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Abstract

In the past year several constructions of non-invertible symmetries in Quantum Field
Theory in d ≥ 3 have appeared. In this paper we provide a unified perspective on these
constructions. Central to this framework are so-called theta defects, which generalize
the notion of theta-angles, and allow the construction of universal and non-universal
topological symmetry defects. We complement this physical analysis by proposing a
mathematical framework (based on higher-fusion categories) that converts the physical
construction of non-invertible symmetries into a concrete computational scheme.
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1 Introduction

Various distinct constructions of non-invertible symmetries have appeared in the literature
in the last couple of years [1–9], with many followup applications [10–34]. This builds on
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earlier work in 2d, where non-invertible symmetries have been studied in [35–47]. All of
these non-invertible symmetries are built from invertible symmetries and dualities (suitably
interpreted). This naturally makes one wonder, whether all these constructions are actually
different manifestations of an underlying unified construction of non-invertible symmetries
starting from symmetries that are invertible.

A summary of these distinct constructions is as follows:

1. Gauging outer-automorphisms (0-form symmetries): Field theoretically [1] and more
systematically using a categorical formulation [5].

2. Gauging in the presence of mixed ’t Hooft anomalies [2,5] by stacking TQFTs that carry
a non-trivial anomaly themselves.

3. Gauging in theories with ABJ anomalies [6].

4. Dualities defects: [2,3].

5. Condensation defects: [4,6,7].

6. Stacking G-symmetric TQFTs (referred as theta defects here): [7].

7. Bimodule computations: [8].

In this paper we will show that these constructions are all special instances of a general, unified
framework.

The key point is that defects after gauging an invertible symmetry Γ can be obtained
from defects before gauging, possibly stacked with TQFTs. We call defects produced this way
(twisted) theta defects. A defect D may lead to multiple defects after gauging, if there are multi-
ple ways of ‘coupling’ D to Γ gauge fields in the bulk spacetime. On the other hand, a defect D
may not lead to any defect after gauging if there is an obstruction to couple D to bulk Γ gauge
fields (which may sometimes be curable by stacking a TQFT on top of the defect). These de-
fects are a generalization of the theta1 defects constructed in [7] by coupling decoupled TQFTs
(of various codimensions) to bulk Γ gauge fields.

A mathematical study of different kinds of Γ -couplings for different kinds of defects at the
level of symmetry categories2 leads to familiar concepts in higher-category theory like higher-
vector spaces and higher-representations of (higher-)groups. We cleanly describe the connec-
tion of the physical study of Γ -couplings to these categorical notions, along with the various
subtleties related to Karoubi completions (physically known as condensations/gaugings) that
arise for 3-categories and higher.
Non-invertible symmetries that arise from gauging invertible symmetries have been also re-
ferred to as non-intrinsic non-invertible symmetries [24]. They correspond to theories whose
symmetry topological field theory (Symmetry TFT) [46, 51–55] is a (d + 1)-dimensional
Dijkgraaf-Witten theory (possibly with twist). It will be interesting to make precise how in-
trinsic non-invertibles [27] fit into this framework. The Symmetry TFTs for such theories are
obtained by a quotient of Dijkgraaf-Witten theories [24].

The paper has two main parts: a physics proposal for the construction of non-invertibles
in section 2, and in section 3 a mathematical proposal for the relevant structures that are
needed to capture the physical proposal, using concepts related to higher fusion categories.
We conclude with a program for the classification of non-invertible symmetries in section 4.

1This terminology was not used in the paper [7].
2Let us briefly review the notion of ‘symmetry category’ following [5]: Given a d-dimensional QFT T we can

ask what symmetries it has. The general answer to this – to our current understanding – is that this is a set of
topological defects of dimensions 0, · · · , d − 1, which form a mathematical structure, a fusion (d − 1)-category,
known as the symmetry category of T. Fusion 2-categories were defined in [48] and, building upon it and [49],
fusion higher-categories were given a definition in [50].
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2 Non-invertible symmetries from invertibles: A unified perspec-
tive

The question we would like to answer in this paper is whether there is a unified construction
of the non-invertible symmetry defects [1–9] in QFTs. In this section, we answer the question
in the affirmative and present such a unified framework.

2.1 Theta angles

The construction is a generalization of the construction appearing in [7], which we now re-
view. The construction of [7] can be understood as generalizing the notion of theta angle to
higher-codimensions, and so we refer to the symmetries arising via this construction as theta
symmetries.

Higher-group symmetric QFTs. Consider a d-dimensional QFT T with a non-anomalous
higher-group symmetry3 Γ . We can convert such a QFT to a ‘Γ -symmetric d-dimensional QFT’
by choosing a gauge-invariant coupling4 S of T to background gauge fields for Γ . Such a
coupling S allows one to define partition functions of T in the presence of a background gauge
field for Γ , and the fact that S is gauge-invariant means that these partition functions are the
same for two background gauge fields related by a background gauge transformation. After
choosing S, we can label the Γ -symmetric d-dimensional QFT as TS . We also say that T is the
QFT underlying the Γ -symmetric QFT TS .

Gauging a higher-group. Given a Γ -symmetric d-dimensional QFT TS , we can sum over the
background gauge fields for Γ consistently, or in other words we can gauge the Γ symmetry.
This produces a new d-dimensional QFT that we denote by TS/Γ . Note that, if S ′ is some other
gauge invariant coupling of T to background gauge fields for Γ , then the corresponding gauged
theory TS ′/Γ is apriori different from TS/Γ , though there might exist a duality/isomorphism
between the two for specific T.

Product of higher-group symmetric QFTs. Now, given two Γ -symmetric d-dimensional
QFTs TS and T′S ′ , we can stack them to obtain a new Γ -symmetric d-dimensional QFT that
can be denoted as

TS ⊗Γ T′S ′ . (1)

The d-dimensional QFT underlying TS⊗Γ T′S ′ is the QFT T⊗T′ obtained by stacking T and T′.
To promote the underlying QFT T⊗T′ to a Γ -symmetric QFT TS⊗Γ T′S ′ , we need to first choose
a Γ symmetry of T⊗T′ and then describe a coupling for this Γ symmetry. The Γ symmetry of
T⊗T′ is chosen to be the diagonal of the Γ×Γ symmetry of T⊗T′ descending from Γ symmetry
of T and Γ symmetry of T′. The precise coupling of Γ is then simply obtained by “adding” the
couplings S and S ′.

SPT phases protected by higher-group symmetry. The simplest d-dimensional QFT is
the trivial d-dimensional TQFT I. The trivial theory I is trivially symmetric under a non-
anomalous higher-group symmetry Γ . But there can be various gauge-invariant couplings S
of I to background gauge fields for Γ . There is always a trivial coupling that we denote by S0.

3Throughout this paper, except for a short paragraph discussing the example of theta angle in U(1) gauge
theories, Γ will be taken to be a completely finite higher-group, meaning that every p-form group Γ (p) inside Γ is
taken to be finite.

4We will give a precise mathematical definition of “coupling” in certain situations in next section. We hope that
the usage of this word and concepts surrounding it in this section will be clear at an intuitive level.
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The corresponding Γ -symmetric d-dimensional TQFTs IS are often called as ‘SPT phases
protected by higher-group Γ ’. That is, the underlying d-dimensional QFT for an SPT phase is
the trivial theory I.

The SPT phases IS form a group SPTΓd under the above product operation (1). The identity
element of the group is the SPT phase IS0

which is also referred to as the trivial SPT phase.

Monoid of higher-group symmetric QFTs. In fact, we have

TS ⊗Γ IS0
= TS , (2)

for any arbitrary Γ -symmetric d-dimensional QFT TS . Thus, d-dimensional Γ -symmetric QFTs
form a monoid which the product being (1) and the identity element being IS0

.

Theta angles. On the other hand, if we use a non-trivial SPT phase in the above stacking,
we obtain

TS ⊗Γ IS ′′ = TS ′ , (3)

where TS ′ is a Γ -symmetric QFT obtained from T by using a coupling S ′, which is closely
related but different from the coupling S.

As a consequence, the set
TΓ = {TS , ∀ S} , (4)

of all Γ -symmetric QFTs obtainable from the same underlying QFT T admits a group action by
the group SPTΓd . The action is free without any fixed points.

Let OT
Γ ⊆ TΓ be an orbit of the above group action. Pick two Γ -symmetric d-dimensional

QFTs TS and TS ′ in the orbit OT
Γ . We have

TS ′ = TS ⊗Γ IS ′′ , (5)

for a unique IS ′′ ∈ SPTΓd . Correspondingly, it is often said that the d-dimensional QFT TS ′/Γ
is related to the d-dimensional QFT TS/Γ by the ‘theta angle’ IS ′′ . See figure 1.

Example: Theta angle in U(1) gauge theory. Consider the 4d trivial theory I and consider
gauging its U(1) 0-form symmetry. This leads to pure Maxwell theories Tθ in 4d, which is a
family of theories differentiated by a circle valued parameter θ , known as the theta angle. Two
Maxwell theories Tθ ′ and Tθ+θ ′ are related by a theta angle θ , for which the corresponding
U(1) SPT phase has effective action

θ

∫

F ∧ f (6)

(here F denotes the field strength for U(1) 0-form background).

Example: Discrete theta angle in SO(3) gauge theory. It was pointed out in [56] that there
are two versions of SO(3) gauge theories in 4d, which are usually distinguished by labeling
the gauge group as SO(3)± where the subscript ± labels a discrete Z2 valued theta angle.

This discrete theta angle is realized in terms of the above general construction as follows.
Let T be a 4d SU(2) gauge theory whose matter content is such that the Z2 center of the SU(2)
gauge group survives as a Z2 1-form symmetry of T. Now, there are (on a spin manifold) two
4d Z2 1-form symmetric SPT phases, one whose effective action is trivial, and the other whose
effective action is

∫

P(B2)
2

, (7)
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=

IS ′′TS TS ⊗Γ IS ′′ = TS ′

Gauge Γ

(TS ⊗Γ IS ′′)/Γ = TS ′/Γ

= TS/Γ + θ -angle IS ′′

Figure 1: Stacking a Γ -symmetric d-dimensional QFT TS with a d-dimensional SPT
phase IS ′′ protected by Γ higher-group symmetry leads to a new Γ -symmetric d-
dimensional QFT TS ⊗Γ IS ′′ which can be identified with the d-dimensional QFT TS ′
obtained by choosing a different coupling S ′ of T to Γ backgrounds. Gauging further
the Γ symmetry leads to the d-dimensional QFT (TS ⊗Γ IS ′′)/Γ = TS ′/Γ which is
also referred to as the d-dimensional QFT obtained by adding theta angle IS ′′ to the
d-dimensional QFT TS/Γ obtained by gauging the Γ symmetry of TS .

where P(B2) is the Pontryagin square of the 1-form symmetry background field B2. Gauging
the Z2 1-form symmetry of T converts the gauge group to SU(2)/Z2

∼= SO(3), resulting in a
4d SO(3) gauge theory. Depending on whether the invertible theory (7) is included or not in
this gauging process, one either lands on the SO(3)+ theory or the SO(3)− theory.

2.2 Theta symmetries

In this subsection we generalize the considerations of the previous subsection to (topological
and non-topological) defects of a QFT.

Defects from QFT stacking. We begin our discussion with the general phenomenon that a
p-dimensional QFT can always be treated as a p-dimensional defect of a d-dimensional QFT
for p < d.

This can be understood by generalizing the stacking procedure above. We can stack a p-
dimensional QFT T with a d-dimensional QFT T for p < d to obtain a p-dimensional defect
D(T)p of T. See figure 2. If T is a topological QFT, then D(T)p is a topological defect of T.

Otherwise, D(T)p is a non-topological defect of T.

Action of QFTs on defects. We can actually generalize the stacking procedure to obtain an
action of p-dimensional QFTs on p-dimensional defects of T. Stacking T with a p-dimensional
defect Dp of T gives rise to a new p-dimensional defect

D(T)p ⊗ Dp , (8)

of T. See figure 3.
If T is a p-dimensional TQFT and Dp is a topological defect, then D(T)p ⊗ Dp is another

topological defect of T. This is related to the ‘TQFT coefficients’ of [4] as will become clear
later.
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=

T

T T

D(T)p

Figure 2: T is a d-dimensional QFT and T is a p-dimensional QFT. Stacking T inside
the spacetime occupied by T produces a p-dimensional defect D(T)p of T. If T is a

TQFT, then D(T)p is a topological defect of T.

=

T

T T

D(T)p ⊗ DpDp

Figure 3: T is a d-dimensional QFT, T is a p-dimensional QFT and Dp is a p-
dimensional defect of T. Stacking T inside the worldvolume occupied by Dp pro-
duces a p-dimensional defect D(T)p ⊗ Dp of T. If T is a TQFT and Dp is a topological

defect, then D(T)p ⊗ Dp is a topological defect of T.

A special case arises if we take T to be a p-dimensional TQFT with n trivial vacua and keep
Dp to be an arbitrary defect. Then, we have the equivalence

D(T)p ⊗ Dp
∼= nDp , (9)

where the right hand side denotes a direct sum of n copies of Dp.

Action of topological defects on general defects. There is another action on general (topo-
logical or non-topological) p-dimensional defects of T via topological p-dimensional defects of
T. Stacking a p-dimensional topological defect Dp of T on top of a general p-dimensional
defect D′p of T, we obtain a new p-dimensional defect

Dp ⊗ D′p , (10)

of T. See figure 4.
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=

D′p

T T

Dp ⊗ D′p
Dp

Figure 4: T is a d-dimensional QFT, Dp is a p-dimensional topological defect of T, D′p is
a general, possibly non-topological, defect of T. Stacking Dp inside the worldvolume
occupied by D′p produces a general p-dimensional defect Dp ⊗ D′p of T. If D′p is also
topological, then Dp ⊗ D′p is a topological defect of T.

In the special case that Dp = D(T)p arises from a p-dimensional TQFT T, we have defined
two actions (8) and (10) of it on general p-dimensional defects of T. Both of these actions
coincide.

Fusion of topological defects. If we take D′p to also be topological in (10), then the action
of Dp on D′p is simply the fusion of Dp and D′p.

Higher-group symmetric defects. Consider again a d-dimensional QFT T with non-
anomalous higher-group symmetry Γ . Let S be a gauge-invariant coupling of T to Γ
background fields, and let TS be the corresponding Γ -symmetric d-dimensional QFT. A p-
dimensional (topological or non-topological) defect Dp of T can be converted into a ‘Γ -
symmetric p-dimensional defect of TS ’ by choosing a gauge-invariant coupling J of Dp to
background gauge fields for Γ living in the d-dimensional bulk spacetime. Combining such
a defect coupling J with the bulk coupling S allows one to define correlation functions of
Dp in the presence of a background gauge field for Γ , and the fact that J is gauge-invariant
means that these correlation functions are the same for two background gauge fields related
by a background gauge transformation. Note that a choice of defect coupling J may be in-
consistent for a choice of bulk coupling S, but consistent for another bulk coupling S ′. After
choosing J , we can label the Γ -symmetric p-dimensional defect of TS as D(J )p . We also say

that Dp is the defect underlying the Γ -symmetric defect D(J )p .
Note that there might not exist a gauge-invariant coupling J to Γ backgrounds, or even

a coupling afflicted with a ’t Hooft anomaly, for some p-dimensional defects Dp of T. On the
other hand, for some p-dimensional defects Dp, there might exist multiple couplings J leading
to multiple Γ -symmetric defects D(J )p .

The above description is a little quick for codimension-1 defects ofT, i.e. for p = d−1. Such
a defect partitions the d-dimensional spacetime occupied by T into two parts, referred to as
left and right in what follows. To convert a codimension-1 defect Dd−1 of T into a Γ -symmetric
codimension-1 defect of TS , we need to specify a coupling JL of Dd−1 to background Γ gauge
fields living on the left-side of Dd−1 and a coupling JR of Dd−1 to background Γ gauge fields
living on the right-side of Dd−1. Thus, the total coupling is J = (JL ,JR) which we demand
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to be gauge invariant under background gauge transformations on both left and right sides of
Dd−1. In what follows, we will treat both cases p < d − 1 and p = d − 1 together, and in the
latter case the coupling J will stand for the tuple (JL ,JR).

Defects Surviving the Gauging. As we discussed above, we can gauge the Γ symmetry of
T with coupling S to obtain a d-dimensional QFT TS/Γ . A Γ -symmetric p-dimensional de-
fect D(J )p of TS survives the gauging procedure due to gauge invariance of the coupling J .

Thus the defect D(J )p becomes a p-dimensional defect D(J )p /Γ of the gauged theory TS/Γ . An-

other Γ -symmetric p-dimensional defect D(J
′)

p obtained by choosing a different coupling J ′

for the same underlying defect Dp gives rise to a different p-dimensional defect D(J
′)

p /Γ of the

gauged theory TS/Γ , though for some specific Dp the two defects D(J )p /Γ and D(J
′)

p /Γ may be
dual/isomorphic.

If the defect Dp of T is topological, then the defect D(J )p /Γ of TS/Γ is also topological.
In this case, the above procedure describes how to deduce the (invertible or non-invertible)
symmetries of TS/Γ from the information regarding the symmetries of T.

Γ -symmetric defects by stacking Γ -symmetric QFTs. Let TS ′ be a Γ -symmetric p-
dimensional QFT with T being the underlying p-dimensional QFT. Then, rather similarly to fig-
ure 2, we can stackTS ′ in the spacetime occupied by TS to obtain a Γ -symmetric p-dimensional
defect

D(TS′ )
p , (11)

of TS whose underlying p-dimensional defect is D(T)p discussed in figure 2. The coupling J
for D(T)p is obtained canonically from the coupling S ′, and hence we omit it.

If T is a TQFT, i.e. if TS ′ is a Γ -symmetric TQFT, then D(TS′ )
p is a p-dimensional Γ -symmetric

topological defect of TS .

Theta symmetries. Thus, in the gauged d-dimensional QFT TS/Γ , we obtain a universal
sector

¦

D(TS′ )
p /Γ , ∀ TS ′

©

, (12)

of (generically non-topological) p-dimensional defects, parametrized by Γ -symmetric p-
dimensional QFTs.

Restricting attention to those T that are TQFTs, we obtain a universal sector of generi-
cally non-invertible symmetries, parametrized by Γ -symmetric p-dimensional TQFTs, in any
d-dimensional QFT TS/Γ that can be obtained by gauging non-anomalous Γ higher-group
symmetry of another d-dimensional QFT T.

These symmetries were discussed in [7], and we refer to them as theta symmetries as their
construction is a generalization of the construction of theta angles discussed above.

Action of Γ -symmetric QFTs on Γ -symmetric defects. We can generalize the above stack-
ing procedure to obtain an action of p-dimensional Γ -symmetric QFTs on p-dimensional
Γ -symmetric defects of the d-dimensional Γ -symmetric QFT TS . Stacking TS ′ with a p-
dimensional Γ -symmetric defect D(J )p of TS gives rise to a new Γ -symmetric p-dimensional
defect

D(TS′ )
p ⊗Γ D(J )p , (13)

of TS , whose underlying p-dimensional defect is

D(T)p ⊗ Dp , (14)
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obtained by the action of the underlying QFT T of TS ′ on the underlying defect Dp of D(J )p . If

T is a p-dimensional TQFT and Dp is a topological defect, then D(TS′ )
p ⊗Γ Dp is a Γ -symmetric

p-dimensional topological defect of T.

Action of Γ -symmetric topological defects on Γ -symmetric defects. Stacking a p-
dimensional Γ -symmetric topological defect D(J )p of TS on top of a general p-dimensional

Γ -symmetric defect D′(J
′)

p of TS , we obtain a new p-dimensional Γ -symmetric defect

D(J )p ⊗Γ D′(J
′)

p , (15)

of TS , whose underlying p-dimensional defect is

Dp ⊗ D′p , (16)

obtained by the action of underlying topological defect Dp of D(J )p on the underlying general

defect D′p of D′(J
′)

p .

In the special case that D(J )p = D(TS′ )
p arises from a p-dimensional Γ -symmetric TQFT TS ′ ,

we have defined two actions (13) and (15) of it on general Γ -symmetric p-dimensional defects
of TS . Both of these actions coincide.

Fusion of topological defects after gauging. Given two Γ -symmetric p-dimensional topo-
logical defects D(J )p and D′(J

′)
p of TS , we can act by one on the other to obtain another Γ -

symmetric p-dimensional topological defect

D(J )p ⊗Γ D′(J
′)

p , (17)

whose underlying topological defect is the fused topological defect Dp ⊗ D′p
After gauging the Γ symmetry, the above stacking descends to a fusion rule of p-dimensional
topological defects of the d-dimensional QFT TS/Γ

D(J )p

Γ
⊗

D′(J
′)

p

Γ
=

D(J )p ⊗Γ D′(J
′)

p

Γ
. (18)

Example: Dual higher-form symmetries. Let T be a d-dimensional QFT with a non-
anomalous p-form symmetry described by an abelian group Γ (p). It is well-known that the
d-dimensional QFT T/Γ (p) obtained after gauging5 Γ (p) carries a ‘dual’ (d − p − 2)-form sym-
metry described by the Pontryagin dual group bΓ (p).

These dual symmetries are examples of theta symmetries: the topological defects gener-
ating the (d − p − 2)-form symmetry of T/Γ (p) are (p + 1)-dimensional and we label them
as D(bγ)p+1 for elements bγ ∈ bΓ (p). The topological defect D(bγ)p+1 is the image of a Γ (p)-symmetric

(p + 1)-dimensional topological defect D
(I
bγ)

p+1 of T obtained by stacking a (p + 1)-dimensional

SPT phase protected by Γ (p) p-form symmetry I
bγ. See figure 5. The effective action for the

SPT phase I
bγ is

∫

bγ(Bp+1) , (19)

where Bp+1 is the Γ (p)-valued p-form symmetry background field. The effective action is valued
in R/Z as it involves the canonical pairing bΓ (p)×Γ (p)→ R/Z. The corresponding theta defects

5We are suppressing the coupling S of T to Γ (p) backgrounds as it does not play any role in what follows.
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=

I
bγ

T T

Gauge Γ (p)

T/Γ (p)

D
(I
bγ)

p+1 D(bγ)p+1

Figure 5: T is a d-dimensional QFT with a non-anomalous Γ (p) p-form symmetry,
and I
bγ is a p + 1-dimensional SPT phase protected by Γ (p). Stacking I

bγ inside the

spacetime occupied by T produces a Γ (p)-symmetric topological defect D
(I
bγ)

p+1 of T.

Upon gauging Γ (p), we land on a d-dimensional QFT T/Γ (p) with a topological defect
D(bγ)p+1. These (p+1)-dimensional topological defects generate a bΓ (p) (d − p−2)-form

symmetry of T/Γ (p).

D(bγ)p+1 in T/Γ (p) can also be interpreted as Wilson (hyper)surfaces/defects for the higher-form

dynamical gauge field Bp+1 of T/Γ (p).

The fusion rules of theta defects D(bγ)p+1 are controlled by the group multiplication in bΓ (p)

D(bγ)p+1 ⊗ D(bγ
′)

p+1 = D(bγ+bγ
′)

p+1 , (20)

because SPT phases (19) form the group bΓ (p) under stacking operation ⊗Γ (p)

I
bγ ⊗Γ (p) Ibγ′ = I

bγ+bγ′ . (21)

Example: Condensation surface defects for non-anomalous (d − 2)-form symmetries.
Consider a d-dimensional QFT T with a non-anomalous 0-form symmetry described by an
abelian group Γ (0). As we discussed above, the d-dimensional QFT T/Γ (0) obtained after
gauging Γ (0) (with any choice of coupling S) carries a dual (d − 2)-form symmetry generated
by topological line defects valued in bΓ (0). These lines can be condensed/gauged on a two-
dimensional surface in the theory T/Γ (0) producing what are known as condensation surface
defects, which in general generate non-invertible symmetries of T/Γ (0).

As described in [7] all such condensation surface defects can themselves be obtained as
theta symmetries associated to the gauging procedure T → T/Γ (0), by stacking T with 2d
TQFTs with Γ (0) non-anomalous 0-form symmetry, and then performing the Γ (0) gauging in
the whole d-dimensional spacetime.

Example: Condensation defects arising from duality defects. Consider the example stud-
ied by the paper [2] involving a 4d spin-QFT T with a Z(1)2 1-form symmetry and a Z(0)2 0-form
with mixed ’t Hooft anomaly

A1 ∪
P(B2)

2
, (22)

where A1 is the background field for 0-form symmetry and B2 is the background field for 1-
form symmetry. The paper [2] constructs a non-invertible 3-dimensional topological defect
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D(S)3 (known as a duality defect [3]) in the 4d theory T/Z(1)2 obtained by gauging the Z(1)2
1-form symmetry, which has the fusion rule

D(S)3 ⊗ D(S)3
∼= D(SS̄)3 , (23)

where D(SS̄)3 is a non-invertible 3-dimensional condensation defect that can be obtained by

gauging the dual Z(2)2 2-form symmetry of T/Z(1)2 along a 3-dimensional hypersurface with a

discrete torsion specified by the non-trivial element of H3(BZ(2)2 , U(1))∼= Z2.

Below we describe how D(SS̄)3 can be understood as a theta defect. The defect D(S)3 , on the
other hand, will be discussed later as an example of a ‘twisted’ theta defect defined in the next
subsection.

As remarked in the previous paragraph, the condensation defect D(SS̄)3 can be realized
as a theta defect. This defect is obtained by stacking TSS̄, which is the 3d Dijkgraaf-Witten
TQFT based on a Z2 gauge group and a non-trivial twist, on T before gauging the Z(1)2 1-form
symmetry. The action of the Dijkgraaf-Witten theory can be written as

∫

a1 ∪δa1 + a3
1 , (24)

where a1 is the Z2 gauge field. This theory TSS̄ can be identified with the double semion
model, which contains a bosonic Z2 line operator (namely the Deligne product of semion and
anti-semion) generating a non-anomalous Z2 1-form symmetry, which is used to convert the
above double semion TQFT into a Z(1)2 1-form symmetric 3d TQFT, leading to the construction

of the theta defect D(SS̄)3 .

More generally one can consider theories with Z(1)N and Z(0)2N symmetries having similar
mixed ’t Hooft anomaly as (22), such as 4d pure Super-Yang-Mills [10, 19]. These theories
also contain twisted theta defects whose fusion gives rise to condensation defects that can be
understood as theta defects.

2.3 Twisted theta symmetries

We can incorporate a ‘twist’ in the construction of theta symmetries discussed above to con-
struct a generalized version of theta symmetries that we refer to as twisted theta symmetries.
Unlike theta symmetries, which are universal and exist in any theory that can be obtained by
gauging an invertible higher-group symmetry of some other theory, the twisted theta symme-
tries are theory-dependent and hence non-universal.

Consider a situation in which we have a topological defect D(m)p of T that does not admit a
gauge-invariant coupling J to background gauge fields for Γ living in the bulk d-dimensional
spacetime, for a specific choice of gauge-invariant bulk coupling S. In other words, there is an
obstruction for making D(m)p Γ -symmetric. Let us also assume that D(m)p is a minimal topological
defect, that is

D(m)p ̸= D(T)p ⊗ Dp , (25)

for any choices of D(T)p and Dp, where D(T)p is a p-dimensional defect of T obtained by stacking

some non-invertible6 p-dimensional TQFT T and Dp is some other p-dimensional topological
defect of T.

6Note that this adjective is important for the definition to make sense, because every p-dimensional defect lies
in a family of p-dimensional defects forming an orbit under action by p-dimensional invertible TQFTs.
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D(id)2

D(0)d−1

D(0)1

D(id)2

D(0)d−1

D(0,d−2)
1

Figure 6: Two different gauge-invariant couplings J0 (on the left) and J0,d−2 (on

the right) of the identity 2-dimensional defect D(id)2 (shown dashed) to Z(0)2 0-form
symmetry backgrounds, distinguished by the choice of the line operator lying at the
junction of D(id)2 and topological codimension-1 operator D(0)d−1 (shown in blue) gen-

erating Z(0)2 . See text for more details.

Now, suppose that we can stack a p-dimensional TQFT T on D(m)p producing the p-
dimensional topological defect

D(m,T)
p := D(T)p ⊗ D(m)p , (26)

such that D(m,T)
p admits a gauge-invariant coupling J to bulk Γ backgrounds, leading to a

Γ -symmetric p-dimensional topological defect D(m,T,J )
p of TS . In other words, stacking by the

TQFT T cures the obstruction for making D(m)p Γ -symmetric.
We call the resulting p-dimensional topological defect

D(m,T,J )
p /Γ , (27)

of the gauged QFT TS/Γ as a twisted theta defect, and the corresponding symmetry as twisted
theta symmetry. We call D(m)p as the underlying ‘twist’ and the TQFT T as the underlying ‘stack’

of the twisted theta defect D(m,T,J )
p .

Relationship between theta and twisted theta. Note that a theta defect is a twisted theta
defect with a trivial twist, i.e. the twist given by the identity p-dimensional defect D(id)p of
T; but converse is not true, as a twisted theta defect with a trivial twist might still involve a
coupling J that is intrinsic to the QFT T and cannot be decoupled to a coupling J for the
stacked TQFT T. An example is provided in the upcoming paper [9] which we reproduce in a
generalized form below.

Consider a d-dimensional QFT T with a Z(0)2 0-form symmetry generated by codimension-

1 topological defect D(0)d−1 and Z(d−2)
2 (d − 2)-form symmetry generated by a topological line

defect D(d−2)
1 , without any ’t Hooft anomalies for the two symmetries. There are then two

possible couplings J for making the identity 2-dimensional defect D(id)2 symmetric under Z(0)2 .

In one of them, labeled J0, the Z(0)2 0-form symmetry is implemented on D(id)2 by the identity

line D(0)1 living on D(0)d−1. In the other, labeled J0,d−2, the Z(0)2 0-form symmetry is implemented

on D(id)2 by the line operator D(0,d−2)
1 living on D(0)d−1 obtained by stacking D(d−2)

1 on top of the

worldvolume of D(0)d−1. See figure 6.
The topological surface defect

D(id,J0)
2 /Z(0)2 , (28)

in the QFT T/Z(0)2 obtained after gauging Z(0)2 0-form symmetry of T with a trivial choice of

bulk coupling S is just the identity defect of T/Z(0)2 , which is a trivial theta defect. However,
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on the other hand, the topological defect

D
(id,J0,d−2)
2 /Z(0)2 , (29)

of T/Z(0)2 is a twisted theta defect which is not a theta defect. It can be recognized as the

condensation surface defect obtained by gauging the Z2 × Z2 1-form symmetry of T/Z(0)2 on
a two-dimensional worldvolume in spacetime along with a discrete torsion specified by the
non-trivial element of H2 (Z2 ×Z2, U(1))∼= Z2.

Obstruction: Localized ’t Hooft anomaly. It is interesting to classify the various kinds of
obstructions for coupling D(m)p consistently to a Γ background. The most primitive type of ob-

struction is a ’t Hooft anomaly for Γ localized along the worldvolume of D(m)p . That is, there

exists a coupling J of D(m)p that allows one to define correlation functions of D(m)p in the pres-
ence of Γ backgrounds, when combined with a gauge-invariant bulk coupling S. However,
the coupling J is not gauge-invariant. That is, upon performing a background gauge trans-
formation for Γ background, the correlation functions of D(m)p are transformed by a non-trivial
phase. In other words, the coupling J suffers from a ’t Hooft anomaly for Γ . This anomaly is
localized along the defect D(m)p because the bulk coupling S is gauge-invariant, that is partition
functions of T in the presence of Γ backgrounds defined using the coupling S are invariant un-
der background gauge transformations. We have a ’t Hooft anomaly obstruction for coupling
D(m)p to Γ backgrounds if we can only find a coupling J afflicted with a ’t Hooft anomaly, but
cannot find a gauge invariant coupling J .

Now, consider a p-dimensional TQFT T with a coupling S ′ to the Γ backgrounds afflicted
with the inverse anomaly. The topological defect

D(m,T)
p = D(T)p ⊗ D(m)p , (30)

then admits a gauge-invariant coupling “J +S ′ ” to bulk Γ backgrounds. The anomaly for the
coupling J is canceled by the anomaly for the coupling S ′. We call the resulting Γ -symmetric
p-dimensional topological defect of TS as

D(m,TS′ ,J )
p . (31)

Gauging the Γ symmetry, we obtain a p-dimensional twisted theta defect

D(m,TS′ ,J )
p /Γ , (32)

in the gauged QFT TS/Γ .

Example: Duality defects (from mixed anomaly). This kind of obstruction appeared in the
example studied by [2] that we discussed around equation (22). Let D(0)3 be the topological

operator generating theZ(0)2 0-form symmetry. Then, the mixed ’t Hooft anomaly (22) between

the Z(0)2 0-form and Z(1)2 1-form symmetries descends to a ’t Hooft anomaly

P(B2)
2

, (33)

for 1-form symmetry localized along the 3-dimensional worldvolume of D(0)3 .
Now we look for a 3d TQFT with Z2 1-form symmetry that carries the anomaly (33).

One of the candidates, that was used in [2], is the semion model, or U(1)2 Chern-Simons
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theory TS.7 This 3d TQFT carries a line operator, namely the semion, which generates a Z2
1-form symmetry with anomaly (33).

Combining TS with D(0)3 , we obtain a Z(1)2 1-form symmetric 3d topological defect

D(0,TS)
3 := D(TS)

3 ⊗ D(0)3 , (35)

of T. Gauging the Z(1)2 1-form symmetry, we obtain a 3d twisted theta defect

D(S)3 = D(0,TS)
3 /Z(1)2 , (36)

in the 4d QFT T/Z(1)2 .
The fusion of this defect with itself was discussed in (22). This fusion can now be derived

using (18). First of all, we could have used the 3d spin-TQFT TS̄ given by the anti-semion
model, for which the anti-semion line generates an anomalous Z2 1-form symmetry, to con-
struct another 3d twisted theta defect

D(S̄)3 =
D
(TS̄)
3 ⊗ D(0)3

Z(1)2

. (37)

Since TS is isomorphic to TS̄ as spin 3d TQFTs, the resulting twisted theta defects D(S)3 and

D(S̄)3 are also isomorphic (or in other words dual). Thus,

D(S)3 ⊗ D(S)3
∼= D(S)3 ⊗ D(S̄)3 . (38)

The right hand side is the twisted theta defect with trivial twist

D(0)3 ⊗ D(0)3 = D(id)3 , (39)

and hence is a theta defect. The 3d TQFT used for stacking is the double semion model TSS̄
discussed earlier since

TS ⊗TS̄ = TSS̄ . (40)

The Z(1)2 1-form symmetry is implemented on TS by the semion, on TS̄ by the anti-semion,
and hence must be implemented on TSS̄ by the bosonic semion times anti-semion line. Thus,

we see that the fusion is precisely the theta defect D(SS̄)3 discussed earlier

D(S)3 ⊗ D(S)3
∼= D(SS̄)3 . (41)

Again there is a generalization to Z(1)N and Z(0)2N as in 4d N = 1 Super-Yang-Mills. In this case
the minimal 3d TQFT is AN ,1 = U(1)N [57], which has the opposite anomaly to the topological
defect D(0)3 and the twisted theta defect in this case is

D(S)3 =
D(A

N ,1)
3 ⊗ D(0)3

Z(1)N

. (42)

Let us note that many other examples of twisted theta defects generalizing the above construc-
tion of [2] have appeared in the literature since then. See [5,10,14,58] for a sample of such
works.

7To begin with, S is a 3d topological boundary condition of a 4d invertible TQFT IS rather than a 3d TQFT. The
partition function of IS on a 4d manifold M4 is

exp
�

2πiσ(M4)
8

�

, (34)

where σ(M4) is the signature of M4. Consequently, IS is invisible on a spin 4-manifold, because the signature of
such a manifold is a multiple of 16. This fact allows us to treat S as a spin 3d TQFT, which is the right context here
as the 4d QFT T is a spin theory. We thank Jingxiang Wu for related discussions.
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Obstruction: Symmetry fractionalization. Above we saw an obstruction of coupling a de-
fect D(m)p to Γ backgrounds, where a coupling J existed but it was not gauge-invariant leading

to a ’t Hooft anomaly for Γ localized along D(m)p . We can also have “worse” obstructions, where
even an anomalous coupling J cannot be found.

One of the simplest such obstructions is symmetry fractionalization of Γ on the worldvol-
ume of D(m)p , which is easiest to understand for a 0-form symmetry group Γ (0). This occurs

when symmetry action of Γ (0) on Dp does not close and in fact gives rise to a larger 0-form

symmetry group Γ (0)E symmetry on Dp which is an extension of the group Γ (0) leading to a short
exact sequence

1→ Γ (0)
D(m)p
→ Γ (0)E → Γ

(0)→ 1 , (43)

with the key property being that the above sequence does not split. In such a situation, we
say that Γ (0) 0-form symmetry is fractionalized to Γ (0)E 0-form symmetry on the worldvolume
of D(m)p .

We can construct a twisted theta defect from D(m)p if we can find a p-dimensional TQFT T
such that

1. Stacking T on top of D(m)p defractionalizes the Γ (0)E 0-form symmetry back to Γ (0) 0-form
symmetry. That is, we can find a (possibly anomalous) coupling J of the p-dimensional
defect D(m,T)

p to Γ backgrounds.

2. The coupling J found in the previous step is actually non-anomalous/gauge-invariant.

If the above two conditions are satisfied, then we obtain a twisted theta defect

D(m,T,J )
p /Γ , (44)

in the gauged QFT TS/Γ .

Example: Gauging Z4 by gauging two Z2’s sequentially. We encounter an example of such
an obstruction in the upcoming paper [9]. The context is the study of a d-dimensional QFT T

with Z4 non-anomalous 0-form symmetry. First gauge the Z2 subgroup of Z4 to pass on to the
theory T/Z2. This theory has a residual Z(0)2 0-form symmetry and a dual Z(d−2)

2 (d − 2)-form
symmetry, with a mixed ’t Hooft anomaly

Bd−1 ∪ A1 ∪ A1 , (45)

where A1 is the Z(0)2 -valued background field for 0-form symmetry and Bd−1 is Z(d−2)
2 -valued

background field for (d − 2)-form symmetry.
The Z(d−2)

2 symmetry is generated by topological line operators that can be condensed on

a surface to give rise to a condensation surface defect that we label as D(Z2)
2 . We show in [9],

that as a consequence of the mixed anomaly (45), a line operator J living at the junction of
D(Z2)

2 and the generator D(0)d−1 for the Z(0)2 0-form symmetry has the property that

J2 = P , (46)

where P is a non-trivial line operator living on D(Z2)
2 . See figure 7. Moreover, since

P2 = 1 , (47)

that is P squares to the identity line on D(Z2)
2 , as shown in figure 7, we learn that

J4 = 1 , (48)
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=

D(Z2)
2 D(Z2)

2

D(0)d−1

D(0)d−1
J

J
P ; =

D(Z2)
2 D(Z2)

2

P

P

Figure 7: J is a topological line defect arising at the junction of the codimension-
1 topological defect D(0)d−1 generating the Z(0)2 0-form symmetry of T/Z2 and the

dimension-2 condensation defect D(Z2)
2 obtained by condensing the Z(d−2)

2 (d − 2)-
form symmetry. In other words, the bulk Z(0)2 0-form symmetry is generated on the

surface defect D(Z2)
2 by the line defect J . However, as shown in the figure, J is not of

order 2, because its square is a non-trivial line defect P living on the surface D(Z2)
2 .

Since P is order 2, as shown in the figure, we learn that J is order 4, and hence the
Z(0)2 0-form symmetry in the bulk fractionalizes to Z4 symmetry on the surface D(Z2)

2 .

implying that the Z(0)2 0-form symmetry fractionalizes to a Z4 0-form symmetry on the world-

volume of D(Z2)
2 . Consequently, D(Z2)

2 does not give rise to a topological surface defect of the

theory T/Z4 obtained from T/Z2 by gauging its residual Z(0)2 0-form symmetry.
However the symmetry can be defractionalized on the surface defect

D(Z2,T)
2 := T⊗ D(Z2)

2
∼= 2D(Z2)

2 , (49)

where T is a 2d TQFT with two trivial vacua. The line operators on D(Z2,T)
2

∼= 2D(Z2)
2 are 2×2

matrices with elements being line operators on D(Z2)
2 . The (i j)-th entry in the matrix is a line

operator from the i-th copy of D(Z2)
2 to the j-th copy of D(Z2)

2 . Then the matrix

J :=

�

0 J
J3 0

�

=

�

0 J
P ⊗ J 0

�

, (50)

provides a line operator living at the junction of D(Z2,T)
2 and Dd−1, which squares to identity

J 2 = 1 , (51)

and hence it is possible to have non-fractionalized Z(0)2 0-form symmetry on the worldvolume

of D(Z2,T)
2 . In fact, J provides a non-anomalous coupling giving rise to a twisted theta defect

D(Z2,T,J )
2 /Z(0)2 of the theory T/Z4, which can also be recognized as the surface defect obtained

by condensing the topological lines generating the Z(d−2)
4 (d−2)-form symmetry of the theory

T/Z4.

2.4 Symmetries from topological interfaces

Interfaces. Interfaces are (topological or non-topological) (d−1)-dimensional defects living
between two d-dimensional QFTs T(L) and T(R). We will say that an interface Dd−1 is ‘from
T(L) to T(R)’, if T(L) lives on the left side of Id−1 and T(R) lives on the right side of Dd−1.

If T(L) = T(R) = T, then the interfaces between T(L) to T(R) are the same as codimension-1
defects of the d-dimensional QFT T.
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Action of QFTs on interfaces. We can stack (d − 1)-dimensional QFTs on interfaces from
T(L) to T(R) to obtain new interfaces from T(L) to T(R). Stacking a (d − 1)-dimensional QFT T
with an interface Id−1 creates a new interface that we denote as

I (T)d−1 . (52)

This process is rather similar to the one shown in figure 3. If T is a (d −1)-dimensional TQFT
and Id−1 is a topological interface, then I (T)d−1 is another topological interface.

As for defects, a special case arises if we take T to be a (d − 1)-dimensional TQFT with n
trivial vacua and keep Id−1 to be an arbitrary defect. Then, we have the equivalence

I (T)d−1
∼= nId−1 , (53)

where the right hand side denotes a direct sum of n copies of Id−1.

Actions of topological interfaces on general interfaces. Consider a topological interface
Id−1 from T1 to T2, and a general (topological or non-topological) interface I ′d−1 from T2 to
T3. We can act from the left by Id−1 on I ′d−1 to obtain an interface

Id−1 ⊗ I ′d−1 , (54)

from T1 to T3. If I ′d−1 is topological, then Id−1 ⊗ I ′d−1 is also topological. In this case, the
topological interface Id−1⊗ I ′d−1 is referred to the fusion of the topological interfaces Id−1 and
I ′d−1. If T1 = T2 ≡ T, then the above is a left action of topological defects of T on interfaces
from T to T3.

Similarly, if Id−1 is a general interface from T1 to T2 and I ′d−1 is a topological interface
from T2 to T3, we can act from the right by I ′d−1 on Id−1 to obtain an interface

Id−1 ⊗ I ′d−1 , (55)

from T1 to T3. If Id−1 is topological, then Id−1 ⊗ I ′d−1 is also topological. In this case, the
topological interface Id−1⊗ I ′d−1 is referred to the fusion of the topological interfaces Id−1 and
I ′d−1. If T2 = T3 ≡ T, then the above is a right action of topological defects of T on interfaces
from T1 to T.

These actions are rather similar to the action shown in figure 4.
Consider a (d − 1)-dimensional TQFT T. Then we have defined three actions of it on a

general interface Id−1. First we can directly stack it on top of Id−1 to obtain the interface
I (T)d−1 discussed in (52). Second, we can first stack T along T(L) to obtain a codimension-1

topological defect D(L,T)
d−1 of T(L), which we can act on Id−1 from the left to obtain the interface

D(L,T)
d−1 ⊗ Id−1 discussed in (54). Third, we can first stack T along T(R) to obtain a codimension-1

topological defect D(R,T)
d−1 of T(R), which we can act on Id−1 from the right to obtain the interface

Id−1⊗D(R,T)
d−1 discussed in (55). All these processes lead to the same interface, i.e. we have the

equalities
I (T)d−1 = D(L,T)

d−1 ⊗ Id−1 = Id−1 ⊗ D(R,T)
d−1 . (56)

Higher-group symmetric interfaces. For i ∈ {L, R}, let T(i) have a non-anomalous Γi higher-
group symmetry. Choose a gauge-invariant coupling Si of T(i) to background gauge fields for
Γi .

An interface Id−1 from T(L) to T(R) can be converted into a ΓL-symmetric interface I (JL)
d−1

from the ΓL-symmetric d-dimensional QFT T
(L)
SL

to the d-dimensional QFT T(R) by providing a
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gauge-invariant coupling JL of Id−1 to background gauge fields for ΓL living on the left of Id−1.
Such a coupling JL combined with the coupling S allows us to define correlation functions
involving Id−1, T(L) and T(R) in the presence of background fields for ΓL living on the portion of
spacetime occupied by T(L). The gauge invariance of the coupling JL translates to the fact that
these correlation functions are left invariant if we perform background gauge transformations
on ΓL background gauge fields.

Similarly, an interface Id−1 from T(L) to T(R) can be converted into a ΓR-symmetric interface
I (JR)
d−1 from the d-dimensional QFT T(L) to the ΓR-symmetric d-dimensional QFT T

(R)
SR

by pro-
viding a gauge-invariant coupling JR of Id−1 to background gauge fields for ΓR living on the
right of Id−1. Such a coupling JR combined with the coupling S allows us to define correlation
functions involving Id−1, T(L) and T(R) in the presence of background fields for ΓR living on
the portion of spacetime occupied by T(R). The gauge invariance of the coupling JR translates
to the fact that these correlation functions are left invariant if we perform background gauge
transformations on ΓR background gauge fields.

Combining the above two, an interface Id−1 from T(L) to T(R) can be converted into a
(ΓL , ΓR)-symmetric interface I (JL ,JR)

d−1 from the ΓL-symmetric d-dimensional QFT T
(L)
SL

to the ΓR-

symmetric d-dimensional QFT T(R) by providing a coupling JL of Id−1 to background gauge
fields for ΓL living on the left of Id−1 and a coupling JR of Id−1 to background gauge fields for
ΓR living on the right of Id−1, such that the combined coupling (JL ,JR) is gauge-invariant.

The interface couplings (JL ,JR) combined with the bulk couplings (SL ,SR) allow us to de-
fine correlation functions involving Id−1, T(L) and T(R) in the presence of background fields for
ΓL living on the portion of spacetime occupied by T(L) and background fields for ΓR living on the
portion of spacetime occupied by T(R). The gauge invariance of the coupling (JL ,JR) trans-
lates to the fact that these correlation functions are left invariant if we perform background
gauge transformations on both ΓL and ΓR valued background gauge fields.

Interfaces surviving gauging. A ΓL-symmetric interface I (JL)
d−1 survives the procedure of

gauging ΓL symmetry of T(L)SL
leading to an interface

I (JL)
d−1 /ΓL , (57)

from the d-dimensional QFT T
(L)
SL
/ΓL to the d-dimensional QFT T(R).

Similarly, a ΓR-symmetric interface I (JR)
d−1 survives the procedure of gauging ΓR symmetry of

T
(R)
SR

leading to an interface

I (JR)
d−1 /ΓR , (58)

from the d-dimensional QFT T(L) to the d-dimensional QFT T
(R)
SR
/ΓR.

Finally, a (ΓL , ΓR)-symmetric interface I (JL ,JR)
d−1 survives the procedure of gauging both ΓL

symmetry of T(L)SL
and ΓR symmetry of T(R)SR

, leading to an interface

I (JL ,JR)
d−1 /(ΓL , ΓR) , (59)

from the d-dimensional QFT T
(L)
SL
/ΓL to the d-dimensional QFT T

(R)
SR
/ΓR.

For TL = TR ≡ T, ΓL = ΓR ≡ Γ and SL = SR ≡ S, the interface I (JL ,JR)
d−1 /(ΓL , ΓR) is the

codimension-1 defect I (J )d−1/Γ of the d-dimensional QFT TS/Γ obtained from the codimension-
1 defect Id−1 of T with coupling J ≡ (JL ,JR).

Moving forward, we treat a ΓL-symmetric interface I (JL)
d−1 as a (ΓL , ΓR)-symmetric interface

I (JL ,0)
d−1 for ΓR = SR = JR = 0. Similarly, we treat a ΓR-symmetric interface I (JR)

d−1 as a (ΓL , ΓR)-

symmetric interface I (0,JR)
d−1 for ΓL = SL = JL = 0.
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Actions of topological symmetric interfaces on general symmetric interfaces. A topo-
logical (Γ1, Γ2)-symmetric interface I (J1,J2)

d−1 from T
(1)
S1

to T
(2)
S2

can act from the left on a general

(topological or non-topological) (Γ2, Γ3)-symmetric interface I ′
(J ′2 ,J ′3)
d−1 from T

(2)
S2

to T
(3)
S3

to give
rise to a (Γ1, Γ3)-symmetric interface

I (J1,J2)
d−1 ⊗Γ2 I ′

(J ′2 ,J ′3)
d−1 , (60)

from T
(1)
S1

to T
(3)
S3

, whose underlying interface is

Id−1 ⊗ I ′d−1 , (61)

from T1 to T3. The coupling of I (J1,J2)
d−1 ⊗Γ2 I ′

(J ′2 ,J ′3)
d−1 on the left is given by J1 and on the right

is given by J ′3.

Similarly, a topological (Γ2, Γ3)-symmetric interface I ′
(J ′2 ,J ′3)
d−1 from T

(2)
S2

to T
(3)
S3

can act from

the right on a general (topological or non-topological) (Γ1, Γ2)-symmetric interface I (J1,J2)
d−1

from T
(1)
S1

to T
(2)
S2

to give rise to a (Γ1, Γ3)-symmetric interface

I (J1,J2)
d−1 ⊗Γ2 I ′

(J ′2 ,J ′3)
d−1 , (62)

from T
(1)
S1

to T
(3)
S3

.

Fusion of topological interfaces after gauging. Let I (J1,J2)
d−1 and I ′

(J ′2 ,J ′3)
d−1 encountered above

be topological interfaces. After gauging, we obtain a topological interface

I (J1,J2)
d−1 /(Γ1, Γ2) , (63)

from T
(1)
S1
/Γ1 to T

(2)
S2
/Γ2, and a topological interface

I (J2,J3)
d−1 /(Γ2, Γ3) , (64)

from T
(2)
S2
/Γ2 to T

(3)
S3
/Γ3.

Their fusion is given by

I (J1,J2)
d−1

(Γ1, Γ2)
⊗

I (J2,J3)
d−1

(Γ2, Γ3)
=

I (J1,J2)
d−1 ⊗Γ2 I ′

(J ′2 ,J ′3)
d−1

(Γ1, Γ3)
, (65)

where the right hand side is the topological interface from T
(1)
S1
/Γ1 to T

(3)
S3
/Γ3 obtained by

gauging on both sides of the (Γ1, Γ3)-symmetric interface (62).

Symmetries from topological interfaces. Consider that we are provided a topological in-
terface Id−1 from a d-dimensional QFT T to the d-dimensional QFT TS/Γ obtained from T by
gauging a Γ higher-group symmetry with coupling S. Consider now a topological codimension-
1 defect Dd−1 of T along with a coupling JL converting it into a topological interface from
Γ -symmetric QFT TS to the QFT T. This provides an interface

D(JL)
d−1 /Γ , (66)
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from QFT TS/Γ to the QFT T, by gauging Γ on the left of D(JL)
d−1 . We can now construct a

topological defect of T by composing the two interfaces discussed above

Id−1 ⊗
D(JL)

d−1

Γ
. (67)

Thus, we have converted the information about topological interface Id−1 into symmetries

generated by Id−1 ⊗
D(JL )

d−1
Γ for various choices of Dd−1 and JL .

Example: Non-invertible symmetries from ABJ anomalies. [6] used this method to con-
struct non-invertible codimension-1 topological defects in 4d gauge theories with ABJ anoma-
lies. A continuous symmetry afflicted with an ABJ anomaly acts on a gauge theory by shifting
the theta angle. Thus a topological codimension-1 defect implementing such an anomalous
symmetry transformation provides an invertible interface I3, or in other words a duality, be-
tween gauge theories with different values of theta angles.

Let us illustrate using one of the simplest examples appearing in [6]. Let T(1) be 4d U(1)
gauge theory with θ = 0 and T(2) be 4d U(1) gauge theory with θ = π. Assume T(1) has a
U(1) global symmetry with an ABJ anomaly, providing an interface I3 from T(1) to T(2). As
discussed in [6], the theory T(2) can also be obtained from T(1) by gauging a Z(1)2 subgroup of
the magnetic U(1)(1) 1-form symmetry of T(1) along with a discrete torsion specified by the 4d
Z(1)2 SPT phase with effective action8

P(B2)
2

. (68)

We can construct another topological interface from T(2) to T(1) as follows. Take T to be a 3d
TQFT with Z(1)2 1-form symmetry with anomaly (68) and chiral central charge a multiple of
one half.9 An example of such a theory is the semion model, or U(1)2 Chern-Simons theory TS

discussed earlier, which was also used by [6]. Stack TS on top of T(1) to obtain a codimension-
1 defect D(TS)

3 of T(1). A consequence of the anomaly (68) is that a gauge-invariant coupling J
of D(TS)

3 to Z(1)2 backgrounds in T(1) is possible only if the bulk couplings to Z(1)2 backgrounds

on left and right of D(TS)
3 differ by a Z(1)2 SPT phase whose effective action is (68). Let us call

the bulk coupling involving extra SPT as S ′ and the bulk coupling not involving extra SPT
as S. Then, the codimension-1 topological defect D(TS)

3 of T(1) descends to a Z(1)2 -symmetric

topological interface D(TS,J )
3 from the Z(1)2 -symmetric 4d QFT T

(1)
S ′ to the Z(1)2 -symmetric 4d

QFT T
(1)
S .

Gauging Z(1)2 1-form symmetry on both sides of D(TS,J )
3 we obtain a topological interface

I (S)3 := D(TS,J )
3 /Z(1)2 , (69)

from the 4d QFT
T
(1)
S ′ /Z

(1)
2
∼= T(2) , (70)

to the 4d QFT
T
(1)
S /Z

(1)
2
∼= T(1) . (71)

Composing this topological interface with I3, we obtain a topological defect

I3 ⊗ I (S)3 , (72)

of the 4d QFT T(1), which generates the non-invertible symmetry discussed in [6].
8Note that to make sense of this effective action, we need to restrict to spin 4d U(1) gauge theories.
9This requirement is there to make sure that the 4d TQFT attached to T, capturing the gravitational anomaly

of T, vanishes on spin 4-manifolds, allowing us to treat T as an absolute (rather than relative) spin TQFT.
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2.5 Condensations

A final generalization of the above considerations arises by noticing that we can replace d-
dimensional QFTs everywhere by d-dimensional defects of a larger D-dimensional QFT. The
higher-group symmetries will be localized along d-dimensional worldvolumes of these d-
dimensional defects, and the whole machinery (about their gauging etc.) will carry through.
Such localized symmetries were discussed in detail by [5].
The above machinery then allows us to produce new d-dimensional defects of the D-
dimensional QFT by gauging localized symmetries, study the fate sub-defects and sub-
interfaces under such a gauging producing sub-defects and sub-interfaces of the d-dimensional
defects obtained after localized gauging.

Condensation defects. The simplest example of localized symmetries is provided by the
identity d-dimensional defect D(id)d inside a D-dimensional QFT T. The topological defects of

T of dimension less than d can be submerged inside the d-dimensional worldvolume of D(id)d

and generate the symmetries localized along D(id)d . We can then pick a higher-group symmetry
Γ among these localized symmetries and consider turning on background gauge fields for Γ
along the d-dimensional worldvolume occupied by D(id)d , or in other-words any d-dimensional
subspace inside the D-dimensional spacetime unoccupied by any non-trivial defects of T.

The choice of gauge-invariant coupling S then allows us to define partition functions of
T with Γ backgrounds localized along any d-dimensional subspace Md of the D-dimensional
spacetime, such that they are invariant under background gauge transformations localized
along Md .

After choosing such a coupling S, we can gauge Γ symmetry localized along the worldvol-
ume of D(id)d to obtain a non-identity d-dimensional defect

D(id,S)
d /Γ , (73)

of the same D-dimensional QFT T, which is topological because the underlying defect D(id)d

is topological to begin with. Such topological defects D(id,S)
d /Γ were dubbed as condensation

defects in [4].
The machinery discussed in this section then allows us to study sub-defects and sub-

interfaces of condensation defects.

Higher-categorical structure of symmetries. In fact, we can iterate the above procedure.
We can replace D-dimensional QFTs by D-dimensional defects of larger D′-dimensional QFTs.
The machinery of this section then studies the symmetries localized along sub-defects of defects
of a QFT, the gauging of such symmetries and the fate of sub-sub-defects and sub-sub-interfaces
between such sub-defects.

Of course, we can keep iterating the above procedure. Turning it around, this means
that we could apply all of the machinery discussed in this section not only to defects of a d-
dimensional QFT T, but also to sub-defects of defects of T, and sub-sub-defects of sub-defects
of T and so on.

If we restrict ourselves to the study only of topological defects and topological sub-defects
etc, then this iterative structure of defects inside defects, and their various properties is all
expected to be captured in the information of a (d − 1)-category CT associated to the QFT T,
known as the symmetry category of T. See [5, 7] for more detailed discussions of the higher-
categorical aspects of non-invertible symmetries.

Starting from next section, we will assume that the readers have familiarized themselves
with this higher-categorical structure.
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Distinction between condensation and theta defects

In this section, we discussed theta defects and condensation defects, both of which pro-
vide classes of non-invertible symmetries. In this box, we discuss the distinction between
the two classes.

First of all, the two classes are defined differently. The theta defects are obtained
by inserting a lower p-dimensional TQFT T inside a bulk d-dimensional QFT T and then
gauging a combined symmetry S of T and T. On the other hand, the condensation de-
fects are obtained by gauging a symmetry S of a d-dimensional QFTT on a p-dimensional
submanifold of the d-dimensional spacetime.

However, even though the definitions are different, one may wonder whether the two
classes actually turn out to be the same. This was discussed in some detail in [7], where
it was concluded that the two classes are different. The reference [7] studied the two
classes for p = 2. If S is a finite abelian 0-form symmetry group Γ (0), then it was shown
concretely in section 4 of [7] that the two classes of defects in fact coincide. Reference [7]
also provided an abstract argument that the two classes of defects coincide even if Γ (0)

is a non-Abelian finite 0-form symmetry group. However, as pointed out in [7], if S is a
2-group symmetry in which 0-form and 1-form symmetries mix non-trivially, there exist
theta defects that are not condensation defects, and hence the two classes of defects start
to differ.

For higher values of p, the two classes differ already for S = Γ (0) as not all Γ (0) sym-
metric p-dimensional TQFTs for p ≥ 3 admit topological boundary conditions. The exis-
tence of a Γ (0)-symmetric topological boundary condition would imply that the resulting
theta defect can also be constructed as a condensation defect.

Finally, if we consider twisted theta defects, then they are distinct from condensation
defects already for p = 2 and S = Γ (0). Also note that the twisted theta defect (36) is not
a condensation defect.

3 Mathematical, higher-categorical structure

In this section, we translate various special cases of the physical construction described above
into well-known mathematical concepts in category theory. It should be noted that what is
discussed below is only physicists’ attempt at giving a mathematical definition to the physical
concepts encountered in the discussion of symmetries in QFTs, but there might be various
adjectives and subtleties missing from the mathematical discussion. Our purpose is to point out
the relevant mathematical objects in an effort to motivate the precise mathematical treatment
of the physical concepts encountered in the study of symmetries.

3.1 Higher vector spaces and non-anomalous topological orders

Higher-categories of universal topological defects. As we discussed in the previous sec-
tion, one of the ways of constructing p-dimensional topological defects of any d-dimensional
QFT T is to simply stack a p-dimensional TQFT T on a p-dimensional locus inside the space-
time occupied by T. Thus any d-dimensional theory T carries a universal sector of topological
defects described by (d − 1)-dimensional TQFTs and topological defects/interfaces of (d − 1)-
dimensional TQFTs.10

10Note that this automatically includes all lower dimensional TQFTs. For example, (d − 2)-dimensional TQFTs
can be viewed as topological codimension-1 defects of the completely trivial (d − 1)-dimensional TQFT.
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This universal sector is expected to be described by a monoidal (d−1)-category Td−1 whose
objects are (d − 1)-dimensional TQFTs and morphisms are topological defects/interfaces of
(d − 1)-dimensional TQFTs. Note that Td−2 is contained inside Td−1 as the (d − 2)-category
formed by endomorphisms (i.e. the defects) of the identity object (i.e. the trivial (d − 1)-
dimensional TQFT) of Td−1. Continuing iteratively Tp for every p < d is contained in Td−1.

1-category of universal line defects and vector spaces. Let us study special cases of Tp
higher-categories. For p = 1, we have

T1
∼= Vec , (74)

that is the category T1 of 1d TQFTs can be identified with the categoryVec of finite-dimensional
vector spaces. The identification

T1→ Vec , (75)

is made by a bulk-boundary correspondence: A 1d TQFT T ∈ T1 is mapped to the vector space
VT of local operators living at the 0d boundary of T. We can also identify VT with the space
of states assigned to a point by T. The fusion rule of T with an arbitrary line defect D1 of T is

T⊗ D1
∼= dim(VT)D1 , (76)

where dim(VT) is the dimension of the vector space VT, and dim(VT)D1 denotes a direct sum
of dim(VT) copies of D1.

Universal surface defects. For p = 2, we are studying 2d TQFTs. First of all, we have
invertible 2d TQFTs

Iλ , λ ∈ R+ , (77)

which are known in the physics literature as ‘Euler number counterterms’. The partition func-
tion of such a TQFT on a 2d manifold Σg of genus g is

λ2−2g . (78)

These are the only 2d TQFTs with a single vacuum, and any 2d TQFT T with n vacua can be
decomposed as [59]

T=
n
⊕

i=1

Iλi
, (79)

that is the TQFT T reduces in each vacuum to an Euler number counterterm.

2-vector spaces. Instead of studying 2d TQFTs, one can study 2d non-anomalous11 topo-
logical orders, which are defined as 2d TQFTs modulo invertible 2d TQFTs [50], and form a
2-category O2.

There is a canonical inclusion
O2 ,→ T2 , (80)

whose image contains 2d TQFTs having n vacua such that restricting to any vacuum we obtain
the trivial TQFT with λ = 0. Thus O2 is a fusion 2-category with a single simple object (upto
isomorphism) corresponding to the completely trivial 2d TQFT. Physically, this is just the well-
known fact that there are no non-trivial topological orders in 2d.

We can identify
O2
∼= 2-Vec , (81)

11Here anomaly refers to gravitational anomaly. The presence of this anomaly means that we are studying 2d
theories that are relative, and should be properly understood as boundary conditions of 3d invertible TQFTs.
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where 2-Vec is the fusion 2-category formed by ‘2-vector spaces’, which are by definition fi-
nite12 semi-simple abelian 1-categories. The identification

O2→ 2-Vec , (82)

is made by a bulk-boundary correspondence: A 2d TQFT T ∈ O2 ⊂ T2 is mapped to the 1-
category CT of line operators living on the boundary of T. If T has n vacua, then CT has n
simple objects and can be identified as

CT ∼= nVec , (83)

where on right hand side we have a direct sum of n copies of the 1-category Vec of finite
dimensional vector spaces. The fusion rule of T with an arbitrary surface defect D2 of T is

T⊗ D2
∼= n D2 , (84)

where n D2 denotes a direct sum of n copies of D2.

2-category of universal surface defects. We can express T2 as

T2
∼=O2 ⊠ 2-VecR+ , (85)

where 2-VecR+ describes the Euler counter-terms, and is simply the monoidal 2-category of
R+-graded 2-vector spaces.

Universal 3d defects and 3-vector spaces.13 For p = 3, the 3-category O3 formed by 3d
non-anomalous topological orders is

O3
∼= 3-Vec , (86)

where the right hand side is the fusion 3-category formed by ‘3-vector spaces’, which is by
definition the 3-category formed by multi-fusion 1-categories.

The identification
3-Vec→O3 , (87)

is made again by bulk-boundary correspondence with the map essentially taking topological
boundary conditions of a 3d TQFT to the 3d TQFT. A non-anomalous 3d TQFT T (upto stack-
ing with invertible E8 phases) admits topological boundary conditions.14 Pick a topological
boundary condition BT of T. BT can be characterized by the topological line defects living
on it. These topological line defects form a multi-fusion 1-category CBT

and the above map is
simply

CBT
7→ T . (88)

Miraculously, the category of boundary lines CBT
completely determines the TQFT T via the

well-known Turaev-Viro construction based on CBT
. In particular, the modular multi-tensor

category MT formed by topological line defects of T is recovered as

MT
∼= Z
�

CBT

�

, (89)

12All categories we discuss are C-linear unless otherwise stated. Note that the categories CΓq discussed later are
non-linear.

13We thank Thibault Décoppet and David Jordan for discussions regarding various points appearing in this sub-
section from this point onward.

14Such a boundary condition does not exist when we are dealing with anomalous 3d TQFTs (calling such systems
as TQFTs is a misnomer, as such 3d theories are topological boundary conditions of 4d TQFTs rather than properly
defined 3d theories).
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where Z(CBT
) denotes the Drinfeld center of CBT

. A different topological boundary condition
B′T of T carries a different multi-fusion category CB′

T
but Turaev-Viro construction based on

it produces the same 3d TQFT T. At the level of topological line defects of T, we have an
identification

Z
�

CBT

�∼= Z
�

CB′
T

�

, (90)

of Drinfeld centers.

Simple objects of 3-Vec. Note that, unlike Vec and 2-Vec, the 3-category 3-Vec has an
infinite number of isomorphism classes of simple objects. The isomorphism classes of simple
objects of 3-Vec are characterized by isomorphism classes of modular tensor categories that
can be expressed as Drinfeld centers. Equivalently, the isomorphism classes of simple objects
of 3-Vec are characterized by the Morita equivalence15 classes of fusion categories.

More universal 3d defects for spin-QFTs. One might wonder why we do not discuss 3d
TQFTs with topological line defects described by other modular multi-tensor categories that
cannot be expressed as Drinfeld centers. The reason is that such 3d TQFTs are anomalous.
However, if we include extra structure, then some of these anomalous TQFTs become non-
anomalous. We encountered such cases in previous section, where we saw that if T is a spin
QFT, then we can include 3d TQFTs with chiral central charge c− being a multiple of half. In
particular if c− ̸= 0, then the corresponding modular tensor category MT cannot be expressed
as a Drinfeld center and so is not included in 3-Vec.

Is 3-Vec the simplest fusion 3-category? The final issue that we would like to discuss is
the following puzzle: 3-Vec is often referred to as the simplest fusion 3-category. However,
as we have seen, this includes many non-trivial 3d topological orders, e.g. topological orders
characterized by non-trivial modular tensor categories (albeit only those that can be expressed
as Drinfeld centers). Physically, extending the 1d and 2d examples discussed above, it seems
that we could study a closed set of 3d topological orders which is simpler than the above set.
This simpler set comprises of the trivial 3d TQFT and its direct sums. A 3d TQFT in this simpler
set has n vacua such that in each vacuum the TQFT reduces to the trivial theory. Clearly, such
3d TQFTs form a rather simple monoidal 3-category that we refer to as

3-Vec0 , (91)

where the subscript 0 stands for trivial, as this 3-category. In fact, just like Vec and 2-Vec, the
3-category 3-Vec0 has a single simple object upto isomorphism corresponding to the trivial 3d
TQFT.

The crucial part of the definition of a fusion 3-category [50] violated by the monoidal
3-category 3-Vec0 is that a fusion 3-category C has to be Karoubi complete, which physically
means that any 3d topological defect obtained by gauging a (possibly non-invertible) symmetry
localized along the worldvolume of a 3d topological defect corresponding to an object of C
should also correspond to an object of C [49].

This condition clearly fails for 3-Vec0. For example, consider gauging the Z2 0-form sym-
metry of the trivial 3d TQFT. This produces the 3d Z2 Dijkgraaf-Witten gauge theory without
twist, also known as the toric code, which has a single vacuum but carries a modular tensor
category of lines containing more than one simple object. This makes it clear that toric code
lies outside 3-Vec0.

15Recall that Morita equivalence of fusion categories C1 and C2 is equivalent to the statement that their Drinfeld
centers are same Z(C1)∼= Z(C2).
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In fact, upon Karoubi completing 3-Vec0, that is upon adding objects corresponding to 3d
topological orders that can be produced by gauging 3d TQFTs contained in 3-Vec0, we land
on a fusion 3-category equivalent to 3-Vec, i.e.16

Kar(3-Vec0)∼= 3-Vec . (92)

We refer to 3-Vec0 as a pre-fusion 3-category.17

On the other hand, Vec and 2-Vec are Karoubi complete. For example, 2d Z2 gauge theory
has two vacua and, upto an Euler counterterm, can be identified with the element

2×Vec ∈ 2-Vec , (93)

obtained as the direct sum of two copies of Vec.

Physically motivated definition of p-Vec. Going along the above lines, we would like to
define p-Vec as the simplest fusion p-category. Physically, we would want p-Vec to describe
the simplest p-dimensional non-anomalous topological orders that are closed under conden-
sations.

For this purpose, let us begin by defining a monoidal p-category

p-Vec0 , (94)

as the category describing the trivial p-dimensional TQFT and its direct sums. This category
has a single simple object (upto isomorphism) corresponding to the identity codimension-1
defect.

Recall that, for a monoidal p-category C, Ω(C) := End1(C) is a monoidal (p − 1)-category
obtained by restricting to endomorphisms of the identity object of C. We denote by Ωp(C) the
monoidal category obtained by applying Ωp−1 to the monoidal category Ω(C).

We then have
Ω
�

p-Vec0
�

= (p− 1)-Vec0 . (95)

Thus, p-Vec0 has a single simple 1-endomorphism (upto isomorphism) of the identity object
corresponding to the identity codimension-2 defect, and so on because

Ωq
�

p-Vec0
�

= (p− q)-Vec0 . (96)

Note that p-Vec0 is always a pre-fusion category, but may or may not be a fusion category. For
low-dimensional cases we have

Vec0 ∼= Vec , 2-Vec0 ∼= 2-Vec , (97)

and so it is fusion, but as we saw above 3-Vec0 is not fusion.
Now we can simply add condensations to p-Vec0, or in other words Karoubi complete it,

to obtain our desired fusion category, leading to the definition

p-Vec := Kar
�

p-Vec0
�

. (98)

That is, p-Vec is the fusion category of non-anomalous p-dimensional topological orders ad-
mitting topological/gapped boundaries.

16To see this, first of all note that 3-Vec comprises of all topological orders admitting topological/gapped bound-
aries. On the other hand, 3-Vec0 comprises only of (direct sums of) trivial topological order. Now, a topological
order O1 is obtained by (generalized) gauging another topological order O2 if and only if there exists a topolog-
ical interface from O1 to O2. If O2 is trivial, then such a topological interface is the same as having a topological
boundary for O1. Combining these statements together, we see that Kar(3-Vec0)∼= 3-Vec.

17That is, we define a pre-fusion p-category C to be a category satisfying all the nice properties required to be a
fusion category except Karoubi completion. The Karoubi completion Kar(C) of a pre-fusion category C is a fusion
p-category.
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Universal p-dimensional defects. With the above definition of p-Vec, in general we have
inclusions

p-Vec0 ⊆ p-Vec ⊆Op , (99)

with p-Vec0 being pre-fusion, and p-Vec and Op being fusion p-categories.

3.2 Higher representations

Categories associated to higher-groups. A p-group Γ can be converted into a monoidal q-
category CΓq for q ≥ p−1. These categories capture the topological properties of the classifying
space of the p-group Γ . Note that the categories CΓq are non-C-linear.

Let us discuss some simple cases: To a 1-group (i.e. an ordinary group, or a 0-form sym-
metry group) Γ = Γ (0), we can first of all associate a 0-category

CΓ
(0)

0 = Γ (0) , (100)

which is the group itself. The p-category CΓ (0)p associated to Γ (0) has isomorphism classes of

simple objects labeled by elements of Γ (0), whose fusion is controlled by group multiplication.

The endomorphism (p−1)-category of any simple object is CΓ
(0)={id}

p−1 , i.e. the (p−1)-category

associated to a trivial Γ (0).
Consider a (p+1)-group with only non-trivial component being a p-form symmetry group

Γ (p). We label the corresponding monoidal categories as CΓ (p)q for q ≥ p. The q-category

CΓ (p)q has a single simple object (upto isomorphism), Ωn(CΓ (p)p ) has a single simple object (upto

isomorphism) for n < p, and Ωp(CΓ (p)q ) = CΓ (0)=Γ (p)q−p where we have used the categories CΓ (0)∗
defined above.

Consider now a 2-group Γ , which contains a 0-form group Γ (0), a 1-form group Γ (1) and a
Postnikov class valued in the group cohomology18

[ω] ∈ H3
�

Γ (0) , Γ (1)
�

. (101)

The associated 1-category CΓ1 has simple objects labeled by elements of Γ (0) with their fusion
controlled by group multiplication of Γ (0), and morphisms of the identity object labeled by
elements of Γ (1) with their fusion controlled by group multiplication of Γ (1). The information
of the Postnikov class is captured in the associator of simple objects of CΓ1 .

Higher-group graded higher vector spaces. We can linearize the p-category CΓp by allowing
the p-morphisms to be valued in C. Let us call the resulting pre-fusion p-category as

p-Vec0
Γ , (102)

which can be understood as Γ -graded version of the pre-fusion category p-Vec0 discussed
earlier.

We can now Karoubi complete to define

p-VecΓ := Kar
�

p-Vec0
Γ

�

, (103)

which we refer to as the fusion p-category of Γ -graded p-vector spaces.

18Note that we could also have an action ρ of Γ (0) on Γ (1), in which case the Postnikov class is valued in the
twisted group cohomology H3

ρ
(Γ (0), Γ (1)). We are choosing the action ρ to be trivial for simplicity.
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Making a QFT higher-group symmetric. A d-dimensional QFT T is converted into a Γ -
symmetric d-dimensional QFT TS for a higher-group Γ by choosing a monoidal functor

S : CΓd−1→ CT , (104)

where the target category CT is the (d − 1)-category capturing all topological defects of T,
known as the symmetry category19 of T. The functor S is what we referred to as the ‘gauge-
invariant coupling of T to Γ background gauge fields’ in the previous section.

Higher-categories of universal Γ -symmetric topological defects. In the same way as p-
dimensional TQFTs provide topological defects for any d-dimensional QFT T, Γ -symmetric
p-dimensional TQFTs provide Γ -symmetric topological defects for any Γ -symmetric d-
dimensional QFT TS .

This universal sector of Γ -symmetric topological defects is expected to be described by a
monoidal (d−1)-category T Γd−1 whose objects are Γ -symmetric (d−1)-dimensional TQFTs and
morphisms are Γ -symmetric topological defects/interfaces of Γ -symmetric (d−1)-dimensional
TQFTs. Note that T Γd−2 is contained inside T Γd−1 as the (d − 2)-category formed by endomor-
phisms (i.e. the Γ -symmetric topological defects) of the identity object (i.e. the trivial Γ -
symmetric (d − 1)-dimensional TQFT) of T Γd−1. Continuing iteratively T Γp for every p < d is
contained in T Γd−1.

We can recognize T Γp as the monoidal p-category of functors

BS : BCΓp−1→ Tp . (105)

Here BC is a p-category built from a monoidal (p − 1)-category C as follows: BC contains a
single object and the q-morphisms of BC are (q−1)-morphisms of C (with 0-morphisms being
objects).

This is easy to see: From our previous definition, a p-dimensional TQFT described by an
object T ∈ Tp is made Γ -symmetric by choosing a monoidal functor

S : CΓp−1→ EndT(Tp) , (106)

where EndT(Tp) is the monoidal (p − 1)-category formed by endomorphisms of the object T
of Tp. But such a functor is equivalent to a functor of the form (105).

We can similarly define monoidal p-category OΓp of Γ -protected non-anomalous p-
dimensional topological orders as the monoidal p-category of functors

BS : BCΓp−1→Op . (107)

Higher-representations of higher-groups. Recall that a finite-dimensional representation
VS of a group Γ (0) is a homomorphism

S : Γ (0)→ End(V ) , (108)

where V is a finite-dimensional vector space and End(V ) is the space of linear maps from V to
itself. Such a map is equivalent to a functor

BS : BCΓ
(0)

0 → Vec , (109)

19The full symmetry category may get unwieldy, so often people study the category formed by topological defects
modulo invertible TQFTs, and refer to it as the symmetry category.
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where Vec is the 1-category of finite-dimensional vector spaces.20 Such monoidal functors
form the category Rep(Γ (0)) of finite-dimensional representations of Γ (0).

We can extend the above definition by changing the target category involved in (109).
Functors

BCΓ
(0)

0 →M , (110)

with M being a monoidal category, can be referred to as representations of Γ (0) valued in M
and generate a monoidal category RepM(Γ

(0)).
Now we can perform the higher-categorical generalization. Functors

BCΓp−1→Mp , (111)

where Γ is a q-group and Mp is a monoidal p-category, are known as p-representations of the
q-group Γ valued in Mp, and form a monoidal p-category p-RepMp

(Γ ).
Thus, p-dimensional Γ -symmetric universal defects (or Γ -symmetric TQFTs) form the cat-

egory
T Γp ∼= p-RepTp

(Γ ) , (112)

and the p-dimensional Γ -symmetric non-anomalous topological orders form the category

OΓp ∼= p-RepOp
(Γ ) . (113)

We have inclusions

p-Repp-Vec0(Γ ) ⊆ p-Repp-Vec(Γ ) ⊆ p-RepOp
(Γ ) , (114)

describing Γ -symmetric topological orders with increasing levels of complexity. For exam-
ple, if Γ = Γ (0) a 0-form symmetry group, generalizing the arguments of [7], we expect
p-Repp-Vec0(Γ (0)) to capture p-dimensional Γ (0)-protected topological orders in which part of

Γ (0) symmetry is spontaneously broken leading to multiple vacua permuted by the Γ (0) action,
such that in each vacuum a subgroup Γ (0)

′
of Γ (0) is spontaneously preserved and that vac-

uum carries additionally a p-dimensional SPT phase protected by Γ (0)
′

0-form symmetry. In
this case, the other two p-categories p-Repp-Vec(Γ

(0)) and p-RepOp
(Γ (0)) capture more general

Γ (0)-protected topological orders including SET phases.
Let us also define

p-Rep(Γ ) := p-Repp-Vec(Γ ) , p-Rep0(Γ ) := p-Repp-Vec0(Γ ) . (115)

Universal theta symmetries. Any d-dimensional QFT T/Γ arising by gauging a non-
anomalous higher-group Γ symmetry of a d-dimensional QFT T carries a universal sector (non-
symmetric) topological defects descending from the universal sector of Γ -symmetric topolog-
ical defects of T. This universal sector of topological defects is what we defined to be theta
symmetries in the previous section. Thus, from the analysis of this section we learn that theta
symmetries of T/Γ form the monoidal (d − 1)-category (d− 1)-RepTd−1

(Γ ) which can be pro-
jected down to the monoidal (d − 1)-category (d− 1)-RepOd−1

(Γ ).

20This is easy to see: the vector space V in (108) is the image of the single object of BCΓ (0)0 under BS. The

endomorphisms of BCΓ (0)0 form the group Γ (0) under composition, and are mapped to endomorphisms of V satisfying
Γ (0) group law.
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SPT phases. We can define a p-dimensional Γ -protected SPT phase to be a simple object
of T Γp ∼= p-RepTp

(Γ ) whose underlying p-dimensional TQFT is trivial i.e. corresponds to the
identity object of Tp. In other words, a p-dimensional Γ -protected SPT phase is a monoidal
functor

S : CΓp−1→ Tp−1 . (116)

For example, consider Γ = Γ (0) a 0-form symmetry and p = 2. Then we have T1
∼= Vec and

so the SPT phases are monoidal functors

S : CΓ
(0)

1 → Vec , (117)

which are known to be classified (upto isomorphism) by the group cohomology H2(Γ (0), U(1))
recovering the well-known classification of such SPT phases.

Projective higher-representations. Just like we defined higher-representations above, we
can define projective higher-representations of a q-group Γ as follows. To define projective
p-representations, we need to first of all choose a target monoidal (p+1)-category Mp+1 and
an object Ip+1 ∈ (p+ 1)-RepMp+1

(Γ ) such that Ip+1 is a monoidal functor of the form

Ip+1 : CΓp → ΩMp+1 , (118)

or in other words, Ip+1 makes the identity object of Mp+1 symmetric under Γ . Then, we
define a projective p-representation of Γ to be a 1-morphism from Ip+1 to the identity object
of (p+ 1)-RepMp+1

(Γ ). Such morphisms form a (non-monoidal) p-category which we call the
p-category of projective p-representations of Γ lying in the class Ip+1 and denote the p-category
as

p-Rep
Ip+1

Mp+1
(Γ ) . (119)

As an example, consider Γ = Γ (0) a 0-form symmetry group, p = 1 and M2 = 2-Vec. The possi-
ble objects I2 are SPT phases classified (upto isomorphism) by elements of [α] ∈ H2(Γ (0), U(1))
discussed above. Let us choose an SPT phase described by a representative α of a class [α].
The morphism category 1-Repα2-Vec(Γ

(0)) then describes the usual projective representations of
the group Γ (0) lying in the class [α].

Γ -anomalous TQFTs. A p-dimensional Γ -anomalous TQFT TS , or in other words a p-
dimensional (gravitationally non-anomalous) TQFT T with a coupling S of T to Γ background
fields afflicted with a ’t Hooft anomaly, is defined as a projective representation

TS ∈ p-Rep
Ip+1

Tp+1
(Γ ) , (120)

where the SPT phase Ip+1 ∈ T Γp+1 is known as the (p+1)-dimensional anomaly theory captur-
ing the ’t Hooft anomaly associated to the p-dimensional Γ -anomalous TQFT TS .

3.3 Modules and bimodules

In this subsection, we very roughly sketch how non-universal Γ -symmetric (topological or non-
topological) defects of a Γ -symmetric d-dimensional QFT TS can be constructed.
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∈ S
∈ S

∈ S

∈ S

Figure 8: The choice (104) of coupling S is not only a choice of topological operators
(shown in blue) labeled by elements of the higher-form symmetry groups Γ (p) part of
the higher-group Γ , but also the choice of junctions (shown in green), and junctions
of junctions etc, of such topological operators. The label ‘∈ S ’ simply indicates that
the defect is in the collection S of defects.

∈ S
∈ S

∈ S

∈ S∈ S

∈ S

=
∈ S

∈ S

∈ S

∈ S∈ S

∈ S

Figure 9: The figure depicts one of the possible conditions that topological operators
in S have to satisfy for TS to be a Γ -symmetric d-dimensional QFT. In fact, any two
string diagrams related by a topological rearrangement of topological operators in S
(such that the topological move leaves the boundary of the string diagram invariant)
need to be equal.

Choice of bulk coupling S. The choice (104) of the coupling S converting a d-dimensional
QFT T into a Γ -symmetric d-dimensional QFT TS can be understood as a choice of topological
operators in T generating the Γ symmetry along with the choice of operators at their junctions.
See figure 8.

The fact that S is gauge-invariant means that two string diagrams composed out of oper-
ators involved in S and related by a topological move (that leaves the boundary of the string
diagram invariant) are equal. An example is shown in figure 9.

Choice of defect coupling J . Begin with a p-dimensional (topological or non-topological)
defect Dp of T. The coupling J is a choice of topological operators sitting at the junctions of
Dp and the bulk topological operators generating the Γ symmetry, as shown in figure 10. The
demand that J be a gauge-invariant coupling requires all string-diagrams (in the symmetry
(d −1)-category CT associated to T) comprising of topological operators in J and S to be the
same, if they are related by topological moves (without changing the boundary of the string
diagram). See figure 11.

Let us note that the above information is not sufficient to specify a codimension-1 Γ -
symmetric defect. In this case the coupling J needs to be refined into left and right couplings
JL and JR. We discuss this refinement later in this subsection.

In favorable situations, when there are no associators (coherence relations) for Γ topolog-
ical defects in the presence of Dp, the choice of coupling amounts to the choice of a monoidal
functor

J : CΓp−1→ CDp
, (121)

where CDp
is the monoidal (p− 1)-category describing symmetries localized along Dp. If Dp is

topological, it is an object of the p-category Ωd−p(CT) and we have

CDp
= EndDp

�

Ωd−p(CT)
�

, (122)
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Dp

D
(γq)
d−q−1

J
(γq)
p−q−1

Figure 10: To define a coupling J of Dp to Γ background gauge fields, we need to
choose topological operators lying at the junctions of Dp and topological operators
generating Γ higher-group symmetry. In the figure we have illustrated such a junction

operator J
(γq)
p−q−1 lying at the junction of Dp with a bulk topological codimension-(q+1)

operator labeled by element γq ∈ Γ (q), namely the q-form symmetry component of
Γ . This is some of the most basic data of J . We also need to choose junctions of Dp

with the junctions (shown in green in figure 8) of topological operators D
(γq)
d−q−1, and

junctions of Dp with junctions of junctions of D
(γq)
d−q−1 etc.

Dp

∈ J

∈ J

∈ S
=

Dp

∈ J
∈ S

∈ S

∈ S

∈ S

∈ S

∈ S

∈ S

Figure 11: The figure depicts one of the possible conditions that topological operators
in J (shown in red) have to satisfy given a set of topological operators in S (shown in
blue and green) for D(J )p to be a Γ -symmetric p-dimensional defect of TS . In fact, any
two string diagrams related by a topological rearrangement of topological operators
in J and S (such that the topological move leaves the boundary of the string diagram
invariant) need to be equal.

is the endomorphism (p−1)-category of Dp ∈ Ωd−p(CT). The map from topological interfaces
described in the previous paragraph to the topological sub-defects of Dp chosen by the above
functor J is obtained by a folding operation, see figure 12.

One can always implement the folding operation to convert information about J into
a map of the form (121), but it will in general not be a monoidal functor. There will be
obstructions for example of the type shown in figure 13.

Choice of interface couplings (JL,JR). Similarly, we can construct (ΓL , ΓR)-symmetric in-
terfaces from ΓL-symmetric QFT T

(L)
SL

to ΓR-symmetric QFT T
(R)
SR

. Let Id−1 be an interface from

T(L) to T(R). A coupling JL of Id−1 to ΓL backgrounds is a choice of topological defects living
at the ends of the bulk topological defects generating ΓL with coupling SL along the world-
volume of Id−1. See figure 14. The coupling JL is required to be left-gauge-invariant which
imposes equality of two string diagrams involving topological defects in SL and JL related by
a topological move (which leaves the boundary of the string diagram invariant). See figure 15.
Similarly, we define a right-gauge-invariant coupling JR of Id−1 to ΓR backgrounds. Finally, for
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Dp

D
(γq)
d−q−1

J
(γq)
p−q−1

Dp Dp

Figure 12: Folding the bulk Γ topological operators away converts elements of J
into topological operators localized on Dp. Thus, the folding operation packages the
information of J into a map of the form (121). However, this map is a monoidal
functor only if there are no non-trivial associators for Γ topological operators in the
presence of Dp.

the combined coupling J = (JL ,JR) to be fully gauge-invariant, we have to impose equality
of string diagrams involving topological defects in SL , SR, JL and JR under topological moves.
See figure 16.

In fact, above we did not describe full information for converting a codimension-1 defect
Dd−1 of T into a Γ -symmetric codimension-1 defect D(J )d−1 of TS . More precisely, D(J )d−1 is ob-
tained as a (Γ , Γ )-symmetric interface from TS to TS , and so the coupling J needs to be refined
into a left coupling JL and a right coupling JR. The above topological junctions describing J
are obtained by combining the topological ends describing JL and JR as shown in figure 17.

Implementing the conditions in 2d. The implementation of the above set of conditions is
best understood for 2d QFTs and Γ = Γ (0) a 0-form symmetry group. This was reviewed using
the modern language of symmetries in [41].

First of all, the condition shown in figure 9 means that the topological operators describing
S form an algebra A in the symmetry category CT of the 2d QFT T. The algebra A can be
identified as the image of the canonical algebra (involving a direct sum of all simple objects)
of the non-linear category CΓ (0)1 under the functor (104).

Coupling JL shown in figure 14 satisfying the condition shown in figure 15 converts
(Id−1,JL) into a left module for the algebra AL . That is, the category of Γ (0)L -symmetric topo-

logical interfaces from a Γ (0)L -symmetric 2d QFT T
(L)
SL

to a 2d QFT T(R) is the category

ModML,R
(AL) , (123)

of AL modules in the left-module category ML,R of the symmetry category CTL
describing

topological interfaces from T(L) to T(R).
Similarly, coupling JR shown in figure 14 satisfying the condition shown in figure 15 con-

verts (Id−1,JR) into a right module for the algebra AR. That is, the category of Γ (0)R -symmetric

topological interfaces from a 2d QFT T(L) to a Γ (0)R -symmetric 2d QFT T
(R)
SR

is the category

ModML,R
(AR) , (124)

of AR modules in the right-module category ML,R of the symmetry category CTR
describing

topological interfaces from T(L) to T(R).
Finally, imposing also the condition shown in figure 16 converts (Id−1,JL ,JR) into a bi-

module for the algebras (AL , AR). That is, the category of (Γ (0)L , Γ (0)R )-symmetric topological

interfaces from a Γ (0)L -symmetric 2d QFT T
(L)
SL

to a Γ (0)R -symmetric 2d QFT T
(R)
SR

is the category

BimodML,R
(AL , AR) , (125)
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Dp

=

Dp

̸=

Dp

Dp

Figure 13: If there are non-trivial associators in the presence of Dp, then fusing and
folding operations do not commute, and hence the topological operators obtained
after folding (shown in teal) do not obey higher-group fusion laws.

of (AL , AR) bimodules in the bimodule category ML,R of the symmetry categories (CTL
,CTR
)

describing topological interfaces from T(L) to T(R).
As a corollary, the Γ (0)-symmetric topological lines of a Γ (0)-symmetric 2d QFT TS form the

tensor category
BimodCT(A) , (126)

of A-bimodules in the symmetry category CT.

Higher-dimensions. In a similar fashion, [8, 9] implemented the various conditions dis-
cussed in this subsection for d = 3 QFTs T with very special choices of symmetry 2-categories
CT and special classes of 2-group symmetries. A systematic exploration of the conditions dis-
cussed here in various dimensions with various symmetry categories and for various types of
higher-groups would be very interesting to tackle in future works.

4 A program for classification of non-invertible symmetries

In section 2, we provided a rather general physical formalism, based on gauging of invertible
symmetries, that can be used in a variety of ways to construct non-invertible symmetries. In
fact, we showed that several constructions of non-invertible symmetries of higher-dimensional
QFTs appearing in recent literature describe special examples of the overarching structure
presented here.

In section 3, we attempted to formalize the physical construction of section 2 into pre-
cise mathematical objects. We were successful at formalizing parts of the structure, while for
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Id−1

∈ SL ∈ JL

Id−1

∈ SR∈ JR

Figure 14: To define a coupling JL of an interface Id−1 to ΓL background gauge fields
on the left, we need to choose topological operators lying at the ends along Id−1
of topological operators generating ΓL higher-group symmetry. Similarly, a coupling
JR of Id−1 to ΓR background gauge fields on the right involves choosing topological
operators lying at the ends along Id−1 of topological operators generating ΓR higher-
group symmetry. These are some of the most basic data of JL and JR. We also need
to choose ends along Id−1 of the junctions (shown in green in figure 8) of topologi-
cal operators generating ΓL and ΓR, and ends along Id−1 of junctions of junctions of
topological operators generating ΓL and ΓR etc.

the remaining parts we provided an intuitive approach in subsection 3.3 that can be made
mathematically precise using the machinery of higher-category theory.

Thus, section 3 should be viewed as providing all the essential mathematical ideas required
to make the physical construction of section 2 concrete and amenable to computations. Using
these ideas, one should be able to concretely construct many different kinds of non-invertible
symmetries carrying out the procedures detailed in section 2, as discussed below:

• First of all, one can consider understanding the universal symmetries that every QFT
admits. This part is obtained by stacking decoupled lower-dimensional TQFTs on top
of the QFT, and is characterized by the (d − 1)-category Td−1 for a d-dimensional QFT
T. Universality means that Td−1 is always a sub-category of the full symmetry (d − 1)-
category CT of the QFT T regardless of the choice of T. A full understanding of this
universal piece is equivalent to the classification of TQFTs in various dimensions.

• At the next step, one can consider understanding another class of universal symme-
tries admitted by any d-dimensional QFT TS/Γ obtainable from another d-dimensional
QFT T by gauging a non-anomalous higher-group symmetry Γ . This part is character-
ized by Γ -symmetric TQFTs of dimension less than d and forms a (d − 1)-subcategory
(d− 1)-RepTd−1

(Γ ) of the full symmetry (d − 1)-category CT of T. We have called such
symmetries as theta symmetries as their construction is similar to the construction of
theta angle.

Some examples of theta symmetries were concretely discussed in great computational
detail in [7, 8]. They analyzed the categories 2-RepT1

(Γ ) = 2-RepVec(Γ ) = 2-Rep(Γ )
for Γ a 2-group symmetry, which includes purely 0-form symmetry and purely 1-form
symmetry. Extension to the computation of (d− 1)-RepTd−1

(Γ ) for other values of d and
various types of higher-groups Γ would be an interesting problem to tackle in future
works.

• The next level of complexity is the construction of non-universal symmetries of TS/Γ ,
namely those symmetries that arise from those topological defects of T that cannot be
constructed by stacking TQFTs on top of T.
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Id−1

∈ JL

∈ JL

∈ SL

=

∈ SL

Id−1

∈ JL∈ SL

∈ SL

∈ SL

Id−1

∈ JR

∈ JR

∈ SR

∈ SR

=

Id−1

∈ JR ∈ SR

∈ SR

∈ SR

Figure 15: The top figure depicts one of the possible conditions that topological
operators in JL (shown in red) have to satisfy given a set of topological operators
in SL (shown in blue and green) for I (JL)

d−1 to be a ΓL-symmetric interface from T
(L)
SL

to T(R). In fact, any two string diagrams related by a topological rearrangement
of topological operators in JL and SL (such that the topological move leaves the
boundary of the string diagram invariant) need to be equal. The bottom figure depicts
a similar condition involving JR and SR for I (JR)

d−1 to be a ΓR-symmetric interface from

T(L) to T
(R)
SR

.

A well-known example of such symmetries are provided by the duality defects of 4d QFTs
discussed in [2,3]. A systematic exploration of various kinds of possible duality defects
utilizing all the ingredients described in section 2 would be an interesting problem to
tackle in future works.

Such symmetries are also systematically studied in the upcoming paper [9] for Γ = Γ (0)

a 0-form symmetry group and d = 3. Recall that we did not provide a precise mathemat-
ical recipe for the computation of such non-universal symmetries, but rather sketched
some mathematical ideas in subsection 3.3. Thus, the upcoming paper [9] should be
viewed as evidence that the ideas of subsection 3.3 can be converted into precise mathe-
matical computations that, despite the occurrence of many subtleties, can be concretely
carried out. We provide numerous checks for the validity of these computations in [9]
and encounter interesting phenomena like symmetry fractionalization on top of conden-
sation defects.

Generalizing the analysis of [9] to arbitrary 2-groups Γ in d = 3, and/or to higher d
would be a very interesting direction for future research.

• A generalization of the above non-universal symmetries involves the understanding of
topological interfaces from TS/Γ to T starting from codimension-1 topological defects of
T. Such interfaces can be composed with known interfaces from T to TS/Γ to construct
new codimension-1 topological defects of T.
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Id−1

∈ SL ∈ JL

∈ SR∈ JR
=

Id−1

∈ SL ∈ JL

∈ SR∈ JR

Figure 16: The figure depicts one of the possible conditions that topological opera-
tors in JL and JR (shown in red) have to satisfy given a set of topological operators
in SL and SR (shown in blue) in order for I (JL ,JR)

d−1 to be a (ΓL , ΓR)-symmetric interface

from T
(L)
SL

to T
(R)
SR

. In fact, any two string diagrams related by a topological rearrange-
ment of topological operators in J and S (such that the topological move leaves the
boundary of the string diagram invariant) need to be equal.

Dd−1

∈ S
∈ J

:=

Dd−1

∈ S ∈ JL

∈ S∈ JR

Figure 17: The topological junctions in J for a Γ -symmetric codimension-1 defect
D(J )d−1 are actually a combination of the topological ends in JL and JR converting Dd−1

into a (Γ , Γ )-symmetric interface D(JL ,JR)
d−1 from TS to TS .

An example of this procedure was used by [6] to construct non-invertible symmetries of
4d QFTs using ABJ anomalies. A systematic exploration of such topological interfaces
has not been undertaken yet even for simple examples of Γ , d and CT. It would be a
very interesting problem to tackle in future works. It should be noted that such topolog-
ical interfaces provide examples of “non-invertible dualities” between TS/Γ and T, so
would be interesting to explore on their own as generalizations of the standard invertible
dualities.

• It should be noted that all of the above methods are also applicable to the construction
of condensation defects by simply replacing QFT T by the identity defect (of some di-
mension) in a QFT T and more generally to the construction of new topological defects
by gauging symmetries localized on an arbitrary topological defect in a QFT.

A systematic analysis of condensation defects was performed in [4, 7] for d = 3 and
gauging of 1-form symmetries on surfaces. Extensions of these works to higher dimen-
sions and gauging of other kinds of higher-group symmetries, and also extensions to
gauging of symmetries localized on non-identity defects would be interesting problems
to tackle in future works.
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