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Abstract

The geometry of Borromean three-body halos, such as two-neutron halo nuclei or
triatomic molecules close to dissociation, is investigated using a three-body model. This
model enables to analytically derive the universal geometric properties found recently
within an effective-field theory for halos made of a core and two resonantly-interacting
particles [Phys. Rev. Lett., 128, 212501 (2022)]. It is shown that these properties not
only apply to the ground three-body state, but also to all the excited (Efimov) states
where the core-particle interaction is resonant. Furthermore, a universal geometry
persists away from the resonant regime between the two particles, for any state close to
the three-body threshold. This “halo universality”, which applies equally to all states, is
different from the Efimov universality, which is only approximate for the ground state. It
is explained by the separability of the hyper-radius and hyper-angles close to the three-
body dissociation threshold.

Copyright P. Naidon.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 20-02-2023
Accepted 21-08-2023
Published 29-09-2023

Check for
updates

doi:10.21468/SciPostPhys.15.3.123

Contents

1 Introduction 2

2 Model 2

3 Mean square radii 3

4 Two-particle resonance 4

5 Numerical investigation 6

6 Hyper-spherical representation 9

7 Observing halo universality 10

8 Conclusion 11

A Low-momentum and energy T-matrix element Eq. (13) 12

1

https://scipost.org
https://scipost.org/SciPostPhys.15.3.123
mailto:pascal@riken.jp
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.15.3.123&amp;domain=pdf&amp;date_stamp=2023-09-29
https://doi.org/10.21468/SciPostPhys.15.3.123


SciPost Phys. 15, 123 (2023)

B Functions fn anf fc 13
B.1 Numerator of Eq. (11) 13
B.2 Numerator of Eq. (12) 14
B.3 Ratio of mean square radii 15
B.4 Simplification of fn and fc 15

C Hyper-spherical representation 15
C.1 Mean-square radii for vanishing binding energy 16
C.2 Calculation of the matter and the core radii 17

References 18

1 Introduction

Quantum halos [1], i.e. quantum few-body bound states whose spatial extent exceeds
the range of the bodies’ interactions, have been studied for over four decades since the
experimental discovery of halos in atomic nuclei in the 1980s [2–5], followed by the controlled
creation of halos in ultracold-atom experiments from the 2000s [6–9]. Quantum halo systems
can be composed of identical particles loosely bound to each other, or as is often the case for
halo nuclei, a composite core and a few loosely bound particles forming the halo. Moroever,
quantum halos can be Borromean [10], i.e. they do not remain bound if one of the particles is
removed. The geometry of quantum halos is characterised by large mean square radii [11–17],
which can be extracted from experimental measurements [18–23]. In a recent work based on
an effective-field theory [24], universal analytical relations were found between different mean
square radii for Borromean three-body halos made of a core and two resonantly-interacting
particles, such as two-neutron halo nuclei.

In the present work, it is shown how the analytic relations can be obtained from the
Faddeev approach to the three-body problem. Although it is implicit in the work of Ref. [24],
it is here emphasised that the analytical relations apply not only to a ground state but also to
excited Borromean halo states. The applicability of the relations is then tested numerically
within a separable three-body model where the three-body Efimov effect occurs. These
numerical calculations confirm that the analytic properties are relevant to any Borromean
halo state, i.e. any Efimov state close to the three-body dissociation. Finally, the limiting
values close and away from the two-particle resonance are retrieved analytically in the hyper-
spherical representation.

2 Model

We start with a three-body model for a core particle denoted by 3, of mass m3, interacting with
two identical particles denoted by 1 and 2, of mass m1 = m2 – see Fig. 1. The corresponding
Schrödinger equation for the three-body wave function Ψ̃ in momentum representation reads

 

3
∑

i=1

ħh2k2
i

2mi
+
∑

i< j

V̂i j − E

!

Ψ̃ = 0 , (1)
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Figure 1: Schematic representation of a system formed by a core (3) and two identical
particles (1 and 2).

where E is the total energy and V̂i j are the respective two-body interaction operators, having
ranges denoted as Λ−1

i j . In the present notation, an operator Ôi j acts on the relative wave

vector ki j =
mi k j−m j ki

mi+m j
between particles i and j. Introducing the Faddeev components [25]

Fi j = V̂i jΨ̃ , one can write for E < 0,

Ψ̃ =
F12 +F23 +F31

E −
∑3

i=1
ħh2k2

i
2mi

. (2)

It follows from the definition of the Faddeev components that they satisfy the following Faddeev
equations:

Fi j = T̂i j

�

zi j

� F jk +Fki

E −
∑3

i=1
ħh2k2

i
2mi

, (3)

where the two-body transition operators T̂i j(z) are defined from the original interactions V̂i j
by:

T̂i j(z) = V̂i j +
�

V̂i jG
+
i j(z)

�

T̂i j(z) , (4)

where G+i j(z) =
�

z + i0+ − ħh
2

2µi j
k2

i j

�−1
and µi j =

�

1
mi
+ 1

m j

�−1
is the reduced mass for particles

i and j. The two-body energy zi j in Eq. (3) is obtained by subtracting from the total energy
the centre-of-mass kinetic energy and the relative kinetic energy between the dimer (i, j) and
particle k,

zi j = E −
ħh2

2(m1 +m2 +m3)
K2

C −
ħh2

2µi j,k
K2

i j,k , (5)

where KC = k1 + k2 + k3 is the total wave vector, µi j,k =
�

1
mi+m j

+ 1
mk

�−1
is the reduced mass

and K i j,k =
(mi+m j)kk−mk(ki+k j)

mi+m j+mk
is the relative wave vector between the dimer (i, j) and particle

k. Since the system is translationally invariant, it will be assumed in the following that the
total wave vector KC is zero.

3 Mean square radii

Following Ref. [24], let us denote the mass ratio m3/m1 as A, and define the following mean
square matter radius 〈r2

m〉 and mean square core radius 〈r2
c 〉 (or charge radius, if the core carries
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an electric charge)

〈r2
m〉 ≡

2〈r2
C1〉+ A〈r2

C3〉
A+ 2

, (6)

〈r2
c 〉 ≡ 〈r

2
C3〉 , (7)

where C denotes the centre of mass of the three particles, and rCi = ri − rC is the relative
vector between particle i and the centre of mass C . One can easily show that

rC1 =
A+ 1
A+ 2

R23,1 , (8)

rC3 =
2

A+ 2
R12,3 , (9)

where Ri j,k is the relative vector between particle k and the centre of mass of the dimer (i, j)
- see Fig. 1. It follows that

〈r2
m〉
〈r2

c 〉
=

1
2 (A+ 1)2

〈R2
23,1〉
〈R2

12,3〉
+ A

A+ 2
. (10)

The two averages 〈R2
23,1〉 and 〈R2

12,3〉may be calculated from the wave function Ψ̃ in momentum
representation as

〈R2
23,1〉=

∫

d3K23,1d3k23

�

�

�∇K23,1
Ψ̃
�

�

�

2

∫

d3K23,1d3k23

�

�Ψ̃
�

�

2 , (11)

〈R2
12,3〉=

∫

d3K12,3d3k12

�

�

�∇K12,3
Ψ̃
�

�

�

2

∫

d3K12,3d3k12

�

�Ψ̃
�

�

2 . (12)

4 Two-particle resonance

Let us now consider a bound core-particle-particle system (in a ground or excited state) close to
the three-body dissociation threshold E→ 0−, so that it becomes a halo whose extent exceeds
the rangesΛ−1

i j of the particles’ interactions. In this situation, the calculation of the square radii
is dominated by the low-momentum part of the wave function, k, K ≪ Λi j . At low momenta
and energy, the (on- and off-shell) two-body T-matrix elements are given by1

〈k|T̂i j(zi j)|k ′〉 ≈
4πħh2

2µi j

�

1
ai j
+ i

√

√2µi j

ħh2 zi j

�−1

, (13)

where ai j is the s-wave scattering length between particles i and j. It follows from Eq. (3)
that each Faddeev component Fi j at low momenta is proportional to the right-hand side of
Eq. (13).

Close to a resonance between particles 1 and 2, such that |a−1
12 | ≪ |a

−1
23 |, |a

−1
31 |,Λi j , and for

sufficiently small energy
p

2µ12|E|/ħh ≪ |a−1
23 |, |a

−1
31 | of the three-body system, the Faddeev

component F12 at low momenta k12 ≪ Λ12 and K12,3 ≲
Æ

2µ12,3|E|/ħh ≪ Λ12 becomes

1See Appendix A for details.
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dominant over F23 and F31 in the three-body wave function of Eq. (2). Furthermore, F12
is proportional to 〈0|T̂12|0〉 and depends only on K12,3:

F12∝ F(K12,3) =
4πħh2/2µ12

1
a12
−
r

−2µ12

ħh2 E + µ12
µ12,3

K2
12,3

. (14)

The calculation of the square radii is thus simplified and yields

〈r2
m〉
〈r2

c 〉
=

A
2

�

1+
fn

fc

�

, (15)

where the quantities fn and fc are determined solely by the Faddeev component F associated
with the two resonant particles,

fn ≡
1
2

∫

d3K
F(K)2

K̃3
, (16)

fc ≡
∫

d3K

�

F ′(K)2

K̃
−

KF(K)F ′(K)
K̃3

+
K2F(K)2

2K̃5

�

, (17)

with K̃2 = K2 − 2µ12,3E

ħh2 . For a12 < 0 and E < 0, it can be shown2 that fn and fc reduce to the
following integrals

fn(β)∝
∫ ∞

1

d y

p

y − 1

2y3/2
�

β +py
�2 , (18)

fc(β)∝
∫ ∞

1

d y

2
p

y(y − 1)
�

β +py
�2 , (19)

where

β =

√

√ E12

|E|
, (20)

is the square root ratio of the particle-particle virtual energy E12 =
ħh2

2µ12|a12|2
and the trimer

binding energy |E|. The above integrals were shown in Ref. [24] to admit the following
analytical expressions,

fn(β)∝























β−3

�

π− 2β + (β2 − 2)
arccosβ
p

1− β2

�

, β < 1 ,

β−3

�

π− 2β + (β2 − 2)
arccoshβ
p

β2 − 1

�

, β > 1 ,

(21)

fc(β)∝



















1
1− β2

−
β arccosβ
(1− β2)3/2

, β < 1 ,

−
1

β2 − 1
+
βarccoshβ
(β2 − 1)3/2

, β > 1 .

(22)

Thus, the ratio of matter and charge radii of Eq. (15) is universally determined by the mass
ratio A and the square root ratio β . In particular, it tends to A for β ≫ 1 and to 2

3A for β ≪ 1.

2See Appendix B for details.
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More generally, any geometric property of the system that does not depend explicitly on its
size, such as length ratios and angles, is universally determined by A and β , owing to the form
of Eq. (14) and the fact that F23,F31≪ F12. The word universal here means independent of
the details of the interactions, but it also means independent on whether the considered state
is excited or not, as we shall confirm numerically below.

5 Numerical investigation

In order to test the validity of the previous analytical results, the system is now investigated
numerically close to and far from the two-body resonance, for states of total angular
momentum equal to zero. The two particles are assumed to be in a symmetric state, i.e.
they correspond to either two identical bosons, or two identical fermions in antisymmetric
spin states, such as two neutrons in a singlet state. For simplicity, the interactions are taken
to be separable, 〈k|V̂i j|k ′〉 = gi jφi j(k)φi j(k ′). In this case, the transition operators T̂i j are
also separable, and the Faddeev Eqs. (3) simplify to integral equations of the Skorniakov−Ter-
Martirosian (STM) type [26], which can easily be solved numerically. The form factors φi j are
chosen to be of the Gaussian type, φi j(k) = exp(−k2/Λ2

i j), where Λ−1
i j characterise the range

of interactions. The interactions being of the same physical nature, Λi j are taken for simplicity
to be all equal to the same order of magnitude Λ. The strengths g12 and g23 = g31 determine
the respective scattering lengths a12 and a23 = a31.

10-5 0.001 0.100 10

10-7

10-4

0.1

|a12
-1 [Λ]

|a
23

-
1
[Λ
]

Equal massesNo bound state

Trimer 1

Trimer 2

Trimer 3

Trimer 4

|a23
(1) -1

|a23
(2) -1

|a23
(3) -1

|a23
(4) -1

|a23
(5) -1

10-5 0.001 0.100 10

10-7

10-4

0.1

|a12
-1 [Λ]

|a
23

-
1
[Λ
]

Mass ratio 9No bound state

Trimer 1

Trimer 2

Trimer 3

Trimer 4

|a23
(1) -1

|a23
(2) -1

|a23
(3) -1

|a23
(4) -1

|a23
(5) -1

Figure 2: Regions of existence of Borromean bound states of a core and two identical
particles, as a function of the core-particle inverse scattering length |a23|−1 and
particle-particle inverse scattering length |a12|−1. Top panel: equal mass case A= 1.
Bottom panel: heavy core and light particle, with mass ratio A= 9. The arrows show
the critical core-particle scattering lengths a(n)23 to get an nth bound state.
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Figure 3: Close-up figure of the bottom panel of Fig. 2. The horizontal dashed
lines correspond to the values |a23|−1 = 0.99, 0.9,0.344, 0.03 in units of |a(1)23 |

−1.
The vertical dotted lines correspond to the values |a23|−1 = 10−5, 10−3, 0.0447 in
units of Λ.

Figure 2 shows the regions of existence of three-body bound states as a function of
1/a12 < 0 and 1/a23 < 0, i.e. in the Borromean region where there are no two-body bound
states. One can see that the core-particle scattering length |a23| must exceed a critical value
|a(1)23 | in order to allow a first three-body bound state. Owing to the Efimov effect [15,27–30],
there is an infinite number of three-body bound states as |a23| is further increased towards
infinity. The curves in Fig. 2 represent the sucessive thresholds for the appearance of these
trimer states. Conversely, these curves can also be regarded as the thresholds where the trimer
states dissociate into three unbound particles when the interactions are weakened. It is near
these thresholds that the trimer becomes a large halo. Due to the Efimov effect, the thresholds
follow a geometric progression in the limit of highly-excited states. However, for large mass
ratio A and small scattering length |a12|, the discrete scaling factor is so large that only the
ground state is observable, while the excited states are too weakly bound to be seen. We thus
focus on the region of large scattering length |a12| relevant to two identical particles close to
unitarity such as two neutrons.

This region is shown for A = 9 in Fig. 3, where the ground-state and first-excited state
are visible. Let us first scan the ground state by varying the particle-particle scattering length
a12 as indicated by the horizontal dashed lines, and calculate its geometric properties such
as the matter/core radius ratio 〈r2

m〉/〈r
2
c 〉 using Eqs. (11-12). The result is shown in the top

panel of Fig. 4. The analytical formula based on Eqs. (15, 21, 22) found in Ref. [24] accurately
reproduces the numerical calculations whenever the system is close enough to the dissociation
threshold. In particular, for large particle-particle scattering length |a12|, the ratio approaches
the limit 2

3A when |a23| is close (within 1%) to the critical value |a(1)23 |, whereas for smaller
values of |a12| the ratio approaches the limit A near the threshold, regardless of the core-
particle scattering length a23.
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Figure 4: Matter/Core radius ratio 〈r2
m〉/〈r

2
c 〉 as a function of the square root ratio

β of the two-particle virtual binding energy E12 and the trimer binding energy |E|.
The different curves correspond to different values of a23, which for the ground-state
trimer are shown by horizontal dashed lines in Fig. 3. The dashed curve corresponds
to the analytical formula given by Eqs. (15, 21, 22) and the horizontal dotted lines
show the limits 2

3A and A. Top panel: ground-state trimer ; middle panel: first excited
trimer. Bottom panel: second excited trimer.

The same situation is observed for excited states, as shown in the middle and bottom
panels of Fig. 4. The results for the first two excited states look nearly identical, which is
expected since they follow a discrete scaling invariance associated with the Efimov effect,
whereas small differences can be seen for the ground state, which is also expected since it
deviates more strongly from the discrete scaling invariance. However, the differences remain
small, and the results are identical for all states close to the dissociation threshold E→ 0−, i.e.
either |a23| ≈ |a

(i)
23 | or β ≫ 1.
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6 Hyper-spherical representation

The universality of the geometry close to the dissociation threshold can be understood using
the hyper-spherical coordinates constituted by the hyper-radius R =

q

x2
k + y2

k giving the
global size of the trimer and the hyper-angles, such as αk = arctan yk

xk
, describing its shape,

where xk =
�

µi j/m
�1/2

ri j , yk =
�

µi j,k/m
�1/2

Ri j,k, and m is a normalisation mass which can
be taken to be the particles’ mass m1 = m2. In these coordinates, the wave function Ψ of a
halo state with zero total angular momentum admits the following hyper-spherical adiabatic
expansion [31],

Ψ =
∞
∑

n=1

Fn(R)
R2

� 3
∑

i=1

Φ(i)n (αi; R)

�

, (23)

where at large distances R≫ Λ−1 the hyper-radial functions Fn(R) are solutions of

�

−∂ 2
R +

s2
n(R)− 1/4

R2
−

2mE

ħh2

�

p
RFn(R) = 0 , (24)

and the hyper-angular wave functions Φ(i)n are given by [29,30]

Φ(i)n (α; R) = λ(i)
sin
�

sn(R)
�

π
2 −α

��

sin2α
, (25)

where sn(R) are the solutions of
�

− cos
�

s
π

2

�

+
2
s

sin(sγ)
sin2γ

+
sin
�

sπ2
�

s
R

a23

��

− cos
�

s
π

2

�

+
sin
�

sπ2
�

s
R

a12

�

= 2
�

2sin(sγ′)
s sin2γ′

�2

,

(26)

with γ= arcsin 1
1+A and γ′ = π

4 −
γ
2 .

For 1/|a12| ≠ 0, the solutions sn(R) −−−→R→∞
2n. In this case, the trimer’s extent diverges

logarithmically with vanishing binding energy in the channel n = 1, while it remains finite
in other channels, as discussed long ago in Ref. [11]. As a result, the wave function is
dominated by the channel n = 1 at large R, and from s1(R) → 2 one can check from
Eq. (25) that it does not depend on the hyper-angles. It follows that 〈y2

1 〉 = 〈y
2
3 〉 [11], thus

〈R2
23,1〉/〈R

2
12,3〉=

�

µ23,1/µ12,3

�1/2
, and from Eq. (10) one recovers the limit 〈r2

m〉/〈r
2
c 〉= A seen

in the right part of Fig. 4. The logarithmic divergence of the mean square radii in this limit is
illustrated by the three lowest curves (circles, squares, and diamonds) in Fig. 5 corresponding
to finite values of a12.

The same hyper-spherical analysis can be carried out at the two particles’ resonance
1/|a12| = 0. In that case, the solutions sn(R) −−−→R→∞

n. As a result, the channel n = 1 is

again dominant at large hyper-radius, but it now leads to a divergence of the trimer’s extent
that is slightly slower than the inverse of the energy. This divergence is illustrated by the top
curve (triangles) in Fig. 5 corresponding to an infinite a12. In this limit, the hyper-radius and
hyper-angles separate again, but there is now a dependence on the hyper-angles. From the
hyper-angular functions Φ(i)1 , one can recover3 the ratio 〈r2

m〉/〈r
2
c 〉=

2
3A seen in the left part of

Fig. 4.
It is important to note that the above results rely only on the behaviour of s2

n(R) at large
hyper-radius R ≫ |a12|, |a23|, where the hyper-radial potential [s2

n(R) − 1/4]/R2 of Eq. (24)

3See Appendix C for details.
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Figure 5: Mean square matter radius of the ground-state trimer as a function of its
binding energy |E|, obtained numerically from the separable model. The different
curves correspond to different values of the particle-particle scattering length a12
shown by the vertical lines in Fig. 3. The dashed curve is obtained from the analytic
formula Eq. (C.10) with R1 set to 20Λ−1, and the dotted curves are obtained from the
analytic formula Eq. (C.11) with (R1, R2) set respectively to (2.6,16)104, (420,1700),
(34, 64) in units of Λ−1.

is repulsive. They are not related to the Efimov effect, i.e. the appearance of an attractive
part (negative value of s2

n(R) = −|s0|2) in the hyper-radial potential at shorter hyper-radius
R≪ |a12|, |a23|. As a matter of fact, none of the analytical results presented here depend on
the quantity s0 characterising Efimov universality.

In addition, the above results apply to any Borromean halo state close to three-body
dissociation. Thus, in a system where the Efimov effect occurs, they apply equally to the ground
state and all Efimov states. In other words, the ground state and excited states have exactly
the same geometry close to their dissociation threshold. This halo universality is explained
by the fact that the hyper-angular part of the wave function is the same for all states close
to their threshold, giving a universal shape distribution to all of these states. In contrast, the
Efimov universality, which is the discrete scale invariance of the spectrum near the unitarity
point, applies only approximately to the ground state because the hyper-radial part of its wave
function significantly differs from the rescaled hyper-radial wave function of higher states,
thus deviating from the discrete scaling invariance.

7 Observing halo universality

Two-neutron halo nuclei are prime candidates for the experimental evidence of halo
universality, since neutrons are nearly resonant, and mean square radii can be extracted from
experiments. Although the separable potential model is not a precise description of these
halo nuclei, it can be used to estimate their universal nature. The case of the lithium-11
halo nucleus is represented as a blue point in Figs. 3, 4, and 5. This point is obtained by
setting a−1

12 = −0.0447Λ and Λ−1 = 0.84 fm to reproduce the neutron-neutron scattering
length a12 = −18.8 fm and effective range r12 = 2.83 fm of the AV18 model [33], and setting
a−1

23 = −0.344|a(1)23 |
−1 to reproduce the two-neutron separation energy |E| = 369.15(65) keV

of lithium-11 [34]. These parameters lead to a mean-square radius 〈R2
12,3〉 = 4.70 fm that is
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Figure 6: Same figure as Fig. 3 for mass ratio 4 (left), 17 (middle) and 20 (right). The
points corresponding to helium-6, boron-19, and carbon-22 are obtained using the
two-neutron separation energies |E(6He)| = 975.45± 0.05 keV, |E(19B)| = 90± 560
keV, and |E(22C)|= 100± 640 keV from AME2016 [32].

in reasonable agreement with the value 5.01±0.32 fm [35] derived from experimental data.
One can see from Fig. 4 that 11Li is not accurately described by the analytical limit Eq. (15),
since its ratio 〈r2

m〉/〈r
2
c 〉 is around 7.0 whereas Eq. (15) gives 6.3, i.e. an error of 10%. Also

note that 11Li is yet too strongly bound to enter the regime of logarithmic divergence of its
size, as shown in Fig. 5.

The situation of other two-neutron halo nuclei is illustrated in Fig. 6. In all cases, the
core-neutron scattering length a23 is set to reproduce the two-neutron separation energies
compiled by AEM2016 [32]. The matter/core radius ratio 〈r2

m〉/〈r
2
c 〉 of these halo nuclei is

shown in Fig. 7. It appears that none of them lie in the regime where the analytical result of
Eqs. (15, 21, 22) is accurate. A prominent reason is that the neutron-neutron scattering length
a12 is yet too small to fully reach this regime: it would need to be significantly larger to allow
a23 to approach the critical value a(1)23 . Nevertheless, the cases of boron-19 and carbon-22 are
the closest examples to halo universality, since their matter/core radius ratio is possibly less
than a few percent off from the analytical formula. Further experimental determination of
their binding energy and geometric properties could confirm this situation.

Ultracold mixtures of light and heavy atoms constitute another promising platform for the
observation of halo universality. The advantage of such systems over atomic nuclei is that the
scattering length between the light particles may be controlled by a magnetic Fano-Feshbach
resonance. Examples include mixtures of caesium-133 and lithium-7 atoms, or lithium-6
atoms in different hyperfine states. However, experiments with these systems are known to
be hindered by strong losses. In addition, specific experimental techniques such as Coulomb
explosion imaging [36] should be implemented to measure geometrical properties such as the
mean-square radii of ultracold atomic trimers.

8 Conclusion

In summary, this work presents a general picture of the geometric properties of trimer halos
formed by a core and two particles, extending previous findings to the whole spectrum of three-
body bound states, including Efimov states. It appears that close to the three-body dissociation
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Figure 7: Matter/core radius ratio 〈r2
m〉/〈r

2
c 〉 normalised by A and energy ratio

β =
p

E12/|E| for different halo nuclei. The solid curves indicate the possible values
for boron-19 and carbon-22 due to the current uncertainty on their energy E, with
E12 being fixed by the neutron-neutron scattering length a12 = −(0.0447Λ)−1 – this
value is indicated by the vertical dashed lines in Fig. 6. The dashed curve corresponds
to the analytical formula given by Eqs. (15, 21, 22).

threshold of any state, the trimer forms an extended halo with universal geometric properties
that are given by the universal laws described in Ref. [11] away from the particle’s resonance,
and by the laws recently found in Ref. [24] close to the particles’ resonance. Both limits can
be understood in the hyper-spherical picture, which shows that the shape of the trimer is
independent of its size at the three-body dissociation threshold. In the first (off-resonant)
limit, the trimer’s size increases logarithmically with vanishing trimer binding energy, while
it increases almost as the inverse of the binding energy in the second (resonant) limit. This
halo universality is independent of the Efimov effect, and thus applies indistinctly to all states,
including Efimov states. It may be evidenced experimentally in two-neutron halo nuclei or
ultracold atomic mixtures. Upon completion of this work, a related study [37] reported an
extension of the formula Eq. (15) using effective-field theory techniques.
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A Low-momentum and energy T-matrix element Eq. (13)

The Lippman-Schwinger Eq. (4) defining the two-body transition operator can be written
explicitly (dropping here the indices i j),

〈k|T̂ (z)|q〉= 〈k|V̂ |q〉+
∫

d3k ′

(2π)3
〈k|V̂ |k ′〉

〈k ′|T (z)|q〉

z+ − ħh
2k′2
2µ

, (A.1)

with z+ ≡ z+ iε. The interaction V̂ (and thus T̂) having a finite range Λ−1, one can set k ≈ 0
and q ≈ 0 in the matrix elements for k, q≪ Λ within an error of order O(k2, q2). This gives
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1

〈0|T̂ (z)|0〉
=

1

〈0|V̂ |0〉
+

∫

d3k
(2π)3

Υ (k, z)
1

ħh2k2

2µ − z+
, (A.2)

with the function

Υ (k, z)≡
〈0|V̂ |k〉
〈0|V̂ |0〉

〈k|T (z)|0〉
〈0|T̂ (z)|0〉

−−→
k≪Λ

1 . (A.3)

Now, adding a counter-term in the integral, one can write:

1

〈0|T̂ (z)|0〉
=

1

〈0|V̂ |0〉
+

∫

d3k
(2π)3

Υ (k, z)

 

1
ħh2k2

2µ − z+
−

1
ħh2k2

2µ

!

+

∫

d3k
(2π)3

Υ (k, z)
1
ħh2k2

2µ

. (A.4)

Taking the limit z→ 0 gives

1

〈0|T̂ (0)|0〉
=

1

〈0|V̂ |0〉
+

∫

d3k
(2π)3

Υ (k, 0)
1
ħh2k2

2µ

, (A.5)

so that one can eliminate 〈0|V̂ |0〉 in favour of 〈0|T̂ (0)|0〉,

1

〈0|T̂ (z)|0〉
=

1

〈0|T̂ (0)|0〉
+

∫

d3k
(2π)3

Υ (k, z)

 

1
ħh2k2

2µ − z+
−

1
ħh2k2

2µ

!

+

∫

d3k
(2π)3

(Υ (k, z)− Υ (k, 0))
1
ħh2k2

2µ

. (A.6)

Finally, one can consider the low-energy limit z≪ ħh2Λ2/2µ. In this limit, by virtue of Eq. (A.3),
the second line of Eq. (A.6) can be approximated as

Υ (0, z)
︸ ︷︷ ︸

1

2µ

ħh2

∫

d3k
(2π)3

 

1

k2 − 2µz+

ħh2

−
1
k2

!

=
2µ

4πħh2 i

√

√2µz

ħh2 ,

while the third line of Eq. (A.6) may be neglected, assuming that Υ (k, z) − Υ (k, 0) ∼ O(z).
Using the standard result 〈0|T̂ (0)|0〉 = 4πħh2a/(2µ) where a is the scattering length, one
obtains Eq. (13), which is valid with an error of order O(k2, k′2, zi j).

B Functions fn anf fc

B.1 Numerator of Eq. (11)

Retaining only the Faddeev component F12 ≡ F associated with the two particles in Eq. (2),
the integral in the numerator of Eq. (11) is expressed as

∫

d3K23,1d3k23

�

�

�

�

�

�

∇K23,1

F
�

|k23 −
A

A+1 K23,1|
�

ħh2

2µ23,1
K2

23,1 +
ħh2

2µ23
k2

23 − E

�

�

�

�

�

�

2

, (B.1)

where we used K12,3 = k23 −
A

A+1 K23,1. Using the relation

∇pF(|αp + βq |) = α
αp + βq
|αp + βq |

F ′ (|αp + βq |) , (B.2)
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and re-expressing the integrand in terms of k ≡ k12 and K ≡ K12,3 by using
K23,1 = −k12 −

1
2 K12,3, one arrives at

∫

d3Kd3k

�

�

�

�

�

�

−
�

A
A+ 1

� K
K F
′(K)

ħh2

2µ12,3
K2 + ħh

2

2µ12
k2 − E

−
ħh2

2µ23,1
2
�

−k − 1
2 K
�

F(K)
�

ħh2

2µ12,3
K2 + ħh

2

2µ12
k2 − E

�2

�

�

�

�

�

�

2

. (B.3)

Expanding the square, the cross term proportional to K · k averages to zero since the
orientations of K and k are independent. Integrating the remaining terms over k by using

∫ ∞

0

k2dk
1

(k2 +Q2)2
=
π

4Q
, (B.4)

∫ ∞

0

k2dk
1

(k2 +Q2)3
=

π

16Q3
, (B.5)

∫ ∞

0

k2dk
1

(k2 +Q2)4
=

π

32Q5
, (B.6)

∫ ∞

0

k2dk
k2

(k2 +Q2)4
=

π

32Q3
, (B.7)

one arrives at
�

π
2µ12

ħh2

�2
√

√µ12,3

µ12

�

�

A
A+ 1

�2

fc +
A(A+ 2)

A+ 1
fn

�

, (B.8)

with

fc ≡
∫

d3K

�

F ′(K)2

K̃
−

KF ′(K)F(K)
K̃3

+
K2F(K)2

2K̃5

�

, (B.9)

fn ≡
1
2

∫

d3K
F(K)2

K̃3
, (B.10)

and K̃2 ≡ K2 − 2µ12,3E

ħh2 .

B.2 Numerator of Eq. (12)

Retaining only the Faddeev component F12 ≡ F associated with the two particles in Eq. (2),
the integral in the numerator of Eq. (12) is expressed as

∫

d3Kd3k

�

�

�

�

�

�

∇K
F(K)

ħh2

2µ12,3
K2 + ħh

2

2µ12
k2 − E

�

�

�

�

�

�

2

, (B.11)

where K = K12,3 and k = k12. This gives

∫

d3Kd3k





F ′(K)
ħh2

2µ12,3
K2 + ħh

2

2µ12
k2 − E

−
ħh2

2µ12,3
2KF(K)

�

ħh2

2µ12,3
K2 + ħh

2

2µ12
k2 − E

�2





2

. (B.12)

Expanding the square and integrating over k, one arrives at:

�

π
2µ12

ħh2

�2
√

√µ12,3

µ12
fc , (B.13)

where we used Eq. (B.4-B.6).

14

https://scipost.org
https://scipost.org/SciPostPhys.15.3.123


SciPost Phys. 15, 123 (2023)

B.3 Ratio of mean square radii

Using Eqs. (B.8) and (B.13) in the expression of the ratio of mean square radii Eq. (10), one
obtains

〈r2
m〉
〈r2

c 〉
=

1
2 (A+ 1)2

〈R2
23,1〉
〈R2

12,3〉
+ A

A+ 2

=
1
2

A
�

1+
fn

fc

�

,

which yields Eq. (15) of the main text.

B.4 Simplification of fn and fc

The functions fn and fc given by Eqs. (B.9-B.10) can be expressed with the dimensionless

variable q ≡
r

ħh2

2µ12,3|E|
K ,

fn(β)∝
1
2

∫

d3q
F(q)2

q̃3
, (B.14)

fc(β)∝
∫

d3q

�

F ′(q)2

q̃
−

qF ′(q)F(q)
q̃3

+
q2F(q)2

2q̃5

�

, (B.15)

where q̃2 ≡ q2 + 1, and

F(q)∝ 1
β + q̃

. (B.16)

The function fc can be simplified as

fn(β)∝ 2π

∫ ∞

0

q2dq

q̃3 (β + q̃)2
, (B.17)

fc(β)∝ 2π

∫ ∞

0

dq

q̃ (β + q̃)2
. (B.18)

The last expression can be verified by successive integrations by parts of Eq. (B.17),
∫

u′v = −
∫

uv′, with first u(q) = q, v(q) = q̃−1 (β + q̃)−2, and then u(q) = q3/3;
v(q) = q̃−3 (β + q̃)−2+2q̃−2 (β + q̃)−3, leading to the original form of fc in Eq. (B.15). Finally,
making the change of variable y ≡ q2 + 1, one arrives at Eqs. (18-19) of the main text.

C Hyper-spherical representation

In the hyper-spherical representation, the values of the scattering lengths a23 = a31 and a12
for the corresponding pairs can be imposed in the wave function Eq. (23) by applying Bethe-
Peierls conditions [29,30]. This leads to the following equations on the coefficients λ(1) = λ(2)

and λ(3):

M11λ
(1) +M13λ

(3) = 0 , (C.1)

M31λ
(1) +M33λ

(3) = 0 ,
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with

M11 =
�

−s cos
�

s
π

2

�

+
R

a23
sin
�

s
π

2

�

�

+ 2
sin sγ
sin2γ

, (C.2)

M13 = 2
sin sγ′

sin 2γ′
, (C.3)

M31 = 4
sin sγ′

sin 2γ′
, (C.4)

M33 = −s cos
�

s
π

2

�

+
R

a12
sin
�

s
π

2

�

. (C.5)

To obtain non-zero solutions λ(1) and λ(3), the determinant of Eq. (C.1) should be zero, which
leads to
�

− cos
�

s
π

2

�

+
2
s

sin(sγ)
sin2γ

+
sin
�

sπ2
�

s
R

a23

��

− cos
�

s
π

2

�

+
sin
�

sπ2
�

s
R

a12

�

= 2
�

2sin(sγ′)
s sin2γ′

�2

,

(C.6)

which is Eq. (26) of the main text.

C.1 Mean-square radii for vanishing binding energy

In the hyper-spherical representation, any mean square radius is given by an expression of the
form,

〈r2〉=

∑

n,n′ · · ·
∫

dRR2
�p

RFn(R)
� �p

RFn′(R)
�

∑

n,n′ · · ·
∫

dR
�p

RFn(R)
� �p

RFn′(R)
� , (C.7)

where the dots indicate numerical factors resulting from integration over the hyper-angles.
From Eq. (24) of the main text, at sufficiently large hyper-radius R ≫ R0 (to be specified
below), the hyper-radial functions Fn(R) satisfy the following equation:

�

−∂ 2
R +

s2
n(∞)− 1/4

R2
−

2mE

ħh2

�

p
RFn(R) = 0 , (C.8)

where sn(∞) = limR→∞ sn(R). It follows that

Fn(R) −−−→R≫R0

Ksn(∞)(κR) , (C.9)

where κ= −2mE/ħh2, and K designates the modified Bessel function of the second kind.

Off-resonance case 1/|a12| ̸= 0

The solutions sn of Eq. (C.6) behave as sn(R) −−−→R≫R0

2n, with R0 ∼ max (|a12|, |a23|). In this

case, only the lowest channel n = 1 gives a hyper-radial function that extends far beyond R0
for vanishing energy E. Close to the three-body dissociation threshold, one can thus neglect
the other channels in the calculation of the mean square radius Eq. (C.7), and using Eq. (C.9)
one finds

〈r2〉 −−−−→
κ≪R−1

0

η〈R2〉= ηR2
1 ln

1
κR2

, (C.10)

where the distances R1, R2 ≳ R0 are independent of κ. This shows that the mean square
radius diverges logarithmically with vanishing trimer energy. The coefficient η results from
the hyper-angular integration.
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On-resonance case 1/|a12| = 0

The solutions sn of Eq. (C.6) behave as sn(R) −−−→R≫R0

n, with R0 ∼ |a23|. In this case, both

the lowest channel n = 1 and second channel n = 2 give hyper-radial functions that extend
far beyond R0 with vanishing energy. However, the channel n = 1 extends to distances
∼ κ−1, whereas the n = 2 channel extends to distances ∼ R0 ln 1

κR0
. Close to the three-body

dissociation threshold, the mean square radius is therefore dominated again by the lowest
channel n= 1, which gives

〈r2〉 −−−−→
κ≪R−1

0

η〈R2〉= η
2

3κ2

�

ln
1
κR1

�−1

, (C.11)

where the distance R1 ≳ R0 is independent of κ. This shows that the mean square radius
diverges slightly more slowly than the inverse of the vanishing energy E.

C.2 Calculation of the matter and the core radii

Let us now calculate the matter and core radius explicitly. The coefficients η for the matter
and core radii follow from Eq (6-9) of the main text:

ηm = 2
(A+ 1) 〈cos2α1〉+ 〈cos2α3〉

(A+ 2)2
, (C.12)

ηc =
2

A(A+ 2)
〈cos2α3〉 . (C.13)

Off-resonance case 1/|a12| ̸= 0

In the dominant hyper-angular channel, s1(R)→ 2, therefore the corresponding component is
independent of hyper-angles, such that 〈cos2αi〉= 1/2. Therefore,

ηm =
1

A+ 2
, (C.14)

ηc =
1

A(A+ 2)
. (C.15)

It follows that
〈r2

m〉
〈r2

c 〉
=
ηm〈R2〉
ηc〈R2〉

= A . (C.16)

On-resonance case 1/|a12| = 0

From Eq. (C.1), one has
λ(3)

λ(1)
= −

M11

M13
, (C.17)

and in the limit R→∞, for the dominant hyper-angular channel s1(R)→ 1, one finds

λ(3)

λ(1)
= −

R
a23
+ 1

cosγ
1

cosγ′
→∞ . (C.18)
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Thus, in the calculation of hyper-angular averages, one can only retain the component

Φ(3)(α; R)∝
1

sinα
(C.19)

(It is the same approximation as retaining only the Faddeev component F12 in the calculation
of Sec. 4). This gives,

〈cos2α3〉=

∫ π/2
0 dα3 sin2(2α3)

∫ 1
−1 du3

�

cos2α3

� �

�Φ(3)(α3)
�

�

2

∫ π/2
0 dα3 sin2(2α3)

∫ 1
−1 du3

�

�Φ(3)(α3)
�

�

2

=

∫ π/2
0 dα cos4α
∫ π/2

0 dα cos2α
=

3
4

, (C.20)

and

〈cos2α1〉=

∫ π/2
0 dα3 sin2(2α3)

∫ 1
−1 du3

�

cos2α1

� �

�Φ(3)(α3)
�

�

2

∫ π/2
0 dα3 sin2(2α3)

∫ 1
−1 du3

�

�Φ(3)(α3)
�

�

2

=
1
4

�

1+ 2A
1+ A

�

, (C.21)

where we used the change of variables
∫ 1
−1 du3 =

2
sin2γ′

∫
π
2−|α3−γ′|
|π2−α3−γ′|

sin 2α1
sin 2α3

dα1 and the definitions

of γ′ and γ in terms of A. From Eqs. (C.12-C.13) one finds

ηm =
1

A+ 2
, (C.22)

ηc =
3
2

1
A(A+ 2)

. (C.23)

It follows that
〈r2

m〉
〈r2

c 〉
=
ηm〈R2〉
ηc〈R2〉

=
2
3

A . (C.24)
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