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Abstract

We classify the global one-form symmetries for non-Lagrangian N' = 3 SCFTs that arise
by the action of S-fold projections on D3-branes. Such a classification is dictated, on a
generic point of the Coulomb branch, by probing the charge spectrum of (p, q)-strings in
the brane setup. The charge lattice of lines is then obtained by finding the ones that are
genuine modulo screening by dynamical particles. The one-form symmetries are then
extracted from the maximal sub-lattices of mutually local lines. We further comment on
the existence of non-invertible symmetries for some of these A’ = 3 SCFTs.
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1 Introduction

In the recent past, a new paradigm for the notion of symmetry in QFTs became dominant. It
is based on the necessity to include higher-form symmetries and the corresponding extended
objects in the description of quantum field theories [1]. Restricting to four-dimensional QFTs,
the simplest way to proceed consists in classifying the one-form symmetries in supersymmet-
ric and conformal theories (SCFTs). A seminal paper that allowed for such a classification has
been [2] where a general prescription was given in terms of the spectrum of mutually local
Wilson and 't Hooft lines [3]. Such a prescription was initially based on the existence of a La-
grangian description for the SCFT under investigation. In absence of a Lagrangian description
it is nevertheless possible to use other tools, coming from supersymmetry, holography and/or
branes. These constructions have allowed to figure out the one-form symmetry structure of
many different QFTs, including some 4d non-Lagrangian SCFTs, see [4-20].

A class of theories that has not been deeply investigated so far are SCFTs with 24 super-
charges, i.e. N’ = 3 conformal theories. Such models have been predicted in [21], and then
found in [22]. Many generalizations have been then studied by using various approaches
[23-30]. A key role in the analysis of [22] is based on the existence, in the string theory setup,
of non-perturbative extended objects that generalizes the notion of orientifolds, the S-folds
(see [31,32] for their original definition). From the field theory side, the projection implied
by such S-folds on A/ = 4 SYM has been associated to the combined action of an R-symmetry
and an S-duality twist on the model at a fixed value of the holomorphic gauge coupling, where
the global symmetry is enhanced by opportune discrete factors. Four possible Z; have been
identified, corresponding to k = 2, 3, 4 and 6. While the Z, case corresponds to the origi-
nal case of the orientifolds [33-38], where actually the holomorphic gauge coupling does not
require to be fixed, the other values of k correspond to new projections that can break super-
symmetry down to A/ = 3. The analysis has been further refined in [23], where the discrete
torsion, in analogy with the case of orientifolds, has been added to this description. In this
way, it has been possible to achieve a classification of such A/ = 3 S-folds SCFT in terms of the
Shephard-Todd complex reflection groups.

The goal of this paper consists in classifying one-form symmetries for such theories, con-
structing the lattices of lines and identifying which models possess non-invertible symmetries.
The main motivation behind this expectation is that for the rank-2 S-folds, in absence of dis-
crete torsion, the SCFTs enhance to N' = 4 SYM [23] where these properties are present. The
existence of non-trivial one-form symmetries in some exceptional ' = 3 theories has also been
argued in [39].

Our strategy adapts the one presented in [9] to S-fold setups. There, the spectrum of lines
is built from the knowledge of the electromagnetic charges of massive states in a generic point
of the Coulomb branch. These charges are read from the BPS quiver, under the assumption that
the BPS spectrum is a good representative of the whole spectrum of electromagnetic charges.
In the case of S-folds however such a BPS quiver description has not been worked out and we
extract the electromagnetic charges of dynamical particles from the knowledge of the (p, q)-
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Table 1: Summary of our results. 1 represents a trivial group.

S-fold One-form # of inequivalent Non-invertible
symmetry lattices symmetry
53,1 Z3 2 Yes
53,3 1 1 No
Sa.1 Zy 2 Yes
S44 1 No
Se.1 1 1 No

strings configurations in the Type IIB setup [40,41]. The main assumption behind the analysis
is that such charges are a good representative of the electromagnetic spectrum.

We proceed as follows. First we choose an N’ = 3 theory constructed via an S-fold pro-
jection of Type IIB. This consists in having N D3-branes, together with their images, on the
background of an S-fold. At a generic point of the Coulomb branch, the corresponding low
energy gauge dynamics corresponds to a U(1)" gauge theory where each U(1) is associated to
a D3. Then we list all (p, q)-strings that can be stretched between D3-branes and their images.
They have electric and magnetic charges with respect to U(1)". Eventually we run the proce-
dure of [9]. This consist in finding all the lines that are genuine, i.e. have integer Dirac pairing
with the local particles, modulo screening by the dynamical particles. This gives the lattice
of possible charges, then the different global structures correspond to maximal sub-lattices of
mutually local lines.

Our results are summarized in Table 1. In the first column, one finds the type of S-fold
projection that has been considered. Such projections are identified by the two integers k and ¢
in Sy 4. The integer k corresponds to the Z; projection while the second integer £ is associated
to the discrete torsion. Then, when considering an Sy ; S-fold on a stack of N D3-branes the
complex reflection group associated to such a projection is G(k, k/{,N). In the second column,
we provide the one-form symmetry that we found in our analysis, and in the third, the number
of inequivalent line lattices that we have obtained. The last column specifies whether there
exist cases that admit non-invertible symmetries. Indeed, here we find that in some of the
cases there exists a zero-form symmetry mapping some of the different line lattices, that are
therefore equivalent. Furthermore in such cases we expect the existence of non-invertible
symmetries obtained by combining the zero-form symmetry with a suitable gauging of the
one-form symmetry.

A remarkable observation strengthening our results regards the fact that our analysis re-
produces the limiting G(k, k, 2) cases, where supersymmetry enhances to N' = 4 with su(3),
s0(5) and g, gauge groups for k = 3, 4 and 6 respectively. Another check of our result is that it
matches with the cases G(3,1,1) and G(3, 3, 3), where an N/ = 1 Lagrangian picture has been
worked out in [42].

Note added: When concluding this paper, the reference [43] appeared on arXiv. There,
they study the classification of zero, one and two-form symmetries in AN/ = 3 S-fold SCFTs.
Their analysis is holographic, along the lines of the construction of [44] for N' = 4 SYM. We
have checked that our results are in agreement with their predictions.
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2 Generalities

2.1 Global structures from the IR

The strategy adopted here, as already discussed in the introduction, is inspired by the one
of [9]. The main difference is that instead of using BPS quivers, not yet available for our S-
folds, we take advantage of the type IIB geometric setups and probe the charge spectrum with
(p,q)-strings — the bound state of p fundamental strings F1 and q Dirichlet strings D1.!

Despite this difference, the rest of the procedure is the one of [9] which we now summarize.
Denote as . )

yi= (egl),m(ll); el mgi)) , (D

a basis vector of the electromagnetic lattice of dynamical state charges under the U(1)] xU(1);,
gauge symmetry on the Coulomb branch. The spectrum of lines can be determined by consid-
ering a general line £ with charge

L= (egl),m(ll); e eg), mgl)) . 2)

This is a genuine line operator if the Dirac pairings with all dynamical states ¥ are integer:
(,L) €7, AN (3)

This can be rephrased as the condition

-
Om® —mOeD ez, i, @
j=1

Furthermore, inserting a local operator with charge y; on the worldline of a line with
charge ¢ shifts its charge by v;. Therefore if a line with charge ¢ appears in the spectrum then
a line with charges £ + Y. k;y; with k; € Z must also appear. When classifying the spectrum of
charges of the line operators of a QFT it is then useful to consider the charges £ modulo these
insertions of local states. This gives rise to equivalence classes of charges with respect to the
relation:

~C+y, Vil (5)

Borrowing the nomenclature of [9], we will refer to such identification as screening and we
will work with each equivalence class by picking one representative. The genuine lines after
screening form a lattice. In general two such lines are not mutually local and a choice of global
structure corresponds to a choice of a maximal sublattice of mutually local lines.

2.2 Charged states in S; ;-folds

We aim to determine the electromagnetic charges of the local states generated by (p, q)-strings
stretched between (images of) D3-branes in presence of an S-fold. The S-fold background of
Type IIB string theory consist of a spacetime R* x (R®/Z, ) where the Z, quotient involves an
S-duality twist by an element p; € SL(2,Z) of order k, where k = 2,3,4,6. For k > 2 the
value of the axio-dilaton vev is fixed by the requirement that it must be invariant under the
modular transformation associated to p;. The matrices p; and the corresponding values? of
T are given in Table 2.

In order to provide the IR spectrum of line operators of the SCFTs from this UV perspective, we assume the
absence of wall-crossing. While such an assumption is a priori motivated by the high degree of supersymmetry, a
posteriori it is justified by the consistency of our results with the literature.

2In our convention, an SL(2,Z) transformation of the axio-dilaton © — (a7 + b)/(c7 + d) relates to a matrix

d c 0 -1 1 0
pk—(b a).WealsohaveS—(l O)andT—(1 1).


https://scipost.org
https://scipost.org/SciPostPhys.15.4.132

Scil SciPost Phys. 15, 132 (2023)

Table 2: Elements p; of SL(2,Z) of order k used in S-fold projections, and the cor-
responding fixed coupling 7.

SL(2,7) | $2=-1, (ST)™! S (s3T)7!

k 2 3 4 6

G G R 6

A stack of N D3-branes probing the singular point of the S-fold background engineer an
N = 3 field theory on the worldvolume of the stack of D3-branes. It is useful to consider the
k-fold cover of spacetime, and visualize the N D3-branes together with their (k —1)N images
under the S;.-fold projection. We are going to label the m-th image of the i-th D3-brane with
the index i,,,, wherei =1,...,Nand m=1,...,k.

Under the S-fold projection, the two-form gauge fields of the closed string sector B, and
C, transform in the fundamental representation:

B, B,
(2)-n(2)

Consistently, the (p, q) strings charged under these potentials are mapped to (p’,q’) where:

' dN=p p;". 7)

We denote a state associated to a (p, q) connecting the i,,,-th D3-brane and the j,, D3-brane as:

|p:q>im,jn = |—P,—Q)jn,im > (8)
where we identity states with both opposite charges and orientation.
First, strings linking branes in the same copy of R®/Z, transform as follows:

p,a)i i = &P )i 9

tmsJm

where (p’,q’) are related to (p,q) by (7) and { is the primitive k-th root of unity. These states
always collectively give rise to a single state in the quotient theory, with charges:

i-th j-th
—~ —
D3;D3; : (0,0;...;5’p,q;...;—p,—q;...;0,0). (10)

An important ingredient we need to add to our picture is the discrete torsion for B, and
C, [23,45]. In presence of such a discrete torsion, a string going from the i,,-th brane to
the j,,,1-th brane should pick up an extra phase which depends only on its (p, q)-charge and
the couple (6ys, Ogr). More precisely, one expects that the S-fold action can be written as
follows [46]:3

|p’q>imjm+1 N C;1e2ni(p9Ns+q9RR) |p/’ q/> (11)

; ; >
Un+1Jm+2

3We thank Shani Meynet for pointing out [46] to us.
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Table 3: Different discrete torsions on O3-planes.

O3-planes | 03~ 03* 03~ 03"
(Oxs, Orr) | (0,0) (1/2,0) (0,1/2) (1/2,1/2)

where again (p’,q") are related to (p,q) by (7). For i # j, this always leads to the following
state in the projected theory [47,48]:*

. j-th
) i-th J
D3;D3; : (0,0;...5°p,q 5.5 =(P @) - pi;---50,0). (12)

Note that this is the only case that might not lead to any state in the quotient theory when
i = j, i.e. when a string links a brane and its image. When the quotient state exists, it has
charges

i
D3;D37 : (0,0;...;(p ) — (P @) pi;---;0,0). (13)

Analogously, strings twisting around the S-fold locus n-times pick up n-times the phase in
1.

A last remark is that discrete torsion allows some strings to attach to the S-fold if the latter
has the appropriate NS and/or RR charge. If this is the case, the state is mapped as in (9):

, (14)

p,q)s,i, — [P’ q')

Skim+1

and provides the following charge in the projected theory:
i-th

S$D3; : (0,0;...;°p,q;...;0,0). (15)

These rules are illustrated and details on discrete torsion are provided in the remaining of
this section for orientifolds and S-folds separately.

The case with k = 2: Orientifolds

In this subsection we apply the formalism described above for orientifolds and reproduce the
spectrum of strings known in the literature.

The matrix p, is diagonal, therefore the two p and q factors can be considered indepen-
dently. In this case the field theory obtained after the projection is Lagrangian and can be
studied in perturbative string theory with unoriented strings. Discrete torsion takes value in
(Oxns» Orr) € Zo®Z,, giving four different choices of O3-planes related by SL(2, Z) actions [45],
see Table 3.

The orientifold action is then recovered from (9) and (11) with {, = —1. First, we have

P, @)y, = —1 =P, =iy, = 1P D}y, - (16)

For the strings that stretch from one fundamental domain of R®/Z, to the next, there are four
cases depending on the values of Oyg and Ogy:

03: 2o @i, = =P Dy »

03_ : |P7(I)i1j2 - —epm|P,Q>jliz ’ (17)
03+ Cp @iy, = =P, a) )i, »

03" & Ip,qh;, = —e®* V™I, ),

*The action on (p, q) involves p;l, see (7). In writing (12) however, we measure the charge with respect to the
brane in the chosen fundamental domain, hence the appearance of p, instead of its inverse.

6
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It is interesting to consider strings connecting one brane to its image, i = j. In the case of
trivial discrete torsion, corresponding to the O3~ -plane, all such strings are projected out. On
the contrary, in the 03" case, an F1-string linking mirror branes survives the projection, while
a D1-string similarly positioned is projected out. We also find strings that can attach to the
different orientifolds following [47]:

_ —— —+
03" :none, 03" :10,1)o3+;,, 03 :[L0)g , 03 :[Ll)g:, ,  (18)

as well as bound states of these.

The cases with k > 2: S-folds

The construction discussed above can be applied to S, in order to obtain the string states in
the quotient theory. For k > 2, the discrete torsion groups have been computed in [23], the
result being Oys = Ogrg € Z3 for the S3-case and Oyg = Oz € Z, for the S,-case. The Sg-fold
does not admit non-trivial discrete torsion. It was also pointed out that, for the S;-case, the
choices Oyg = Ogg = 1/3 and Oyg = Org = 2/3 are related by charge conjugation; therefore
everything boils down to whether the discrete torsion is trivial or not. Following the notation
of [23], we denote as Sy ; the S-folds with trivial discrete torsion and as Sy j the S-folds with
non-trivial discrete torsion.

As before, the only states that might not lead to any state in the quotient theory are the
strings linking different covers of R®/Z,. Equation (11) generalizes in the following way
[46]: a state |p,q); ; is mapped to {; e (POnsta0w) |p’, q), with (p’,q’) obtained as in

. . lrn+1jn+1
Equation (7). In more details:

Ss1 P @iy, e 273|q — D> D)iyj,.p >

S33 ¢ p, q)iljm+1 - e_izn/geim(p+q)2n/3|q —b, _p)izjm+2 >
San ¢t P @iy, — e_l_n/2| =45 P)iyjsr s (19)
Sasq ¢ DDy, eI/ 2eimpra)m| — QP )igjps s

Se1 P @iyj, e_m/3|P—q,P>i2jm+2-

This shows that no state is projected out for S5 ; and S5 3. Analogously to the orientifold cases,
we project out some strings linking mirror branes: |p,q) inS4; and S, 4, and |p, q) in
Se,1 respectively.

Finally, we get extra strings linking the S-fold to D-branes for the cases with discrete tor-
sion. Following the discussion in [48], we know that these S-folds admit all kinds of p and ¢
numbers:

Lnlny2 nln+3

S33 ¢ 1P, @)sy i, » Sa4 0 1P, Qs 4i, - (20)

2.3 Dirac pairing from (p, q)-strings

Having determined the states associated to (p, q)-strings that survive the S-fold projection we
now analyze the electromagnetic charges of these states. It is useful to consider the system of a
stack of D3-branes and an S ,-fold on a generic point of the Coulomb branch. This corresponds
to moving away the D3-branes from the S-plane. On a generic point of the Coulomb branch,
the low energy theory on the D3-branes is a U(1)Il.v gauge symmetry, where each U(1); factor
is associated to the i-th D3-brane. The theory includes massive charged states generated by
the (p,q)-strings studied in the previous section. A (p,q)-string stretched between the i-th
and j-th D3-brane has electric charge p and magnetic charge q under U(1); as well as electric
charge —p and magnetic charge —q under U(1);, and is neutral with respect to other branes.
We organize the charges under the various U(1)s in a vector:

(el7m1;629m2;"';eNJmN)’ (21)
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where e; and m; are the electric and magnetic charge under U(1);, respectively. In this notation
the charge of a string stretched between the i-th and j-th D3-brane in the same cover of R®/Z,
has charge:

i—th j—th
—
D3iD3j:(0,0;...;/ﬁ/,?;0,0;...;—p,—q;...), (22)

where the dots stand for null entries. We will keep using this notation in the rest of the paper.
A (p, q)-string stretched between the i-th D3-brane and the [-th image of the j-th D3-brane
imparts electromagnetic charges (p,q) under U(1); and charges —(p,q)p]i under U(1);. In
formulas:

. j—th
pl i—th /_Aﬁl
D3,D3; :(0,0;...5°p,q50,05...5=(p @) - Py ---). (23)

The last ingredient for our analysis is given by the Dirac pairing between two states. Con-
sider a state W with charges e;, m; under U(1); and a state ¥’ with charges e/, m; under U(1);.
The pairing between F1 and D1-strings in Type IIB dictates that the Dirac pairing between

these states is given by:
N

(W, ¥) = Z (e;m] —mye)) . (24)
i=1
By using this construction we can reproduce the usual Dirac pairing of N’ = 4 SYM with
ABCD gauge algebras. As an example we now reproduce the Dirac pairing of Dy, engineered
as a stack of N D3-branes probing an O3~ -plane. In this case the allowed (p, g)-strings have
the following charges:

i—th j—th
D3;D3;:(0,0;...5°p,q;0,0;...;—p,—q;...),

. . (25)

i—th j—th

D3iD3§):(0,0;...; p,q;0,0;...;°p,q;...).

The states associated to (1, 0)-strings correspond to the WV bosons while the states associated
to (0, 1)-strings correspond to magnetic monopoles M. For each root W, of Dy let M, be the
corresponding coroot. More precisely if W, is associated to a (1, 0)-string connecting two D3-
branes, then the coroot M; corresponds to the string (0, 1) stretched between the same pair of
D3-branes. The only non-vanishing Dirac pairing is the one between a W; boson and an M;
monopole. This pairing between the simple (co)roots W; and M; is given by the intersection
between W; and W, explicitly:

Wi, M;) =(Ap,)ij» (26)

where Aj, is the Cartan matrix of the Dy algebra, corresponding to an so(2N) gauge theory.
Indeed the intersection between F1 strings in the background of an O3 reproduces the inter-
section of the roots of Dy. The Dirac pairing (26) reproduces the Dirac pairing of s0(2N) N = 4
SYM. Similar constructions for 03", 65_, and 03" lead to the B and C cases (while branes
in absence of orientifold would give A). The corresponding gauge algebras are summarized in
Table 4.

2.4 Lines in O3-planes

Before moving to new results, we illustrate our method with well understood O3-planes.
Specifically, we consider placing N = 2 D3-branes in the background of an O3"-plane.

In this specific example, the F1-strings corresponding to elementary dynamical states in
the quotient theory can be chosen to be [1,0),,;, and |1,0); o . The first links the i = 1 brane
to its mirror (DS’f D3;) and the second links the i = 1 to the i = 2 brane (D3;D3,). A pictorial

8
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Table 4: F1-string, D1-string, and the F1-D1 bound state providing respectively the
electric, magnetic, and dyonic charges of the projected N = 4 gauge theory.

O3-planes | F1-string Dl-string  F1-D1 bound state

03~ s50(2N) s50(2N) s50(2N)
03" usp(2N) s0(2N +1) usp(2N)
03 s0(2N +1) usp(2N)  usp(2N)
03" wsp(2N)  usp(2N)  so(2N +1)
03"
1,0
- <0 D3,
D3 D3 D3: (10

Figure 1: A pictorial representation of two D3-branes probing the O3 orientifold on
a generic point of the Coulomb branch. The light blue shaded area is a possible choice
of fundamental domain under the spacetime identification induced by the orientifold.
Black (gray) dots represent (images of) D3-branes. Black lines correspond to (p, q)-
strings stretched between D3-branes. In particular, we drew (p, q)-strings generating
the W-bosons corresponding to simple roots N' = 4 usp(4) SYM.

representation of this setup is shown in Figure 1. In the notation of the previous section, they
lead to W;-bosons in the gauge theory with the following charge basis:

D3°D3; : wy =(2,0;0,0), D3,D3, : wy =(—1,0;1,0). (27)

These generate the algebra usp(4) of electric charges. The elementary magnetic monopoles
M; come from the D1-strings |0, 1)p3+1, and |0,1);,, , and provide the following charges:

03*D3; : m; =(0,1;0,0), D3,D3, : my =(0,—1;0,1). (28)

This generates the algebra so(5) of magnetic charges. Finally, the elementary (1, 1)-strings
leading to states in the quotient theory can be chosen tobe [1,1);,7, and [1,1);, 5 , i.e. D3’1)D31
and D3,D3, respectively. They provide dyons D;:

D3!D3; : d; =(2,2;0,0), D3,D3, :dy=(-1,-1;1,1), (29)

which reproduces an usp(4) algebra. We will limit ourselves to considering the J/-bosons
and magnetic monopoles M. Indeed, they generate the full lattice of electromagnetic charges
admissible in the orientifold theory. See that

d1=W1 +2m1, d2=W2+m2. (30)
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Clearly, all other allowed (p, g)-charges can be reconstructed in this way. The Dirac pairing
between these elementary electromagnetic charges reads

Wi, Wy) = (M, M;) =0,
(M, Wy) =1, (31)
W1, M1) = (Mg, W) = Wy, M) = 2.

Now, introduce a line operator £ with charge vector £. It is convenient to express it in the
basis of dynamical charges:

L=oa1w; +awy + Bimg + Bomy, (32)
where a; and f3; to be determined. Screening with respect to W; and W, imposes
o ~ap+1, s ~ag+1, (33)
respectively, while screening with respect to M; and M, imposes
Br~pBr+1, Ba~PBa+1. (34)
Mutual locality with respect to the dynamical charges requires the quantities

(L) = =21 +2p,, (L, Ws) = B1—2P,,

(35)
(;C,M1> =2a1—a2, <£,M2) :_2(11 +2a2,
to be integers. All these constraints set
alzg, a, =0, p;=0, ﬁ2=% mod 1, (36)

with e,m = 0, 1. Linearity of the Dirac pairing then guarantees mutual locality with respect
to the full dynamical spectrum. Thus, the charge of the most general line (modulo screening)
must read:

1
bem = E(Ze,—m; 0,m). (37)

A choice of global structure consists in finding a set of mutually local lines. The mutual
locality condition between two lines £ and £’ with charges ¢, ,, and £,/ , is given by:

(£,L.y = %(—em’ +e'm)ez. (38)

Equivalently:
em’—me’ =0 mod 2. (39)

We find three such sets, each composed of a single line with non-trivial charge: £, o, {¢ 1, or
{1,. In agreement with [2], we find that the line with charge ¢, ; transforms as a vector of
usp(4) and the theory is USp(4). The line with charge £, ; transforms as a spinor of s0(5) and
corresponds to the global structure (USp(4)/Z;),. The line with charge ¢, ; transforms both as
a vector and a spinor, and the gauge group is (USp(4)/Z,),. Motivated by the match between
our results (obtained through the procedure described above) and the global structures of
Lagrangian theories [2], in the next sections we use our method to analyze the line spectra of
S-fold theories.
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D3,

A;

Figure 2: A pictorial representation of two D3-branes probing the S;;-fold. The
transverse directions to the S-fold are shown. The light blue dot represents the posi-
tion of the S; ;-fold. The light blue shaded area is a possible choice of fundamental
domain under the spacetime identification induced by the S5 ;-fold. Black (gray) dots
represent (images of) D3-branes. Black lines correspond to (p, q)-strings stretched
between D3-branes. In particular, we drew (p, q)-strings corresponding to VW-bosons
of N =4 s5u(3) SYM.

3 Lines in S-folds with A/ = 4 enhancement

We now derive the spectrum of mutually local lines for the gauge theories obtained with N = 2
D3-branes in the background of an S ; plane, in each case k = 3, 4 and 6. More precisely,
exploiting the strategy spelled out in Section 2, we first compute the electromagnetic charge
lattice of local states generated by (p, q)-strings. From this we extract the possible spectra
of lines and compare them with the ones obtained in an A/ = 4 Lagrangian formalism [2],
since these theories have been claimed to enhance to A/ = 4 SYM [49]. Matching the spectra
provides an explicit dictionary between the various lattices and corroborates the validity of our
procedure. In section 4 we will then generalize the analysis to the pure N = 3 S, projections
for any rank, thus providing the full classification for the one-form symmetries in all such cases.

3.1 Lines in su(3) from S;;

Dynamical states and their charges

Two D3-branes probing the singular point of the S5 ;-fold are claimed to engineer su(3) N' = 4
SYM. The charges of states generated by (p, q)-strings stretching between D3, and D3, or its
first copy (see Figure 2) are

2
D31D32 : (p:qa_p:_q)) D31D3§ : (p;q,(bq_p), DBID?’[Z) : (P,Q:p_q,P) (40)

One may also consider copies of the strings listed in Equation 40 such as:

D3YD3% : (—¢,p—q;9,9—p), (41)
as well as the strings going from one D3-brane to its own copies, for instance®
D3,D3Y : (2p—q,p +¢;0,0). (42)

5In the absence of discrete torsion, these states have not been considered previously in the literature [48,50],
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2
The charges of a generic string D31D3§ in (40) can be expressed in terms of D3;D3, and
D31D3’2) charges:

2
D3,D3% : (p,q;p—q,p) =q(1,0;—1,0)+ (¢ —p)(0,1;0,—1)

(43)

where the first two vectors on the RHS come from D3,D3, withp =1,¢g =0 and p = 0,
q = 1 respectively, and the last two come from D31D3§ withp=1,q=0andp=0,q=1

respectively. Acting with p3, one can express all D3/ D3% and D3 2D3§ ’ charges in terms of
D3;D3, charges. The charges D3iD3f can also be expressed as linear combinations of D31D3§
and D3§ DBT charges. All in all, we find that the charges of the strings D3;D3, and D31D3’2)
form a basis of the lattice of dynamical charges.

The states corresponding to the WW-bosons generate the su(3) algebra. One can take the
strings D3;D3, with p = 1 and ¢ = 0 and D31D3§ with p = 0 and g = 1 as representing a
choice of positive simple roots. Their electromagnetic charge w reads:

Wl :(170;_1)0)7 WZZ(Oa]-;]-)]-)- (44)

Furthermore, one can choose the strings D3;D3, with p = 0 and ¢ = 1 and D31D3§ with
p =—1 and q = —1 as generating the charge lattice of magnetic monopoles M of N' =4 SYM
with gauge algebra su(3):

m]. :(0;1)0:_1)) mZ :(_1;_1:_1:0) (45)

The qualification of electric charges V¥V and magnetic monopoles M of the N' = 4 theory makes
sense since the Dirac pairing reads:

(W1, Wy) = (M3, M,) =0,
Wy, M) = (Wp, My) =2, (46)
(Wl,Mz) = (Wz,/\/h) =—1.

In [48,50], it has been shown that these states correspond indeed to BPS states, and this is a
strong check of the claim of the supersymmetry enhancement in this case.

Line lattices

Having identified the electromagnetic lattice of charges of (p, q)-strings we can now construct
the spectrum of line operators and the corresponding one-form symmetries. It is useful to
consider the charge { = (e}, m;; ey, m,) of a general line £ to be parameterized as follows:

t=aywy +aywy + fymy + fomy
= (a1 — Py, a2+ f1—Pas—ar +az—fa,az— 1) .
Screening with respect to w; and m; translates as the identifications:
a;~a;+1, Bi~pBi+1. 47)

The Dirac pairing between the generic line £ with charge £ given in (47) and the states W
and M must be an integer, i.e.:

(L) =261 — B2, (L, Ws) =—PB1 + 2B,

48
(L, M) ==2a; +ay, (L, M3) = a; —2a, “8)

and we do here for the sake of consistency with the analysis of section 2. Note however that since their charge
(which is the only feature that matters in order to derive line spectra) can be expressed as linear combinations of
the charges of more conventional states, our results are independent of whether we consider them or not.
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Mutual locality with respect to the other states then follows by linearity as soon as (48) holds.
Combining (47) and (48) we have

e m
a;=—ay=7, and P;=—f,=—, (49)
3 3
for e,m = 0,1,2. Then, the charge of the most general line compatible with the spectrum of
local operators modulo screening reads

1
L, =—(2e—m,e+m; —e—m, e—2m). (50)

e,m 5
These charges form a finite 3 x 3 square lattice. The Dirac pairing between two lines £ and £’
with charges £, ,,, and £, ,/ is

(£,L) = %(em/—e/m). (51)

Two lines £ and £’ are mutually local if their Dirac pairing is properly quantized. In our
conventions this corresponds to the requirement that (£, £’) is an integer:

e‘m—em’ =0 mod 3. (52)

The lattice of lines together with the mutual locality condition obtained in (52) fully spec-
ifies the global structure of the S3; SCFT of rank-2.

Our result is equivalent to the one obtained in [2] from the Lagrangian description of s1(3)
N =4 SYM theory. Let us first write the charges in (50) as:

ee,m=eW13W2+mm13m2. (53)

Note that (w; —wy)/3 (respectively, (m; —m,)/3) is a weight of the electric (respectively,
magnetic) algebra su(3) with charge 1 under the center Z; of the simply-connected group
SU(3). Therefore, the line £, , corresponds to a Wilson-'t Hooft line of charge (e, m) under
Zqy X Zs5.

As shown in [2], there are four possible lattices of mutually local Wilson-'t Hooft lines
specified by two integers i = 0,1,2 and p = 1,3. The corresponding gauge theories are
denoted (SU(3)/Z,); and relate to the line spectra we have obtained as follows:

SUB) < {£o0,41,0.L20},
(SUB)/Z3)y <— {lo0,Lo1,002}s
(SU@B)/z3); < {eo,o:el,lyfz,z},
(SUB)/Z3)y <— {lo0,€21,012}-

It follows from linearity and screening that each lattice in the S-fold picture is determined
by a single non-trivial representative, that can itself be identified by two integers (e, m). For
example, a possible choice is

(e,m)=1(1,0), (0,1), (1,1), (2,1). (55)

(54)

3.2 Lines in so(5) from S, ;
Dynamical states and their charges

Two D3-branes probing the singular point of the S4 ;-fold are claimed to engineer so(5) N = 4
SYM. Following a reasoning similar to one of the S5 ;-fold case, we can write all string charges
as linear combinations of two kinds of strings, say

D3,D3, : (p,q;—p,—q), D3:1D3% : (p,q;—q,p). (56)
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States corresponding to the W-bosons of N' = 4 SYM are generated by D3;D3, with p = 1
and q =0, and D31D3"2j with p = —1 and q = —1. Their charges are

wy; =(1,0;-1,0), w,y=(-1,—-1;1,-1). (57)

These states generate the algebra so(5) with short and long positive simple roots w; and ws,
respectively. A possible choice of states corresponding to elementary magnetic monopoles M
is D3;D3, with p =—1 and q = 1, and D31D3§ with p =1 and g = 0. The charges of these
strings are:

m;=(-1,1;1,-1), my,=(1,0;0,1), (58)

with m; the long and m, the short positive simple roots of the Langland dual algebra usp(4).
The Dirac pairings between WV and M are as expected:

Wy, Wy) = (M1, M5) =0,

Wi, My) = (W, My) = (M1, W,) =2, (59)
<M27W1) 1.

Line lattices
We begin by parametrizing the charge £ of a general line £ as:

= a;wy +agwy + fimy + Bamy

(60)
=(ay —ay—B1+ Bo, 1 —ag; —ay +ay+ By, —ay— 1+ By) .

Screening with respect to the local states V¥V and M translates as:
ai~al~+1, ﬁlN/jl+1 (61)

Mutual locality with respect to the dynamical states generated by (p, q)-strings reads:

<£, Wl) =201 — P,
(L, WV,) = =21 + 2,
(L, M) =—=20a; +2a,,
<£3M2> =

€. (62)
= — 2(12

This imposes a; = 35, =0 and a,, 3; € %Z, and therefore the charge of the most general line
compatible with the spectrum of local states can be written as:

1
Ze,m:§W2+%m1=5(—e—m,—e+m;e+m,—e—m). (63)

The Dirac pairing between two lines £ and £’ with charges £, ,, and £,/ is:
/ 1 / /
(E,E)=£(em—em). (64)
Two such lines are mutually local if their Dirac pairing if (£, L) is an integer, i.e.:

(e’m — em’) =0 mod?2. (65)

Therefore, the allowed lines form a finite 2 x 2 square lattice parametrized by e,m = 0, 1, where
the mutual locality condition is given by (65). This reproduces the expected global structures
of N' = 4 s0(5) SYM. There are three possible choices of maximal lattices of mutually local
lines which correspond to the three possible global structures of so(5). The explicit mapping
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can be obtained by comparing the electromagnetic charges of the lines with the charges of the
W bosons and monopoles M, along the lines of the analysis of above in the su(3) case. We
obtain the following global structures:

Spin(5) < {€o0,{10},
S0(5)g <« {loo,loa}, (66)
SO0(5); < {lop,€11}-

3.3 Trivial line in g, from Sg ;

Dynamical states and their charges

Two D3-branes probing the singular point of the S¢ ;-fold are claimed to engineer g, N = 4
SYM. The charges of states generated by (p, q)-strings are:

D3,D3; : (p,q;—P,—q), D31D3§3 . (p,¢;—¢:p—q),

D31D3§4 : (p.g;p—q,p), D31D3§5 : (p.q;p,9), &7
D3,D35 : (p,q;q,—p+q), D3;D35 : (p,¢;—p+q,—p).

etc.

As shown in [23] and as before, one can choose a set of strings representing dynamical
particles and generating the algebra g,.

Line lattice

The analysis of the charge spectrum in the case of the Sg ;-fold can be carried out along the
lines of the previous sections. One can show that the only line that is mutually local with
respect to the local states generated by (p, g)-strings modulo screening is the trivial line with
charges ¢ = (0,0;0,0). This is consistent with the enhancement to A/ = 4 with gauge algebra
go because the center of the simply-connected G, is trivial, which implies the absence of non-
trivial lines [2]. There is only one possible global structure, and the one-form symmetry is
trivial.

4 Lines in N = 3 S-folds

In this section, we generalize the procedure spelled out in the previous sections to S-folds
theories of arbitrary rank, and later to the cases with non-trivial discrete torsion for the B,
and C, fields. This allows us to classify the line spectrum for every N' = 3 S-fold theory, and
identify the one-form symmetry group as well as the allowed global structures for a given
theory.

The basic ingredients needed in the analysis are the lattice of electromagnetic charges of
local states and the Dirac pairing, both of which can be inferred from the Type IIB setup along
the lines of the rank-2 cases studied in Section 3. As already emphasized, we work under the
assumption that the states generated by (p, g)-string form a good set of representatives of the
electromagnetic charge lattice of the full spectrum.

Note that it does not strictly make sense to talk about (p, q)-strings on the R*xRR®/Z, S-fold
background because the S-fold projection involves an SL(2,Z) action which mixes F1 and D1
strings. This is analogous to the fact that in the orientifold cases it only makes sense to consider
unoriented strings, since the orientifold action reverses the worldsheet parity (equivalently,
it involves the element —I, € SL(2,Z)). Nevertheless it makes sense to consider oriented
strings (together with their images) on the double cover of the spacetime; this allows the
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computation of the electromagnetic charge lattice of local states and the Dirac pairing, as
reviewed in Section 2. Similarly when dealing with Si-folds we consider (p, q)-strings on the
k-cover of the spacetime, and extract from this the charges of local states and the Dirac pairing.
The spectrum of lines can then be obtained using the procedure of [9] reviewed in Section 2.

4.1 Lines in S3;-fold

Let us first determine the lattice of electromagnetic charges of dynamical states. The charges
generated by (p, q)-strings on the background of an S ; fold are given by

j—th

i—th ———
1 N
D3;D3¢ : (0,0;...;p,qs.;—(p @)+ pi;---30,0). (68)

This expression is obtained from a (p, q)-string stretched between the i-th D3-brane and
the I-th image of the j-th D3-brane. Recall that p; generates a Z4 subgroup of SL(2,Z). A
possible basis for the lattice of charges generated by (p, q)-strings is given by:

w; =(1,0;-1,0;...),
wy=(0,1;1,1;...),
my :(051;02_1;-")5
m2=(—1,—1;—1’0;,,.),
i—th
—~
P, =(1,0;0,0;...;—1,0;0,0;...),
i—th
~—
Qi:(031;0)0;"';05_1;0)0;"')5

(69)

where w; and m; are the charges of the corresponding states in the rank-2 case, with all other
entries set to 0. Let P; and Q; be the states with charges P; and Q; respectively, fori = 3,...,N.
Note that when the rank is N > 2, it does not make sense to talk about VV-bosons and magnetic
monopoles M since the pure A/ = 3 theories are inherently strongly coupled and do not admit
a Lagrangian description. Nevertheless, we will denote VW, and M; the states with charges w;
and m; respectively, by analogy with the above.

The charge £ of a general line £ can be written as the linear combination:
N
€ = aqwy +(12W2+[51m1 +[52m2+Z(5IPl+}lel) (70)
i=3
Besides, screening translates into the identifications:
a~a;+1, fi~pfi+1, &;~6;+1, yi~r;+1. (71)

Let us now analyze the constraints imposed on this line given by mutual locality with
respect to the dynamical states generated by (p, q)-strings. Our results are summarized in
Table 5.

Consider the mutual locality conditions:

(L,P;—Pj)=6,—6;€Z = 6;=6;=56, i,j=3,...,N, (72)

and
<£,Q1_Q1>:'}’J—'}’16Z = '}’]:')/l:')’, l,]:3,,N (73)
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Table 5: The charges of allowed lines in the S; ;-fold theories. The charges w;, m;, P
and Q are given in (69), and r,s = 0, 1, 2. The mutual locality condition for two lines
with charges £, and {,. y is rs’—sr’ =0 mod 3.

Rank Line charge
r s r s r+s
3n bos=-wi+-wy——my——-my+ pP—
r,5313231323(Q)
r r—s s r r+s
3n+1l |4 s==-wi+—wy+-my+-my+ pP—
r,5313231323(Q)
r r s s r+s
3n+2| Ll y=-wi—-wy+-mp——my——(P—
r,5313231323(Q)
Furthermore, there are dynamical states with charges:
i—th i—th i—th
—~ = — —
(0,0;...;1,—1;...)=(p,q;...;—p,—q;...)| p=0 —I—(p,q;...;p—q,p;...)|p:0 ,
q=1 q=-1
i—th i—th i—th (74)
~ =~ — —
(0,0;...;2,1;...)=(p,q;...;—p,—q;...)| p=-1 +(p,q;...;p—q,p;...)|p:1
q=0 q=0
Mutual locality with respect to these implies:
1
y=-6, G&€:L. (75)
Therefore, the charge of a general line can be rewritten as:
t=aywy + aywy + fymy + famy +6(P—Q), (76)
where
N
P=>p;=(N—-200,0;-1,0;-1,0;...;~1,0),
' (77)

i=3
N

Q=Y .q;=(0,N—2;0,0;0,—1;0,—1;...;0,—1).
i=3

In (77), we have modified our notation slightly since the dots ... now represent a sequence
of pairs (—1,0) and (0,—1) for P and Q respectively. Mutual locality between the line £ and
the generators of the charge lattice of dynamical states imposes the following constraints:

€. (78)
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One can compute the following:

(L, W, +2W,) = 3(N —2)5 — 3B, ez :>/32€%Z,
1
(ﬁ,Ml +2M2>:—3a1 EZ 3a1€—Z,
3
1 (79)
(L, Wy —Ws,) =3(By— 1) SV 3/31652,

1
(ﬁ,Ml—Mz)=3(N—2)5+3(a1—a2) EL :>a2€§Z.

In brief, we have found that a;,3;,6 € %Z. It is now useful to treat separately three cases,
depending on the value of N mod 3. In all these cases we find that the lines modulo screening
can be arranged in a finite 3 x 3 lattice, the one-form symmetry group is Z3 and there are four
choices of global structure.

Case N =3n

The mutual locality conditions in (78) can be written as:

(L,P;) =—06—ay—P1+ B2,

( >:_6+a1_ﬁ2)
LW)=86—-2B,+p,,
( 1) B1+ B2 c7. 80)
(LW,) =6 —2B,+ By,
< >:5+2a1_a2)
< ) 5—a1+2a2
One computes that:
(£, + W) =a; + 4 =B =—a,
(L,Pi+Wsy) =—ay— = By =—ay, (81)

(E,Qi>:—5+a1+a2 = 5:a1+a2,
and this implies:
r s r+s
= — = -, = — = -, 6 == B
aq B 3 ) B2 3 3
Therefore the lines form a finite 3 x 3 lattice parametrized by r and s. Mutual locality between
two general lines £ and £’ with charges ¢, ; and £, ; reads:

r,s=0,1,2. (82)

£,y = g(sr’—rs’) €7, (83)

or equivalently:
sr'—rs’=0 mod 3. (84)

There are four possible choices of maximal lattices of mutually local lines. As in the rank-2 case
discussed in section 3, each lattice is uniquely identified by one of its element, or equivalently
by the pair (r,s) of one of its non-trivial elements:

(1,0) = {€o,0, €10, €20}
0,1) — {€y0,£01,%02},

5y | @D oo lorloz) )
(1,1) e {ZO,OJELDZZ,Z} >

(1,2) & {€o,0,€12,£21}-
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Case N=3n+1

In this case the mutual locality constraints (78) are:

( > = _/51 + ﬂZ P
< > = ﬁZ’
LW;) = —5 2B, + B4,
(L, 1) B1+ B2 ez (86)
(L, Wo) =—=6—2B5+ b1,
<£M>:_5+2a1 asy,
<£ Mz) 26 — aq + 2a2
One computes that:
ay=a;— Py,
6=oa;+p, (87)
a; = f.
Therefore the most general a;, §; and 6 satisfy:
r s r—s r+s
alzﬁzzg’ /‘31259 Qg = 3 B 0= 3 B T,S:0,1,2. (88)

The lines again form a finite 3 x 3 lattice parametrized by r and s. Mutual locality between
two general lines £ and £’ with charges ¢, ; and £,/ ; reads:

1

(£,L0) = S6r'=rs) ez, (89)

or equivalently:
st'—rs’=0 mod 3. (90)

Similarly to the case N = 3n there are four possible choices of maximal lattices of mutually
local lines that can be indexed by one of their element, or equivalently by (r,s) = (1,0), (0, 1),
(1,1), (1,2).
Case N =3n+2

In this case, the mutual locality constraints (78) are

(L,P;) =6 —ag—P1+ P,
( ) =6+ a; — ﬁz 5
LIV =—2B1 + By = P11+ o,
( 0 By + B2 =P+ B2 c7. o1)
(E 4% > :_2/32+ﬁ1:
(L, M) =201 —ay =—a; —ay,
(E Mz) =—Qq + 2a2
One can compute that the solution is given by
ﬁZ = _ﬁl >
Ay =—0a1, (92)
—P-
Therefore the most general a;, 5; and 6 satisfy:
alz—azzg, /31:—/32:%, 5:—r+s, r,S:O,].,z. (93)
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Dirac pairing between two general lines £ and £’ with charges ¢, and ¢, reads:

2
(E,[,’)=§(sr’—r5/)€Z. (94)
Two such lines are mutually local if they satisfy the constraint:
st'—rs’=0 mod3. (95)

As before, there are four possible choices of maximal lattices of mutually local lines that can
be indexed by one of their element, or equivalently by

(r,s)=1(1,0), (0,1), (1,1), (1,2). (96)

4.2 Linesin S, -fold

We now study the spectrum of lines in theories engineered by a stack of D3-branes probing the
S41-fold. The charges of states generated by a (p, q)-string on the background of an S, ;-fold
read

. j—th
pl i—th /_/Hl
D3;D3; :(0,05...5°p,q5...;—(p @) pys---50,0), 97)

for a (p, q)-strings stretched between the i-th D3-brane and the I-th image of the j-th D3-brane.
One possible basis for the lattice of charges generated by (p, q)-strings is:

wy; =(1,0;—1,0;0,0;...),
wy =(-1,-1;1,-1;0,0;...),
mlz(_l,l;la_l;oyo;-“)’
my = (1,0;0,1;0,0;...),
i—th
—~
P, =(1,0;0,0;...;—1,0;0,0;...),
i—th
—~
Q;=(0,1;0,0;...;0,—1;0,0;...),

(98)

where w; and m; are the charges of the corresponding states in the rank-2 case, with all other
entries set to 0. We denote W;, M,;,P; and Q; the states with charges w;, m;, P; and Q;,
respectively.

The charge £ of a general line £ can be written as the linear combination:

N
e =aqwy +a2W2+/51m1 +[52m2+2(51P1+Y1Q1) . (99)
i=3
Screening translates into the identifications:
a~a;+1, fi~pfi+1, 6;~6;+1, yi~r;+1. (100)

In the remainder of this section we compute the constraints imposed by mutual locality
between the general line £ and dynamical states. Our results are summarized in Table 6.
Consider first the mutual locality conditions:

(£,0i—Qj))=y;j—Vi€Z = yj=vi=7. (102)
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Table 6: The charges of allowed lines in the S4 ;-fold theories. The charges w;, m;, P
and Q are given in (98), (77), and r,s = 0, 1. The mutual locality condition for two
lines with charges £, and {,. ; is rs’—sr’ =0 mod 2.

Rank Line charge

r+s

(P Q)

r s
2n bs= EWZ + Eml

2n+1 | £, = %Wl + %wz + %ml + £m2+ E(P_Q)

Furthermore, there are dynamical states with charges:

i—th i—th i—th
~— — ~— =
(0,0;...;l,—l;...)=(p,q;...;—p,—q;...)| p=0 +(p,q;...;—q,p;...)| p=0 >
q=1 q=-1
i—th i—th i—th (103)
(0,0;...; 1,1 ;...)=(p,q;...;—p,—q;...)| Pt +(p,q;...;—q,p;...)| p=1 -
q=0 q=0
and mutual locality with respect to these states implies:
1
y=-6, b€ (104)
Therefore, the charge of a general line can be rewritten as:
t=aywy +aywy+ fyimy + fomy +6(P—Q), (105)

where P and Q are defined in (77). Mutual locality between the line £ and the generators of
the charge lattice of dynamical states implies:

( ) (N_1)5+a2 ﬂl:

(£,Q;)=(N—1)5 +a;—ay—f +Bs,
(£, 1) = (N =2)6 =21 + B,

(L, WVy) = 2(N —2)6 — 2By + 2, €Z. (106)
<£M>=2a1—2a2,

(L, M) =(N—2)6—a; +2a,

One computes the following:

(LW + Wy =M —My)=—fr—a1 €EZ = fy=—aq,

(E,Qi+Pi>=—2/51€Z 3[516%2,

1 (107)
(£,Q;—P;) =—2a,€Z :>a2€§Z,
1
(E,M1>=2a1€Z :al,ﬂzeiz.
We have thus shown that a;, 5;,6 € %Z and a; = —f3,. It is now useful to treat separately the

cases of odd and even N. In both cases we find that the lines form a 2 x 2 lattice, the one-form
symmetry is Z, and there are three choices of global structure.
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Case N =2n

Mutual locality conditions (106) read:

(*C:Pi> :_5_ﬂ1+a2:
(L,Q;) =—06—0ay—p4,

LIWy) =P,

(W) =P ez, (108)
(ﬁ, WZ) = 0)
<£7M1> = O)
(L, M) =—ay

and each solution can be written as:

r S r+s
a2=§, /31=§, a1=ﬂ2=0, 6= D) , r,5=0,1. (109)

Therefore the lines form a 2 x 2 lattice parametrized by r,s. Mutual locality between two lines
L and £ with charges ¢, and £, ; respectively translates into:

1
£,y = E(r’s —rs)ez, (110)
or equivalently:
r’'s—rs’=0 mod 2. (11D
The one-form symmetry group is thus Z, and there are three different choices of maximal
lattices of mutually local lines parametrized by (r,s) = (1,0), (0,1), (1,1).
Case N=2n+1

The Dirac pairings (106) read:
€7, (112)

and the general solution can be written as:
r s
a1:ﬂ2:5:§, a2=/51=§, T,SZO,].. (113)

Mutual locality between two lines £ and £’ with charges £, and £,/ respectively trans-
lates into:

£,y = %(r’s —-rs')ez, (114)

or equivalently:
r's—rs’=0 mod 2. (115)

As in the previous case, the one-form symmetry group is therefore Z, and there are three
different choices of maximal lattices of mutually local lines that can be parametrized by:

(r,s)=1(1,0), (0,1), (1,1). (116)
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4.3 Trivial line in S¢ ;-fold

The analysis of the spectrum of lines in the case of the S¢ ;-fold can be carried out along the
lines of the previous subsections. One finds that the integer lattice of charges associated to
(p,q)-strings is fully occupied. To see this notice that there are two states with the following
charges:

2

(1,0;0,0;0,0;.--)=(p,q;p—q,p;0,0;.--)| p=0 —(p,q;—q,p,0,0;---)| »
q

q=-1

1
0

0 117)

1

(0,1;0,0;0,0;.--)=(1,0;0,0;0,0;..-)—(p,q;—p—q;O,O;--.)| b

q
—(p,q;—q,p;O,O;.-.)| p=0
g=-1

By combining these states with P; and Q; we can obtain states with electric or magnetic charge
1 with respect to the i-th brane, and all other charges set to zero. Let us now consider a general
line £ with charge ¢ = (e;, m;; ey, my,...). Mutual locality with respect to the local states we

have just discussed implies:
e,m;€Z Vi, (118)

and the insertion of the same local states along the lines translates to the identification:
ei"\’ei+1, mi'\’mi+1. (119)

Therefore, the only allowed line modulo screening is the trivial line, with charge
¢ =(0,0;0,0;...). This implies that the one form symmetry group is trivial, and accordingly
there is only one possible choice of global form.

4.4 'Trivial line in the discrete torsion cases

We generalize the analysis discussed in the previous sections to the cases with non-trivial
discrete torsion in the S 3-fold and S, 4-fold.

As we argued in Section 2 all the strings states that are present when the discrete torsion
is trivial are also allowed when the discrete torsion is non-zero. Furthermore, there are strings
ending on the S-fold itself, as discussed in Section 2. Thus, the lattice of charges of local states
in the case of the S; 5-fold and S, 4-fold are generated by strings stretched between (images of)
D3-branes — as in the cases with trivial discrete torsion — together with those additional strings.
One can show that the integer lattice of electromagnetic charges of dynamical states is then
fully occupied. Therefore, by a similar argument to the one used in the case of the Sg ;-fold in
Section 4.3, the only line that is allowed is the trivial one, and the one-form symmetry group
is 1 for the S 3-fold and S, 4-fold with non-zero discrete torsion.

5 Non-invertible symmetries

We now discuss the possible presence of non-invertible symmetries in S-fold theories. In
the case of N' = 4 theories, the presence of S-duality orbits can imply the existence of non-
invertible duality defects which are built by combining the action of some element of SL(2,7Z)
and the gauging of a discrete one-form symmetry [51-62].

Similar structures can be inferred from the S-fold construction. Consider moving one of the
D3-brane along the non-contractible one-cycle of S°/Z; until it reaches its original position.
The brane configurations before and after this are identical, and therefore the S-fold theories
are invariant under this action. Going around the non-contractible one-cycle of S°/Z; in the
case an Sy ;-fold involves an SL(2, Z)-transformation on the electric and magnetic charges e;,
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m; associated to the D3-brane that has been moved. Let 2;{ denote the process of moving the
i-th D3-brane along the non-contractible cycle of an Sy ;-fold. The action of Z}}'< on the charges

is:
ej . .
(mj), j#IL.

The charge lattice of dynamical states is invariant under %!, while the set of line lattices can
be shuffled. Consider for example the S; ;-case with rank N = 2. One can compute explicitly
the following orbits:

(120)

L

(1,0) «— (0,1) «<— (1,1) (1,2) (121)

where the pairs (e, m) parametrize the maximal sub-lattice of mutually local lines as discussed
in section (3.1). Two line lattices connected by an arrow in (121) are mapped to each other
under proper combinations of X5.

This theory enhances to su(3) NV = 4 SYM. Using the mapping (54) between the line
lattices parametrized by (e, m) and the global structures of su(3), the formula (121) reproduces
the N = 4 orbits under the element ST € SL(2,Z). As shown in the literature [51, 52, 54,
55], this transformation can be combined with a proper gauging of the one-form symmetry
to construct the non-invertible self-duality defects of su(3) at T = e2™/3, Therefore in our
notation we expect the existence of non-invertible symmetries involving Z}'{ for the lattices
labeled by (e,m) =(1,0),(0,1),(1, 1), and none in the (e,m) = (1, 2) case.

Similarly, one can consider the orbits in the case of S;; with N = 2, where the SCFT
enhances to s0(5) A/ = 4 SYM. By using the transformations Z]i‘ as above we find the following
orbits

L

(0,1) «—(1,0) (1,1) (122)

where the pairs (e, m) parametrize the maximal sub-lattices of mutually local lines as discussed
in section (3.2).

These reproduce the N' = 4 orbits under the element S € SL(2,Z). Again this transfor-
mation can be combined with a proper gauging of the one-form symmetry to construct the
non-invertible self-duality defects of s0(5) at T = i.

Motivated by this match, one can expect that in the case of general rank, non-invertible
symmetries will be present when multiple choices of maximal sub-lattices of mutually local
lines are related by the transformations %, as above. The orbits are:

S31: (1,0)«—(0,1) «—(1,1) (1,2) ;) (123)

0,1« (1,00 (1,1) D N=0 mod2,
(124)
(LO)e—(1,1) (0,1) D N=1 mod2,

where the pairs (r,s) parametrize the maximal sub-lattices of mutually local lines as in sec-
tion 4.

In the S¢ 1, S35 and S, 4-cases, there is only one possible global structure that is mapped
to itself by the Z;{ transformations.
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By analogy with the cases where there is N' = 4 enhancement, we expect the existence
of non-invertible symmetries when the transformations >, map different line lattices, built by

combining this Zi-action with a suitable gauging of the one-form symmetry.

6 Conclusions

In this paper, we have exploited the recipe of [9] for arranging the charge lattice of genuine
lines modulo screening by dynamical particles. We have adapted such strategy, originally
designed for BPS quivers, to the case of (p, g)-strings, in order to access to the electromagnetic
charges of non-Lagrangian A/ = 3 S-fold SCFTs. This procedure has allowed us to provide a
full classification of the one-form symmetries of every S-fold SCFT. We singled out two cases
with a non-trivial one-form symmetry, corresponding to the Z3 and the Z, S-folds in absence
of discrete torsion, denoted here as S3 ; and S, ; respectively. Our results are consistent with
the supersymmetry enhancement that takes place when two D3-branes are considered. Lastly,
we discuss the possibility of non-invertible duality defects, by recovering the expected results
for the cases with supersymmetry enhancement and proposing a generalization at any rank.

We left many open questions that deserve further investigations. It would for example
be interesting to study in more details the projection of the states generated by the (p,q)-
configurations in an S-fold background. In the present article, the only relevant information
was the electromagnetic charges carried by these states, but a deeper analysis of the dynamics
of these S-fold theories requires more work. This would in turn improve our understanding
of their mass spectrum. For instance, a comparison of the BPS spectrum could be made ex-
ploiting the Lagrangian descriptions of [42]. This could also help finding the origin of the
mapping between the multiple lattices found in the S5 ; and S, ;-cases. Further investigations
in this direction would deepen our geometric understanding of the non-invertible symmetries
expected in this class of theories, along the lines of the brane analysis of [63-65].

It would also be of interest to generalize the analysis to other A" = 3 SCFTs that are not
constructed from S-fold projections, such as the exceptional N' = 3 theories [24,30]. These
theories can be obtained from M-theory backgrounds and one may study the charge lattice with
probe M2-branes. One could therefore apply an analysis similar to the one spelled in [66-70].
Regarding the S-fold constructions, the cases of S-folds with ' = 2 supersymmetry [71, 72]
also deserve further investigations (see [ 73, 74] for similar analysis in class S theories). In the
absence of BPS quivers, one needs to adapt the UV analysis of [9]. In general, one would like
to find a stringy description that avoids wall crossing and allows reading the charge lattices
and the one-form symmetries for such theories.
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