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Abstract

We explain that the supersymmetric CPn´1 sigma model is directly related to the level-
zero chiral Gross-Neveu (cGN) model. In particular, beta functions of the two theories
should coincide. This is consistent with the one-loop-exactness of the CPn´1 beta func-
tion and a conjectured all-loop beta function of cGN models. We perform an explicit
four-loop calculation on the cGN side and discuss the renormalization scheme depen-
dence that arises.
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In our recent work [1–5] we proposed an exact and explicit equivalence between a wide
class of integrable sigma models and generalized chiral Gross-Neveu (cGN) models.1 The
principal feature of these sigma models is that the target space is a complex homogeneous
space.2 As the simplest and rather representative example one can consider the CPn´1 sigma
model (first formulated in [6–8]).

On the Gross-Neveu side, one considers models with both bosonic and fermionic fields,
which is the crucial difference from the traditional purely fermionic Gross-Neveu model [9,10].
Another difference from the traditional setup is that the cGN-models in question typically
involve auxiliary gauge fields, and part of the gauge symmetry is ‘chiral’. As we explained in
earlier work [1, 4], a crucial condition is the cancellation of chiral anomalies, which makes
it necessary to add fermionic fields to the purely bosonic ‘core’. There are, however, many
inequivalent ways in which the fermionic degrees of freedom could be added (for example,
minimally, supersymmetrically, etc.) [2].

The fate of the gauge fields in models with vanishing chiral anomalies is rather amusing. It
turns out that an admissible (and in many ways best) gauge is in simply setting the gauge fields
to zero [5]. As a result, one arrives at the ungauged version of the cGN-model. In the present
paper we will investigate the β-function of such ungauged model corresponding to the SUSY
CPn´1 sigma model. On the one hand, it is well-known that the β-function of the CPn´1

sigma model is one-loop exact – a result that goes back to [11]. On the other hand, an all-loop
β-function of generalized cGN models was conjectured in [12] (based on earlier results [13]).
In our special case it is one-loop-exact as well, coinciding with the one-loop result of theCPn´1

sigma model. However, at four loops a discrepancy from the conjectured all-loop result has
been claimed in [14], whose meaning has not been fully elucidated in the past years. As we
shall explain below, it can be attributed to a choice of renormalization scheme. Our cGN-based
setup, as compared to the abstract setup in [12, 14], makes the calculation of the β-function
more direct. Since the cGN model is a theory with quartic interactions, one is effectively led
to the analysis of divergences that arise in the four-point function. In particular, for generic
values of external momenta the four-point function is IR-finite, and the only divergences are
in the UV.3

In the present paper we perform the calculation of the β-function up to four loops. At
two and three loops we find no corrections to the β-function. At four loops we observe
that, in a generic scheme, explicit dependence on regularization appears. We show that
the regularization-dependent terms cancel out, if one uses a version of the so-called ‘MOM’-
scheme [15], when the coupling constant is defined as the value of the four-point function for
certain (fixed) momenta. In our version one sets two of the four momenta to zero, which is
the minimal configuration that ensures IR-finiteness and is still technically simple (for asym-
metric versions of MOM-scheme cf. [16, 17]). Although the regularization-dependent terms
disappear, in this scheme there is a correction to the β-function at four loops, proportional

1Chiral Gross-Neveu models are sometimes referred to as non-Abelian Thirring models.
2Deformations of models with homogeneous target spaces are also possible and lead to trigonometric and elliptic

counterparts of these integrable models. In [1,4] we studied the RG-flows of such deformed models. However, in
the present paper we restrict to the homogeneous (rational) case.

3One cannot set all external momenta to zero, though, since this is a special point where IR divergences arise.
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to ζp3q. Interestingly, this type of transcendentality is common for SUSY Kähler sigma models
at four loops [18–20], so that the appearance of ζp3q seems natural. However, in the case
of the CPn´1-model this correction should vanish if one uses a renormalization scheme that
preserves N “ p2,2q SUSY, leading to the one-loop-exact β-function. Although this seems
like a paradox at first sight, the discrepancy may again be attributed to a choice of renormal-
ization scheme. The situation is well-known from the theory of the NSVZ4 β-function in 4D
SUSY theories, where an all-loop β-function may only be computed in certain special schemes
(cf. [22–25] and references therein). Below we shall discuss the pros and cons of various
schemes.

The structure of the paper is as follows. In section 1 we briefly explain the equivalence
between the SUSY CPn´1 sigma model and the gauged chiral Gross-Neveu model. We also
explain that the gauge fields may be completely eliminated by a choice of gauge, which is a
peculiar feature of such models. In section 2 we state the conjectured all-loop β-function [12]
for generalized cGN models, viewed as perturbations of CFTs (with affine algebra symmetry)
by current-current interactions. Next we recall the history of β-function calculations in sigma
models in section 3, as well as the arguments for its one-loop-exactness in the case of SUSY
sigma models with Kähler homogeneous target spaces. We then explain in section 4 that, in
the special case of level-zero cGN models, the four-point function, which determines the β-
function, is given solely by crossed-ladder diagrams. Finally, in section 5 we present explicit
calculations at three and four loops, commenting on the difference between renormalization
schemes.

1. The SUSY CPn´1 model as a cGN model

We start by recalling the construction of [2], where the well-known SUSY CPn´1 sigma model
is formulated in a novel way – as a gauged cGN model, with both bosonic and fermionic field
content. The fact that supersymmetrization of the CPn´1 model involves coupling it to a
fermionic cGN model has been known since the early days of these theories [8], so the novelty
here is the realization that the bosonic core is a cGN model in itself, and, moreover, the bosonic
and fermionic parts are nontrivially intertwined in a single generalized cGN model. First, we
introduce the following fields:

• Bosonic n-component vectors: a column-vector U and a row-vector V

• Fermionic (Grassmann) n-component vectors: a column-vector C and a row-vector B

• The above fields are grouped into doublets:

U :“

ˆ

U
C

˙

, V :“
`

V B
˘

. (1.1)

The worldsheet is assumed to be5 C» R2, with complex coordinate z “ x ` i y . In terms
of the fields introduced above we write down the following Lagrangian:

LCP “ 2
´

V ¨DU ` U ¨DV
¯

`
κ

2π
Tr
`

JJ
˘

, (1.2)

4‘NSVZ’ refers to the proposal of Novikov-Shifman-Vainshtein-Zakharov for an exact β-function in N “ 1 SUSY
theories in 4D [21].

5Generalizations to Riemann surfaces are possible [5] but will not be discussed here.
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where the covariant derivative is defined as follows:

D “
B

Bsz
` iAsuper , Asuper “

˜

A 0
W A

¸

. (1.3)

The corresponding gauge group is a triangular subgroup of SLp1|1q, isomorphic to C˚ ˙C f ,
where C f is a Grassmann one-dimensional vector space. In particular, in (1.3) A is a bosonic
gauge field, and W a fermionic one. The variable J in the interaction term in (1.2) is the
so-called ‘moment map’, or more simply a current, defined as follows:

1
2π

J :“ U b V ´ C b B P gln , (1.4)

whereas J is its Hermitian conjugate. Finally, κ is the coupling constant in the Lagrangian (1.2).
To conclude with the notations, in quantum theory the Boltzmann weight in the path integrals
is defined to be e´S with the action S “

ş

d2z LCP, where d2z :“ d x ^ d y “
i
2 dz ^ dz.

The Lagrangian (1.2) is an example of a chiral Gross-Neveu model. The first two terms
are first-order kinetic terms, whereas the interaction is a quartic coupling, just like in the
cGN model. An explicit rewriting of (1.2) as a cGN Lagrangian is possible, if one introduces

the Dirac doublets Ψ “

ˆ

U
V

˙

(a bosonic one) and Θ “

ˆ

C
B

˙

(a fermionic one). The main

difference is that in the original cGN model the fields are fermionic, whereas here we have
both bosonic and fermionic fields.

As mentioned above, the gauge group in question is C˚ ˙ C f . One can show that an
admissible (partial) gauge is UU “ 1, CU “ 0. The latter (fermionic) condition fully fixes
the C f part of the gauge symmetry, whereas the former reduces C˚ down to Up1q – the gauge
symmetry typical of the standard formulation of the CPn´1 sigma model. Upon imposing this
gauge, one eliminates the fields V, V from (1.2), which can be easily done, since these fields
enter quadratically and effectively without derivatives. The resulting Lagrangian corresponds
to the standard form of the SUSY CPn´1 model.

All these steps were discussed in detail in [2], but to match with standard notations and to
familiarize the reader with our formalism let us show how to proceed to the geometric form
of the sigma model in the purely bosonic case. To this end, we set B “ C “ 0 and ‘integrate
out’ V, sV from the Lagrangian (1.2). As a result, we get the action

S “
1

2πκ

ż

d2z
4|DU |2

UU
“
␣

choosing the gauge UU “ 1
(

“ (1.5)

“
1

2πκ

ż

d2zDαUDαsU `
i

2πκ

ż

dU ^ d sU ,

where Bα “

´

B
Bx , B

B y

¯

. The above action corresponds to the standard CPn´1-model with a

topological term (cf. [11]). In particular, the factors of 2π in (1.2) and (1.4) lead to the
conventional factor of 1

2π in front of the sigma model action in geometric form.

1.1. Eliminating the gauge field by choice of gauge

As we just discussed, U ¨ U “ 1, C ¨ U “ 0 is an admissible partial gauge for the SUSY model.
The virtue of the cGN formulation (1.2) is that there is a different gauge, which fully fixes the
gauge symmetry and is more convenient in many ways.

To formulate this gauge, and for future use, we introduce an auxiliary field B and perform
a quadratic transformation on the system (1.2):

L “ 2
´

V ¨DU ` U ¨DV
¯

`
1

2π

´

Tr
´

BB
¯

` i κ
1
2 Tr

´

JB
¯

` i κ
1
2 Tr

`

JB
˘

¯

. (1.6)
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The quadratic (Hubbard-Stratonovich) transformation trick is standard for cGN models and
has been used in β-function calculations in [26,27].

Next we decompose B “ B0 ¨ 1n ` BK, where B0 “
1
nTrpBq and BK is the sln (traceless)

part of B. The gauge is then

A “
1
2

κ
1
2 B0 , W “ 0 . (1.7)

As a result, the gauge field is completely eliminated [5], and one is effectively left with the
simple part BK P sln in the interaction terms.6

Let us explain why the choice (1.7) is possible. Gauge transformations of sAsuper in (1.3)
are the standard ones:

i sAsuper ÞÑ g´1
`

i sAsuper

˘

g ` g´1Bg , g “

ˆ

eζ 0
χ eζ

˙

. (1.8)

In components, this reads

i sA ÞÑ i sA` Bζ , (1.9)

iĎW ÞÑ iĎW ` e´ζ
´

Bχ´ Bζ ¨ χ
¯

. (1.10)

The gauge fixing is achieved in two steps. First, one performs a gauge transforma-
tion with χ “ 0, choosing ζ so that the gauge-transformed field sA satisfies (1.7), i.e.
ip sA´

1
2κ

1
2 ĎB0q ` Bζ “ 0. The solution is given by the Cauchy-Green formula

ζpz, zq “ ´
i
π

ż

d2w
sApw, wq ´

1
2κ

1
2 ĎB0pw, wq

z ´ w
. (1.11)

Here one assumes that the decay conditions on the fields at infinity are such that the integral
makes sense. One then performs a second gauge transformation with ζ “ 0, choosing χ in
such a way that iĎW ` Bχ “ 0, which again relies on the same Cauchy-Green formula. As a
result, the gauge (1.7) is imposed.

1.2. The ungauged cGN model

In the gauge (1.7) the model (1.2) simplifies as follows:

LCP “ 2
´

V ¨ BU ` U ¨ B V
¯

`
κ

2π
Tr pJK

ĎJKq , (1.12)

where JK is the traceless part of J . This is obtained from (1.6) upon integrating out B, as-
suming B P sln. From now on we simply write J in place of JK, keeping in mind that we are
considering sln in place of gln as the relevant symmetry algebra.

The kinetic terms in (1.12) represent what is known as a βγ-system [28, 29]. For κ “ 0
this is a CFT with a left/right Kac-Moody symmetry. Moreover, in the absence of interactions,
the corresponding symmetry group is {GLpn|n,Cq with the natural transformations

U ÞÑ hpzq U , V ÞÑ Vhpzq´1 , hpzq P GLpn|n,Cq . (1.13)

6One could as well choose the gauge A “ 0, as in [5]. In that case the interaction term would split as
κ

1
2 TrpsJBq “ κ

1
2 TrpsJBKq ` κ

1
2 TrpsJqB0. The coupling constant in front of the first (traceless) term undergoes

renormalization, as described below, whereas the one in front of the trace part is not renormalized (cf. [1]). It is
to avoid dealing with these two different terms that we have chosen the gauge (1.7).
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The interaction term breaks this huge symmetry. From the point of view of the free sys-
tem the variable J featuring in the interaction term is nothing but the Kac-Moody current
of {SLpn,Cq Ă {GLpn|n,Cq, where the diagonal embedding is assumed. For κ “ 0, the current
is holomorphic, BJ “ 0, whereas for non-zero κ this condition is replaced by BJ “

κ

2 rJ , Js.
The latter equation implies that the current Jdz ` sJdz is both conserved and flat, signalling
potential integrability of the model.

In other words, our system may be seen as a concrete realization of a more general setup,
where one considers a Lagrangian of the form

L “ LCFT `
κ

2π
Tr pJsJq , (1.14)

which is a current-current perturbation of a conformal field theory with a Kac-Moody symmetry
(in our case the CFT being a free system). Such systems have been studied in the past, in
particular in [30,31] in relation to sigma models.

2. The conjectured β-function

Given the system (1.12), or more generally (1.14), a natural task is in the computation of the
β-function of κ. In the purely fermionic case of the traditional cGN model this question was
addressed long ago:7 the one-loop result in [9], where asymptotic freedom of the model was
established,8 the two-loop result in [26,27] and even a three-loop result in [37].

A natural generalization is in considering the system (1.14) with more general field con-
tent. A scheme for the computation of the β-function of such cGN-models was proposed as
early as in [13]. It was argued that the only ingredient necessary for developing the perturba-
tion theory is the OPE of the chiral currents, which takes the well-known form

J apzqJ bpwq “
kδab

pz ´ wq2
`

i f ab
c J cpwq

z ´ w
` . . . , (2.1)

where J a “ TrpJτaq are the components of the current, and k is the level. Here τa are the unit-
normalized Hermitian generators of the corresponding (simple) Lie algebra (Trpτaτbq “ δab),
and f ab

c are its structure constants defined by rτa,τbs “ i f ab
c τc . In our applications the Lie

algebra is sln, and the current is the traceless part JK of (1.4), as already discussed.
The abstract theory defined by (1.14) and (2.1) has two parameters: κ and k. The approach

of [13] relied on a perturbation theory in 1
k , with λ :“ κk fixed (the latter could be viewed as

a ‘t Hooft coupling of sorts), and the calculation was carried out to leading order. In [12] the
authors pushed the method further and conjectured an all-loop β-function, valid for all values
of κ and k. Moreover, their result applies to very general systems of the type (1.14), even in
the case of several couplings (i.e. multiple current-current deformations). For the case of a
single coupling κ as in (1.14), assuming the current algebra (2.1), their result reads:

βκ “ ´
C2 κ2

`

1 `
1
2 k κ

˘2 , (2.2)

where C2 is the value of the quadratic Casimir of the symmetry algebra, defined by
1
2 fabc fabd “ C2δcd (C2 “ n in the case of sln).

7In the case of the non-chiral GN model there are more results: we refer to [32,33] for the three-loop case and
to [36] for the most recent (four-loop) results (see references therein for earlier work).

8There is a much earlier similar result [34] (see the modern discussion in [35]), which is unfortunately less
well-known.
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To apply the above formula to our system (1.12) what remains is to compute the level
k. Taking into account the expression (1.4) for the Kac-Moody current and the elementary

correlators xUipzqVjpwqy “ xBipzqC jpwqy “
1

2π
δi j

z´w , one easily finds

@

Ji jpzqJi1 j1pwq
D

κ“0 “ 0 , (2.3)

as the contributions of bosons and fermions cancel exactly. In other words, the level vanishes,
implying a one-loop-exact β-function:

k “ 0 so that βκ “ ´n κ2 . (2.4)

On the one hand, this is expected from the standpoint of the CPn´1 sigma model, since
it is known that for Hermitian symmetric target spaces9 (and even more generally for Kähler
homogeneous spaces admitting a GLSM description, as we explain below) the β-function is
one-loop exact in the SUSY case. This was found in [11] based on NSVZ-type (instanton-
related) arguments. In these terms the one-loop-exactness of the β-function is a 2D analogue
of the analogous phenomenon in N “ 2 theories in 4D. For completeness, we should mention
that, in the past years, an even more complete parallel with 4D NSVZ results has been found
for models with p0, 2q SUSY [38–40], see [41] for a review. We expect that our cGN formalism
could be extended to models with p0, 2q SUSY, so that those models would be amenable to a
similar analysis.10

On the other hand, in an attempt to check the conjectured result (2.2) for finite values of
k the authors of [14] considered the extreme case of k “ 0. This value was chosen since 1)
it is polar to k “ 8 and 2) simplifies the calculations as there is only one non-zero term in
the OPE (2.1). As we have just seen, however, there are very concrete systems (SUSY sigma
models) that realize this abstract setup. The claim of [14] was that an explicit calculation in
a hard (coordinate space) cutoff scheme leads to a correction β p4q ?

“ ´
π

160p6 ` π2qn2κ5 to
the exact formula at four loops. The status of this result has not been clarified to present day
(cf. [43]). One should note that it is not in contradiction with the conjectured form (2.4),
since the β-function depends on the renormalization prescription (scheme). Indeed, upon a
change of variables κ “ κppκq the RG equation 9κ “ βpκq is transformed into 9

pκ “ pβppκq, where

pβppκq “

ˆ

Bκ

Bpκ

˙´1

βpκppκqq . (2.5)

Consider now a β-function whose only contributions are at one, four and possibly higher loops
(the setup relevant for our application): βpκq “ β p1qκ2 ` β p4qκ5 ` . . ., and a corresponding
change of variables κ “ pκ ` cpκ4

` . . .. The transformed β-function is then

pβppκq “ β p1q
pκ

2
`

´

β p4q ´ 2cβ p1q
¯

pκ
5

` . . . (2.6)

Thus, picking c “
βp4q

2βp1q , one can cancel the unwanted contribution at four loops.
The above ambiguities are well-known in the context of the NSVZ β-function in 4D theo-

ries [44,45], making the latter notoriously hard to prove explicitly: cf. [22,23] for the abelian
case, as well as [24,25] for an explicit comparison of different regularization and renormaliza-
tion prescriptions. The conjectured β-function (2.2) should be seen as a 2D analogue, albeit

9At least of classical groups.
10Cf. [42] for the analysis of an N “ 2 quantum-mechanical sigma model, which may be thought of as the

dimensional reduction of a p0, 2q model.
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applicable in a wider context, beyond the scope of SUSY models. One should therefore expect
similar difficulties related to scheme dependence.

Below we present an explicit four-loop computation of the β-function using a method that
allows (partially) keeping track of the regularization dependence. We find that the dependence
on regularization may be cancelled by a choice of renormalization scheme, as in (2.6). Besides,
choosing appropriately the value of c, one can cancel the four-loop contribution to the β-
function altogether (this is essentially the line of thinking pioneered in [44,45] in the context
of the NSVZ β-function). Finding a natural regularization/renormalization scheme that would
lead to the exact β-function remains a challenge for the future.

3. History of sigma model calculations

Prior to our calculation, let us review the argument that the β-function of the CPn´1 model is
one-loop-exact, recalling some key results. Calculation of β-functions for sigma models has a
long history, dating back to the one-loop result of [46,47] and the two-loop result of [48]. The
four-loop result for purely bosonic sigma models can be found in [20] (for more references
see [49]). Since we are mostly interested in the SUSY setup, here the two-loop result was
obtained in [50] and the four-loop result in [18, 19], all of them using the ĎMS scheme. The
latter reads:

β
p4q

i j
„ ζp3q ¨ Bi

sB j∆K , ∆K “ R
κλµν

RσλτνR κ µ
σ τ ´ R

κλµν
RµνστR κλ

στ
. (3.1)

The notation∆K means that this could be viewed as a correction to the Kähler potential, since,
as we recall, models with p2,2q SUSY correspond to Kähler target spaces. The corresponding
result for purely bosonic models is more complicated and involves, apart from ζp3q, additional
rational coefficients11 (such as a ` bζp3q, where a and b are rational). Moreover, it was
observed in [20] that the terms proportional to ζp3q exactly coincide with the SUSY result.
The five-loop contribution to the β-function was calculated in [51], where it was shown that
it can be cancelled by a redefinition of the metric (i.e., a change of scheme).

As mentioned earlier, there is also the result that for Hermitian symmetric target spaces the
β-function is one-loop exact. This was originally proposed in [11], but there are at least two
other ways to arrive at this conclusion and even to generalize it, which we now recall.

First, a direct superspace analysis of the admissible counterterms in [52] has shown that,
at higher loops (with the exception of the one-loop case), the β-function is always of the form
β

plq

i j
„ Bi

sB j∆Kplq (l ě 2 is the number of loops), where∆Kplq is a globally defined function on

the manifold. Speaking more formally, the correction is cohomologically trivial. The function
∆Kplq is a scalar built out of the Riemann tensor and its covariant derivates, as in the four-
loop example (3.1). If we now restrict to a homogeneous (not even necessarily symmetric)
target space with an invariant metric, the corresponding ∆Kplq-functions would have to be
invariant as well and, as such, they can only be constants. Thus, all higher-loop corrections to
the β-functions of sigma model with Kähler homogeneous target spaces vanish, if one uses a
renormalization scheme that manifestly preserves N “ p2, 2q SUSY.

3.1. GLSM-based arguments

Another take on this result may be obtained by noting that Kähler homogeneous spaces admit
gauged linear sigma model (GLSM) formulations. The method, introduced in [54] (and used
many times thereafter, for example in [55–57]), consists in integrating out chiral matter fields

11For a recent discussion of the ζp3q contribution in the special case of two-dimensional target space see [53]
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and constructing an effective action for the gauge superfield. Recall the superfield form of the
SUSY action:

S “

ż

d2z
ż

d4θ

˜

n
ÿ

j“1

ĎΦ je
´VΦ j `

ξ

2π
V

¸

`
θ

2π

ż

d2z Fzz , (3.2)

where V is the gauge superfield, ξ the FI term and θ the topological θ -angle. The parameter
ξ is proportional to the squared radius of the target space and is related to our parameter κ as
ξ“

1
κ

(compare (1.5) with the Lagrangian (3.4) below).
One way to see that (3.2) really leads to the CPn´1 sigma model is to exclude the gauge

field V using its e.o.m.:

V “ log

˜

2π
ξ

n
ÿ

j“1

ĎΦ jΦ j

¸

. (3.3)

Substituting back into the action, one gets ξ
2πV (up to a constant), which is the Kähler poten-

tial of CPn´1. The form (3.2) is useful, though, as the ‘matter’ fields Φ j enter quadratically
and therefore may be easily integrated out. To start with, one may rewrite (3.2) in compo-
nents [54]:

L “

n
ÿ

j“1

ĎU j
`

´pB ´ iAqµpB ´ iAqµ ` sσσ´ D
˘

U j

`

n
ÿ

j“1

Ďψ j

ˆ

γµpB ´ iAqµ `
1
2

p1 ` iγ5qsσ`
1
2

p1 ´ iγ5qσ

˙

ψ j

´

n
ÿ

j“1

sF j F j ` sχ

˜

n
ÿ

j“1

ĎU jψ j

¸

`

˜

n
ÿ

j“1

U j
Ďψ j

¸

χ `
1

2π
pξD ` θ Fzzq .

(3.4)

This Lagrangian deserves some comments. First, pU j ,ψ j , F jq belong to the chiral multiplets,
whereas pAµ,σ,σ,χ,χ, Dq belong to the vector multiplet. χ andψ are fermions, and all other
fields are bosonic. We have not included a dynamical term for the gauge field, which means
that the vector multiplet is auxiliary and all of its components enter as auxiliary fields. For

example, D acts as a Lagrange multiplier for the constraint
n
ř

j“1

ĎU jU j “
ξ

2π . Imposing this con-

straint and integrating out σ,σ would lead to the quartic coupling
´

sψ
1`iγ5

2 ψ
¯

ˆ

´

sψ
1´iγ5

2 ψ
¯

of the fermionic cGN model.
We return to the β-function. A major point is that the FI term in (3.4), together with the

θ-term, may be rewritten as [55]

LFI “
1

2π
pξD ` θ Fzzq “ Re

ˆ

1
2π

ż

d2θ tΣ
˙

, (3.5)

where t “ ξ´ i θ is the ‘complexified FI parameter’ and Σ a twisted chiral superfield encoding
the gauge field strength Fzz and the scalar fields σ and D. In the above formula, t

2π Σ is the
tree-level value of the twisted superpotential rW pΣq. Allowing a general twisted superpotential
leads, in components, to the following Lagrangian:

Re

ˆ
ż

d2θ rW pΣq

˙

“ Re

˜

pD ` iFzzq
B rW pσq

Bσ

¸

` fermions . (3.6)

In particular, the coupling of D to σ has the form D ¨

´

B rWpσq

Bσ ` c.c.
¯

, i.e. it involves a sum
of holomorphic and anti-holomorphic functions. The effective twisted superpotential may be
extracted from this coupling.
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D

Figure 1: Diagram contributing to the renormalization of ξ. The blue line denotes
the ‘matter’ fields U , sU .

In doing a background field calculation of rW with constant background values of D and σ,
at one loop the only graph that contributes is shown in Fig. 1. The corresponding contribution
to the effective action is (Λąą |σ| is the cutoff)

Sp1´loopq

eff “ D ¨

ˆ

n
p2πq2

ż

d2p
p2 ` |σ|2

˙

“
n

4π
D log

ˆ

Λ2

|σ|2

˙

,

(3.7)

which is a sum of holomorphic and anti-holomorphic function, as required. The twisted
superpotential, at one loop, is thus

rW pΣq “
1

2π

ˆ

t ` n log

ˆ

Σ

Λ

˙˙

¨Σ . (3.8)

To get rid of the cutoff, we renormalize the coupling constant ξ (θ remains unchanged):

ξ“ ξR ` n ¨ log

ˆ

Λ

µ

˙

. (3.9)

The shift (3.9) corresponds to the one-loop β-function. As for higher loops, these would
necessarily involve propagators of the gauge field and its superpartners, since matter fields
enter purely quadratically. A typical two-loop diagram is shown in Fig. 2. Here one runs into
trouble, as the Lagrangian (3.4) involves no quadratic piece for the gauge field and, hence,
the propagators are undefined. To cure this situation, one solution is to embed the CPn´1-
model in a linear sigma model by adding a term 1

e2

ş

d4θ ΣsΣ to the Lagrangian, which leads
to the standard kinetic term 1

e2 F2
zz for the gauge field. In two dimensions, the coupling e has

dimension of mass, meaning that a diagram with gauge field propagators would be suppressed
by powers of mass. For example, the diagram in Fig. 2 is proportional to e2

|σ|2
, which is clearly

not a sum of holomorphic and anti-holomorphic function.
Thus, supersymmetry requires that, once all relevant diagrams are included, any contribu-

tions to the effective twisted superpotential involving powers of e should vanish. As a result,
the twisted superpotential is independent of e, one-loop exact and given by (3.8). Conse-
quently, the renormalization of ξ is one-loop-exact as well.

To summarize, from the modern perspective the one-loop exactness of the β-function fol-
lows from the existence of the GLSM formulation, since in this case all couplings are encoded
in the FI terms that receive radiative corrections at one loop only.
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D

Figure 2: Diagram with gauge field insertion, proportional to e2

|σ|2
.

a a

a a

i κ
1
2 τa i κ

1
2 τa

i κ
1
2 τa i κ

1
2 τa

a b 2πδab δp2qpzq

δi j 1
2πz

δi j 1
2πz

δi j 1
2πz

δi j 1
2πz

i

i

i

i

j

j

j

j

xUV y

xBCy

xsU sV y

xsBsCy

xB sBy

Figure 3: Feynman rules of the model (4.1). We have expanded B “
ř

Baτ
a,

where Ba are complex numbers, and the generators τa P sln are Hermitian and unit-
normalized: Trpτaτbq “ δab.

4. The β-function from crossed ladder diagrams

Having reviewed the standard methods for studying sigma model β-functions, we pass to our
alternative formulation (1.12) in terms of a cGN model. In fact, we will be mostly using its
equivalent version (1.6) with an auxiliary field B. To study the β-function of this model we
impose the gauge (1.7) and rewrite (1.6) as follows:

L “ 2
´

V DU ` BDC ` U DV ` C DB
¯

`
1

2π
Tr
´

BB
¯

, (4.1)

where we now assume B P sln. Here we used the explicit form (1.4) of the current, and defined
a new ‘covariant derivative’ as

DU “ BU `
i
2

κ
1
2BU . (4.2)

In Fig. 3 we list the Feynman rules of this theory.
The auxiliary field B, sB entering the covariant derivatives is only formally a ‘gauge field’,

since the term Tr
´

BB
¯

in the above Lagrangian clearly violates gauge invariance. We should
also emphasize that the introduction of this field is merely a technical tool for the simplifi-
cation of combinatorics in Feynman diagrams corresponding to the Green’s functions of the
fundamental fields U , V, B, C . If one additionally wants to allow the B, sB fields in the external
lines, one would have to work in a two-coupling formalism of [32],12 adding an independent
bare quartic coupling to (4.1).

12The paper [32] deals with the non-chiral GN model. The field σ used therein to split the quartic vertex is an
SUpnq singlet and is akin to the field σ of (3.4). This type of splitting is used in the large-n analysis, both in the
chiral and non-chiral case [9,10].
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“ ` ` ¨ ¨ ¨

p1 “ p p2 “ ´p

p3 “ 0 p4 “ 0

z

sz

Figure 4: The correlation function G4pp1, ¨ ¨ ¨ , p4q.

In order to compute renormalization of the coupling constant κ we will consider the four-
point function

1
16

G i j i1 j1

4 pp1, ¨ ¨ ¨ , p4q :“
ż 4
ź

j“1

d2w j ei pp j ,w jq
A

U ipw1qV jpw2qsU i1

pw3qsV j1

pw4q

E

, (4.3)

with external lines taken in momentum representation, and the scalar product is defined as13

pp, wq :“ pw ` spsw. As shown in Fig. 4, to leading order we get the (connected) contribution

´p2πq κ
ÿ

a
pτaqi j pτaqi1 j1

ˆ
1

sp1 ¨ sp2 ¨ p3 ¨ p4
ˆδp2q

˜

4
ÿ

j“1

p j

¸

. (4.4)

For brevity we will strip off the indices and amputate the overall momentum-dependent factor,
denoting the resulting contribution to the 4-point function by pG4pp1, ¨ ¨ ¨ , p4q. At tree level one
has

´
1

2π
pGtree

4 “ κ
ÿ

a
τa b τa . (4.5)

As the next step, we will simplify the kinematics by setting p3 “ p4 “ 0, which implies
p2 “ ´p1 :“ p. Despite the fact that the four-point function G4pp1, ¨ ¨ ¨ , p4q is singu-
lar in this limit due to the poles of the external legs, as in (4.4), the amputated function
pG4pp, ´p, 0, 0q :“ pG4ppq is regular. As we shall see, the non-zero momentum p ‰ 0 serves as
a natural infrared regulator (this special kinematics has been taken advantage of, in a similar
context, as early as in [58]).

A curious observation is that the diagrams that contribute to the four-point function (4.3)
of bosonic fields involve exclusively the (crossed) ladders of the bosonic fields themselves.
This is not only true at tree level (Fig. 4) but at all higher loops as well (cf. Figs. 6 and 7
below). Fermions could appear in loops with gauge fields emanating at the nodes, however
one would as well have diagrams with bosonic fields propagating in these same loops, and the
two contributions would cancel exactly (see Fig. 5). This is the specific situation corresponding
to level k “ 0, which makes it different from the purely bosonic or purely fermionic Gross-
Neveu models, where, on top of the ladder diagrams, one would additionally have those non-
vanishing loop insertions.

The same argument implies that the two-point function xUpw1qV pw2qy receives no quan-
tum corrections, and therefore no renormalization of the field is required.

4.1. One loop

A one-loop calculation is a good starting point to illustrate our technique. Although we have
taken the external lines in momentum space, perturbation theory will be constructed using

13We use the same symbol for a 2-vector and for its holomorphic component. Whenever a scalar product of
2-vectors is implied, round brackets are included.
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` “ 0

¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨

Figure 5: Cancellation of matter loop diagrams in the k “ 0 model.

coordinate space Feynman rules, as shown in Fig. 3. At one loop there are two diagrams,
shown in Fig. 6. Let us first take a look at the left one, whose contribution is

Fig. 6 left “ κ2 τaτb b τaτb

ż

d2z12 ei pp,z12q ˆ
1

|z12|2
. (4.6)

Including the second diagram in Fig. 6, for the total prefactor we get

1
Ďz12

τaτb b

ˆ

1
z12

τaτb `
1

z21
τbτa

˙

“
1

|z12|2
τaτb b rτa,τbs “ ´

C2

|z12|2
τa b τa , (4.7)

where C2 is defined by 1
2 fabc fabd “ C2δcd , i.e. it is the value of the Casimir operator in adjoint

representation. The one-loop contribution to the four-point function is thus

´
1

2π
pG1-loop

4 ppq “ C2
κ2

2π

ż

d2z12
1

|z12|2
ˆ ei pp,z12q :“ κ2 Appq . (4.8)

Notice that the presence of the exponential factor makes the integral IR-convergent (i.e.
for |z12| Ñ 8) if p ‰ 0, which is the reason we have kept the dependence on p. On the other
hand, the integral is divergent in the UV. The divergence can be regularized in a variety of
ways, all of which involve the introduction of a cutoff momentum scale Λ. For example, one
can insert a factor if pΛ|z12|qε in the integrand, where εą 0 is a small positive number, or set
a hard cutoff |z12| ą

1
Λ . At higher loops we require that the regularization is multiplicative

in the zi i`1-variables. The one-loop β-function is independent of this regularization, as the
following argument suggests. Instead of considering the actual integral (4.8), we calculate
its derivative w.r.t. momentum, p BAppq

Bp . The potential divergence is logarithmic, therefore

proportional to log
´

p2

Λ2

¯

, and the derivative allows finding the coefficient of this divergence
while dealing with a convergent integral. We find:

p
BAppq

Bp
“ C2

ż

d2z12

2π
i p
Ďz12

ˆ ei pp,z12q “ ´
1
2
C2 , (4.9)

so that, whatever the regularization might be, in the limit ΛÑ 8 one has

Appq “ ´
1
2
C2 log

ˆ

p2

Λ2

˙

` const. (4.10)

As we shall see, the constant amounts to a finite renormalization of the coupling. One should
also bear in mind that C2 “ n in the case of sln, so that effectively Appq „ n.
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0 0

sz1 sz2
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Figure 6: Diagrams contributing at one loop.
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sz1 sz2 sz3
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Figure 7: Diagrams contributing at two loops.

4.2. Two loops

The two-loop calculation can as well be performed directly and is rather instructive. Here we
have 3! “ 6 diagrams, shown in Fig. 7. The corresponding value of the integrand is

κ3

2π
ei pp,z13q ˆ τaτbτc

1
Ďz12Ďz23

b

ˆ

τaτbτc
1

z12z23
` τaτcτb

1
z13z32

` τbτaτc
1

z21z13
`

` τcτaτb
1

z31z12
` τbτcτa

1
z23z31

` τcτbτa
1

z32z21

˙

.
(4.11)

In the two terms in boxes we use the identity 1
z13z23

“
1

z12

´

1
z23

´
1

z13

¯

. Regrouping the
terms, we may rewrite this as

κ3

2π
ei pp,z13q ˆ τaτbτc

1
Ďz12Ďz23

b

ˆ

1
z12z23

rτa, rτb,τcss ´
1

z12z13
rτb, rτa,τcss

˙

. (4.12)

In the second term one has τaτbτc b rτb, rτa,τcss “ ´C2 tτa,τbu b rτa,τbs “ 0. Simplifying
the first term, we get

κ3

2π
ei pp,z13q

|z12|2|z23|2
τaτbτc b rτa, rτb,τcs “

κ3

2π
pC2q2 ei pp,z13q

|z12|2|z23|2
τa b τa . (4.13)

What remains is to perform the integrals over z12 and z23. One point to notice is that
the exponent ei pp,z12q of the one-loop expression (4.8) is now replaced by ei pp,z13q. Just as in
the one-loop case, it provides an effective infrared cutoff. As for a UV regularization, we will
assume it is the same as in the one-loop case, but again we will not specify it. The result of
the integration is

´
1

2π
pG2-loop

4 ppq “ κ3 pAppqq
2 . (4.14)
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5. Further loops

The crucial fact about (4.14) is that it is the square of the one-loop result (4.8) (up to an
overall factor of κ), as was first observed a long time ago in [26]. In that same paper it was
contemplated that the divergences of crossed-ladder diagrams, at any order, could be powers
of the one-loop divergence, and their sum would therefore result in a geometric series. This
is equivalent to the β-function being one-loop exact. Indeed, the solution of the one-loop RG
equation

dκ

d logµ
“ ´C2κ2 (5.1)

is a geometric series:

κpµq “
κ0

1 `C2κ0 log
´

µ
µ0

¯ . (5.2)

Below we shall find that, although at three loops the structure of the geometric series persists,
at four loops one inevitably runs into an ambiguity corresponding to the choice of regulariza-
tion/renormalization scheme. This does not invalidate the claim about the all-loop β-function,
but rather shifts the goal towards finding the ‘canonical’ renormalization prescription in the
realm of cGN models.

By extrapolation from Figs. 6-7 it is clear what the contributions to the four point function
at higher loops are (at least for the given simplified kinematics). At k ´ 1 loops there are
k vertices on each line, and the diagrams correspond to the k! possible contractions of the
vertices on the upper line with the vertices on the lower line. The corresponding contribution
to the integrand is

Ik´1 :“
κk

p2πqk´2

eipp,z1kq

Ďz12Ďz23 ¨ ¨ ¨ Ęzk´1k

ÿ

a1,...,ak

ÿ

p P Sk

τa1 ¨ ¨ ¨τak b τapp1q ¨ ¨ ¨τappkq

zpp1qpp2qzpp2qpp3q ¨ ¨ ¨ zppk´1qppkq

. (5.3)

The product of Ďzi j factors at the front is a universal term arising from the contractions in the
upper line of the diagram, which is a generalization of the expressions at the front of (4.7)
and (4.11). The inner sum is over the k! permutations: note that one permutes the generators
τa and simultaneously the points zi in the lower line.

It turns out that one can rewrite the sum in (5.3) as

Ik´1 “
κk

p2πqk´2

eipp,z1kq

Ďz12Ďz23 ¨ ¨ ¨ Ęzk´1k
Φk´1pz12, ¨ ¨ ¨ , zk´1kq ˆ

ÿ

a
τa b τa . (5.4)

In other words, the tensor structure factorizes explicitly. In order not to dwelve in the technical
details, we relegate the proof to Appendix A. As a result, we are only interested in the prefactor
Φk´1 defined in (5.4). From (4.7) and (4.13) we easily extract the one- and two-loop values:

Φ1pz12q “ ´C2
1

z12
, Φ2pz12, z23q “ pC2q2 1

z12z23
. (5.5)

In general, Φk is obtained from the sum in (5.3). Calculating it gets more tedious with each
loop, and starting from three loops we use Mathematica to accomplish this task. Henceforth
we will restrict to the case of sln, setting C2 “ n. We note that, at k loops, Φk is a polynomial
in n of degree k. Evaluating the sum for several values of n allows determining the coefficients
of this polynomial (which are functions of zii`1).
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Ěz j́ 1 sz j Ěz j́ 1 sz j

z j́ 1 z j z j z j́ 1

Figure 8: The two diagrams contributing to the residue in z j´1 j . The green box
redistributes all other lines except the two at the front.

5.1. Three loops

At three loops the result is:

Φ3pz12, z23, z34q “ ´
n3

z12z23z34
`

2n
z13z14z24

. (5.6)

Here z13 “ z12 ` z23, z24 “ z23 ` z34 and z14 “ z12 ` z23 ` z34. Clearly, the integral of the first
term gives a cube of the one-loop result (4.8), which is the next expected term of the geometric
series. One then needs to prove that the integral of the second term does not contribute to the
β-function or, in other words, that it is finite. We will exploit the same tool as before, namely
we differentiate the integral

I3ppq “
1

p2πq3

ż

d2z12 d2z23 d2z34
1

z12z23z34z13z14z24
eipp,z14q , (5.7)

w.r.t. momentum, p BI3ppq

p . Choosing pz12, z34, z14q as a new set of variables and rescaling

z12, z34 by z14, we find that the integral i p
p2πq2

ş

d2z14
eipp,z14q

z14
“ ´

1
4π factors out. As a result,

p
BI3ppq

Bp
“ ´

1
8π2

ż

d2z12 d2z34

z12z34p1 ´ z12 ´ z34qp1 ´ z34qp1 ´ z12q
. (5.8)

A direct calculation shows that the integral is zero (see Appendix B), so that BI3ppq

Bp “ 0. This
means that I3ppq is a constant, and there is no divergent term. This constant is, in general,
regularization-dependent (as discussed above, various cutoffs on the zi i`1 variables can be
chosen).

In any case, the integral of the second term in (5.6) is finite and, hence, it does not con-
tribute to the β-function. As a result, at three loops one has

´
1

2π
G3-loop

4 “ κ4
”

pAppqq
3

´ 2na
ı

, (5.9)

where a “ I3ppq is the regularization-dependent value of (5.7). In particular, the 3-loop di-
vergence is again a power of the 1-loop result (4.8).

5.2. Isolating sub-divergences

In passing to higher loops, an important step is the subtraction of subdivergences. Since so
far we only encountered a divergence at one loop, let us discuss how it can be subtracted. A
useful observation is that, at any loop order, the residues of Φmay be expressed through lower
orders of perturbation theory:

res
z j´1 j

Φkpz12, ¨ ¨ ¨ , zkk`1q “ ´C2 ¨Φk´1pz12, ¨ ¨ ¨ , zz j´1 j , ¨ ¨ ¨ , zkk`1q , (5.10)
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where we normalize Φ0 “ 1 and res
z j´1 j

means we are taking the residue at z j´1 j “ 0.

To prove the statement, one should understand what diagrams lead to factors of 1
z j´1 j

in Φk.
Such diagrams are exactly the ones, where the two gauge lines emanating from nodes j´1 and
j in the top line run to adjacent nodes s´1 and s in the lower line, for any s “ 2, ¨ ¨ ¨ , k`1. This
is shown in Fig. 8. For each s there are exactly two such diagrams. Taking the residue means
we drop the factor 1

z j´1 j
and set z j´1 “ z j in the rest of the diagram, which is tantamount to

contracting the lines between the z j´1- and z j-vertices. As for the color factor, for fixed s one
has

ÿ

a,b

τa1
¨ ¨ ¨τa j´2

τaτbτa j`1
¨ ¨ ¨τak

b τapp1q
¨ ¨ ¨τapps´2q

pτaτb ´ τbτaqτapps`1q
¨ ¨ ¨τappkq

“

“ ´C2

ÿ

a
τa1

¨ ¨ ¨τa j´2
τaτa j`1

¨ ¨ ¨τak
b τapp1q

¨ ¨ ¨τapps´2q
τaτapps`1q

¨ ¨ ¨τappkq
, (5.11)

where the Casimir C2 appears due to the contraction of the structure constants
1
2

ř

a,b fabc fabd “ C2δcd , as before. Additionally, one has to multiply (5.11) by z-dependent
factors, as in (5.3), and then sum over s, as well as over the permutations of the k ´ 2 points
1, ¨ ¨ ¨ , j´2, j`1, ¨ ¨ ¨ k. These two sums may be combined in a single sum over the permutations
of k ´ 1 points 1, ¨ ¨ ¨ , j ´ 2, r j ´ 1, js, j ` 1, ¨ ¨ ¨ k, where r j ´ 1, js is the ‘merged point’. In other
words, the color structure of the residue is exactly the same as one would have upon contract-
ing the z j´1- and z j-vertices into a single vertex, up to an overall constant ´C2. Effectively
this is the same calculation as in the one-loop example (4.7).

To see how (5.10) works, one can apply it at the one-, two- and three-loop level, using (5.5)
and (5.6).

5.3. Four loops

At the three-loop level, formula (5.6), all poles are contained in the first term: we may write
Φ3 “ ´

n3

z12z23z34
`xΦ3 pz12, z23, z34q, where xΦ3 is the three-loop result after subtraction, i.e. with-

out poles in either of the variables z12, z23, or z34.
We can now determine the structure of the poles at the four-loop level, using (5.10):

Φ4 “
n4

z12z23z34z45
´

ˆ

n
z12

xΦ3 pz23, z34, z45q `
n

z23

xΦ3 pz12, z34, z45q `

n
z34

xΦ3 pz12, z23, z45q `
n

z45

xΦ3 pz12, z23, z34q

˙

` xΦ4 pz12, z23, z34, z45q ,
(5.12)

where again xΦ4 is what remains after one-loop subdivergences have been subtracted. This
remnant is characterized by the fact that its residues at zi i`1 “ 0 vanish. Taking the residue of
Φ4, say, w.r.t. z45, one gets ´n ¨Φ3pz12, z23, z34q, as required by (5.10). The subtraction (5.12)
can be easily understood if one recalls the expression for the four-point function to this order:

´
1

2π
pG4ppq “ κ ` κ2Appq ` κ3pAppqq2 ` κ4

”

pAppqq
3

´ 2na
ı

`

` κ5
”

pAppqq
4

´ 4 ¨ 2na ¨Appq ` I4ppq

ı

` . . .
(5.13)

The three terms in the last bracket correspond to the three terms in (5.12). In particular, I4ppq

is the four-loop analogue of the remainder integral (5.7):

I4ppq “
1

p2πq4

ż

d2z12 d2z23 d2z34 d2z45
eipp,z15q

z12z23z34z45
¨ xΦ4 pz12, z23, z34, z45q . (5.14)
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In (5.13) κ is the bare coupling constant. The geometric series in κ can be resummed as
follows:

´
1

2π
pG4ppq “ κppq ´ κppq4 2na ` κppq5 I4ppq ` . . . , (5.15)

where κppq “
κ

1 ´ κAppq
. (5.16)

One sees that the terms in (5.12) containing poles have been effectively interpreted in terms
of lower orders of perturbation theory. Recalling the expression (4.10) for Appq, we introduce
the renormalized coupling rκ:

1
rκ

“
1
κ

`C2 log
´µ

Λ

¯

´ const. (5.17)

Subtraction of the constant may be interpreted as a finite redefinition of the coupling. It is
natural to subtract it together with the logarithm to ensure that there is no contribution to
the β-function at three loops (one can think of this as a ‘modified minimal subtraction’). The
running coupling κppq is thus

κppq “
rκ

1 `rκC2 log
´

|p|

µ

¯ . (5.18)

We will apply to the integral I4ppq the technique used in the three-loop case, i.e., we dif-
ferentiate it w.r.t. the momentum. The result of an explicit calculation is:14

p
BI4ppq

Bp
“ n2

„

´2a `
6p i

p2πq4

ż

d2z12d2z23d2z34d2z45

Ďz12Ďz23Ďz34Ďz45

ˆ

1
z13z24z25

`
1

z13z14z25

˙

eipp,z15q

ȷ

,

(5.19)
where a is again the regularization-dependent (but finite and momentum-independent) value
of the integral (5.7). In Appendix B we show that the remaining integral is 1

p times a constant
that can be computed explicitly. The result is:

p
BI4ppq

Bp
“ ´2n2

„

a `
9ζp3q

8

ȷ

. (5.20)

Thus, the four-loop contribution to the β-function in a ‘minimal subtraction scheme’ may be
written as

βprκq “ ´nrκ2
´ 4n2

„

a `
9ζp3q

8

ȷ

rκ
5

` . . . (5.21)

If one allows redefinitions of the coupling constant, as in (2.6), one may tune the parameter c
in such a way as to set the four-loop correction to zero. One might wonder, though, whether
the ζp3q-piece in (5.21) has an invariant meaning. It turns out that it is related to the value
of the β-function in the so-called momentum subtraction scheme.

5.4. Momentum subtraction (MOM) vs. ĎMS-scheme

One could, of course, simply use the freedom in the (finite) redefinition of the coupling con-
stant to cancel the ambiguous parameter a in (5.21) (equal to the value of the integral I3ppq in

14Technically the expression for I4ppq obtained from the definitions (5.4), (5.12), (5.14) involves more terms,
but many of them may be shown to be equal by permuting the variables z12, . . . , z45 in the integrals.
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a chosen regularization). This can be done at a more conceptual level, by defining the coupling
constant as the value of the four-point function at a given value of momentum:

´
1

2π
pG4

ˇ

ˇ

p2“µ2 ” κR . (5.22)

This is a variation of the so-called momentum subtraction (MOM) scheme [15–17]. By defini-
tion, the β-function of κR is

pβpκRq :“ ´
1

2π

BpG4ppq

B log |p|

ˇ

ˇ

p2“µ2 “ ´
1

2π
2p ¨

BpG4ppq

Bp

ˇ

ˇ

p2“µ2 . (5.23)

Using expression (5.15) for pG4, we find

pβpκRq “

«

2p

˜

´
1

2π

BpG4ppq

Bκppq

¸

Bκppq

Bp
` 2p ¨ κppq5 BI4ppq

Bp
` . . .

ff

p2“µ2

“
`

1 ´ 8na κpµq3 ` . . .
˘

¨
`

´nκpµq2
˘

` κpµq5
`

´4n2
˘

„

a `
9ζp3q

8

ȷ

` ¨ ¨ ¨ ,

(5.24)

where in passing to the second line we inserted the values of various derivatives from (5.15),
(5.16) and (5.20). Taking into account that (to the relevant order) κR “ κpµq´κpµq4 2na`. . .,
we may express the β-function in the MOM-scheme in terms of κR:

pβpκRq “ ´n κ2
R ´

9
2

n2ζp3q κ5
R ` . . . (5.25)

The fact that the regularization-dependent constant a drops out is compatible with the
‘regularization-independent’ property of the MOM-scheme known in the literature [15,25].

It follows from (5.25) that the scheme defined by (5.22) violates the one-loop-exactness
of the β-function. In 4D SUSY theories it has also been observed that the NSVZ relation is
violated in the MOM scheme [24]. Here the relevant counterpart is SUSY electrodynamics
with N f flavors of electrons, since the CPn´1 model is as well an abelian theory with N f “ n
matter fields. It was found that the β-function of SQED features a ζp3q-term in the MOM
scheme, which disappears in other schemes such as ĎMS. One simple reason why the MOM
scheme is not optimal is that it depends on the configuration of momenta in the definition
of the coupling constant (5.22). The configuration we have chosen is technically simple, but
it does not seem to be in any sense ‘natural’. One would prefer to set the external momenta
equal to zero, however in that case one encounters an IR divergence, as already discussed.

One might then be tempted to switch to the ĎMS scheme, where, according to (3.1), the
corresponding contribution to the β-function should vanish (on the sigma model side). Here
a technical problem arises, since in d “ 2 ´ε dimensions the Gross-Neveu model is not multi-
plicatively renormalizable [27,58,59] due to the emergence of the so-called evanescent oper-

ators in perturbation theory (these are operators of the type
´

ψrrγα,γβ s ¨ ¨ ¨ sψ
¯2

that may be
defined formally and are non-zero for d ‰ 2). Interestingly the onset of the effects related to
such operators, which make the calculation of the β-function substantially more complicated,
is exactly at four loops, cf. [60]. Even if the technical difficulties related to evanescent opera-
tors are overcome, one should bear in mind that the ĎMS scheme itself has crucial drawbacks.
For example, it breaks SUSY at a sufficiently high loop order [61]. In models with N “ 1 SUSY
in 4D, this scheme breaks the NSVZ relation at three loops [44, 45], which is the first order
where scheme dependence appears. In the case of extended SUSY (N “ 2 in 4D, or N “ p2,2q

in 2D, as in our case) the mismatch might be postponed to higher loops. To summarize, there
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seems to be no reason to expect that the ĎMS scheme should lead to a complete proof of the
exact β-function (in theories with or without SUSY).

In four-dimensional theories a renormalization scheme applicable at any loop order has
been found (cf. [22–25] and references therein) – this is the so-called higher covariant deriva-
tive method [62,63], supplemented by a minimal subtraction of logarithms. A direct transfer
of these ideas to the Gross-Neveu setup would not work, since higher derivatives would break
chiral invariance, which is the cornerstone of our construction. Nevertheless certain modifi-
cations of the method are admissible: for example, one could place higher derivatives on the
Hubbard-Stratonovich field B in (1.6), which is uncharged w.r.t. chiral symmetry (this was
used in [26]). It is thus plausible that regularization via higher derivatives could be eventually
adapted to our sigma model/Gross-Neveu setup.

6. Conclusion and Outlook

In the present paper we studied quantum aspects of chiral Gross-Neveu models, most impor-
tantly their higher-loop β-function. These theories are especially interesting due to the re-
cently discovered exact equivalence to certain sigma models, such as the well-known CPn´1

model.15 This equivalence holds at the quantum level and implies, in particular, that the β-
functions of the theories should coincide. The all-loop β-functions for very general classes of
cGN models (including their deformations etc.) have been proposed in [12], using ideas from
the early work [13]. If these match with sigma model calculations, they would provide the
β-functions of a broad class of sigma models, including potentially their trigonometric and
elliptic deformations.16

One stumbling point along this promising path is a four-loop discrepancy between a di-
rect calculation and the proposed β-functions in a special case (‘level-zero’, k “ 0), reported
in [14]. As we explained above, this discrepancy might be attributed to a choice of renor-
malization scheme. In fact, the similar story of the NSVZ β-function (cf. [21]) suggests that
finding an explicit scheme where the β-function is of the conjectured form might be a com-
plicated task. Amusingly, the equivalence between cGN models and sigma models mentioned
earlier provides an important hint. It turns out that, via this equivalence, one way of explicitly
realizing the special ‘level-zero’ case of [14] is by considering the SUSY CPn´1 sigma model.
As opposed to the case of more general models, the β-function of this model is well studied
and is known to be one-loop exact, if one uses a manifestly supersymmetric renormalization
prescription. This is consistent with the general proposal of [12] in this special case.

On the other hand, there are several reasons why one would not want to rely on explicit
supersymmetry. First of all, the cGN formulation is not manifestly supersymmetric, and con-
structing a SUSY-compatible regularization seems a complicated task. Besides, the exact β-
functions proposed in [12] should be applicable in a much wider context (in particular, to
non-SUSY models), and one would like to eventually verify the conjectures in those cases as
well. Having this in mind, in the present paper we have carried out an explicit calculation
of the β-function in the k “ 0 (level-zero) cGN model in a version of momentum-subtraction
(MOM) scheme. In this scheme the coupling constant is defined as the value of the four-point
function for special value of momenta. We have shown that, although at the three-loop level
the β-function is zero, at four loops it acquires a correction proportional to n2ζp3q, which,
again, could be eliminated by a coupling constant redefinition. One can draw a parallel with
N “ 1 SQED in 4D, where an analogous MOM scheme leads to a ζp3q contribution to the

15Generalizations to Grassmannians and other target spaces may be considered in a similar fashion.
16One could think of the ‘sausage model’ [30] as a prominent example. In this special case there is also a

‘geometric’ conjecture for its all-loop β-function in [64].
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β-function at three loops (incompatible with the NSVZ expression) [24].
It would be interesting and important to find a natural renormalization scheme where the

corrections at four and higher loops to the level-zero cGN model β-function vanish. The spe-
cial case of k “ 0 seems to be the most ‘purified’ one from the calculational perspective, which
is why it especially deserves further study. Once this is done, one would try to understand,
whether, using similar methods, one can obtain all-loop β-functions for many other sigma
models, such as the CPn´1 model with minimally coupled fermions, Grassmannian models,
their trigonometric and elliptic deformations. If so, they could imply nontrivial physical conse-
quences for the phase structure of these theories. The interrelation of these exact results with
the conjectured integrability of the models is another question that is worth being studied in
detail.
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A. Tensor structure of the four-point function

Here we prove that the sum (5.3), which defines the four-point function, has the tensor struc-
ture shown in (5.4).

The idea of the proof is in taking residues w.r.t. z1, . . . , zk´1. We write

Ik´1 “
eipp,z1kq

Ďz12Ďz23 ¨ ¨ ¨ Ęzk´1k
Qk´1pz12, ¨ ¨ ¨ , zk´1kq , (A.1)

with Qk´1 a meromorphic function. We may decompose this function in z1-poles:

Qk´1 “
k
ř

i“2

1
z1i

Qpiqpz23, ¨ ¨ ¨ , zk´1kq . Then we decompose in z2-poles etc., finally arriving at

Qk´1 “

k
ÿ

i1ě2, i2ě3, ¨¨¨ , ik´2ěk´1

1
z1 i1

1
z2 i2

¨ ¨ ¨
1

zk´1 k
ˆ Qi1,...,ik´2,k , (A.2)

where Qi1,...,ik´2,k encodes the tensor structure and does not depend on zi i`1. Let us study
what this tensor structure is.

When taking the residue of Qk´1 w.r.t. z1i , the only terms in the sum (5.3) that contribute
are the ones with pp jq “ 1, pp j`1q “ i or pp jq “ i, pp j`1q “ 1 for some j (just like in Fig. 8
before, which corresponds to the special case i “ 2). The sum of these two terms (which come
with opposite signs) produce a commutator rτa1 ,τai s in position j in the numerator. Denoting
by p1 P Sk´2 permutations of the remaining variables, i.e. of the set t1, . . . , j´1, j`2, . . . ku

onto t2, . . . , i´1, i`1, . . . , ku, we get:

res
z1i

ÿ

p P Sk

τapp1q ¨ ¨ ¨τappkq

zpp1qpp2qzpp2qpp3q ¨ ¨ ¨ zppk´1qppkq

“
ÿ

p“p1, j

τapp1q ¨ ¨ ¨

position j

rτa1 ,τai s ¨ ¨ ¨τappkq

zpp1qpp2q ¨ ¨ ¨ zpp j´1q izipp j`2q ¨ ¨ ¨ zppk´1qppkq

“
ÿ

p P Sk´1

pτapp1q ¨ ¨ ¨ pτappkq

zpp1qpp2qzpp2qpp3q ¨ ¨ ¨ zppk´2qppk´1q

,

(A.3)
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where pτa j “ τa j for j ‰ i and pτai “ rτa1 ,τai s. In other words, we obtain a sum similar to the
original one, albeit with a k Ñ k ´ 1 reduction and a redefinition of τ’s. At the next step, i.e.
upon taking a residue w.r.t. z2i2 , we again obtain a similar sum with new variables ppτa j “ pτa j

for j ‰ i2, and p

pτai2 “ rpτa2 , pτai2 s.
Upon iterating this procedure, we find that Qi1,...,ik´1 is a sum of nested commutators,

which, upon expanding these commutators, may be simplified to
ř

a Sa bτa. By symmetry of
the construction, we have Sa “ b τa for constant b. We thus find that Qk´1 is proportional to
ř

a
τa b τa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .■

B. Calculation of integrals

In this Appendix we compute the finite integrals encountered in the main text. The ‘master’
integral that we will be exploiting (as well as its complex conjugate) is

ż

d2v
svpv ` aqpv ` bq

“
π

a ´ b
log

ˆ

|a|2

|b|2

˙

. (B.1)

Three-loop integral. We start with the integral (5.8) entering at three loops:

p
BI3ppq

Bp
“ ´

1
8π2

ż

d2z12 d2z34

z12z34p1 ´ z12 ´ z34qp1 ´ z34qp1 ´ z12q
. (B.2)

Applying (B.1) to the z34-integral, we get

p
BI3ppq

Bp
“

1
8π

ż

d2z12 log |z12|2

z12 |1 ´ z12|2
. (B.3)

We split this integral in two regions: |z12| ă 1 and |z12| ą 1. Changing variables z12 Ñ
1

z12
in the second region, we find that the two integrals are equal but have opposite sign, so that
BI3ppq

Bp “ 0.
First integral in (5.19). We pass over to the four-loop integrals entering (5.19). The first one
is

i1 “
i p

p2πq4

ż

d2z12d2z23d2z34d2z45

Ďz12Ďz23Ďz34Ďz45

1
z13z24z25

eipp,z15q . (B.4)

We pass to a new set of variables v1 “ z12, v2 “ z23, v3 “ z34 and v :“ z15. Rescaling v1, v2, v3
by v, we find that the v-integral factors out:

i1 “
i p

p2πq4

ż

d2v
eipp,vq

sv
¨

ż

d2v1 d2v2 d2v3

sv1 sv2 sv3p1 ´ sv1 ´ sv2 ´ sv3q
¨

1
pv1 ` v2qpv2 ` v3qp1 ´ v1q

. (B.5)

To proceed, we apply (B.1) to the v3-integral:

i1 “ ´
1

16π2

ż

d2v1 d2v2

sv1 sv2p1 ´ sv1 ´ sv2q
¨

1
pv1 ` v2qp1 ´ v1q

log

ˆ

|1 ´ v1|2

|v2|2

˙

. (B.6)

Shifting v1 Ñ 1 ´ v1 and then rescaling v2 Ñ v1v2, we again arrive at a v1-integral that can be
calculated using (B.1):

i1 “ ´
1

16π

ż

d2v2

`

log p|v2|2q
˘2

sv2 |1 ´ v2|2
. (B.7)
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We split this integral in two: |v2| ă 1 and |v2| ą 1. Making in the second one the change of
variables v2 Ñ

1
v2

and simplifying slightly, we arrive at

i1 “ ´
1

8π

ż

|v2|ă1

d2v2

`

log p|v2|2q
˘2

1 ´ |v2|2
“ ´

ζp3q

4
. (B.8)

Second integral in (5.19). Next we switch to the second integral in (5.19):

i2 “
i p

p2πq4

ż

d2z12d2z23d2z34d2z45

Ďz12Ďz23Ďz34Ďz45

1
z13z14z25

eipp,z15q . (B.9)

Using the same variables as before, one can perform the integral over z15 “ v:

i2 “ ´
1

16π3

ż

d2v1 d2v2 d2v3

sv1 sv2 sv3p1 ´ sv1 ´ sv2 ´ sv3q
¨

1
pv1 ` v2qpv1 ` v2 ` v3qp1 ´ v1q

. (B.10)

Using (B.1), we integrate over v3 and shift v2 Ñ v2 ´ v1:

i2 “
1

16π2

ż

d2v1 d2v2 log |v2|2

sv1p sv2 ´ sv1qp1 ´ sv2qv2p1 ´ v1q
. (B.11)

We may now again employ (B.1) for integration over v1. The resulting integral is split into
|v2| ă 1 and |v2| ą 1, and in the second piece we switch v2 Ñ

1
v2

. After some simplifications
we get

i2 “ ´
1

8π

ż

|v2|ă1

d2v2

|v2|2
log

`

|v2|2
˘

log
`

1 ´ |v2|2
˘

“ ´
ζp3q

8
. (B.12)
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