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Abstract

We study the maximum entanglement that can be produced by a global unitary trans-
formation for systems of two and three qubits constrained to the fully symmetric states.
This restriction to the symmetric subspace appears naturally in the context of bosonic
or collective spin systems. We also study the symmetric states that remain separable
after any global unitary transformation, called symmetric absolutely separable (SAS)
states, or absolutely classical for spin states. The results for the two-qubit system are
deduced analytically. In particular, we determine the maximal radius of a ball of SAS
states around the maximally mixed state in the symmetric sector, and the minimal ra-
dius of a ball that contains the set of SAS states. As an application of our results, we
also analyse the temperature dependence of the maximum entanglement that can be
obtained from the thermal state of a spin-1 system with a spin-squeezing Hamiltonian.
For the symmetric three-qubit case, our results are mostly numerical, and we conjecture
a 3-parameter family of states that achieves the maximum negativity in the unitary orbit
of any mixed state. In addition, we derive upper bounds, apparently tight, on the radii
of balls containing only/all SAS states.
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1 Introduction and problem statement

Entanglement is both a fundamental concept of quantum theory and a central resource of
quantum technology applications, ranging from quantum communication and cryptography,
quantum sensing and metrology, quantum simulation to quantum computing [1–6]. In a mul-
tipartite quantum system, entanglement can be created by applying an appropriate unitary
transformation on a pure product state. This transformation cannot be local, as local unitary
operations cannot change the entanglement content of a state. Global unitary transformations,
on the other hand, have the potential to increase the entanglement among the parties [7, 8].
They can be implemented from the unitary time evolution under a Hamiltonian describing e.g.
interactions among the subsystems or between the subsystems and external driving fields or a
tailored experimental device [9,10]. As quantum mechanics is time reversible, this entangle-
ment can also be removed by applying the inverse unitary transformation.

Although it is at the heart of many protocols leading to a quantum advantage, entangle-
ment remains one of the most delicate quantum properties to preserve from unwanted inter-
actions with the environment. When a system interacts with its surrounding, its state must
be described by a density operator ρ ∈ B(H), where B(H) is the set of the bounded linear
operators acting on the Hilbert space of the quantum states H. System-environment interac-
tions generally tend to deteriorate the coherence and decrease the entanglement content of a
state. After a sufficiently long decoherence time, an initially entangled state may lose all its
entanglement and become a mixed separable state ρsep. This can even reach a point where no
global unitary transformation applied on ρsep is capable of creating entanglement. The state is
then said to be Absolutely Separable (AS) [11]. For a given system, it is obviously of interest
to know which states are absolutely separable, as these states are of little or no use for applica-
tions that require entanglement. More generally, it is important to know what is the maximum
amount of entanglement that can be obtained from a mixed state by the sole application of
unitary transformations. To answer this question, it is first necessary to choose a measure of
entanglement [6], i.e., a scalar function E(ρ) of quantum states that satisfies a series of con-
ditions [6] such as E(ρ) = 0 if and only if ρ is separable. In this work, we will only deal with
quantum states which can be represented by a two-qubit or a qubit-qutrit system – cases for
which the Positive Partial Transpose (PPT) criterion is a necessary and sufficient condition for
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entanglement [12–14] – and use as a measure of entanglement the negativity, defined by

N (ρ)≡
∥ρTA∥1 − 1

2
=
∑

k

|Λk| −Λk

2
, (1)

with Λk the eigenvalues of the partial transpose of ρ with respect to a subsystem A, ρTA, and
∥X∥1 ≡ Tr

p
X †X the trace norm. Equipped with this entanglement measure, the aim is then to

find, for any ρ, the state in its global unitary orbit, {UρU† : U ∈ SU(N)} where N = dim(H),
that maximizes the negativity. This maximum will depend only on the eigenspectrum of ρ
because these are the only invariant quantities on its SU(N) orbit.

The emblematic case of a bipartite quantum system composed of two qubits, with Hilbert
space H ≃ C2 ⊗ C2 ≃ C4, was solved in a seminal paper by Verstraete, Audenaert, and De
Moor [15]. They showed that the maximum negativity achieved in the SU(4) orbit of a state
ρ with eigenvalues sorted in nonascending order λ1 ≥ λ2 ≥ λ3 ≥ λ4 is

max
U∈SU(4)

N
�

UρU†
�

=max
�

0,
r

(λ1 −λ3)
2 +
�

λ2 −λ4

�2 −λ2 −λ4

�

. (2)

In particular, a complete characterisation of the set of AS two-qubit states follows from setting
the previous equation to zero. Other aspects concerning the set of AS states for bipartite sys-
tems have been discussed in the literature. To mention a few, it has been shown that AS states
form a convex and compact set, and that one can construct operators to witness absolute sep-
arability [16] or lack thereof [17]. Recently, quantum maps that output absolutely separable
states have been analysed in Ref. [8]. Similar questions on absolute versions of basic quantum
properties over (global) unitary orbits have also been studied, such as for PPT [18], local-
ity [19], unsteerability [20], non-negative conditional entropy [21], or quantum discord, see
Ref. [22] for an overview. Another variation of the problem is the calculation of the maximum
entanglement achievable in the set of quantum states with fixed purity [23, 24], which is a
larger set than the SU(N) orbit of a state. The negativity stands as an entanglement measure
for the qubit-qutrit system, because of the PPT criterion. However, the question mentioned
above for this system remains open except for particular states [25,26].

In some cases, physical constraints impose a restriction on the set of unitary transfor-
mations that can be applied to a state [27, 28]. For instance, in systems of identical and
indistinguishable bosons, such as photons, an N -qubit state ρ has to be invariant under
any pair of permutation matrices, πσ, i.e. ρ = πσρπσ′ . Another example is a spin-s sys-
tem which is, either physically or conceptually, equivalent to a 2s symmetric multiqubit sys-
tem. For these systems, the set of physical states is reduced to the symmetric subspace
∨N C2 ≡ (C2)∨N ⊂ ⊗N C2 ≡ (C2)⊗N of dimension N + 1, and hence the global unitary trans-
formations are limited to SU(N + 1) linear operations within this subspace. The subsystems
of indistinguishable multipartite systems can also carry entanglement, although there is a de-
bate in the literature suggesting that it might be artificial due to exchange symmetry [29].
Nevertheless, entanglement in indistinguishable systems is a relevant resource for some appli-
cations in quantum metrology and quantum information with bosonic systems, see e.g. [30].
The questions posed above arise naturally in this context, such as what is the maximum amount
of entanglement in the SU(N +1) orbit of a symmetric mixed state. Even for the simplest case
of two qubits, this question has not been answered. The main objective of this work is to fill
this gap for symmetric two- and three-qubit systems. For these symmetric systems, negativity
is also a proper measure of entanglement because they are subspaces of qubit-qubit and qubit-
qutrit systems, respectively. However, since the allowed unitary operations are restricted, the
maximum negativity of a symmetric state will, in general, not be equal to the unrestricted case,
as we show below. The differences between the two problems can be examined more closely
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for two qubits. On the one hand, the state ρS of the system must belong to the symmetric sec-
tor (C2)∨2 of (C2)⊗2, of dimension 3. On the other hand, the global unitary operations SU(4)
are now restricted to the subset of operations that leave the symmetric sector (C2)∨2 invariant,
which is equivalent to SU(3). The latter modification considerably changes the orbit of the
state ρS and, consequently, the maximally entangled state in its SU(3) orbit is different from
the one attained in its full SU(4) orbit.

The analogue of AS states in bosonic systems are those that remain separable after any
unitary transformation preserving the fully symmetric subspace. We will call them symmetric
absolutely separable (SAS) states (called absolutely symmetric separable states in Ref. [31]),
and we will denote the whole set by Asym. The existence of balls of SAS states around the
maximally mixed state in the symmetric sector was shown in Ref. [32]. Similar balls of AS
states in the full Hilbert space have been analysed for qubit-qudit systems [11, 33–35], and
for the implementation of quantum computation in NMR experiments [36]. In the language
of spin states, the SAS states are the equivalents of the Absolutely Classical (AC) spin states
introduced in Ref. [32], see Sec. 2 for more details on the correspondence.

The present work is organised as follows: Sec. 2 reviews the definition of separability,
classicality of spin states, and their absolute versions over global unitary operations. In Secs. 3
and 4, we calculate the maximum entanglement achieved in the unitary orbits of symmetric
two- and three-qubit states, the first system studied analytically while the second one mostly
numerically, respectively. For these systems, we then determine the maximal radius of balls
contained in Asym and the minimal ball that includes Asym, both around the maximally mixed
state in the symmetric sector. In particular, for the two-qubit case, we study the maximum
negativity and its temperature dependence for the Lipkin-Meshkov-Glick model [37, 38]. We
present the conclusions of this work and some perspectives in Sec. 5.

2 Separability and classicality

2.1 Separable states of multiqubit systems

The Hilbert space H1 of a single qubit system is spanned by two basis vectors |+〉 and |−〉. The
full Hilbert space of an N -qubit system ⊗NH1 ≡ H⊗N

1 is of dimension 2N and is spanned by
the product states |ψ1〉⊗· · ·⊗|ψN 〉 with |ψk〉 ∈ {|+〉, |−〉} for all k = 1, . . . , N . The convex hull
of the product states defines the set of separable states S ⊂ B(H⊗N

1 ). Any state ρ that is not
separable, i.e. ρ /∈ S, is said to be entangled. All separable states ρsep ∈ S have zero negativity,
N (ρsep) = 0. The measure of entanglement of a state cannot, by definition, be modified by
local unitary operations [6]. On the other hand, the entanglement of a state ρ may change
under a global unitary operation U ∈ SU(2N ). However, there are special states that remain
separable for all U ∈ SU(2N ) and these are called absolutely separable (AS) states [11]. They
can be formally defined as the states ρ ∈ B(H⊗N

1 ) for which

max
U∈SU(2N )

E(UρU†) = 0 , (3)

for some measure of entanglement E.

2.2 Separable states in the symmetric sector and classical spin states

A multiqubit system is equivalent to a system of N spin-1/2, where each of the spin Hilbert
spaces are spanned by the eigenvectors of the angular momentum operator Sz , the |1/2,±1/2〉
states that we can identify with the |±〉 qubit states. For our purposes, we only consider the
symmetric sector ∨NH1 ≡ H∨N

1 of H⊗N
1 , spanned by the symmetric Dicke states |D(k)N 〉 [39]
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with
|D(k)N 〉= K
∑

π

π
�

|+〉 ⊗ . . . |+〉
︸ ︷︷ ︸

N−k

⊗|−〉 ⊗ . . . |−〉
︸ ︷︷ ︸

k

�

, for k = 0, . . . N , (4)

where the sum runs over all the permutations π of the qubits and K > 0 is a normalization
constant. Due to the fact that the |D(k)N 〉 states are equivalent to the eigenvectors |s, m〉 of the
collective operator Sz , with s = N/2 and m= (N−2k)/2 [39], the subspace H∨N

1 is isomorphic
to the Hilbert space H(s) of a spin s system, both being of dimension N + 1 = 2s + 1. Global
unitary transformations restricted in H∨N

1 correspond to SU(N + 1) transformations in H(s).
The restriction of product states to the symmetric subspace leads to N -qubit states of the

form |ψ〉= |φ〉⊗N with |φ〉= α|+〉+β |−〉 a normalized single qubit state. In the spin picture,
this corresponds to spin-coherent (SC) states [40–42]. The convex hull of SC states defines
the set of classical spin-states C [43, 44]. A spin-s state ρ(s) is called absolutely classical (AC)
when the SU(2s + 1) orbit of ρ(s) ∈ B(H(s)) is contained in C [32]. The complement of the
set of classical states has also been studied in the literature [43–47] and a measure of non-
classicality, called quantumness, has been defined in [45] as the distance between a state ρ(s)

and C [46] (see also [48] for the relation between quantumness and the geometric measure
of entanglement).

Now, we introduce formally the notion of symmetric absolutely separable (SAS) states, the
set of which will be denoted by Asym. We say that ρS ∈Asym if its SU(N + 1) orbit,

{USρSU†
S : US ∈ SU(N + 1)} , (5)

contains only separable symmetric states. Equivalently, ρS is SAS if

max
US∈SU(N+1)

E(USρSU†
S) = 0 , (6)

for some measure of entanglement E. The equivalence between the set of SAS states and the
set of AC states (as proved by Theorem 1 of [49]) means that they can both be labeled by
Asym, and both sets will satisfy the results deduced in the subsequent sections. From now on,
we only use the terminology of SAS states in the symmetric sector H∨N

1 for simplicity.

2.3 AS states for 2×m bipartite systems

To highlight the difference between SAS and AS states, let us first consider the case of two
qubits. A direct consequence of Eq. (2) is that a two-qubit state ρ, with eigenspectrum
λ1 ≥ λ2 ≥ λ3 ≥ λ4, is AS when

(λ1 −λ3)
2 − 4λ2λ4 ≤ 0 . (7)

In particular, a two-qubit state ρ cannot be AS if it has more than one zero eigenvalue, as
then Eq. (7) cannot be fulfilled. For exactly one zero eigenvalue (λ4 = 0), the state is AS if
(λ1 −λ3)2 ≤ 0, which is only possible when λ1 = λ2 = λ3 = 1/3. Since symmetric two-qubit
states ρS are of rank 3 at most (they have no component on the antisymmetric state), they
cannot be AS with respect to their full SU(4) orbit, except for the aforementioned eigenspec-
trum, corresponding to the maximally mixed state in the symmetric subspace. In contrast, we
will see in Sec. 3 that the picture is much richer when we restrict to the symmetric subspace,
leaving room for a continuous two-dimensional set Asym.

For the general case of a 2×m bipartite state, we can use a result of Johnston [50] which
states that a state ρ with spectrum λ1 ≥ λ2 ≥ · · · ≥ λ2m ≥ 0 is AS if and only if

λ1 ≤ λ2m−1 + 2
Æ

λ2m−2λ2m . (8)
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The previous condition is equivalent to the absolute PPT criterion of a state [18], as it is
proved in [50]. For an N -qubit state ρ viewed as a 2 × 2N−1 bipartite state ρ, yields ρ is
AS if and only if λ1 ≤ λ2N−1 + 2

p

λ2N−2λ2N . But for symmetric states, which have support
only on the symmetric subspace, λk = 0 ∀ k > N + 1, which leads to the condition λ1 ≤ 0
that can never be fulfilled since λ1 > 0 is the largest eigenvalue of ρ. Although symmetric
multiqubit states of more than two qubits cannot be AS, they can be SAS as we show below. A
trivial example is the maximally mixed state in the symmetric sector for the three-qubit system
ρ ∈ B(H∨3

1 ) ⊂ B
�

H1 ⊗H∨2
1

�

which, seen as a 2× 3 system, has a spectrum consisting of six
eigenvalues, two of which are zero (λ5 = λ6 = 0). Hence, it is not AS but is evidently SAS.

3 Symmetric two-qubit states

3.1 Maximum negativity

The central question presented in the introduction can now be reformulated as follows: For a
symmetric two-qubit mixed state ρS , what is the maximum entanglement that can be obtained
by a global unitary transformation US ∈ SU(3) that leaves the symmetric sector invariant ?
The answer to this question is stated by the following theorem:

Theorem 1 Let ρS be a symmetric two-qubit state with spectrum τ1 ≥ τ2 ≥ τ3. It holds that

max
US∈SU(3)

N
�

USρSU†
S

�

=max
�

0,
Ç

τ2
1 + (τ2 −τ3)

2 −τ2 −τ3

�

, (9)

where the maximum negativity is reached by the state ρ̃S = USρSU†
S given up to local unitary

transformations by

ρ̃S = τ3|D
(0)
2 〉〈D

(0)
2 |+τ1|D

(1)
2 〉〈D

(1)
2 |+τ2|D

(2)
2 〉〈D

(2)
2 | . (10)

The full characterization of the set Asym follows immediately from Theorem 1:

Corollary 1 Let ρS be a symmetric two-qubit state with spectrum τ1 ≥ τ2 ≥ τ3. Then ρS ∈Asym
if and only if its eigenvalue spectrum fulfills

p
τ2 +
p

τ3 ≥ 1 . (11)

Proof. The symmetric two-qubit state ρS is SAS if the right-hand side of (9) is zero which,
using the normalization condition τ1 +τ2 +τ3 = 1, is equivalent to the above inequality. □
In Fig. 1, we show a density plot of the maximum negativity given by Eq. (9) for all states
ρS ∈ B(H∨2

1 ) in terms of its two smallest eigenvalues τ2 and τ3. The solid lines correspond
to the states with two coincident spectrum eigenvalues, τ2 = τ3 or τ1 = τ2, respectively.
The 2-dimensional white region constitutes the set Asym and its boundaries are given by two
inequalities associated with the eigenvalues sorting, τ2 ≥ τ3 and 2τ2 + τ3 ≤ 1 (solid lines),
and Eq. (11) (black dashed line). The end (yellow) points q1 and q2 (of the boundary (11))
correspond to the spectra (τ1,τ2,τ3) = (4/9, 4/9, 1/9) and (1/2,1/4,1/4), respectively. We
also remark that when ρS has one zero eigenvalue τ3 = 0, the condition (11) cannot be met
and then ρS /∈ Asym, as can be seen in Fig. 1. The characterization of the SAS states for the
symmetric two-qubit system was studied recently in [31], where they also reported the same
characterization of SAS states given in our Corollary 1.

Another famous measure of entanglement for two qubits is the concurrence C(ρ), defined
as [51]

C(ρ) =max(0, s1 − s2 − s3 − s4) , (12)
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Figure 1: Density plot of the maximum negativity (9) attained in the SU(3) orbit
of a symmetric two-qubit state ρS over the simplex of its eigenvalues (τ3,τ2). The
contour curves are shown for a maximum negativity equal to 0.8,0.6, 0.4,0.2 (grey
dashed lines). The set Asym is depicted by the white region bounded on the left by
the black dashed curve (which follows from Corollary 1), with end points q1 and
q2 (yellow). The right corner of the simplex corresponds to the maximally mixed
symmetric state, ρ0 = 13/3 ∈ B(H∨2

1 ), and the lower corner to pure states.

where si are the singular values of the matrix
p

ρT S
p
ρ with S = σy ⊗σy and σy the second

Pauli matrix. Interestingly, the state (10) also maximizes the concurrence in its respective
SU(3) orbit, with a value equal to

max
US∈SU(3)

C
�

USρSU†
S

�

=max
�

0,τ1 − 2
p

τ2τ3

�

. (13)

The proof of this result is given in Appendix A.
We end this subsection with the proof of Theorem 1.

Proof of Theorem 1. The partial transpose of a qubit-qubit state has at most one negative
eigenvalue [52], reducing the expression of the negativity to

N (ρ) = 2max (0, −Λmin) , (14)

with Λmin the minimal eigenvalue of ρTA
S . Moreover, Λmin is equivalent to [15,31]

Λmin = min
|ψ〉∈H⊗2

1

Tr
�

ρS(|ψ〉〈ψ|)TA
�

. (15)

The general two-qubit state |ψ〉 can be written as a linear superposition of a symmetric state
and an antisymmetric state, |ψS〉 ∈H∨2

1 and |ψA〉 ∈H∧2
1 ,

|ψ〉= cosα |ψS〉+ eiδ sinα |ψA〉 , (16)

where α ∈ [0,π/2] and δ ∈ [0,2π). On the one hand, |ψS〉 can be written via the Schmidt
decomposition as

|ψS〉= cosβ |n1〉 ⊗ |n1〉+ sinβ |n2〉 ⊗ |n2〉 , (17)

where Γ = {|n j〉}2j=1 is an orthogonal basis of H1 and β ∈ [0,π/2].1 On the other hand, |ψA〉
can be written for any orthogonal basis of H1, in particular Γ , as

|ψA〉=
1
p

2
(|n1〉 ⊗ |n2〉 − |n2〉 ⊗ |n1〉) . (18)

1Although the Schmidt coefficients are always positive, we consider here that the coefficients can have different
signs.
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Hence, |ψ〉〈ψ| is the sum of four terms

|ψ〉〈ψ|= cos2α |ψS〉〈ψS|+ sin2α |ψA〉〈ψA|+ cosα sinα
�

e−iδ|ψS〉〈ψA|+ eiδ |ψA〉〈ψS|
�

. (19)

The condition for a state ρS to be symmetric is that it has support only on the symmetric sector
of B(H⊗2

1 ), which can be written as ρS = PSρS PS with PS the projection operator onto H∨2
1 .

For convenience, we now introduce the symmetrized state |n1, n2〉 resulting from the action of
PS on the product state |n1〉 ⊗ |n2〉,

PS|n1〉 ⊗ |n2〉=
1
2
(|n1〉 ⊗ |n2〉+ |n2〉 ⊗ |n1〉)≡

|n1, n2〉p
2

.

Replacing ρS in Eq. (15) by PSρS PS and using the cyclic property of the trace, we get

Λmin = min
|ψ〉∈H⊗2

1

Tr
�

ρS PS(|ψ〉〈ψ|)TA PS

�

=min
X

Tr [ρSX ] ,

where the operator X = PS(|ψ〉〈ψ|)TA PS can be developed as

X = cos2αΣ1 + sin2αΣ2 + cosα sinα sinδΣ3 , (20)

where the Σ j operators are represented in the orthonormal basis Γ ′ = {|n1〉⊗2, |n1, n2〉, |n2〉⊗2}
by the matrices

Σ1 =





cos2 β 0 0
0 cosβ sinβ 0
0 0 sin2 β



 , Σ2 =
1
2





0 0 −1
0 1 0
−1 0 0



 , (21)

Σ3 = i





0 cosβ 0
− cosβ 0 sinβ

0 − sinβ 0



 . (22)

The basis Γ ′ can be transformed to the symmetric Dicke basis {|D(k)2 〉}
2
k=0 by a diagonal

SU(2)× SU(2)-transformation V = Ṽ ⊗ Ṽ such that Ṽ †|n1〉 = |+〉 and Ṽ †|n2〉 = |−〉. Hence,
PS(|ψ〉〈ψ|)TA PS for a general state |ψ〉 is parametrized by the (α,β ,δ) variables and a diagonal
SU(2)× SU(2)-transformation V

PS(|ψ〉〈ψ|)TA PS = V †X V , (23)

where the matrix X written in the symmetric Dicke basis has the form (20). The smallest value
of Λmin over the SU(3) orbit of ρS is equal to

min
U∈SU(3)

Λmin = min
U ,V,α,β ,δ

Tr
�

UρSU†V †X V
�

. (24)

Without loss of generality, the U and V unitary transformations can be combined to W = V U
because the diagonal SU(2)× SU(2) transformation V is in the SU(3) group.2 The minimiza-
tion problem then reduces to

min
W∈SU(3)
α,β ,γ

Tr
�

ρSW †XW
�

. (25)

2A diagonal SU(2) × SU(2) operation is equivalent to a rotation times a global phase factor, which are also
operations contained in SU(3).
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Birkhoff’s theorem (Theorem 8.7.2 of [53]) establishes that the minimum over all W ∈ SU(3)
is attained when W is the product of matrices diagonalizing ρS and X in the same basis, and
a matrix W (π) representing a permutation π ∈ S3 where S3 is the permutation group of three
elements. Without loss of generality, we consider ρS and X to be represented by the diagonal
matrices ρd and Xd in the Dicke basis. Thus, (25) is given by

min
π∈S3

α,β ,γ

Tr
�

ρdW †(π)XdW (π)
�

= min
π∈S3

α,β ,γ

3
∑

k=1

τπ(k)ξk ,

where ξk are the eigenvalues of X . The eigenvalues ξk cannot generally be expressed in a
compact way. However, the function to minimize in the last equation must have its derivative
with respect to δ equal to zero at W,α,β ,δ where the minimum is attained, which implies
that

Tr
�

ρSW †Σ3W
�

cosα sinα cosδ = 0 . (26)

The latter equation is satisfied either by one of the following solutions: (A) δ = π/2, 3π/2,
or (B) α= 0, π/2, or (C) when Tr[ρSW †Σ3W ] = 0. First, the eigenvalues for the solution (A)
are the same for both values of δ and equal to





ξ1

ξ2

ξ3



=
1
2





1+
p

1− z2

z

1−
p

1− z2



 , (27)

with z = − sin2α+ cos2α sin(2β). On the other hand, while the solution (B) keeps only Σ1
or Σ2 in X [see Eq. (20)], the solution (C) restricts the available set of the W matrices to
Rβ = {W ∈ SU(3)|Tr

�

ρSW †Σ3W
�

= 0} with Σ3 = Σ3(β). Then, Eq. (25) for the solution (C)
is reduced and lower bounded by

min
W ′∈Rβ

α,β ,γ

Tr
�

ρSW ′†XW ′
�

= min
W ′∈Rβ

α,β ,γ

Tr
�

ρSW ′†(cos2αΣ1 + sin2αΣ2)W
′�

≥ min
W∈SU(3)
α,β ,γ

Tr
�

ρSW †(cos2αΣ1 + sin2αΣ2)W
�

. (28)

Thus, the solution (B) and the upper bound of (C) can be studied simultaneously by omitting
Σ3 in the minimization problem, leaving X = cos2αΣ1 + sin2αΣ2 with eigenvalues equal to





ξ1

ξ2

ξ3



=
1
4







1+ y1 −
q

2(1+ y2
1 − 2y2

2 )

1+ y1 +
q

2(1+ y2
1 − 2y2

2 )
1− y1 + 2y2






, (29)

where y1 = cos(2α) and y2 = cos2α sin(2β). For both sets of eigenvalues (27) and (29), we
must now find the critical points of (26) with respect to the variables α and β . We enlist in
Appendix B all the critical points obtained for the cases mentioned above. By comparing the
values obtained for (26) with all the possible permutations π, we deduce that the minimum
Λmin in the SU(3) orbit of ρS is reached for the solution (A) with

z = − sin2α+ cos2α sin(2β) = −
τ1

q

τ2
1 + (τ2 −τ3)2

, (30)
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and with π such that

Λmin = τ3 ξ1 +τ1 ξ2 +τ2 ξ3 =
1
2

�

τ2 +τ3 −
q

τ2
1 + (τ2 −τ3)2
�

. (31)

It is this value of Λmin which gives the expression (9) for the negativity N (ρS). In particular,
for α = 0 and sin(2β) = −τ1/

q

τ2
1 + (τ2 −τ3)2, the X matrix is already diagonal in the

symmetric Dicke basis and reads

X = ξ1|D
(0)
2 〉〈D

(0)
2 |+ ξ2|D

(1)
2 〉〈D

(1)
2 |+ ξ3|D

(2)
2 〉〈D

(2)
2 | . (32)

In order to attain (31), ρS must then be equal to (10), up to a local unitary transformation. □
Let us remark that the minimization in (15) is performed over all states |ψ〉 ∈H⊗2

1 , and we
found that the states |ψ〉 that minimize Λmin over the SU(3) orbit of ρS are of the form (16),
with δ = π/2, 3π/2 and (α,β) such that Eq. (30) is satisfied. This implies that there exists a
1-dimensional set of states |ψ〉 ∈ H⊗2

1 that minimize Λmin of ρS . In particular, for α = 0, the
state |ψ〉 belongs to the symmetric sector H∨2

1 .

3.2 Extension of the set of SAS states

In this subsection, we derive, from the previous results, the radii of the maximal ball contained
in Asym and the minimal ball that includes Asym, both centred on the maximally mixed state
in the symmetric subspace ρ0 = (N + 1)−11N+1 with 1N+1 the identity matrix of size N + 1.
We denote by r the Hilbert-Schmidt distance between a state ρS and ρ0

r ≡




ρS −ρ0







HS =

√

√

Tr
�

ρ2
S

�

−
1

N + 1
. (33)

The range for r is
�

0,
q

N
N+1

�

, where the upper and lower bounds are reached when ρS is
equal to ρ0 or a pure state, respectively. As in the non-symmetric case, there are balls centred
on ρ0 containing only SAS states. Consequently, there exists a maximum radius rSAS such that
any ball centred on ρ0 with radius r ≤ rSAS contains only SAS states. A lower bound rLB

SAS for
rSAS has been determined in Ref. [32] (in the context of the absolute classicality of spin-s states
with s = N/2)

rLB
SAS =

1
Ç

(N + 1)
�

2(2N + 1)
�2N

N

�

− (N + 2)
�

. (34)

To determine the exact value of rSAS, we first calculate the distance r for the states
(10) that maximize the negativity in each SU(3) orbit. Using the normalization condition
τ1 +τ2 +τ3 = 1, we obtain

r2 =
2
3
+ 2
�

τ2
2 +τ

2
3 +τ2τ3 −τ2 −τ3

�

. (35)

The last equation allows us to expressτ2 in terms of r andτ3, and thus the maximum negativity
over each SU(3) orbit of ρS , Eq. (9), as a function of τ3 and r. In Fig. 2, we show a density
plot of this maximum negativity, where the variables τ3 and r are subject to the constraints
p

2/3 (1 − 3τ3) ≥ r ≥ (1 − 3τ3)/
p

6 depicted by straight lines. The black dashed curve
delimiting Asym (white region) corresponds to the inequality

r ≤

√

√2
3

�

1+ 3
�

τ3 −
p

τ3

�

�

, τ3 ∈
�

1
9

,
1
3

�

. (36)
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Figure 2: Density plot of the maximum negativity (9) over the simplex of symmetric
two-qubit states ρS parametrized with (τ3, r). The Asym boundary is now given by
Eq. (36).

Figure 3: Maximum negativity in the SU(3) orbit of a spin-1 thermal state with
Hamiltonian (38) with (left) kB T/ħh = 2 (in the same units of frequency as γx and
γz) for g = 0, and (right) kB T/ħhg = 3 for g ̸= 0. The black thick lines show the
bounds of the (γx ,γz) values where the corresponding thermal states ρS are SAS.

The end points of the dashed curve corresponding to the (yellow) points q1 and q2 shown in
Fig. 1, have coordinates (τ3, r)

�

1
9

,
2

3
p

6

�

, and
�

1
4

,
1

2
p

6

�

, (37)

respectively. As a result, all states with r ⩽ 1/(2
p

6) are necessarily SAS, from which we
deduce that rSAS = 1/(2

p
6). This value is strictly larger than that provided by Eq. (34), equal

to 1/(2
p

42) for s = N/2 = 1. Moreover, we can easily obtain the radius RSAS of the smallest
ball containing Asym by observing in Fig. 2 that the SAS state furthest from ρ0 has a spectrum
associated with the point q1. Hence, we can conclude that RSAS = 2/(3

p
6) and that any state

ρS at a distance from ρ0 larger than RSAS cannot be SAS.

3.3 Spin-1 system at finite temperature

We now apply our results to determine the maximum achievable entanglement from the sole
application of a unitary transformation on a thermal state. We consider a spin-1 system at
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Figure 4: Critical temperature Tc above which the thermal state of the Hamiltonian
(38) becomes SAS. We plot the cases for (left) g = 0 (with kB Tc/ħh,γx and γz in the
same units of frequency) and (right) g ̸= 0.

temperature T with a Hamiltonian of the form

H/ħh= gS̃z + γx S̃2
x + γz S̃2

z , (38)

where S̃n ≡ Sn/ħh are the (dimensionless) angular momentum operators along the n = x , y, z
axes, and g, γx and γz are coupling strengths (in the same units of frequency). Without
loss of generality, we can consider g ⩾ 0. The Hamiltonian (38) appears in several bosonic
systems, such as Bose-Einstein condensates [54] or the Lipkin-Meshkov-Glick model [37,38].
The corresponding thermal state ρS of the system has normalized eigenspectrum equal to

τk =
e−βε4−k

Z
, with Z = Tr

�

e−βH
�

, (39)

with εk the eigenvalues of H sorted in nonincreasing order ε1 ⩾ ε2 ⩾ ε3, and β = 1/kB T
where kB is the Boltzmann constant. For s = 1, the eigenvalues εk are given by
§

ħh
2

�

γx + 2γz −
q

4g2 + γ2
x

�

, ħhγx ,
ħh
2

�

γx + 2γz +
q

4g2 + γ2
x

�

ª

, (40)

where the order of the eigenvalues depends on the values of the coupling strengths. We plot in
Fig. 3 the maximum negativity (9) in the unitary orbit of the thermal state at finite temperature
as a function of the coupling strengths γx and γz for g = 0 (left) and g ̸= 0 (right). We observe
a region in the (γx , γz) parameter space where the corresponding thermal states ρS are SAS.
Its boundaries can be obtained analytically by substituting the eigenspectrum of the thermal
state in the condition (11), yielding

2ε3 − ε1 − ε2 + 2kB T ln2⩾ 0 . (41)

For g = 0, the eigenenergies are (γx , γz , γx +γz) and the SAS region is a triangle with bound-
aries given by







ħh (γx + γz) + 2kB T ln 2⩾ 0 , for γx , γz ⩽ 0 ,

ħh (γz − 2γx) + 2kB T ln 2⩾ 0 , for 0⩽ γz ⩽ γx , or γz ⩽ 0⩽ γx ,

ħh (γx − 2γz) + 2kB T ln 2⩾ 0 , for 0⩽ γx ⩽ γz , or γx ⩽ 0⩽ γz .

(42)

On the other hand, for g ̸= 0, the region is bounded by linear and nonlinear conditions of the
(γx , γz) variables
(

ħh (γx − 2γz) + 2kB T ln 2⩾ 0 , for g2 ⩽ γz (γz − γx) , and γx < 2γz ,

ħh
�

2γz − γx − 3
q

4g2 + γ2
x

�

+ 4kB T ln 2⩽ 0 , for g2 ⩾ γz (γz − γx) , or 2γz < γx .
(43)
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For any set of values of the coupling strengths (g, γx , γz), there exists a critical temperature
Tc above which the thermal state ρS is SAS. We plot in Fig. 4 the critical temperature Tc as a
function of the coupling strengths (γx , γz), calculated by setting to zero the inequalities (42)
and (43), respectively. We can observe that the contour curves of Fig. 4 are the boundaries of
the SAS states appearing in Fig. 3 for the corresponding temperature.

4 Symmetric three-qubit states

4.1 Numerical results

The determination of the maximally entangled state in the SU(4) orbit of a symmetric three-
qubit state ρS ∈ B(H∨3

1 ) can again be formulated as an optimization problem with the negativ-
ity as objective function because the PPT criterion is both a necessary and sufficient condition
for entanglement in the qubit-qutrit system for which H∨3

1 is a subspace, see e.g. [55]. How-
ever, the optimisation is much more difficult in this case, as it must a priori be performed on
the fifteen parameters of global unitary transformations, and remains an open problem at this
stage. One main difference with respect to the two-qubit case is that ρTA can have one or
two negative eigenvalues [52]. We have performed intensive numerical calculations on the
basis of which we found a 3-parameter family of global unitary transformations ŨS which we
conjecture allows the maximum negativity to be reached in the full SU(4) orbit of any state
ρS ∈ B(H∨3

1 ). The parametric unitary ŨS = ŨS(α1, α2, α3) with α j ∈ R is real and has the

following form in the Dicke-basis {|D(k)3 〉 : k = 0, . . . , 3},

ŨS =







0 −n1x n2y n1y n3x − n1x n2x n3y −n1x n2x n3x − n1y n3y
n1x n1y n2x −n1y n2y n3y −n1y n2y n3x
0 n1y n2y n1x n3x + n1y n2x n3y n1y n2x n3x − n1x n3y

n1y −n1x n2x n1x n2y n3y n1x n2y n3x






, (44)

in terms of the components of the three real unit vectors

n j =
�

n j x , n j y

�

=
�

cosα j , sinα j

�

, for j = 1, 2, 3 . (45)

Our findings lead us to the following conjecture:

Conjecture 1 Let ρS ∈ B(H∨3
1 ) with eigenspectrum τ1 ⩾ τ2 ⩾ τ3 ⩾ τ4. It holds that

max
US∈SU(4)

N
�

USρSU†
S

�

= max
π,α1,α2,α3

N
�

ŨSρ
π
S Ũ†

S

�

, (46)

where ŨS is given by Eq. (44), ρπS is the diagonal state in the Dicke basis given by

ρπS =
3
∑

k=0

τπ(k+1)|D
(k)
3 〉〈D

(k)
3 | , (47)

and π is a permutation of the eigenvalues.

We have successfully tested the validity of the Conjecture 1 on 24,000 states by sampling their
unitary orbits with 2 million randomly chosen global unitary operations and comparing the
maximum obtained for the negativity with Eq. (46). We plot in Fig. 5 the maximum negativity
calculated according to the Conjecture 1 in the eigenvalues simplex (τ2, τ3, τ4), sorted in
non-increasing order, for the values of τ4 = 0, 1/10, 3/20 , 7/38, respectively. The cloud of
pink points shows the spectra for which Eq. (46) gives zero and for which a random sampling
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Figure 5: Density plot of the maximum negativity (computed using Conjecture 1)
of symmetric three-qubit states over the simplex of eigenvalues (τ2, τ3, τ4) for
τ4 = 0, 1/10, 3/20, 7/38. The grey dashed lines are contour curves where the maxi-
mum negativity is equal to 0.8, 0.6, 0.4, 0.2, 0.1, respectively. The black dashed lines
correspond to the SAS boundaries calculated by Conjecture (1), which are tangent
to the set of SAS states (pink points, see text). The points p1 and p4, correspond-
ing to the eigenvalues (τ1, τ2, τ3, τ4) = (3, 3, 3, 1)/10 and (13, 9, 9, 7)/38, define
bounds for the radii of the balls that contains either the whole set Asym, or only SAS
states.

of more than 2 million states along the global unitary orbit yielded only separable states. We
can observe in Fig. 5 that the boundaries of Asym defined by Conjecture 1 are tangent to the set
of pink points. As we mention a posteriori, the points p1 and p4, associated to the eigenspectra
(τ1, τ2, τ3, τ4) = (3, 3, 3, 1)/10 and (13, 9, 9, 7)/38, define bounds for the radii of the balls
that contains either the whole set Asym or only SAS states, respectively.

The 3-parameter family is motivated by other three particular states which reach the max-
imum negativity, observed numerically, over certain regions of the faces of the simplex (see
Fig. 6):

i) For (α1, α2, α3) = (0, 0, 0), the maximum negativity is achieved for the state

ρ
(i)
S = τ4|D

(0)
3 〉〈D

(0)
3 |+τ1|D

(1)
3 〉〈D

(1)
3 |+τ3|D

(2)
3 〉〈D

(2)
3 |+τ2|D

(3)
3 〉〈D

(3)
3 | , (48)

yielding

N
�

ρ
(i)
S

�

=
1
3

max
�

0,
q

8τ2
1 + (2τ3 − 3τ4)2 − 2τ3 − 3τ4

�

. (49)
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Figure 6: Regions where the states (48), (50) and (51), or a generic state defined
in Conjecture 1, achieve the maximum entanglement, colored in green, blue, red
or grey, respectively. We plot the faces of the simplex shown in Fig. 5, each one
given by a condition in the eigenspectrum of ρS . The white regions correspond to
the set Asym. The Asym boundaries in the edges of the simplex that connect with
the maximally mixed state are given by the points p1, p2 and p3, with associated
eigenspectra (3, 3, 3, 1)/10, (5, 3, 3, 3)/14 and (3−

p
3, 3−

p
3,
p

3−1,
p

3−1)/4,
respectively. We also plot the point p4 associated to the spectrum (13, 9, 9, 7)/38
that gives the optimal upper bound of RSAS (53). On the other hand, the optimal
upper bound of rSAS is given by p1 (55).

ρ
(i)
S achieves the maximum negativity for the eigenspectra associated to the green regions

shown in Fig. 6, where we plot the faces of the simplex of Fig. 5. In particular, we have observed
that this basis defines the SAS boundaries in the edges of the simplex τ1 = τ2 = τ3 and
τ1 = τ2∨τ3 = τ4, which are the points p1 and p3 with associated eigenspectra (3, 3, 3, 1)/10
and (3−

p
3, 3−

p
3,
p

3− 1,
p

3− 1)/4.

ii) For (α1, α2, α3) = (π/6, 0, 0), the state is equal, up to a global rotation by π/2 along the
y axis, to

ρ
(ii)
S = Vρ(i)S V † , with V =

1
p

2







1 1 0 0
0 0 1 1
0 0 −1 1
−1 1 0 0






. (50)

This state can have two negative eigenvalues coming from the roots of an irreducible polyno-
mial of degree three. We have obtained numerically thatρ(ii)S achieves the maximum negativity
over the blue regions in Fig. (6). We proved that this state achieves the maximum negativity
for the eigenspectra τ2 = τ3 = τ4 in Appendix C, where we also conclude that the point p2
in the SAS boundary has spectrum equal to (5, 3, 3, 3)/14. The blue region also contains the
points p1 and p4 that, as we mention below, give tight bounds for RSAS and rSAS.

iii) Lastly, the state defined by the unitary transformation (44) with (α1, α2, α3) = (0, α2, π)
achieves the maximum negativity in the red region of Fig. 6. The corresponding state is

ρ
(iii)
S = Vρ(i)S V † , with V =







− sinα2 cosα2 0 0
0 0 1 0
0 0 0 1

cosα2 sinα2 0 0






, (51)

which, for α2 = 0 is equivalent, up to a permutation of the eigenvalues, to the ρ(i)S state.
We plot in Fig. 6 the regions where each of the states listed above achieves the maximum

negativity with a difference at most of 10−6 with respect to the full family of states (44). The
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not SAS

Figure 7: Sketch of the set of states ρS ∈ B(H∨3
1 )which satisfy Obs. 1, represented by

the outer (blue) region. While the outer region is composed only of non-SAS states,
the set Asym is contained in the inner (grey) region. The balls of radii R and r define
the upper bounds of RSAS and rSAS, respectively.

optimal state in the grey regions are given by a generic state specified in Conjecture 1, and the
white region corresponds to set Asym. It has been observed numerically that the 3-parameter
family (44) also get the maximum negativity for states with eigenspectrum corresponding to
points inside the simplex.

The three states mentioned above give analytical witnesses for symmetric non-absolute
separability. In particular, we only need to consider the conditions given by the states ρ(i)S and

ρ
(ii)
S because ρ(iii)S gives a weaker condition.

Observation 1 A symmetric three-qubit state ρS cannot be SAS if its eigenspectrum
τ1 ⩾ τ2 ⩾ τ3 ⩾ τ4 satisfies

τ1 >
p

3τ3τ4 ∧ (3τ1 − 2τ2)
2τ3 + 3(τ2

2 −τ
2
3)τ4 > 9τ3τ

2
4 . (52)

The first expression is deduced from Eq. (49), and the second from the application of
Descartes’ rule of sign to the characteristic polynomial for the partial transpose of the state
(50). The bounds are not tight, and a counterexample is given by a state with spectrum
(0.346, 0.254, 0.2, 0.2), which does not satisfy any of the conditions listed in Obs. 1 and which
has a maximum negativity N ≈ 3.76 × 10−4 for the values (α1, α2, α3) = (2.817, π, 1.588)
according to Conjecture 1. It is interesting to note that the non-SAS states escaping Observa-
tion 1 all have a negativity of order 10−4 at most, which proves the effectiveness of Eq. (52)
as a witness of symmetric non-absolute separability.

4.2 Extension of the set of SAS states

The three-dimensional simplex associated with the spectrum eigenvalues (τ2,τ3,τ4) is divided
into two regions by the conditions of Obs. 1 as shown in Fig. 7. The outer (blue) region is
composed only of non-SAS states, while the grey (inner) region contains the set Asym and
other non-SAS states. Hence, an upper bound of RSAS (rSAS) is provided by the maximum
(minimum) achievable distance r between ρ0 and states lying on the boundaries specified by
Obs. 1. Following the same reasoning as in Subsec. 3.2, the minimal distance is obtained from
the second condition of Obs. 1 for

�

τ1, τ2, τ3, τ4

�

=
�

13
38

,
9

38
,

9
38

,
7

38

�

, with r =
1

2
p

19
. (53)
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Then, rSAS is bounded as follows

1

10
p

11
⩽ rSAS ⩽

1

2
p

19
, (54)

where the lower bound comes from Eq. (34). The maximum distance R, and therefore an
upper bound of RSAS, can be obtained by either conditions of Obs. 1 for

�

τ1, τ2, τ3, τ4

�

=
�

3
10

,
3
10

,
3
10

,
1
10

�

, with RSAS ⩽ R=
p

3
10

. (55)

The points p1 and p4 corresponding to the eigenspectra (53) and (55) are highlighted in yel-
low in Figs. 5 and 6. Using a numerical procedure similar to that described in the previous
subsection, the values found numerically for RSAS and rSAS are very close to the upper bounds
mentioned above. We therefore conjecture that the above upper bounds for rSAS and RSAS are
tight.

5 Conclusions

We have studied the maximum achievable negativity in global unitary orbits of generic sym-
metric states for two and three qubit systems. For the two-qubit case, our main result is the de-
termination of the optimal state within its SU(3) orbit, i.e. the one that reaches the maximum
negativity (Theorem 1). We also proved the optimality of the state (10) for the concurrence,
another common measure of two-qubit entanglement. A direct consequence of Theorem 1
is the complete characterization of the set of SAS states based on their spectrum as given by
Corollary 1, and the minimal (maximal) radius of a ball containing the whole set of (only)
SAS states. We have applied our results to a spin-1 system with a spin-squeezing Hamilto-
nian by studying the maximum entanglement that can be produced from a thermal state by
a global unitary operation, and have examined its temperature dependence. In particular, we
have obtained the expression for a critical temperature above which the thermal state becomes
SAS. For the symmetric three-qubit system, our results, both numerical and analytical, have
shown the complexity of the problem. The main difference with the two-qubit case is that
the maximum negativity is no longer achieved by a state that retains the same form for all
possible spectra. In particular, we have found a three-parameter family of states which we
conjecture achieves maximum negativity (Conjecture 1). The family includes, among others,
the two states (48) and (50) which are the basis for Observation 1, a necessary condition for
being SAS. In addition, it gives upper bounds for the radii of the balls containing the set Asym
or only SAS states, respectively, for which numerical results indicate that they are tight.
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The authors thank K. Życzkowski for his correspondence.

Author contributions ESE and JM contributed equally to this work.

Funding information ESE acknowledges support from the postdoctoral fellowships of
DGAPA, UNAM and the IPD-STEMA program of the University of Liège.

17

https://scipost.org
https://scipost.org/SciPostPhys.15.3.120


SciPost Phys. 15, 120 (2023)

A Proof for the maximal concurrence (13)

We follow a similar proof as in Ref. [15]. The concurrence of a two-qubit state ρ is given by

C(ρ) =max(0, s1 − s2 − s3 − s4) , (A.1)

where si are the singular values of the matrix
p

ρT S
p
ρ with S = σy⊗σy . Since we consider a

symmetric mixed state ρS , s4 = 0 and the S matrix in the previous expression can be projected
into the symmetric sector as

SS ≡ PSSPS =





0 0 −1
0 1 0
−1 0 0



 , (A.2)

where we keep only the components in the symmetric sector by working in the Dicke basis.
Using the decomposition

p
ρS = ΦΛ1/2, where Φ ∈ U(3) and Λ1/2 is a diagonal matrix, the

maximum concurrence in the SU(3) orbit of ρS is equal to

max
US∈SU(3)

C
�

USρSU†
S

�

= max
US∈SU(3)

(0, s1 − s2 − s3) , (A.3)

with si the singular values of

Λ1/2ΦT U T
S SSUSΦΛ

1/2 = Λ1/2U ′Λ1/2 , (A.4)

where U ′ ∈ U(3). Since any unitary matrix V cannot necessarily be decomposed as U ′ is in
the above equation, we have

max
US∈SU(3)

C(USρSU†
S)≤ max

V∈U(3)
(0, s′1 − s′2 − s′3) , (A.5)

where s′i are the singular values of Λ1/2VΛ1/2. Now, we can find an upper bound on the r.h.s.
of (A.5) using the following lemmas from Refs. [56] and [57], respectively:

Lemma 1 Let A∈ Mn,r(C), B ∈ Mr,m(C). Then,

k
∑

i=1

σi(AB)≤
k
∑

i=1

σi(A)σi(B) , (A.6)

for k = 1, . . . , q =min{n, r, m}.

Lemma 2 Let A∈ Mn(C), B ∈ Mn,m(C) and i ≤ i1 < · · ·< ik ≤ n. Then

k
∑

i=t

σit
(AB)≥

k
∑

t=1

σit
(A)σn−t+1(B) . (A.7)

In our case n = 3, and we put k = 1 in Lemma 1 and k = 2, i1 = 2, i3 = 3 in Lemma 2.
Subtracting the resulting inequalities then gives

σ1(AB)− [σ2(AB) +σ3(AB)]≤ σ1(A)σ1(B)−σ2(A)σ2(B)−σ3(A)σ3(B) . (A.8)

We now set A = Λ1/2 and B = VΛ1/2. Both matrices have the same singular values given by
the eigenvalues of Λ1/2, σi(A) = σi(B) =

p
τi . Equation (A.5) then gives

max
US∈SU(3)

C
�

USρSU†
S

�

≤max
�

0,τ1 − 2
p

τ2τ3

�

. (A.9)
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Finally, we prove by direct calculation that the state (10) reaches the upper bound of the
concurrence, where the singular values si can also be calculated by the square roots of the
eigenvalues of the matrix

ρS SS ρS SS =





τ2τ3 0 0
0 τ2

1 0
0 0 τ2τ3



 , (A.10)

so that s1 = τ1, s2 = s3 =
p
τ2τ3, which satisfies our statement. □

B Critical points of Λ

Case 1: δ = π/2, 3π/2. The X matrix has the same eigenvalues for both values of δ, given
by Eq. (27). Setting t j = τπ( j), the critical points of (26) and its Λ-value are the following:

i) t2 ≥ t3:

z = −
t1
q

t2
1 + (t2 − t3)2

, Λ=
1
2

�

t2 + t3 −
q

t2
1 + (t2 − t3)2
�

. (B.1)

ii) t2 ≤ t3:

z =
t1
q

t2
1 + (t2 − t3)2

, Λ=
1
2

�

t2 + t3 +
q

t2
1 + (t2 − t3)2
�

. (B.2)

iii) α= π/2:

Λ=
t2 + t3 − t1

2
. (B.3)

iv) α= 0 and β = π/4:
Λ= 1/2 . (B.4)

Case 2: X without Σ3. The eigenvalues of X are in this case given by (29). In addition to
identical solutions to the previous case, other solutions appear which we list below:

i) t1 ≥ t2:

y1 =
t1 + t2 − t3
p

1− 8t1 t2

, y2 = −
t3
p

1− 8t1 t2

, Λ=
1
4

�

1−
p

1− 8t1 t2

�

. (B.5)

ii) t1 ≤ t2:

y1 =
t3 − t1 − t2
p

1− 8t1 t2

, y2 =
t3
p

1− 8t1 t2

, Λ=
1
4

�

1+
p

1− 8t1 t2

�

. (B.6)

C Maximum entanglement of symmetric three-qubit states with
spectrum τ2 = τ3 = τ4

In this appendix, we calculate the maximum negativity in the SU(4) orbit of the states
ρS ∈ B(H∨3

1 ) with a triple-degenerate spectrum τ1 ⩾ τ2 = τ3 = τ4 = x , associated to one of
the edges of the simplex in Fig. 5. The states ρS can be written as
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ρS = x
3
∑

k=1

|ψk〉〈ψk|+ (1− 3x)|ψ4〉〈ψ4|= x 14 + (1− 4x)|ψ4〉〈ψ4| , (C.1)

where x ∈ [0, 1/4]. Hence, the calculation of the maximum negativity in the SU(4) orbit of
ρS is reduced to

max
US∈SU(4)

N
�

USρSU†
S

�

= max
|ψ〉∈H∨3

1

N
�

x 14 + (1− 4x)|ψ〉〈ψ|
�

. (C.2)

The characteristic polynomial of a linear combination of the matrices 1TA
4 and (|ψ〉〈ψ|)TA is in

general irreducible. Let us instead calculate the eigenvalues of each matrix individually. The
eigenvalues of 1TA

4 are
�

1
3

,
1
3

,
1
3

,
1
3

,
4
3

,
4
3

�

. (C.3)

On the other hand, the eigenspectrum of (|ψ〉〈ψ|)TA in decreasing order is
�

− cosα sinα, 0, 0, sin2α, sinα cosα, cos2α
�

, (C.4)

where α is the Schmidt angle of |ψ〉 ∈H∨3
1 ⊂H1 ⊗H2,

|ψ〉= cosα|n1〉|m1〉+ sinα|n1〉|m2〉 , (C.5)

with |nk〉 ∈H1 and |mk〉 ∈H2 for k = 1,2. We can observe that (|ψ〉〈ψ|)TA, and then ρTA
S , has

at most one negative eigenvalue. The lowest eigenvalue Λmin of

ρ
TA
S =
�

x14 + (1− 4x)|ψ〉〈ψ|
�TA = x1TA

4 + (1− 4x) (|ψ〉〈ψ|)TA

is lower bounded by the sum of the minimum eigenvalue of each individual matrix

x
3
− (1− 4x) cosα sinα≤ Λmin . (C.6)

In particular, the lower bound is minimized and achieved for α= π/4 and

|ψ〉=
1
p

2

�

|+〉|+ +〉+ |−〉| − −〉
�

, (C.7)

which is the GHZ state. Therefore

max
US∈SU(4)

N
�

USρSU†
S

�

=max
�

0, 1−
14x

3

�

, (C.8)

and the state ρS is equal, up to a rotation, to ρ(ii)S . The previous result also shows that, along
the simplex edge with τ2 = τ3 = τ4, the boundary with Asym is given by the eigenspectrum
(τ1, τ2, τ3, τ4) = (5, 3, 3, 3)/14, denoted by the point p2 in Fig. 6.
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[7] M. Kuś and K. Życzkowski, Geometry of entangled states, Phys. Rev. A 63, 032307 (2001),
doi:10.1103/PhysRevA.63.032307.

[8] S. N. Filippov, K. Y. Magadov and M. A. Jivulescu, Absolutely separating quantum maps
and channels, New J. Phys. 19, 083010 (2017), doi:10.1088/1367-2630/aa7e06.

[9] Z. Zhang and L.-M. Duan, Generation of massive entanglement through an adiabatic
quantum phase transition in a spinor condensate, Phys. Rev. Lett. 111, 180401 (2013),
doi:10.1103/PhysRevLett.111.180401.

[10] M. Reck, A. Zeilinger, H. J. Bernstein and P. Bertani, Experimental realization of any dis-
crete unitary operator, Phys. Rev. Lett. 73, 58 (1994), doi:10.1103/physrevlett.73.58.
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