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Abstract

We introduce a model description of a diatomic molecule in an optical cavity, with pump
and fluorescent fields, and electron and nuclear motion are treated on equal footing and
exactly. The model accounts for several optical response temporal scenarios: A Mollow
spectrum hindered by electron correlations, a competition of harmonic generation and
molecular dissociation, a dependence of fluorescence on photon pumping rate and dis-
sipation. It is thus a general and flexible template for insight into experiments where
quantum photon confinement, leakage, nuclear motion and electronic correlations are
at interplay.
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1 Introduction

Second harmonic generation (SHG) is the conversion by some material system of two photons
of frequency ω into a single photon of frequency 2ω. A classic hallmark of nonlinear optical
behavior [1], SHG still is, sixty years after its discovery [2], the focus of extensive research in
physics [3], engineering [4], chemistry [5], biology [6], and medicine [7]. Part of this interest
stems from technology [8,9]: SHG is the operating mechanism in optical devices and imaging
techniques that are surface or interface sensitive [10–12]. Another reason is that there are
aspects and regimes of SHG still not fully understood, making it a valuable benchmark for
advances in nonlinear optics.

Several theoretical methods are used to describe SHG [13], from nonlinear response
in frequency space [14] to Bloch-Maxwell equations [15] and real-time first-principle ap-
proaches [13, 16–19]. Often, classical radiation fields are used, which is appropriate in the
strong field limit. However, highly interesting effects in SHG (and fluorescence in general)
appear in the low photon regime [20–23], where quantum effects generally dominate [24]
and the so-called rotating wave approximation (RWA) [25–29] may be inadequate [30–32].

Optical cavities permit an accurate selection of confined electromagnetic modes [33–36],
and allow to address the low photon regime of SHG [37]. However, a key element left out of
many theoretical works on few-level systems is an explicit description of electronic correlations
and nuclear dynamics, even though these can importantly affect the harmonic signal [38–40].
First-principle descriptions include these contributions [13,14,16,19], but usually approxima-
tions are made in numerical implementations. Therefore, because of the broad relevance of
SHG, it is useful to consider model systems where photon pumping, cavity leakage, electronic
correlations, and nuclear motion can be treated exactly and on equal footing, to gain a generic
and accurate understanding of their interplay.

In this work we introduce a simple and flexible theoretical framework to describe a single
molecule embedded in an optical cavity, and study its fluorescence properties. Within this
framework all the aforementioned effects and interactions are considered, and the following
picture emerges: (1) the SHG signal is larger for faster photon pumping; (2) electron-electron
interactions strongly reduce the fluorescence signal; (3) for light atomic masses photodissoci-
ation takes place, inhibiting fluorescence and SHG; for heavier masses, the opposite occurs;
(4) both resonant and SHG signals are quenched in time by cavity leakage. While not tied
to any specific molecule, our results unveil a multifaceted light-matter scenario for SHG and
fluorescence in the low photon regime, when multi-photon effects are important. At the same
time, they give qualitative but rigorous initial insight for more refined investigations of systems
of direct experimental interest.
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2 Hamiltonian, initial state and fluorescent spectrum

We consider a homonuclear diatomic molecule embedded in a cavity, where each atom has a
mass M and a single s-orbital. The molecule is occupied by two electrons of opposite spin,
interacting with a cavity field of frequency ω0 and a fluorescent field of frequency ω. The
molecule and cavity are assumed to be one-dimensional, with the molecular axis aligned with
the axis of the cavity. The total Hamiltonian reads

Ĥ(t) = Ĥs(t) + V̂ext(t) , (1)

Ĥs(t) = Ĥmol + Ĥrad + Ĥint(t) , (2)

where Ĥmol, Ĥrad and Ĥint(t) respectively describe the molecule, the photon fields, and the
light-matter interaction [33]. The external field term, V̂ext(t), will be discussed at the end of
this section. In more detail, the molecular Hamiltonian we use is

Hmol =
P̂2

2(2M)
+

p̂2

2(M/2)
+

C
x̂4
+ U
∑

i

n̂i↑n̂i↓ − Ve−λ x̂
∑

σ

�

c†
1σc2σ + c†

2σc1σ

�

, (3)

where the first two terms give the kinetic energy of the molecular center of mass (with mo-
mentum P̂), and relative atomic motion (with momentum p⃗). The third term accounts for
an inter-atomic repulsion of strength C , with x̂ the inter-atomic coordinate. The fourth term
represents an intra-orbital repulsive interaction of strength U between the electrons, where
n̂iσ = c†

iσciσ and c†
iσ creates an electron with spin projection σ at atom i.

Finally, the last term in Ĥmol describes the electron kinetic energy arising from electrons
hopping between the atoms. The strength of this contribution is proportional to V , but it also
depends on the internuclear distance via the operator e−λ x̂ (with λ an attenuation parameter).
This gives a phenomenological (but intuitively physically plausible [41–44]) fully quantum
mechanical interaction between the electrons and the inter-atomic motion. In the numerical
calculations, we set V = 2, C = 0.6 and λ = 0.6, to obtain a Morse-like potential landscape
for inter-atomic motion, and an equilibrium position r0 = 1.156. In this way, the effective
hopping Veff = V exp(−λr0) = 1 within few parts per thousand.

The second contribution to Ĥs describes the two photon modes, Ĥrad = ω0 b† b +ωb′† b′,
with b (b′) destroying a cavity (fluorescent) photon with frequencyω0 (ω). For computational
simplicity we exclude the direct interaction between modes and nuclei, and neglect center of
mass motion.1 The cavity-molecule interaction is thus Ĥint = M̂

�

gc(b†+ b)+ g ′(t)(b′†+ b′)
�

,
where M̂=
∑

σ(c
†
bσcaσ+c†

aσcbσ) and cb/a = (c1±c2)/
p

2 destroys an electron in the molecule’s
bonding or antibonding state. In the calculations, the fluorescent coupling is damped, i.e.
g ′(t) = g f exp(−Γ t) (we set Γ = 0.02), to describe phenomenologically cavity losses [22,37].
Later in the paper, we will supplement this phenomenological dissipation with a more rigorous
description of cavity leakage, by coupling the system to baths of harmonic oscillators.

It useful at this point to briefly comment on these two ways to affect the fluorescence re-
sponse: The phenomenological damping due to Γ acts on the coupling between the matter and
fluorescent photons, to account in an effective way for the fact that the spontaneous emission
into a photon continuum is described via a single effective mode. On the other hand, with the
bath of harmonic oscillators, we describe a dissipation channel for the photon modes, i.e. for
the finite cavity quality. Since the photon-photon coupling utilised with the harmonic bath can
be seen as an effect of all photon modes interacting via the molecular system, the two effect
are clearly related, and yet rather distinct.

1This is of no consequence for a rigid molecule, but can have a role in general. We are currently developing
a semiclassical description of the interaction between photon modes and nuclear charge and include its effect on
the motion of the nuclei.
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We will consider two initial light+matter states: i) A product state |Ψ′0〉 ≡ |gm〉|β〉c|0〉 f ,
with the molecule in its ground state |gm〉 for gc = g f = 0, the cavity field in a coherent state
|β〉c , and the fluorescence field in its vacuum state |0〉 f . ii) The ground state |Ψ′′0 〉 ≡ |g〉 of the
full Hamiltonian Ĥs(t = 0).

Lastly, we discuss the external field V̂ext(t). This represents the action of a laser injecting
into the cavity incident photons with frequency ω0. As specified next, V̂ext(t) always acts
only in the initial part of the simulation interval; in other words, Ĥ(t) and Ĥs(t) are time-
independent at long times. Explicitly, the form chosen is V̂ext(t) = gd(b† + b)[ f (t) sinω0 t],
with a) f (t) = θ (ts − t) a step envelope vanishing after time ts or b) f (t) a smoothened
rectangular pulse. The rectangular pulse f (t) acts approximately between t1 and t2, with
envelope f (t) = [1−F1(t)]F2(t), where Fi(t) = [exp((t − t i)/τi)+1]−1. In all calculations,
τ1 = τ2 = 2.0 whilst the values of t1, t2 are case specific, and reported in the figure captions.

2.1 Resonance frequency and fluorescence spectrum

We consider a cavity mode with a frequency of eitherω0 = ΩR in resonance with the molecule’s
electronic transitions, or ω0 = ΩR/2. Due to space and spin symmetries, the molecule’s elec-
tronic ground state is a spin singlet of even parity. Since the total electron spin S is conserved in
absorption and emission, ΩR = Eex

odd,S=0− E g
even,S=0 = U/2+[4V 2

eff+(U/2)
2]1/2 (see Appendix

A.1).2 Concerning the value chosen for the interaction among the electrons, in Appendix A.2
we show that fluorescence weakens on increasing the electronic correlations. Accordingly, in
the rest of the paper we focus on the weakly interacting regime where U = 1.0 and ΩR = 2.56.

We characterize the fluorescence spectrum in terms of

P(t,ω) =
∑

λri n

∑

m>0

�

�

�〈λrinm|T
�

e−i
∫ t

0 Ĥ(t ′)d t ′]
�

�Ψ0〉
�

�

�

2
, (4)

where P is the probability to have one or more photons in the fluorescence mode ω at time
t [22]. Here |Ψ0〉 is a given initial state (i.e., either |Ψ′0〉 or |Ψ′′0 〉 above) and theω-dependence
is contained in Ĥ(t). The sums over λ, ri and n trace out electronic, nuclear and cavity mode
degrees of freedom, while the sum over m ensures that at least one fluorescent photon is
emitted. The real-time dynamics of the system (with coupled electronic, atomic and photonic
degrees of freedom) was obtained via the short iterated Lanczos algorithm, by computing the
exact time evolved many-body state |Ψ(t)〉 starting from |Ψ0〉. The configuration size of the
problem is N = 4NcN f NR, where 4 is the dimension of the electronic subspace, and Nc , N f ,
and NR are respectively the maximum number of cavity photons, fluorescence photons, and
grid points for the nuclear coordinate x . We have ensured numerical convergence with respect
to these parameters.

3 Fluorescence in a rigid molecule and initial state preparation

In a cavity with low photon number, SHG is remarkably sensitive to the system’s initial state.
This important point is illustrated by comparing the spectra resulting from the different initial
states |Ψ′0〉 and |Ψ′′0 〉 introduced earlier. With |Ψ′0〉, which is a coherent state with β2 pho-
tons and not an eigenstate of Ĥs(t), the system evolves under the full Hamiltonian Ĥs(t) and
V̂ext = 0. Thus, fluorescence photons are emitted in time. For |Ψ′′0 〉, and with the parameters

2A different prescription could be to consider, irrespective of the value of U , an incident frequency in resonance
with the one particle levels i.e. ω0 = 2|Ve f f |. Within the perspective adopted here, this would simply amount to
have an off-resonant incident field, with detuning ±|2Ve f f −ΩR|.
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Figure 1: (a) Resonant response forω0 = ΩR and (b) SHG response forω0 = ΩR/2 of
a rigid molecule, starting from a coherent state |Ψ′0〉 with β2 = 9 (empty curves) and
from the cavity+molecule’s ground state |Ψ′′0 〉 followed by pumping (filled curves).
For the pumped cavity, the drive is kept on until 〈b† b〉 ≈ 9. We use t1 =

6π
ω0

and

t2 =
31π
ω0

, with gd = 0.229 and 0.0996 in (a) and (b) respectively. In all panels,
U = 1.0, gc = 0.08, g f = 0.01,ΩR = 2.56, and Γ = 0.02. Plots are scaled for visual
clarity and the scaling factors are indicated in color.

we consider, the initial occupation of the cavity mode is negligible (< 10−3). So, for a mean-
ingful comparison with the results from |Ψ′0〉, the cavity is pumped by a driving field Vext.(t) of
frequency ω0, until an approximately coherent state with average photon number 〈b† b〉 ≈ β2

is reached. The spectra for the two initial configurations, and the low photon limit3 β = 3
are in Fig. 1, for both the resonant (ω0 = ΩR) and SHG (ω0 = ΩR/2) cases. In the resonant
case, and starting from |Ψ′0〉 (Fig. 1a, empty curves), a spectrum with well-defined Mollow fea-
tures emerges already at early times and converges to a similar profile at longer times. These
features can be understood from a dressed-level picture [22, 37] since the cavity mode is in
resonance with a parity allowed transition. Interestingly, starting from |Ψ′′0 〉 and pumping the
cavity up to β = 3 (Fig. 1a, filled curves), the spectrum at long times is qualitatively similar
to Fig. 1a empty curves, although the intensity of the Mollow sidebands is reduced compared
to the main peak. A markedly different picture emerges in the SHG regime: For initial state
|Ψ′0〉 (Fig. 1b, empty curves), the spectrum quickly develops two sharp features (with a broad
shoulder in the middle) corresponding to a Rayleigh (SHG) contribution at ω0 (2ω0). How-
ever, when starting from the full ground state |Ψ′′0 〉 and pumping the cavity, the SHG signal is
strongly suppressed at all times (Fig. 1b, filled curves). In other words, the SHG signal strongly
depends on the pumping rate, i.e. on the value of gd .

3.1 The dependence on the initial conditions

To uphold our last statement, we consider for simplicity SHG in a two-level system (TLS)
with levels |0〉 and |1〉 and ω0 = ΩR/2. In Fig. 2a we show the evolution of the total parity
Π = 〈eiπb† b(n̂0 − n̂1)eiπb′† b′〉, the cavity mode occupation, and the occupation n1 of the TLS
excited state. The dynamics is obtained starting either from a product state with the cavity
mode in a coherent state (with β2 = 1), or from the exact ground state where the cavity mode
is pumped at different speeds until 〈b† b〉 ≈ 1.

Fig. 2b shows the corresponding long-time limit SHG. When starting from |Ψ′0〉, Π has a
constant mixed parity Πcoh ≈ 0.17. By contrast, when starting from |Ψ′′0 〉, initially Π is 1, but
then drops to Πcoh with pumping. Thus, in both cases and at almost all times, the system
has mixed parity (which is necessary for SHG in a TLS [37]). Yet, the SHG signal is absent for

3Even with β = 3, the size of the incident photon subspace Ni must be much larger (explicitly, Ni = 60) to have
good numerical convergence.
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Figure 2: Cavity pumping in a two level system with gc = 0.1, g f = 0.01, Γ = 0.02,
and ω0 = ΩR/2 = 1. Starting from the same ground state, two pumping speeds
are considered with ts =

π
ω0

and ts =
2π
ω0

respectively. Reference results from an
initial coherent state (β2 = 1) and no pumping are also shown. (a) Time-evolved
average number of cavity photons, total parity and excited state population. (b)
Corresponding SHG spectra at long times.

slow pumping and very small for fast ramping. Further insight comes from how the population
n1 of the excited level changes in time: it is very small for the pumped cases, but noticeably
larger for the coherent case. Thus, the cavity pumping speed strongly affects the population
of the excited level and the SHG strength, which increases for faster drives, and similar trends
are observed for the resonant regime (see Appendix A.3). While exemplified for a TLS, our
considerations equally hold for the molecule investigated in the rest of the paper.

4 Cavity leakage and atomic motion

For a more microscopic treatment of the cavity leakage, we now couple both photon modes
ω0,ω to two baths of independent classical oscillators (with variables {xk, pk} and {x ′k, p′k}).
The couplings of baths and photon modes are of the Caldeira-Leggett type [45–47], and add
a contribution Ĥleak to the system’s Hamiltonian of Eq. (1), with

Ĥleak =
1
2

NB
∑

k=1

��

p2
k + p′2k
�

+ω2
k

�

x2
k + x ′2k
��

−
NB
∑

k=1

Ck

�

xk

�

b† + b
�

+ x ′k
�

b′† + b′
��

. (5)

In the presence of the baths, the frequency of the modes gets renormalized via
ω0 → ω0 +
∑NB

k=1 C2
k /ω

2
k and ω → ω +

∑NB
l=1 C2

l /ω
2
l . Furthermore, an additional “coun-

terterm” V̂count. ∝ [(b†)2 + b2 + (b′†)2 + b′2] appears in the Hamiltonian (see Appendix A.4
for details), and its role is discussed in Appendix A.5. In the actual calculations, ωk = k∆
and Ck = Aωa

k. The values of NB, A, ∆ and a determine the decay rate of the photons (the
cavity quality). The bath variables are propagated via Ehrenfest dynamics. For example, for
the {xk, pk} bath, ẍk(t) = −ω2

k xk(t)+Ck〈b†+ b〉 x̄ ,t , where x̄ ≡ {xk}. In turn, the coordinates
x̄ , x̄ ′ enter parametrically into the wave function |Ψ(t)〉 of the quantum subsystem (i.e. the
photon modes plus the molecule).

Using the Ehrenfest approximation could introduce a problem with detailed balance. How-
ever, since our approach to cavity leakage does not aim to a quantitative realistic description,
but rather to explore/illustrate qualitative trends, an incorrect detailed balance is not expected
to not be a crucial hampering factor. Furthermore, while computationally inexpensive, this
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Figure 3: Dynamics of the relative interatomic distance in resonant (a) and SHG (b)
regimes, for atomic masses M = 40 (main plots) and M = 8 × 104 (insets). In all
panels U = 1 and r0 = 1.156. At resonance (a) the calculations were performed by
pumping the cavity until 〈b† b〉 ≈ 9 starting from the interacting ground state |Ψ′′0 〉,
with gc = 0.03, g f = 0.01 and gd = 0.151. For SHG (b) the calculations started
from the product state |Ψ′0〉 with the cavity field in a coherent state with β2 = 9, with
gc = 0.08, g f = 0.01 and ω0 = 1.28. In all cases displayed, the phenomenological
cavity dissipation coefficient Γ = 0.02, either when the baths are included or not. The
values of the bath parameters are the same for the incident and the fluorescent fields.
They are Ck = A(∆k)a, NB = 1000 oscillators, A= 0.005, a = 0.6 and ∆= 0.01.

treatment of the bath keeps the quantum dynamics at the many-body wavefunction level uni-
tary and Hermitian.

4.1 Nuclear motion

Until now, the molecule was kept rigid at interatomic distance r0 corresponding to the max-
imum of N(t = 0, r), the equilibrium probability distribution of the nuclear relative co-
ordinate r. How the interatomic distance is affected by the light-matter interaction (and
viceversa) is shown in Fig. 3, where we display time snapshots of N(t, r) for both resonant
and SHG regimes. In these simulations, cavity leakage is included via the oscillator baths,
whilst other sources of dissipation are still taken into account via an exponential attenuation
(g ′(t) = g f e−Γ t). In the resonant regime, the system is initially in its ground state |Ψ′′0 〉 and
the cavity mode is subsequently pumped. In this case, the molecule dissociates quite rapidly
when M = 40, irrespective of the presence of the bath. Conversely, for the larger mass, no
dissociation occurs in the simulation interval, and the atoms remain around the equilibrium
configuration with a broadened distribution N(t, r).

In the SHG regime, the system’s initial state is |Ψ′0〉 for both values of M . Here, the molecule
predominantly remains close to the equilibrium configuration at all times, especially when
leakage is added. That is, the tendency to delocalise is greater when only the exponential
damping is present, indicating that cavity leakage also plays a role. As shown next, the differ-
ent atomic dynamics affect the optical response in distinct ways.
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Figure 4: Time-dependent fluorescence for atomic masses M = 40 (a ,c) and
M = 8 × 104 (b, d). The time evolution was performed with the classical baths,
whilst the red curves show the long-time limit of P(t,ω) in the absence of leakage.
The bath parameters are the same for the bath of the incident field and the one of
the fluorescent field. They are NB= 1000 oscillators, with Ck = A(∆k)a, A= 0.005,
a = 0.6 and ∆ = 0.01. In all the calculations Γ = 0.02. (a,b) Resonant case, start-
ing from |Ψ′′0 〉 and pumping the cavity until and 〈b† b〉 ≈ 9, t1 =

6π
ω0

, t2 =
41π
ω0

,
gd = 0.151, gc = 0.03, g f = 0.01 and ω0 = 2.56. (c,d) SHG case, starting from
|Ψ′0〉 with β2 = 9, gc = 0.08, g f = 0.01 and ω0 = 1.28. The time-evolved plots are
magnified for visual clarity, and in all cases U = 1 and r0 = 1.156.

5 Molecular dissociation and optical response

Fig. 4 shows the fluorescence spectra for finite M , with all the elements previously discussed
(photon pumping speed, atomic dynamics and cavity leakage) at interplay. The spectra in
panels (a,b) and (c,d) respectively correspond to the atomic probabilities N(t, r) of Fig. 3a and
Fig. 3b. At resonance, the fluorescence spectrum strongly depends on the value of the atomic
mass: For M = 40 the molecule dissociates (see Fig. 3a) and P(t,ω) exhibits sharp features
as well as a plateau, in stark difference to the Mollow-like structure of the rigid molecule limit.
Conversely, for M = 8× 104, the molecule remains localized around the equilibrium position
(inset in Fig. 3a), and at long times P(t,ω) is peaked around the resonant value (ΩR = 2.56).
Overall, the shape of P(t,ω) with or without the bath dissipation show a mutual resemblance
at long times. However, for bath dissipation the intensity of P(t,ω) is considerably weaker.

A quite different picture emerges for SHG regime (Fig. 4c and d), where P(t,ω) is consid-
erably weaker in the case of an oscillator bath. Also, when the molecule dissociates (Fig. 4c),
the SHG signal is absent irrespective of the presence or not of the baths. Conversely, for larger
M , the SHG signal is present if the system evolves in contact with an oscillator bath, but with
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smaller intensity. This suggests that the multi-photon cavity field is much more affected by
dissipation under off-resonant conditions than at resonance.

In summary, in the dissociation regime both resonant Mollow and SHG signals are
quenched. Also, for dissipation via an oscillator bath, for a broad range of atomic mass values
fluorescence is always vastly reduced. Finally, even with no cavity leakage, the strength of the
SHG response is determined by the cavity pumping rate.

6 Conclusion

Many decades of nonlinear optics research gave us a robust conceptual understanding of SHG,
and actual uses in technology. Yet, some SHG regimes remain little explored, and how different
physical mechanisms and interactions contribute to fluorescence is not always understood. In
this work, we studied theoretically one of these (namely, the low photon) regimes, using a
model molecule in an optical cavity, and via an exact time-dependent configuration interaction
(TDCI) approach, where all quantum degrees of freedom (electrons, photons and relative
atomic motion) are included on equal footing and supplemented by a semi-classical treatment
of cavity dissipation/leakage.

Our study reveals a previously unknown, complex landscape for fluorescence, where the
latter is reduced by electronic interactions and by cavity leakage, enhanced by fast cavity
pumping, and quenched by molecular photodissociation. These competing trends likely occur
in real molecules as well; it should thus be possible to detect them in experiments at low photon
regimes. Our theoretical and computational framework can be applied and extended in differ-
ent ways, e.g.more realistic molecules, or cavities with more than one molecule. Other possi-
bilities are few ultracold bosons in cavities, to provide insight for SHG in the Gross-Pitaevskii
limit [48], or fermions in the (interacting) Dicke’s model, in conjunction with other techniques
that exhibit better size-scaling behavior than TDCI, e.g. nonequilibrium Green’s functions [49].
Some of these undertakings are under way.
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A Further details and additional results

A.1 Resonant frequency for the dimer molecule

To discuss the selection rules for light absorption, it suffices to consider a fixed molecule. The
relevant part of the molecule Hamiltonian in this case is

He = −V eq
e f f

∑

σ

�

ĉ†
1σ ĉ2σ + ĉ†

2σ ĉ1σ

�

+ U
∑

i=1,2

n̂i+n̂i− , (A.1)

where V eq
e f f > 0. The molecule-light interaction for the two photon modes is taken as

Ĥint(t) = M̂
�

gc(b† + b) + g ′(t)(b′† + b′)
�

, where M̂ =
∑

σ(c
†
bσcaσ + c†

aσcbσ). For two elec-
trons of opposite spin, He has three singlet eigenstates (S = Sz = 0) and one triplet eigenstate
(S = 1, Sz = 0). The eigenvalues are 0 for S = 1 and U , U/2∓

Ç

4(V eq
e f f )

2 + (U/2)2 for S = 0.

The ground state is the singlet with energy U/2−
Ç

4(V eq
e f f )

2 + (U/2)2, and it is even under
spatial parity. The eigenstates with odd symmetry under parity have energies 0 with S = 0
and U with S = 1.
It can be easily shown that optical transitions between the two even (E) many-body states
or between the two odd (O) many-body states are forbidden (e.g. 〈E1|M̂|E2〉 = 0), and
the only permitted transitions are between odd and even ones (i.e. with opposite par-
ity). Furthermore, using the matrix expressions above for M̂ and Ŝ2, one can show that
[M̂, Ŝ2] = 0. So the only transition allowed from the ground state is the even-odd one
where the system goes |g, S = 0〉 → |O, S = 0〉 and where the energy difference is
ΩR = EO,S=0− Eg,S=0 = U/2+

Ç

4(V eq
e f f )

2 + (U/2)2, which defines the“many-body” resonance
condition for the ω0 field in perturbation theory, similar to the two-level single-particle case.
More in general, for the multi-photon case of interest here, the bare electronic many-body lev-
els are renormalised by the photons, parity gets mixed up, and more transitions are possible
and, most importantly, the parity of the full electron+photon systems must be considered. In
the presence of nuclear dynamics, the values of the effective hopping parameter in the dimer
changes in time and so it does ΩR.

A.2 The interaction parameters

Before choosing the values for the parameters gc , g f and U used in the paper, we have per-
formed calculations to observe their effect on the spectra. A sample of the ensuing results
is reported in Fig. 5. Due to coupling between light and the molecule, the molecular levels
will split and the splitting energy is∝ gc [37]. Hence the regime of the emitted photon fre-
quency will be affected by the incident field coupling, as observed in Fig. 5. On increasing
gc , the fluorescent spectra get broadened, since this involves large range of frequencies for
the emitted photon. On the other hand, Increasing the coupling g f increases the intensity of
the fluorescent spectra. The electron interaction U hinders electronic hopping between the
two sites of the molecule. The emission of the fluorescent photon requires a transition among
bonding and the anti-bonding molecular levels, and thus it involves electron hopping between
the molecular sites. Accordingly, increasing the electron interaction decreases the intensity of
the emitted photon, as it can be observed in Fig. 5.

A.3 Pumping rate and resonant regime for a two-level system

In Fig. 6, we show P(ω) forω0 = ΩR for two driving speeds as well as for photons initially in a
coherent state. We observe similar trends as in the SHG regime discussed in Fig. 2, namely fast
pumping leads to closer agreement with the coherent state spectrum. Since photons interact
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Figure 5: Fluorescent spectra for the rigid molecule starting with a coherent state
with with β = 3, r0 = 1.156, Γ = 0.02, ΩR = 2.56 and ω0 = ΩR. Only for the
U = 3.0 case, it is ΩR =ω0 = 3.95 and r0 = 1.213.

with the TLS during the drive, the coherent and fast-drive spectra become increasingly similar
when the system-cavity interaction gc is decreased.

A.4 Cavity leakage via a Caldeira-Leggett bath: Some details

To introduce leakage in the cavity, we use ideas borrowed from the physics associated with
the Caldeira-Leggett model (CLM). As specified in Eq. (5) of the main text, we connect each
the two modes ω0 and ω to a bath of NB classical oscillators. In the following, however, to
provide details about the procedure, we consider for simplicity only one mode, say the ω0
incident mode. The case of the second (fluorescent) mode can be treated similarly.

The classical version of the CLM is defined as

H =
p̃2

2µ
+ V (x) +

NB
∑

k=1

�

p2
k

2mk
+

1
2

mkω
2
k

�

xk −
Ck

mkω
2
k

x

�2�

, (A.2)

where p̃2/2µ+V (x) is the system (particle) Hamiltonian and the bath degrees of freedom are
represented by the 2NB-tuple {xk, pk}. The oscillators have masses and frequencies {mk,ωk},
and the coefficient {Ck} determine the interaction between the particle and the bath. The form
of the interaction term is chosen in this way to ensure translational invariance of the model in
some specific situations [45].The solution of Eq. (A.2) can be written as

µ ẍ(t) +
dV
d x
+µ

∫ t

t0

γ(t − t ′) ẋ(t ′)d t ′ = −µγ(t − t0)x(t0) + FL(t) , (A.3)

where γ(t) determines the dissipative features of the bath (for example, for γ(t) → γ0δ(t),
we have a standard friction term), and FL(t) is a noise-like, oscillating force coming from the
bath degrees of freedom. In the continuum-bath limit, γ takes the form

γ(t) =
2
π

∫

J(ω)
µ ω

cosωt dω , (A.4)
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Figure 6: Long-time limit of the fluorescence spectra for a two-level system in the
resonant regime and in a pumped cavity. Panel a): Pumping with t1 = 6π/ω0 and
t2 = 31π/ω0. With reference to the values of gc in increasing order in figure, the
corresponding used values of gd respectively are 0.212, 0.218, 0.224, and 0.232.
Panel b): Pumping with ts = π/ω0 and gd = 5.150 for all gc cases. For both a) and
b) panels, the pumping is applied until




b† b
�

≈ 16.0 in the cavity and the initial state
is |Ψ′′0 〉. Reference results starting the time evolution from an initial coherent |Ψ′0〉
state with



b† b
�

= 16.0 but without pumping are also shown (c). Spectral intensities
are in arbitrary units, and parameters common to all panels are g f = 0.01, Γ = 0.02
and ω0 = ΩR = 2.0.

where J(ω) = π
2

∑NB
k=1

C2
k

mkωk
δ(ω −ωk) is the spectral density of the bath (here, and in the

rest of this section, ω is the variable Fourier-conjugated to t). Often, in practice, one takes
J(ω) ∝ ωα in an interval range [0,ωc], and zero otherwise. To describe the leaking from
the cavity, we adopt a modified form of the CLM, where the photon modes are in the second
quantisation picture, the masses µ = mk = 1, and we neglect the zero energy of the photon
modes. Specialising to the mode ω0, this gives

Ĥ1mode(t) =

�

ω0 +
NB
∑

k=1

C2
k

ω2
k

�

b† b+
NB
∑

k=1

�

p2
k

2
+

1
2
ω2

k x2
k

�

−
NB
∑

k=1

Ck xk(b
† + b)

+

� NB
∑

k=1

C2
k

ω2
k

�

(b†)2 + b2

2
+ Ĥmol + Vext(t) +M̂gc(b

† + b) , (A.5)

where M̂ describes the electronic transitions. In this case, with C̃k = (2ω0)
1
2 Ck, we have

J(ω) = π
2

∑NB
k=1

C̃2
kδ(ω−ωk)

mkωk
. To choose the set {C̃k}, we consider that, for a very large frequency

ωMax , we get
∫ωMax

0 J(ω)dω =
∑NB

k=1
C̃2

k
ωk

. By approximating the integral with a discrete sum
with frequency step ∆,

NB
∑

k=1

C̃2
k

ωk
=

∫ ωMax

0

J(ω)dω≈
NB
∑

k=1

J(ωk)∆ , (A.6)

and thus
C̃2

k
ωk
≈ J(ωk)∆. In turn, this amounts to say that [45,46]

C2
k

ωk
(2ω)≈ J(ωk)∆⇒ Ck ≈

Æ

J(ωk)ωk . (A.7)

The actual dynamics is performed according to the quantum-classical (Ehrenfest’s) approxi-
mation, where the molecule+boson (m+b) system is quantum and the bath is classical. The
equations of motion then are:

i
d|ψm+b(t)〉

d t
= H̃ ({xk(t)}) |ψm+b(t)〉 , (A.8)

ẍk(t) = −ω2
k xk(t) + Ck(t)〈b† + b〉t , (A.9)

ẋk = pk , (A.10)
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where

H̃({xk(t)}, t) =

�

ω0 +
NB
∑

k=1

C2
k

ω2
k

�

b† b− (b† + b)
NB
∑

k=1

Ck xk(t) +

� NB
∑

k=1

C2
k

ω2
k

�

(b†)2 + b2

2
(A.11)

+ Ĥmol + Vext(t) +M̂gc(b
† + b) .

The Schrödinger equation (A.8) is solved as usual while for the bath fields we use the coordi-
nate Verlet algorithm. In the actual calculations, the parameters were chosen such asωk =∆k
and Ck∝ ka. As it can be gathered from the foregoing discussion, the case of the fluorescent
field in the presence of a bath can be treated similarly. The system of equations for the full
system thus is

i
d|ψm+b(t)〉

d t
= H̃({xk(t)}, {x ′l(t)}, t)|ψm+b(t)〉 , (A.12)

ẍk(t) = −ω2
k xk(t) + Ck(t)〈b† + b〉t , ẋk = pk , (A.13)

ẍ ′ l(t) = −ω2
l x ′l(t) + Cl(t)〈b′† + b′〉t , ẋ ′ l = p′l , (A.14)

where

H̃
�

{xk(t)}, {x ′l(t)}, t
�

=

�

ω0 +
NB
∑

k=1

C2
k

ω2
k

�

b† b− (b† + b)
NB
∑

k=1

Ck xk(t) +

� NB
∑

k=1

C2
k

ω2
k

�

(b†)2 + b2

2

+

�

ω+
NB
∑

l=1

C2
l

ω2
l

�

b′† b′ − (b′† + b′)
NB
∑

l=1

Cl x
′
l(t) +

� NB
∑

l=1

C2
l

ω2
l

�

(b′†)2 + b′2

2

+ Ĥmol + Vext(t) +M̂
�

gc(b
† + b) + g ′(t)(b′† + b′)

�

. (A.15)

A.5 Frequency renormalization by the bath(s)

As seen in Appendix A.4, in the presence of baths the frequenciesω0,ω become renormalized,
and an additional interaction contribution of the kind (b†)2 + b2 appears. The origin of these
changes is easily understood looking at the classical CLM in Eq. (A.2): they are due to the

contribution 1
2

∑

k
C2

k

mkω
2
k
x2, that in the quantum case behaves like ≈ (b† + b)2. As mentioned

earlier, such term is present to ensure that the particle-bath interaction is translationally invari-
ant, e.g. when Ck = mkω

2
k or when a coordinate transformation is performed. However, for

the system considered here, this is a non issue: a (finite) cavity breaks translational invariance.
However, since it is customary in the literature to consider the CLM as in Eq. (A.2), we wish to
discuss here the role of this term for our molecule+cavity system. Similarly to Appendix A.4,
we will carry out our analysis in terms of the ω0 mode only.

Let us to write again H1mode from Eq. (A.5), but more concisely:

Ĥ1mode(t) = (ω0 + A)b† b+ A
(b†)2 + b2

2
(A.16)

+M̂gc(b
† + b)−

NB
∑

k=1

Ck xk(b
† + b) + Ĥmol + Ĥbath + Vext(t) , (A.17)

where A=
∑

k
C2

k

ω2
k
, and Hbath =
∑NB

k=1

� p2
k

2 +
1
2ω

2
k x2

k

�

. Clearly, setting A= 0 in this expression is

an approximation (it forces the removal of the quadratic terms). We also wish at this point to
make explicit the form external potential:

Vext(t) = gd f (t) sin(ω′′ t)(b† + b)≡ gω
′′

d (t)(b
† + b) . (A.18)
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This is the same as in the paper, but with the notable difference that the frequencyω′′ is left un-
specified (in the paper, ω′ =ω0 always). We can now proceed to a Bogolubov transformation
�

b
b†

�

=

�

u v
v u

��

d
d†

�

of the terms of the first line of Eq. A.17, and rewrite

(ω0 + A)b† b+ (A/2)
�

(b†)2 + b2
�

→ Ωd†d , where u/v = [
Æ

ω0/Ω+/−
Æ

Ω/ω0]/2 ,

and Ω= (ω2
0 + 2ω0A)

1
2 . Extending the transformation to the other terms of Ĥ1mode, we finally

arrive at

Ĥ1mode = Ωd†d +
s

ω0

Ω

�

gcM̂−
NB
∑

k=1

Ck xk + gω
′′

d (t)
�

(d† + d) + Ĥmol + Ĥbath , (A.19)

where we used Eq. (A.18) for Vext(t), and where some constant term have been dropped. As
shown in Appendix A.4 in a related context, the manipulations done here apply straightfor-
wardly to the fluorescent mode.

As a final point, and specifically considering the incident mode, we observe that if in
Eq. (A.19) we set ω′′ = ω0, we then go back to the slightly-off-resonance case studied in
the paper, but described in another, exact, representation (we have verified numerically that
this is the case).

However, if we imagine that Vext(t) describes a laser with a tuneable frequency, we see that
at ω′′ = Ω, we are again in resonance with a cavity with an effective frequency renormalised
by the bath(s), which should reflect as usual into an enhancement of the signal. Quite inter-
estingly, both at- and away-from-resonance the problem can be described with a CLM bath
without a quadratic term in (d† + d)2, i.e. the translational invariance requirement does not
play explicitly a role.
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