
k

k2 + 1/ℓ2
J1(kr)J1(kr0) =

f P0

gH
4π2r0

r
I1

� r<
ℓ

�

K1

� r>
ℓ

�

, (97)

where r> (r<) is the bigger (smaller) of r, r0. Since typically r, r0 ≪ ℓ we can expand the

Bessel functions to obtain ∆xφ
D
= π f P0

4gH
4πr2

0
R2 . As we see this expression is r independent and is

proportional to the area 4πr2
0 of the hardball over the Rossby radius squared.

Some comments on our Darwin drift analysis: (1) As we see from (90) or more explicitly
in the hardball example (97), it is linearly proportional to Coriolis parameter f . (2) This
displacement is essentially transverse to gradient of P, e.g. as we see from (95) a radial
pressure yields a drift in φ direction. This “transverse drift” is a result of Coriolis term. (3) It
is first order in fluid velocity, unlike the Stokes drift which is second order (cf. discussions of
section 6). (4) The usual Darwin drift, e.g. discussed in [16, 17], is however a second order
effect and (essentially) independent of f . We could have extended our analysis to the second
order in the Lagrange formulation, along the same lines discussed in the previous section.

8 Discussion

The realization that shallow water system admits a gauge theory description [1] has important
interesting physical implications. In particular, in the linearized case, we deal with a Maxwell-
Chern-Simons theory which has interesting topological features. The parity violation due to
the presence of the Chern-Simons term is a manifestation of the Coriolis term (rotation of the
Earth for oceans). Typical electromagnetic wave solutions correspond to the Poincare waves,
which manifests this parity violation.

A specific feature of the shallow water system is that it is naturally formulated in a finite
spatial span. So, besides the bulk modes (like Poincare waves) we have boundary effects,
boundary modes, and boundary degrees of freedom, e.g. Kelvin coastal waves. On the other
side, gauge theories in the presence of boundaries and/or their structure in low energy (IR)
limit have been under extensive and intensive study in the last decade. These studies have led
to a systematic formulation of boundary/asymptotic modes in the context of gauge theories,
e.g. see [7], references therein, and its citations. We did not specify boundary/fall off behavior
on the gauge fields in our analysis and allowed for generic residual gauge transformations. We
discussed that the drifts (fluid side) which correspond to fluid memory effects (gauge theory
side), are governed by these boundary modes. It is desirable to study further the boundary
modes and their dynamics using the techniques developed in the gauge theory side. The
same boundary modes may be relevant to describing topological features of the shallow water
systems and/or 2 dimensional condensed matter systems, see e.g. for [1, 5, 6, 39] for recent
ideas or studies in this direction.

Moreover, fluid systems can provide a lab to examine and measure the memory effect and
its relation to the boundary/asymptotic modes and the infinite set of surface charges. Our
fluid memory effects provide a unified framework to interpret Stokes, Darwin, and Euler drifts
as displacement memory effects. We showed that the Euler drift is expressed in terms of the
memory field. To relate the memory effect to the surface charges, we demonstrated that the
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memory field appears as a soft dissipative effect in the non-conservation (change in the value)
of the surface charges. We also showed that in the context of the memory setup, a part of the
information of a passing wave is encoded in the surface charge associated with large gauge
transformations.

The gauge theory description of [1] describes linearized shallow water systems in the Euler
formulation. In the Lagrange formulation, as we discussed, the residual/improper part of the
u(1) gauge symmetry is replaced by 2 dimensional area-preserving-diffeomorphisms, the latter
is the continuum limit of the freedom in labeling the fluid parcels at the surface of the fluid.
It is interesting to explore if this symmetry should be promoted to a noncommutative gauge
symmetry once we consider very short or very long wave lengths, see [34] for similar ideas.

We close by some other possible future directions.

• It would be interesting to explore fluid memory as holonomy, in either of the Euler or
Lagrange formulations. See [40] (and references therein) for related ideas for the case
of usual Maxwell or Einstein gravity theories.

• Displacement memory is the leading memory effect in the gravitational systems, see [41]
and references therein. We have a similar displacement memory in fluid mechanical
systems. It is interesting to relate the two especially in the Lagrange formulation of
the fluid where diffeomorphisms appear as the symmetry. In the same direction, there
are “analogue gravity” systems and acoustic black holes [42–45] and one can explore
bearings of the fluid memory discussed here for acoustic black holes.

• Here we mainly focused on memory in linearized Maxwell-Chern-Simons theory. Given
the gauge theory description of the nonlinear theory, one may extend the same analysis
to the nonlinear system. The first step towards this has been taken in appendix B. It is
interesting to study the interplay of nonlinearity in Stokes drift and the one arising from
nonlinear fluid dynamics.
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A Green’s function

One may rewrite (59) as an equation for the memory field,
�

∂i∂ j −
1
ℓ2
δi j

�

∆A j = −
f
g
∆γi . (A.1)

It is immediately solved using Green’s function satisfying
�

∂i∂k −
1
ℓ2
δik

�

Gk j(x − x ′) = −δi jδ
2(x − x ′) . (A.2)

To solve equation (61) the standard trick is to go to the Fourier space and back to the real
space. We write the Fourier transformation of Gi j(x − x ′) and δ(x − x ′) as follows

Gi j(X ) =

∫

d2kḠi j(k)e
ik·X , δ2(X ) =

1
(2π)2

∫

d2keik·X . (A.3)
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For brevity, we define X = x − x ′. Then (61) reduces to
�

kikk +
1
ℓ2
δik

�

Ḡk j =
1

(2π)2
δi j . (A.4)

One can simply solve this 2× 2 algebraic equation for Ḡi j ,

Ḡi j = −
ℓ2

(2π)2

�

kik j

k2 + 1/ℓ2
−δi j

�

. (A.5)

Therefore,

Gi j(X ) =

∫

d2kḠi j(k)e
ik·X = −

ℓ2

(2π)2

∫

d2k

�

kik j

k2 + 1/ℓ2
−δi j

�

eik·X . (A.6)

One can rewrite the Green function as follows

Gi j(X ) =
ℓ2

(2π)2
∂i∂ j I(X ) + ℓ

2 δi jδ
2(X ) , (A.7)

where

I(X ) =

∫

d2k
eik·X

k2 + 1/ℓ2
= I(X ) = 2πK0(X/ℓ) , (A.8)

where K0 is modified Bessel function of order 0. Recalling that

∂i∂ j I(X ) =
X iX j

X 2
∂ 2

X I +
�

δi j −
X iX j

X 2

�

1
X
∂X I , (A.9)

and that

∂X I = −
2π
ℓ

K1(X/ℓ) , ∂ 2
X I =

2π
2ℓ2
(K0(X/ℓ) + K2(X/ℓ)) , (A.10)

where K1, K2 are the modified Bessel functions of order 1,2, we arrive at

Gi j(X ) = p(X )δi j + q(X )X iX j , (A.11)

where X i = x i − x ′i , X = |x − x ′|,

p(X ) = ℓ2δ2(X i)−
1

2π
K1(X/ℓ)

X/ℓ
, q(X ) = −

1
2πX

∂X

�

K1(X/ℓ)
X/ℓ

�

. (A.12)

B Memory in nonlinear shallow water

In the main text we mainly focused on the charges, memory and the drifts in the linearized
shallow water case. The nonlinear theory has also a gauge theory description and hence one
may extend the notion of symmetries, charges and memory to this case too, which we briefly
discuss here.

Memory from the equation of motion. Nonlinear shallow water equation is

∂tui = −∂i

�

u2

2
+ gh

�

+ eEi . (B.1)

If we fix the temporal gauge for eAµ, namely eAt = 0, then

∂tui = −∂i

�

u2

2
+ gh

�

+ ∂t eAi . (B.2)
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By integrating over time from both sides, we get

∆γi =∆eAi − ∂i

∫ +T

−T
dt

�

u2

2
+ gh

�

, (B.3)

where γi = ui is the charge aspect associated with the surface charge (36). We note that
temporal tilde-gauge fixing still leaves us with time-independent gauge transformations and
that ∆Ãi (like ∆Ai) is invariant under this residual gauge transformations.

Memory from conservation law. Similar to the linear case, by using the EoM we can write
the conservation of surface charges (36)

∆ΓΛ =

∮

B
Λ∆u · dl =

∮

B
Λ∆Ã · dl −
∫ +T

−T
dt

∮

B
Λ∇
�

u2

2
+ gh

�

· dl . (B.4)

The above may be understood through definition of B̃ = f + ζ, which yields,

∂[iÃ j] =
1
2

f εi j + ∂[iu j] =⇒ ∆ui =∆Ãi +∇iX , (B.5)

for some X which is undetermined. If we choose X = −
∫ +T
−T

�

u2

2 + gh
�

dt, this equation repro-
duces (B.4). Note that X in the above may not be thought as a tilde-gauge transformation on
∆Ãi , which is gauge invariant, as commented above.

We also note that∆ΓΛ may also be written in terms of A gauge field,∆ΓΛ =
∮

BΛεi j Ei/B dl j .
The RHS of (B.4) identifies the sources of the non-conservation for ΓΛ. The first term may

be interpreted as the soft dissipative term which is an extension of the circulation charge (3)
by the insertion of the arbitrary time-independent function Λ. The last two terms which come
with an integral over time are hard dissipative terms and have two parts. The first term arises
from the nonlinearity of the theory which is analogous to the news function in gravity and the
second term plays the role of the external source, which is the counterpart of the matter field
in gravitational theories.
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