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Abstract

The recently proposed classification of integrability-breaking perturbations according to
their strength is studied in the context of quantum field theories. Using random matrix
methods to diagnose the resulting quantum chaotic behaviour, we investigate the φ4 and
φ6 interactions of a massive scalar, by considering the crossover between Poissonian and
Wigner-Dyson distributions in systems truncated to a finite-dimensional Hilbert space.
We find that a naive extension of the scaling of crossover coupling with the volume ob-
served in spin chains does not give satisfactory results for quantum field theory. Instead,
we demonstrate that considering the scaling of the crossover coupling with the number
of particles yields robust signatures, and is able to distinguish between the strengths of
integrability breaking in the φ4 and φ6 quantum field theories.
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1 Introduction

Integrability is fundamental to our understanding of the dynamics of quantum many-body
systems, with its breaking related to quantum chaos, ergodicity, and thermalisation [1–3]. In
this work we consider integrability breaking in relativistic quantum field theories which play
a fundamental role in describing universality classes of quantum systems near critical points.

Integrability is related to the presence of higher conserved charges, which generally make
the number of (quasi)particle excitations conserved as they restrict the set of incoming and
outgoing momenta to be the same in any multi-particle scattering process and also restrict all
amplitudes to the product of independent two-particle amplitudes [4,5]. Integrability breaking
perturbations lead to violations of the higher conservation laws, with weak integrability break-
ing being characterised by breaking them at higher order in the coupling parameter [6–11].

Recent developments show that integrability breaking can be classified by its strength char-
acterised by the order in which the higher conservation laws are broken. One approach iden-
tified weak integrability breaking by studying thermalisation in interacting scalar field theory
using Boltzmann kinetic equation [12]. On the other hand, studying integrability preserving
deformations of integrable spin chains [6,7] revealed that the strength of integrability break-
ing is also manifested in the crossover of level spacing statistics [9, 13]. The latter approach
eventually leads to a hierarchy of deformations integrability characterised by the order of the
perturbation at which integrability breaking happens.

Integrability breaking can be studied using tools from random matrix theory which pro-
vides a paradigmatic approach to quantum chaos [14, 15] and recently there has been a re-
newed interest in applying it to quantum many-body models [16, 17], and to quantum field
theories [18–20]. For spin chains of finite length L, integrability breaking results in a crossover
between Poisson and Wigner-Dyson forms of level spacing statistics [21]. Previous works found
that for interacting systems the crossover coupling generally scales with L as 1/L3 [22, 23],
which was confirmed in [9] for the gapless regime of the XXZ spin chain. For weak integrabil-
ity breaking the crossover was found to be significantly slower [9, 13]: in the gapless regime
of the XXZ spin chain, the behaviour was observed to be 1/L2 [9], while Ref. [13] found 1/L
for a weakly chaotic perturbation of the XXX spin chain. In the gapped regime of the XXZ
chain, the crossover coupling was found to decay exponentially with the volume, again with a
significantly slower decay for weak breaking of integrability compared to the strong case [9].
Therefore the scaling of the crossover coupling with system size appears to be a good indicator
of the strong/weak nature of integrability breaking.

In 1+1-dimensonal quantum field theory, two-particle→ two-particle scattering processes
are kinematically constrained to have the same set of incoming and outgoing momenta. As
a result, it can be argued that φ4 theory only violates integrability at the second order in the
coupling, while φ6 theory is expected to violate it at the first order, which is supported by
a Boltzmann equation approach to their non-equilibrium dynamics [12]. The full quantum
non-equilibrium dynamics of the φ4 model was recently studied in [24], where only a very
slow relaxation was found with no equilibration on the available time scales, consistent with
the suggestion that φ4 leads to a weak breaking of integrability.

It is then a natural problem to ask whether, in analogy with the spin chains, the different
strengths of integrability breaking are manifested in the scaling of the crossover in the level
spacing statistics with the system size. In this work, we investigate this issue in interacting
scalar field theory, where the integrability of a massive free field theory is broken by a φn

interaction term. We adopt the truncated Hamiltonian approach (THA) which has already
been successfully applied to determine level-spacing statistics in perturbations of the tricritical
Ising model [25] and also in other field theories including the φ4 model [12]; in our study, we
go substantially further by studying the scaling of the crossover with the system size.
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The outline of the paper is as follows. In Section 2 we outline the renormalisation group
improved version of the THA and specify the relevant quantities extracted from the level spac-
ing statistics that can be used to quantify the crossover between integrable and non-integrable
behaviour. In Section 3 we study the behaviour of the crossover as a function of the volume,
and in Section 4 we analyse it in terms of the number of particle excitations, presenting our
conclusions in Section 5. Details concerning renormalisation group improvements in THA are
relegated to Appendix A.

2 THA and level spacing statistics

2.1 The RG improved truncated Hamiltonian approach

We consider massive scalar field theories in 1+ 1 dimensions. The free theory is described by
the Klein–Gordon Hamiltonian

HKG =
1
2

∫

d x :
�

(∂tφ)
2 + (∂xφ)

2 +m2φ2
�

: , (1)

where : . . . : denotes normal ordering concerning the free modes. The interaction term is
defined as

Vn =

∫

d x : φn(x) : . (2)

We consider the cases n= 4 and 6, corresponding to the so-called φ4 and φ6 theories:

Hφ4 = HKG + g4V4 , (3)

Hφ6 = HKG + g6V6 , (4)

in a finite volume 0 ≤ x ≤ L with periodic boundary conditions φ(L) = φ(0). The models
can be specified by the dimensionless volume mL and the g̃n = gn/m

2 dimensionless coupling
parameters.

To evaluate the spectrum of the theory we use the truncated Hamiltonian approach, pi-
oneered by Yurov and Zamolodchikov [26, 27] and later extended to the φ4 model [28–32].
The method consists of constructing the Hamiltonian as a matrix in the computational basis
formed by the eigenstates of the free massive theory (1), which is discrete in finite volume,
and introducing an upper cutoff Λ on the energy of the states retained, i.e. restricting the
Hilbert space to states |k〉 satisfying HKG |k〉= Ek |k〉 with Ek ≤ Λ.

The truncation procedure results in an approximation to the exact spectrum, with trunca-
tion errors dependent on the cutoff Λ. In any given energy window, the truncated spectrum
is expected to converge to the exact one when the cutoff is increased, due to the Vn’s being
(strongly) relevant operators in the renormalisation group (RG) sense. Eventually, the lead-
ing order cutoff dependence can be eliminated by RG methods [33–35]. Here we follow the
approach introduced in [30], which for a Hamiltonian

H = HKG +
∑

n

gnVn , (5)

leads to the following renormalisation group improvement at leading order in the cutoff:

∆H =
∑

n

κnVn , where κk = −
∑

n≥m

gn gm

∫ ∞

Λ

dE
µnmk(E)

E − E . (6)
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The µnmk(E) functions describe the running of the couplings with the cutoff Λ, and are sum-
marized in Eq. (A.20). The reference energy E must be set in the range of the energy levels
that the method is optimised for. For more details on the RG improvement the reader is re-
ferred to Appendix A. The counter terms for the φ4 model were obtained in [30], while the
terms involving the interaction φ6 are a new result of the present work.

2.2 Level spacing statistics from THA

Integrability breaking can be investigated using the level spacing statistics constructed from
the normalized level spacing sn = (En+1 − En)ω(En), where En is the n-th energy level, and
ω(En) is the smoothed level density around En. The Hamiltonians considered here are real
and symmetric, therefore the level spacing statistics is expected to follow the Wigner-Dyson
distribution for the Gaussian orthogonal ensemble

PGOE(s) =
π

2
s exp
�

−
π

4
s2
�

, (7)

when integrability is broken, while for the integrable limit, it is expected to be Poissonian

PP(s) = exp (−s) . (8)

For a system truncated to a finite-dimensional Hilbert space, the level spacing distribution is
a continuous function of the coupling, with the transition becoming sharper as the dimension
of the Hilbert space is increased [21, 25]. In addition, due to the locality of the Hamiltonian
the level spacing from the full spectrum is found to deviate from the random matrix prediction
because of the structure of low-lying levels dictated by quasi-particle excitations. This problem
can be solved by constructing the level spacing distribution from the middle part of the spec-
trum staying sufficiently away from the low-energy states and also from the truncation scale Λ.
Therefore, we aim to determine the energy spectrum in some energy window [E1, E2] which
is ideally chosen so that m≪ E1 < E2≪ Λ. To optimise the precision of the THA spectrum we
set the reference energy as E = (E1 + E2)/2, and push the cutoff energy Λ as high as possible
while still keeping the computing time within reasonable bounds. Therefore, the computed
energy spectrum and therefore the level spacing distribution depends on the dimensionless
parameters {mL, g̃n = gn/m

2,Λ/m, E1/m, E2/m}.
Furthermore, it is also necessary to avoid trivial degeneracies due to global symmetries

such as

• translational invariance: x → x + a,

• parity: x →−x , and

• Z2 symmetry: φ→−φ.

This is achieved by restricting to states of zero total momentum, which are also even under
both parity and Z2 symmetry, i.e., to the sector of the Hilbert space that contains the vacuum.

2.3 Quantifying integrability breaking

We choose the following measures to follow the crossover of the level spacing distribution
from Poisson to GOE statistics quantitatively:

(1) Consecutive level spacing ratios – The consecutive level ratios are defined as [18,36]

rn =
sn

sn−1
, r̃n =min (rn, 1/rn) . (9)
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The average value of this variable is 〈r̃Poi〉 = 2 log 2 − 1 ≈ 0.386 for Poissonian, and
〈r̃GOE〉= 4−2

p
3≈ 0.534 for GOE statistics, respectively. We consider an affine map from the

interval [〈r̃Poi〉, 〈r̃GOE〉] to [0,1]:

〈r̃ ′〉=
r̃ − 〈r̃Poi〉
〈r̃GOE〉 − 〈r̃Poi〉

, (10)

which takes value 0 for Poissonian and 1 for GOE statistics. Since this is a statistical measure,
its uncertainty can be estimated using the central limit theorem and the known variances
δ(r̃Poi) ≈ 0.280 and δ(r̃GOE)) ≈ 0.254 in the two ensembles, leading to an upper estimate
δ〈r̃ ′〉≲ 0.280/

p
N where N is the number of levels included in the statistics.

(2) Brody distribution – The Brody distribution [22]

Pβ(s) = (β + 1)bsβ exp
�

−bsβ+1
�

, (11)

with

b = Γ
�

β + 2
β + 1

�β+1

, (12)

can be used to interpolate between the Poissonian and GOE cases, with β = 0 corresponding to
Poisson, while β = 1 corresponds to GOE statistics. Given a set of energy levels spectrum, it can
be evaluated by making a histogram from the sn spacings with some appropriate resolution
and then fitting Pβ(s) to extract β , as illustrated in Figure 1. Statistical fluctuations can be
estimated by assigning to every histogram value its square root as an estimator for its variance,
and then computing the variance δβ of the fitted value of β using the standard least squares
method.

2.4 Crossover coupling

Consider now the Hamiltonians of the φn theories for n = 4 and 6, and follow the behaviour
of the level spacing statistics for weak coupling gn. When gn = 0, the theory is integrable and
therefore one expects Poissonian statistics, however, when turning on a non-zero coupling the
dynamics is expected to become chaotic implying GOE statistics, with a continuous crossover
between the two behaviours due to the finiteness of the energy window and the volume.

Figure 2 shows the variation of the measures 〈r̃ ′〉 and β in the φ6 theory with increasing
coupling g6 while keeping all other parameters such as the volume, the cutoff, and the energy
window fixed. Note that both parameters show a continuous crossover between their Poisso-
nian (0) and GOE (1) values. Motivated by previous studies performed with spin chains [23]
we fit the data with an exponential relaxation

f g̃∗( g̃) = 1− exp (− g̃/ g̃∗) , (13)

to determine the crossover coupling g̃∗. Note that the eventual value of g̃∗ depends on the
measure used to define it; however, this is not surprising given the continuous nature of the
crossover.

We remark that the spectrum statistics in the free theory (i.e., gn = 0) is not eventually
Poissonian due to a higher number of degeneracies in free field theory than the one expected
from integrability alone. However, turning on the interaction, these degeneracies are instantly
resolved and the spectrum quickly becomes Poissonian, much more rapidly than the eventual
crossover to GOE,1 therefore Poissonian statistics is observed for very small but non-zero cou-
plings (i.e., 0 ̸= gn≪ g∗n, c.f. Fig. 2).

1Except for very small volumes mL ≲ 2.
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Figure 1: Level spacing histograms (Data) and the corresponding Brody distribu-
tions (Fit) in φ6 theory at different values of the coupling, with the extracted value
of β shown as part of the legend. The parameters of the spectral window are
mL = 12, [E1/m, E2/m] = [12, 16],Λ/m= 20.

3 Finite size scaling

As discussed above, the crossover coupling is expected to go to zero with increasing system size.
Previous studies in spin chains suggest considering the behaviour of the crossover coupling g̃∗

as a function of the volume L. Based on the exponential behaviour found for the massive
regime of the XXZ spin chain [9], we fit the volume dependence g̃∗(mL) as

log( g̃∗) = a+ b(mL) . (14)

Note that redefining the normalisation of the coupling constant affects only a, therefore the
eventual quantity of interest is the coefficient b, which can be taken to characterize the strength
of integrability breaking of the given interaction (Vn) [9].

Figure 3 illustrates the log( g̃∗) vs. mL data for the φ4 field theory using consecutive level
ratios and Brody distribution. Unfortunately, the volume range is quite restricted: on the one
hand, the number of energy levels increases roughly exponentially as a function of both the
volume and the cutoff energy, while on the other hand, the energy window needs to be wide
enough to contain enough levels for statistical analysis. Different ranges of volume can be
accessed by varying the energy window setup. The results obtained for φ4 and φ6 theories
are summarized in Table 1.

Note that the b values corresponding to different measures agree quite well (within the
estimated statistical errors), despite the visible difference between the individual values g̃β∗

and g̃ r̃∗ of the crossover couplings (c.f. Fig. 3). This is encouraging as it indicates that the
scaling of the crossover coupling with system size is universal and thus physically meaning-
ful. However, the b values depend substantially on the choice of the energy window and the
cutoff. In addition, the crossover couplings vary only by a small amount, in stark contrast to
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Figure 2: The β and 〈r̃ ′〉 measures as a function of the g6 coupling in the φ6 the-
ory. We also present the fitted curve defined in Eq. (13) determining the coupling
constant. The error bars (1σ) and the error of the crossover coupling are calcu-
lated from the statistical uncertainty. We note that 〈r̃ ′〉(g6 = 0) = −1.35 and
β(g6 = 0) = −2.00 due to additional symmetries in the free theory. Parameters:
mL = 12, [E1/m, E2/m] = [12, 16],Λ/m= 20.
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Figure 3: The log( g̃∗4) vs. mL graphs in the φ4 thoery using the (a) β

and the (b) 〈r̃ ′〉 measures. We also depicted the fitted line according to
Eq. (14). The errors are calculated from the statistical uncertainty. Parameters:
[E1/m, E2/m] = [12,16],Λ/m= 20.

the results obtained for spin chains [9], which calls into question the physical significance of
the results. As a result, the volume dependence of the crossover coupling allows no reliable
conclusions concerning the difference in the strengths of integrability breaking of the φ4 and
φ6 perturbations.

4 Scaling in particle number

An alternative notion of system size is to consider energy levels with a given number of particles
present. For spin chains, their length L is in fact the same parameter since the Hilbert space
is dominated by states where the number of quasi-particle excitations of order L. However,
particle number is only a good quantum number for integrable systems with higher conserved
charges and consequently factorised scattering, so it is not immediately apparent that this
approach should work.
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Table 1: Finite size scaling of the crossover coupling in the φ4 and φ6 theories using
β and 〈r̃ ′〉 measures at different energy windows and cutoff energies. The error
in the brackets is calculated from the statistical uncertainty. The examined volume
regimes at the corresponding energy windows: [12.0,16.0] : mL = 8, 8.5, ..., 12;
[8.0,10.7] : mL = 16,17, ..., 23; [6.5,9.1] : mL = 24,24.5, ..., 30.

[E1/m, E2/m] Λ/m bβ
φ4 b r̃

φ4 bβ
φ6 b r̃

φ6

[12.0, 16.0] 20.0 -0.166(8) -0.174(10) -0.215(6) -0.225(8)
[8.0,10.7] 14.0 -0.058(4) -0.059(6) -0.076(3) -0.080(5)
[8.0,10.7] 13.0 -0.071(4) -0.069(6) -0.077(3) -0.079(5)
[6.5,9.1] 11.5 -0.053(4) -0.048(5) -0.046(3) -0.053(4)
[6.5,9.1] 10.5 -0.053(4) -0.070(5) -0.049(3) -0.051(4)

For the theories considered here, it is natural to classify the states of the computational ba-
sis by the eigenvalue of the free boson particle number operator N̂ . Noting that the crossover
coupling is expected to go to zero with increasing system size, we consider integrability-
breaking processes in the weak coupling limit. As we already discussed, the simplest processes
correspond to 2→ 2 scattering, which always has the same set of incoming and outgoing mo-
menta.

Integrability-breaking multi-particle processes can be classified by their property concern-
ing particle number N . To change the level spacing statistics, processes that preserve particle
numbers must still change the set of particle momenta and lift level crossings between states
with the same value of N̂ . In the φ4 and φ6 models considered here, the lowest order such
processes correspond to 3→ 3 scattering. Particle number changing processes such as 2→ 4
lift level crossings between levels in subspaces with different values of N̂ . However, such
processes are kinematically suppressed by the requirement of threshold energy. The opposite
process 4→ 2 has no threshold but is suppressed compared to 3→ 3 due to the requirement
of four particles meeting simultaneously (i.e., within the finite range of interaction imposed by
the mass gap). As a result, one expects that the level spacing statistics restricted to subspaces
with fixed N show a much faster crossover than the statistics for the overall spectrum. While
these considerations are quite heuristic, the results obtained below are consistent with them.

Therefore we consider the interacting Hamiltonians (3) and (4) within individual sub-
spaces of a given number N of particles, i.e., we neglect the interaction between the different
N -sectors and consider them individually. To get an idea of whether the number of states with
a given number of particles is sufficient for statistical analysis, one can determine the cardi-
nality of the computational basis for given values of the volume and the cutoff as a function
of N , which is illustrated in Figure 4. We then perform the aforementioned statistical analysis
for the spectra corresponding to an individual N -sector as we switch on the interaction, from
which we determine the g∗(N) crossover coupling.

Figure 5 shows the crossover couplings corresponding to some N -sectors in the φ4 and φ6

theory at mL = 6 volume. We observe that the crossover couplings cover a remarkably wider
range on the log scale than in the volume scaling case illustrated in Fig. 3. In addition, the
crossover couplings become especially small with increasing N , which shows that our assump-
tions are self-consistent. For comparison, we also determined the crossover coupling using the
complete spectrum at mL = 6 as in Section 3, including particle-changing interaction.2 The
crossover couplings corresponding to the full spectra (at the same volume, energy window,

2Note that it does not make sense to compute statistics for the full spectrum with neglected particle-changing
interaction as the enforced independence of the different N -sectors always results in almost Poissonian statistics.
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Figure 4: Cardinality of the THA basis as a function of the particle number. Parame-
ters: mL = 6,Λ/m= 35.

1.8 2 2.2 2.4 2.6 2.8

−6

−4

−2 γ r̃4 = −3.52(9)

γ r̃6 = −4.39(8)

logN

lo
g
(g̃

r̃
∗ )

ϕ4 data

ϕ4 fit

ϕ6 data

ϕ6 fit

Figure 5: Crossover coupling vs. particle number (N = 6,8, ..., 18) in the φ4 and
φ6 theories, together with linear fits according to Eq. (16) (the N = 18 points were
ignored). The errors are calculated from statistical uncertainty. Parameters: mL = 6,
[E1/m, E2/m] = [20,25], and Λ/m= 35.

and cutoff as in Fig. 5) are found to be

log g̃∗4 = −0.72(3) , and log g̃∗6 = −2.86(2) . (15)

Comparing to Fig. 5 we find that the typical value of g̃∗(N) is significantly smaller than the
crossover coupling corresponding to the full spectrum, supporting the argument that the level
crossings within the N -sectors are lifted much faster than those occurring between states cor-
responding to different N .

Although we have no particular argument for a power scaling of g̃∗(N) vs. N , Fig. 5
strongly suggests applying a linear fit to the log g∗ vs. log N data. We define the exponent γ
by assuming the dependence

log g∗ = γ log N +α , (16)

i.e. g∗ ∼ Nγ. Similarly to the finite volume scaling parameter b defined in (14), the exponent
γ is independent of normalisation of the coupling. The fitted lines are illustrated in Figure 5;
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Table 2: Scaling parameter characterizing the crossover coupling vs. particle number
dependence in the φ4 and φ6 theories using β and 〈r̃ ′〉 measures at different vol-
umes, energy windows, and cutoff energies. The uncertainty is calculated from the
statistical fluctuations.

mL [E1/m, E2/m] Λ/m γ
β
4 γr̃

4 γ
β
6 γr̃

6
4 [30, 40] 50 -3.15(3) -3.00(4) -4.50(3) -4.21(4)
5 [29, 35] 45 -3.14(3) -3.19(4) -4.44(3) -4.45(3)
6 [20, 25] 35 -3.35(6) -3.52(9) -4.34(6) -4.39(8)
7 [20, 25] 35 -3.45(4) -3.57(6) -4.76(4) -4.84(5)
8 [17, 22] 28 -3.62(5) -3.70(8) -4.80(4) -4.76(6)

note that the N = 18 points were ignored as the relevant energy levels are too close to the
edge of the energy window.

We repeated the computations of the exponent γ at different volumes, with the results
summarized in Table 2. Now the choice of the parameters is less constrained than for the
analysis of the full spectrum, as the number of states in an N -sector only increases polynomially
with the cutoff. Nevertheless, it is still necessary to change the energy window and the cutoff
as the volume is increased.

The results demonstrate some key features:

1. Similarly to the b values obtained from finite volume scaling, the γ values coming from
the Brody distribution and the consecutive level ratios match pretty well, indicating that
the exponent does capture universal features that only depend on the interaction.

2. γ values only change by about 10-20% as the volume is doubled, which makes their
value much more consistent than the b values for finite volume scaling (c.f. Table 1).

3. Comparing the γ values for φ4 and φ6 perturbations, the γ4 are significantly smaller
than the γ6, which can be interpreted as a clear signal that the φ6 interaction violates
integrability stronger than the φ4.

This leads us to the conclusion that the relevant system size parameter for the crossover
from integrable to non-integrable level spacing statistics is the particle number rather than the
volume. As noted before, this eventually does not contradict previous results obtained in spin
chains, since in those systems the two parameters are closely related when considering the
middle of the spectrum used in the analysis of level spacing statistics.

5 Conclusion

In this work, we investigated integrability breaking in the φ4 and φ6 theory by analyzing the
statistical properties of the energy spectrum. We evaluated level spacing statistics using the
truncated Hamiltonian approach and used it to analyse the crossover from Poisson distribution
characteristic of integrability to the Wigner-Dyson distribution resulting from the Gaussian
orthogonal ensemble of random matrices, which corresponds to quantum chaotic systems with
a real symmetric Hamiltonian. Previous studies showed that the dependence of the crossover
coupling on the system size can be used to characterise the strength of integrability breaking.

The first main conclusion of our study is that the relevant parameter of system size in
which to consider the scaling of the crossover coupling is the number of particle excitations
rather than the volume. The volume dependence of the crossover coupling turned out to be
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particularly weak. On the contrary, we found a much stronger scaling behavior by analyzing its
dependence on the particle number. We found that the scaling exponent showed good agree-
ment between two different determinations of the crossover coupling, which is an important
consistency check for the approach.

The rapid scaling of the crossover coupling in N indicates that the relevant parameter
(in terms of integrability breaking) is the particle number, not the volume. We also found
that the crossover couplings corresponding to higher N ’s are typically well below the one
corresponding to the total spectrum, which means that the dominant integrability-breaking
processes are those preserving the number of particles.

This observation can be intuitively related to (classical) Hamiltonian dynamics, where the
KAM theorem [37–39] asserts that for weak perturbations of an integrable with a finite number
of degrees of freedom, the dynamics does not immediately become fully chaotic: a portion
of the phase space retains the structure of the tori characteristic of integrability, albeit their
shape is deformed. The threshold for the breakup of such tori, however, approaches zero in the
limit when the number of degrees of freedom goes to infinity [40, 41]. This corresponds to a
smooth crossover that becomes progressively sharper when the number of degrees of freedom
is increased, eventually transitioning to a non-integrable behaviour for any small value of the
integrability breaking coupling in the thermodynamic limit. We note that it is the number
of degrees of freedom, encoded in our case in the number of particles, which is the natural
control parameter for the transition. We also reiterate that this observation does not in any
way contradict the scaling of the crossover with the length of the system observed in spin
chains, since for the relevant states (those in the middle of the spectrum) the length of the
chain and the number of quasi-particle excitations are essentially the same parameters.

Our second main conclusion is that the scaling of the crossover coupling, considered as
a function of particle number supports the distinction proposed in [12] on the basis of non-
equilibrium evolution modeled using a Boltzmann kinetic equation approach, according to
which the φ4 induces weak integrability breaking as opposed to the strong one induced by
φ6. An interesting open issue is to compare the full quantum evolution in the φ4 and φ6

theories e.g. following [24]; we performed some preliminary studies which indicated that the
THA must be improved further to arrive at reliable results, which we leave as an open problem
for the future.
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A Leading order corrections of the φ4 and φ6 THA

Here we follow the approach introduced in Ref. [30]. Let H denote the full Hamiltonian, E
one of its eigenvalues, and ψE the corresponding eigenstate:

HψE = EψE . (A.1)

The truncation splits the Hilbert space into the low-energy subspace (Hl) retained for the
numerical calculations, and the high-energy (Hh) subspace which is discarded. Then the full
Hilbert space is H =Hl ⊕Hh and the eigenvalue equation can be decomposed as

�

Hl l Hlh
Hhl Hhh

��

ψE ,l
ψE ,h

�

= E
�

ψE ,l
ψE ,h

�

, (A.2)

where Hl l is the naive truncated Hamiltonian. Assuming that the Hamiltonian has the form
H = H0 + V with a diagonal part H0 and a perturbation V yields

(Hl l +∆H)ψE ,l = EψE ,l , (A.3)

where

∆H = −Vlh(H0 + Vhh − E)−1Vhl = −Vlh(H0 − E)−1Vhl +O(V 3) , (A.4)

are counter terms that eliminated the cut-off dependence of the energy level. We introduce a
computational basis |k〉 composed of the eigenstates of H0:

H0 |k〉= Ek |k〉 , (A.5)

and approximate the counter terms by keeping only the leading order term, which has the
matrix elements

(∆H)i j = −
∑

k:Ek>Λ

VikVk j

Ek − E
= −
∫ ∞

Λ

dE
M(E)i j

E − E , (A.6)

where

M(E)i jdE =
∑

k:E<Ek<E+dE

VikVk j . (A.7)

Since the relevant contribution comes from the high-energy asymptotics of M(E), it is reason-
able to approximate M(E) as a continuous distribution due to the high density of energy levels
in Hh. The matrix elements M(E)i j can be evaluated explicitly by introducing the quantity

Ci j(τ) = 〈i|V (τ/2)V (−τ/2)| j〉=
∫ ∞

0

dEe−(E−(Ei+E j)/2)τM(E)i j , (A.8)

where

V (τ) = eH0τVe−H0τ , (A.9)

is the perturbation in (Euclidean) interaction picture. The high-energy behaviour can be de-
termined from the behaviour for small τ, which can be obtained using Laplace-transformation.
Assuming that the Hamiltonian has the form

H0 =
1
2

∫

d x :
�

(∂tφ)
2 + (∂xφ)

2m2φ2
�

: ,

V =
∑

n

gnVn , Vn =

∫

d x : φn(x) : , (A.10)

12

https://scipost.org
https://scipost.org/SciPostPhys.15.4.137


SciPost Phys. 15, 137 (2023)

and applying Wick’s theorem yields

d
dτ

Ci j(τ) =
∑

n,m

gn gm

∑

0≤k≤min(n,m)

k!

�

n
k

��

m
k

�

I ′k(τ) 〈i|Vn+m−2k | j〉 (A.11)

=

∫ ∞

0

dEe−(E−(Ei+E j)/2)τ
�

−(E − (Ei + E j)/2)M(E)
�

, (A.12)

where

Ik(τ) =

∫ L/2

−L/2
GL(τ, z)k , (A.13)

and GL(τ, z) is the Euclidean propagator

GL(ρ) =
1

2π
K0(mρ)≈ −

1
2π

log
�

eγ

2
mρ
�

�

1+O(m2ρ2)
�

, ρm≪ 1 . (A.14)

Here ρ =
p
τ2 + z2 is the Euclidean distance, and K0 is the modified Bessel function of the

second kind. The derivative with respect to τ was introduced to eliminate some spurious IR
divergences [30].

We only keep the leading non-analytic behaviour of I ′k(τ) for τ→ 0, which corresponds to
the leading order in the cutoff dependence, expressed as a Laplace transform of some function
µk(E)

I ′k(τ) =

∫ ∞

ϵ

dEe−Eτµk(E) + subleading contributions . (A.15)

After substituting back and reordering the sum, the final expression for the correction term is

(∆H)i j = −
∑

k′
(Vk′)i j

∑

n≥m

gn gm

∫ ∞

Λ−(Ei+E j)/2
dE

µnmk′(E)
E + (Ei + E j)/2− E

, (A.16)

where

µnmk′(E) = −(2−δn,m)k!

�

n
k

� �

m
k

�

µk(E)
E

�

�

�

�

k=(n+m−k′)/2
. (A.17)

Neglecting the Ei + E j terms in comparison with the cut-off Λ, the result can be simplified
further as

∆H = −
∑

k

κkVk , (A.18)

where

κk =
∑

n≥m

gn gm

∫ ∞

Λ

dE
µnmk(E)

E − E . (A.19)

Note that this still contains the exact eigenvalue E of the level considered. Following [30] this
can be replaced by a value which is chosen to lie in the expected range of the energy level(s)
which are the objects of the numerical computation, henceforth referred to as reference energy.
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Figure 6: (a) The vacuum energy and (b) the mass gap (M = E1−E0)) as a function
of the cutoff energy in the φ6 theory using the naive (bare) and the RG-improved
(renorm) Hamiltonians. Parameters: mL = 4, g̃6 = 0.05, the reference energy E was
set to 0 for the vacuum energy and m for the mass gap calculation.

The functions µnmk(E) relevant for n, m= 2,4, 6 are given by

µ220(E) =
1
πE2

, µ422(E) =
12
πE2

, µ440(E) =
3

π3E2

�

6(log E/m)2 −
π2

2

�

,

µ442(E) =
72 log E/m
π2E2

, µ444(E) =
36
πE2

,

µ624(E) =
30
πE2

, µ642(E) =
90
π3E2

�

6(log E/m)2 −
π2

2

�

,

µ644(E) =
720 log E/m
π2E2

, µ646(E) =
180
πE2

,

µ660(E) =
675

2π5E2

�

(log E/m)4 −
π2

2
(log E/m)2 + 2ζ(3) log E/m+

π4

80

�

,

µ662(E) =
1350
π4E2

�

2(log E/m)3 −
π2

2
log E/m+ ζ(3)
�

,

µ664(E) =
675
π3E2

�

6(log E/m)2 −
π2

2

�

,

µ666(E) =
1800 log E/m

π2E2
, µ668(E) =

225
πE2

. (A.20)

The terms involving n, m= 2,4 agree with those of Ref. [30], while the rest are new results of
this work. We can verify the latter by computing the vacuum energy and the mass gap in φ6

theory at different values of the cutoff, with the results shown in Fig. 6. Comparing the numer-
ical results obtained from the naive truncated (bare) Hamiltonian Hl l and those obtained from
the renormalised Hamiltonian Hl l +∆H, we find that the counter terms significantly suppress
the dependence on Λ, making THA converge much faster as the cutoff is increased.
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