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Abstract

We revisit the exact thermodynamic description of the classical sine-Gordon field theory,
a well-known integrable model. We found that existing results in the literature based on
the soliton-gas picture did not correctly take into account light, but extended, solitons
and thus led to incorrect results. This issue is regularized upon requantization: we derive
the correct thermodynamics by taking the semiclassical limit of the quantum model. Our
results are then extended to transport settings by means of Generalized Hydrodynamics.
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1 Introduction

The sine-Gordon model is a one-dimensional relativistic field theory appearing in various con-
texts. For example, it describes the low energy physics of a plethora of systems, ranging from
spin chains [1–4], spinful atoms [5], arrays of Josephson’s junctions [6, 7], certain quantum
circuits [8, 9] and weakly tunneled-coupled quasicondensates [10–15]. Its ubiquity is closely
related to the vast applicability of bosonization [5,16], since sine-Gordon can be regarded as
one of the most natural massive perturbations of a gapless Luttinger-Liquid. Consequently, this
model is well known and widely studied by a broad community, both numerically and analyt-
ically: one of the salient features of this field theory is its integrability [17–19], which allows
for a variety of analytic results on the one hand, and guarantees atypical thermalization [20]
and transport [21,22] on the other.

The versatility of sine-Gordon is further reflected in the multitude of angles from which it
has been analysed, that closely follow the development of new experimental platforms. For
example, deep mathematical questions in partial differential equations (PDEs) greatly fueled
the development of the inverse scattering method for integrable differential equations [18,19],
a category to which the classical sine-Gordon model belongs to. With the experimental pro-
gresses in manipulating quantum matter, the general interest shifted to explore the quantum
integrability of sine-Gordon, first at the level of the few-body problem by determining the exact
spectrum and scattering processes [23], then undertaking the ambitious form-factor bootstrap
program to determine observables’ matrix elements on scattering states [17]. In the mean-
while, numerical studies mimicking plausible experimental setups [11, 15] and new factual
experiments [24–27] showed that the sine-Gordon mass spectrum and form factors can be
realized with great accuracy.

These last achievements fall under the umbrella of few-body excitations, but new advances
in quantum simulators [28] are responsible for a further shift in focus: how to describe macro-
scopically excited states, both in and out of equilibrium?

While we have so far kept the quantum and classical sine-Gordon models on roughly the
same footing, this last question represents a historical bifurcation between the two: at the
quantum level, finite-temperature thermal states can be exactly characterized by means of
the Thermodynamic Bethe Ansatz (TBA) [29–31]. These general ideas can also be applied
to out-of-equilibrium sudden quantum quenches [32, 33] and, more recently, to study trans-
port within the framework of Generalized Hydrodynamics [22,34,35]. In contrast, a parallel
development in the classical realm stands on far more shaking foundations.

Before embarking on a more detailed discussion and substantiating our last assertion, we
wish to put forward the main goal of our work: in this paper, we study the thermodynamics and
hydrodynamic transport of the classical sine-Gordon model. Our motivations are multifaceted:
while many works have been devoted to study the classical sine-Gordon thermodynamics with
a variety of approaches [36–41], all of them led to inconsistent results [42] for a very good
reason that will be clarified later on. Therefore, our work solves the long-standing problem of
deriving the exact thermodynamics of the classical sine-Gordon field theory.
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On a more pragmatic level, experimental realizations of sine-Gordon are often close to
the classical limit. This is for example the case, when sine-Gordon emerges as the low-energy
description of tunnel-coupled and weakly-interacting quasicondensates [10,11]: in the regime
of a large number of atoms and weak interactions commonly realized in experiments [12],
semiclassical methods account well for experimental observations. Therefore, our findings are
relevant for experimental applications.

Lastly, our results will serve as a stepping stone for future progresses in the quantum
realm as well: with the fast development of new experimental techniques, the realization
of a versatile sine-Gordon simulator deep into the quantum regime can be foreseen in the
near future [15, 43]. This calls for new theoretical advances able to keep the pace with the
experimental progress: here, Generalized Hydrodynamics is a prominent candidate for taking
on this ambitious challenge [44–47], but its application to sine-Gordon is largely untapped.
So far, only transport in clean and homogeneous settings has been considered [48], but tak-
ing into account inhomogeneities present in realistic experimental setups represents a chal-
lenge on a whole new level [49–51]. In this perspective, developing first the Generalized
Hydrodynamics of the classical sine-Gordon suitable for experimental configurations will be
an irreplaceable laboratory to benchmark hydrodynamic ideas against ab-initio Monte Carlo
simulations [52, 53], serving as a backbone for future Generalized Hydrodynamics results of
the quantum model beyond reach of numerical checks. The present work is the first step in
this long term program.

Our paper is structured as follows: We begin by introducing the classical sine-Gordon
model in Section 2. We will comment on the previous strategies in the derivation of its exact
thermodynamics, their inconsistencies and pitfalls. We will identify the presence of extended
solitons with arbitrary small mass as the problem at the common root of these methods (see
also Refs. [54, 55] for related considerations). The crucial point comes from the coalescence
of two competing effects: on the one hand, light excitations are highly excited at any finite
temperature. On the other hand, any arbitrary large, yet finite, volume poses a cutoff on the
maximum width of the allowed solitons.

A correct derivation of the thermodynamics requires a regularization of these extended
modes: while a solution of this riddle by means of purely classical considerations is highly de-
sirable, it is still beyond our current understanding. To circumvent this issue, we take another
route: in Section 3 we derive the classical thermodynamics by taking the semiclassical limit of
the quantum model. While it may seem a complicated detour, quantization introduces a finite
mass gap in the model and cures the aforementioned problem. Our final result shows that
the sine-Gordon thermodynamics is fully describable by a collection of soliton-like excitations
with a renormalized statistics. We wish to point out that we have identified a similar feature
in a previous investigation on nonequilibrium states in the attractive Non-Linear-Schrödinger
equation (NLS) [55]. The validity of our finding is supported by an analytic analysis of the
low-temperature regime, which was not correctly captured by previous methods, and by com-
parison with ab-initio numerical simulations for arbitrary temperatures and couplings. After
having dealt with equilibrium thermodynamics, in Section 4 we revert to nonequilibrium set-
tings. In particular, we use Generalized Hydrodynamics to study partitioning protocols [56]
and observe transport: the agreement with numerical data is excellent. We gather our con-
clusions in Section 5 and provide an outlook on future directions stemming from our present
findings. Some appendices discussing more technical aspects follow.
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2 The classical sine-Gordon model

The sine-Gordon model is a one-dimensional relativistic field theory governed by the following
Hamiltonian

H =

∫

dx
1
2

c2Π2 +
1
2
(∂xφ)

2 +
m2c2

g2
(1− cos (gφ)) . (1)

H can be interpreted both on classical or quantum grounds. The only difference is in regarding
the conjugated fieldsφ andΠ either as classical fields, thus obeying canonical Poisson brackets
{φ(x),Π(y)} = δ(x − y), or as operators with canonical commutators. Within this section,
we focus solely on the classical case, while in Section 3 we will take a short detour into the
quantum world. Above, c is the light velocity, m the bare mass scale and g sets the interaction
strength. In the classical case, all these quantities can be set to unity by a proper renormal-
ization of fields, distances and overall energy scale. Nonetheless, we retain these couplings
explicitly in view of the forthcoming semiclassical limit.

We begin with characterizing the excitations’ content of the model [19, 57]. As it is self-
evident from the periodic cosine potential, the sine-Gordon model has infinitely many degen-
erate ground states, or vacua, φ(x) = 2πn/g with n ∈ Z. This degeneracy allows for the
presence of topological excitations interpolating between neighboring vacua: these are called
kinks or antikinks depending on whether the phase grows or drops as x is increased. The
spatial profile of a soliton at rest is easily obtained by solving the classical equation of motion
with unbalanced boundary conditions, resulting in [57] φK(x) =

4
g arctan(e−mcx)+2π/g. The

soliton configuration can be translated and set in motion by using relativistic invariance and
boosting the spatial coordinate φK(x) → φK ,θ (t, x − x0) = φK(coshθ (x − x0) − sinhθ c t),
where θ is the rapidity and x0 the soliton position at t = 0. The antikink configuration is
simply the reflected profile φK̄ ,θ (t, x) = −φK ,θ (t, x).

Since the kink’s field configuration departs from the ground state, its energy is finite. In
particular, as it is easy to check from the explicit solution φK , kinks behave as relativistic
particles with dispersion εK(θ ) = Mc2 coshθ where the soliton mass is

M =
8m
cg2

. (2)

The presence of topological excitations is a feature that is shared with many other non-
integrable models, for example the φ4−field theory in a double well. In contrast, the pecu-
liarity of sine-Gordon as an integrable field theory is manifested in the scattering events: due
to the presence of infinitely many conservation laws, scattering is largely constrained and is
non-diffractive [23]. Indeed, exact solutions to the equation of motion describing multi-kink
states can be explicitly built through the inverse scattering method [18, 19]. For example, a
two-soliton solution can be found [57] as

φK ,K̄(t, x) = −
4
g

arctan

�

sinh(mc2 t sinhθ )
tanhθ cosh(mcx coshθ )

�

. (3)

Notably, one has the limiting cases (assuming θ > 0)

φK ,K̄(t, x) =

(

φK ,θ

�

t, x − ϕ(2θ )
2Mc coshθ

�

+φK̄ ,−θ

�

t, x + ϕ(2θ )
2Mc coshθ

�

, t →−∞ ,

φK ,θ

�

t, x + ϕ(2θ )
2Mc coshθ

�

+φK̄ ,−θ

�

t, x − ϕ(2θ )
2Mc coshθ

�

− 2π/g , t → +∞ .
(4)

Hence, Eq. (3) describes the scattering event of an incoming kink-antikink pair. Thanks to in-
tegrability, the scattering is completely elastic and the kink passes through the antikink without
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transferring energy to other modes. The effect of interactions manifests in what is called a time
delay or trajectory shift of the solitons after scattering quantified by the classical scattering shift

ϕ(θ ) =
8

cg2
log

�

coshθ + 1
coshθ − 1

�

. (5)

Similarly, the kink-kink scattering shift can be derived and is identical to the kink-antikink
one. Kinks and antikinks alone do not exhaust all the possible excitations: together with
topologically-charged quasiparticles, neutral excitations are also present. These are called
breathers and are parametrized by a real spectral parameter σ ∈ [0, 1]. Breathers can be seen
as kink-antikink boundstates: indeed, the kink-antikink scattering state (3) can be analytically
continued to imaginary rapidities θ → i π2 (1−σ) and still remains a solution of the equation of
motion, even though it completely changes its character. After analytic continuation, the field
configuration remains localized around x = 0 with a width ℓbreather ∼ 2/[mc cos(π2 (1−σ))],
but retains a non-trivial time dependence with a pulsating motion: this is a breather at rest.
The rest energy of the new particle is readily obtained by analytic continuation of the two
kinks energy 2Mc2 cosh(θ )→ 2Mc2 sin(π2σ). One therefore finds the breather masses as

mσ = 2M sin
�π

2
σ
�

. (6)

Of course, similarly to solitons, breathers can be set in motion by a Lorentzian boost and they
are found to obey a relativistic dispersion law. After having identified these new excitations,
the next task is to find their scattering properties. Fortunately, no new calculations are needed
and the breather-kink and breather-breather scattering shifts can be derived from Eq. (5)
through analytic continuation. First, one builds on the fact that, thanks to integrability, the
scattering shifts of multi-particles behave additively [29]. For example, a kink with rapidity
θ that collides with a kink and antikink of rapidities θa and θb experiences a phase shift
ϕ(θ −θa)+ϕ(θ −θb). Then, the scattering shift of a kink with rapidity θ and a breather with
rapidity θ ′ is obtained by analytically continuing θa→ θ ′+ i π4 (1−σ) and θb→ θ ′− i π4 (1−σ).
Similarly, the breather-breather scattering shift is also computed

ϕσ,σ′(θ ) =
16
cg2

log
�

[cosh(θ )− cos((σ+σ′)π/2)][cosh(θ ) + cos((σ−σ′)π/2)]
[cosh(θ )− cos((σ−σ′)π/2)][cosh(θ ) + cos((σ+σ′)π/2)]

�

. (7)

Consistently, it holds that limσ′→1ϕσ,σ′(θ ) = 2ϕσ(θ ) and limσ→1ϕσ(θ ) = 2ϕ(θ ), where
ϕσ(θ ) is the breather-kink scattering shift. Notice the simple normalization (see Appendix A)

∫

dθ ϕσ,σ′(θ ) =
32π2

cg2
min(σ,σ′) . (8)

One could wonder if kinks, antikinks and breathers are a complete set of excitations for
sine-Gordon: an inverse scattering analysis on the infinite system shows that these are the
only possible excitations of solitonic type [19], but it still leaves room for dispersive radiative
modes. A priori, it is unclear if and how these modes should be taken into account. Slightly
anticipating on the content of Section 3, we found that radiative modes do not contribute to the
thermodynamic description of sine-Gordon as new entities distinct from solitons. In contrast,
radiation can be viewed as a condensation of light breathers, as shown later by studying the
low temperature regime.

2.1 Classical methods for thermodynamics and the large-solitons problem

Before moving to the core of our paper, we briefly overview the different approaches to the
sine-Gordon’s thermodynamics and their difficulties, identifying the common plague to these
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methods and outlining our strategy. We do not aim to give a comprehensive overview, but
rather only point out some key observations: for a more extensive discussion, the reader can
refer to the cited literature.

As we have already outlined, the first puzzle consists of identifying which are the relevant
excitations for macroscopically excited (e.g. thermal) states: an inverse scattering analysis
on the infinite system points at two radically different modes [19], namely solitons and ra-
diation. On the one hand, non-dispersive solitonic modes are expected to obey a Maxwell-
Boltzmann’s type of statistics, similarly to other classical PDEs such as the Korteweg-De Vries
(KdV) PDE [58]. In contrast, radiation should obey a Rayleigh-Jeans distribution, as it has
been shown in classical PDEs with only radiative modes, such as sinh-Gordon [59, 60] or the
defocusing Non-Linear-Schrödinger equation [61]. If, and how, these modes contribute to ther-
modynamics remained unclear so far. The story gets even more complicated if one attempts to
take the thermodynamic limit rigorously: in the inverse scattering at finite volume, excitations
are “quantized” through the complicated inverse gap solution of the transfer matrix [62, 63]
(reminiscent of the finite-volume Bethe-Ansatz equations of quantum systems [29]), and fur-
thermore, there is no clear distinction between solitons and radiation anymore. In contrast,
all excitations seem to have a solitonic flavor at finite volume: up to our knowledge, the ef-
fect of taking the thermodynamic limit has not been well-understood. Some simplifications
can be made by neglecting the fine structure of the finite gap solutions and approximating
them in a coarse-grained manner by taking a continuum limit. Within this framework, the
interaction-renormalized phase space density of models with a single excitation species can
be recovered. See for example the sinh-Gordon model where only a radiative mode [59] is
present. However, one may wonder if this approach can be replicated for models with more
particle species or bound states thereof: in analogy with the string-charge duality of quantum
models [64], higher-rank representation of the transfer matrix may be needed. At the best of
our knowledge, the fulfillment of this program remains an open challenge in sine-Gordon.

An attempt to circumvent these technical bottlenecks has been made through more phe-
nomenological approaches, primarily within the soliton-gas picture [63,65–67]. In this frame-
work, one builds the thermodynamics of a gas of particles (the solitons) where interactions are
kept into account by giving particles an effective finite length, matched with the soliton-soliton
scattering shift. Radiation is entirely neglected. Soliton gases give quantitatively correct re-
sults for other solitonic models, such as KdV [35, 63], but fails for sine-Gordon. Indeed, the
so-derived thermodynamics lacks the correct low-temperature limit [42], where sine-Gordon
must be well approximated by the non-interacting massive Klein-Gordon model. In passing, we
stress that low temperatures excite only long wavelengths and, in contrast with sine-Gordon,
the Klein-Gordon model features only radiation. Actually, both attempts made through the
inverse scattering and the soliton-gas picture led to the same, albeit incorrect, set of integral
equations describing the thermal states. We do not report them here, but they will be discussed
once we have derived our result.

It should be apparent by now that both these methods are problematic when the system is
put in a finite volume of size L and eventually taking L→∞, while retaining a finite excitation
density. Within the soliton-gas picture, the problem is clear: in the infinite volume we find
breathers whose mass and size are decided by the spectral parameter σ. As σ approaches
zero, their mass (6) vanishes and are therefore likely to be excited by thermal fluctuations.
One can expect these modes to be more and more relevant for σ → 0. On the other hand,
their spatial extension grows and any finite volume will act as a cutoff on the allowed breather
ℓbreather < L, as we depict in Fig. 1. While the problem is clear, its solution is not evident and
how to include the proper regularization in the soliton-gas picture remains elusive for us.

Therefore, we will now take a different route and use the quantum sine-Gordon and its
thermodynamics as a starting point. As we will see, in the quantum model the breathers’
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Figure 1: Pictorial representation of the soliton gas picture and the role of ex-
tended solitons. Left: In the classical field theory, breathers with arbitrary large ex-
tent exist, but on the other hand they cannot be placed in a finite, albeit large, volume
L. Right: in the quantum sine-Gordon model, the spectral parameter is quantized
∼ ħh, putting a maximum cap on the soliton extension, thus acting as a regulator.

spectral parameter is quantized in units of ħh, acting as a cutoff on the maximum size of the
breathers. Hence, by taking first the thermodynamic limit and only then the semiclassical
limit, we arrive to the correct result.

3 From the quantum to the classical thermodynamics

Semiclassical methods date back to the birth of quantum mechanics in a variety of contexts.
Covering a comprehensive overview is impossible, neither the focus of our investigation, there-
fore we limit ourselves to their applications to integrability. The underlying idea is that, some-
times, the thermodynamics of a quantum model can be better controlled than the one of its
classical counterpart. Therefore, one uses quantum physics to shed new light on the classical
world, going upstream to the usual common sense. Semiclassical limits of integrable models
appeared quite early in the literature: curiously, these ideas have been applied to the very
sine-Gordon model [39,42], but an overlooked subtlety in accounting for the entropy of states
led to incorrect results, equivalent with the soliton-gas picture. To the best of our knowledge,
semiclassical limits of thermodynamics have been more recently brought to the forefront in
Ref. [59], finding a fertile terrain due to the uprising interest in nonequilibrium many-body
physics. Shortly after, these ideas have been extended to sudden quenches [61] and then
fused with Generalized Hydrodynamics to tackle nonequilibrium protocols in several mod-
els [55,60, 68]. Before turning to examining sine-Gordon with this rich toolbox, we recollect
some basic notions of the quantum model.

The quantum sine-Gordon — Replacing classical fields with operators in the sine-Gordon
Hamiltonian has far-reaching consequences. Here, we only focus on the main ingredients
needed for our purposes. The interested reader can refer to Ref. [57] and references therein. As
mentioned before, the quantum Hamiltonian is the same as the classical one (1), provided the
fields are promoted to operators. For later convenience, we redefine the quantum interaction

as g → gq. The quantum model is best discussed in terms of the coupling ξ=
cg2

q
8π

�

1−
cg2

q
8π

�−1

,

which determines the excitations’ spectrum of the theory. For ξ > 1 the only excitations are
kinks and anti-kinks: their mass is heavily renormalized by quantum effects with respect to
the classical result (2) M → Mq and has been computed in Ref. [69]. For smaller couplings ξ,
breathers appear in the spectrum with quantized masses

mq;n = 2Mq sin
�π

2
nξ
�

, n= 1, 2, ..., N , N = ⌈ξ−1⌉ . (9)

The other main ingredient we need is the scattering matrix, which has been exactly computed
in Ref. [23]. When two breathers meet, their scattering is purely transmissive, but they accu-
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mulate a non-trivial phase due to interactions as

Sn,m(θ ) =
sinhθ + i sin((n+m)πξ/2)
sinhθ − i sin((n+m)πξ/2)

sinhθ + i sin(|n−m|πξ/2)
sinhθ − i sin(|n−m|πξ/2)

(10)

×
min(n,m)−1
∏

k=1

sin2 ((|n−m|+ 2k)πξ/4− iθ/2)
sin2 ((|n−m|+ 2k)πξ/4+ iθ/2)

cos2 ((m+ n− 2k)πξ/4+ iθ/2)
cos2 ((m+ n− 2k)πξ/4− iθ/2)

.

Similarly, kinks are transmitted through breathers with a phase Sn(θ )

Sn(θ ) =
sinhθ + i cos(nπξ/2)
sinhθ − i cos(nπξ/2)

n−1
∏

k=1

sin2 ((n− 2k)πξ/4−π/4+ iθ/2)
sin2 ((n− 2k)πξ/4−π/4− iθ/2)

. (11)

When it comes to kinks, the scattering processes become more complicated.
While kink-kink and antikink-antikink scattering is transmissive with scattering matrix
S(θ ) = −exp

�

−i
∫∞

0
dt
t

sinh(πt(1−ξ)/2)
sinh(πξt/2) cosh(πt/2) sin(θ t)

�

, the scattering of kinks with antikinks has
a more quantum mechanical flavor and they can be either transmitted (as in the classical case)
or reflected, with amplitudes that are respectively

ST (θ ) =
sinh(ξ−1θ )

sinh((iπ− θ )ξ−1)
S(θ ) , SR(θ ) = i

sin(πξ−1)
sinh((iπ− θ )ξ−1)

S(θ ) . (12)

Armed with the knowledge of the quantum model, we will now turn to the semiclassical
limit.

3.1 Taking the semiclassical limit

The semiclassical limit is attained in the regime of high occupation number and weak inter-
actions. The proper scaling can be pinned down just by looking at the partition function (or
the propagator) in a path integral formalism, without even referring to integrability. We will
not repeat these passages since they have already been extensively discussed in the literature,
see e.g. Refs. [59, 61], and simply quote the sought scaling. For the sake of convenience, we
take the limit by introducing a fictitious Planck constant ħh which will be later sent to zero. The
limit is then obtained by simultaneously rescaling

gq =
p

ħhg , 〈Qq〉=
1
ħh
〈Q〉 . (13)

Above, Qq and Q are meant to be any conserved charge of the quantum and classical model,
respectively. While the scaling of conserved charges is crucial in analyzing thermodynamic
properties, the scaling of the interactions is already enough to tackle the few-body sector.

The scaling of the spectrum and scattering data — As a propaedeutical analysis, we begin
by analyzing the particle spectrum and scattering properties. The fist oddity the quantum
model exhibits in comparison with the classical one, is the fact that kink-antikink scattering
can both be transmissive or reflective. However, in the semiclassical limit ξ ∝ ħh → 0, it is
immediate to realize that only transmission is possible by taking the ratio between the reflected
and transmitted amplitudes: Indeed, in this limit limħh→0 SR(θ )/ST (θ ) = 0. We notice that, also
far from the semiclassical regime, there are special values of the interactions where scattering
is purely transmissive. This happens at the so called reflectionless points, whenever ξ−1 ∈ N:
since in the semiclassical limit the reflective component of the scattering matrix vanishes,
the semiclassical limit can be taken moving through reflectionless points. From the technical
point of view, this is a major gain and allows to avoid dealing with technicalities present at
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generic interactions [30,31,70,71] and resulting in nested Bethe Ansatz, which will be anyway
unimportant in the classical limit. Due to the lack of reflection, quantum (anti)kinks behave
as their classical counterparts, provided we show that the quantum scattering shift matches
the classical one. We postpone this point after we have analyzed the breather spectrum. The
mapping from the quantum breather index and the classical spectral parameter is

σ↔ nξ≃
nħh

smax
, smax ≡

8π
cg2

, (14)

where we kept only the leading order in ħh. Above, we defined the parameter smax that has
the interpretation of being the maximum number of breathers (divided by ħh−1) sine-Gordon
would have upon requantization. With this identification the quantum mass law (9) starts
resembling the classical one (6) provided the soliton mass scales correctly. At small couplings,
the exact quantum kink mass [69] has the same form as the classical result (2), but with the
quantum interaction gq in place of the classical one g. Therefore, by plugging ħh in, we establish
the identification Mq = ħh−1M , which results in the same scaling for the breather masses. The
ħh−divergence of the overall mass scale is not a fluke of our mapping, but it will be crucial to
achieve the correct scaling of the conserved quantities (13). When two quantum wave packets
scatter, they experience a Wigner phase shift dictated by the scattering phase [47, 72]: the
quantum scattering shift is readily extracted from the logarithmic derivative of the scattering
matrix. More precisely, for the breathers’ scattering one has ϕq;n,n′(θ ) = i∂θ log Sn,n′(θ ): in
the semiclassical limit, we must recover the classical scattering shift. This can be easily done
from Eq. (10), after having taken the logarithm and the rapidity derivative, by replacing the
sum with an integral according to Eq.(14). We leave the details of the calculation to Appendix
A, where we find

ϕσ,σ′(θ )≃ ħhϕq;n,n′ , ϕσ(θ )≃ ħhϕq;n , ϕ(θ )≃ ħhϕq . (15)

Here, σ(σ′) is linked to n(n′) through Eq. (14). With these building blocks, we now move to
the thermodynamic limit.

The scaling of the excitations’ densities and phase-space — When an extensive number of
excitations is present in the system, macrostates can be described in terms of a quasiparticle
distribution. Therefore, in the classical model one introduces the so-called root densitiesρK(θ )
and ρK̄(θ ) describing the density of kinks and antikinks respectively, and ρσ(θ ) to account for
the breathers. Similar quantities are introduced in the quantum world within the framework
of Thermodynamic Bethe Ansatz [29] and describe both equilibrium states, and more general
non-equilibrium steady states in the form of Generalized Gibbs Ensembles [20]. As anticipated,
in view of the semiclassical limit we can focus on the reflectionless points of the quantum sine-
Gordon, which is described by diagonal Thermodynamic Bethe Ansatz and characterized by
roots densities for kinks and antikinks, ρq;K(θ ) and ρq;K̄(θ ) respectively, and a root density
for the breathers ρq;n(θ ) [29, 30, 57]. We now use the scaling of the charges (13) to infer
the correspondence of root densities. Due to locality, conserved charges act additively on
quasiparticles leading to the expression

L−1〈Qq〉=
∫

dθ {qq;K(θ )ρq;K(θ ) + qq;K̄(θ )ρq;K̄(θ )}+
∑

n

∫

dθ qq;n(θ )ρq;n(θ ) . (16)

Above, q(θ ) is called the charge eigenvalue and, similarly to the scattering shift and
the energy, the charge eigenvalues of the breathers are obtained by analytic continuation
qq;n(θ ) = qq;K

�

θ + i π4 (1− nξ)
�

+ qq;K̄

�

θ − i π4 (1− nξ)
�

. In particular, sine-Gordon is known to
have conserved charges for all odd values of spin s of the form qq;K(θ ) = qq;K̄(θ ) = Mqc2esθ
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[57]: by setting s = ±1, for example, one recovers linear combinations of energy and momen-
tum.

The divergence of the overall quantum mass scale Mq∝ ħh−1 is crucial in the proper limit:
Eq. (16) converges to the classical expression if we set

ρK(θ ) = lim
ħh→0
ρq;K(θ ) , ρσ(θ ) = lim

ħh→0
ħh−1ρq;n(θ )

�

�

�

σ=nħh/smax

. (17)

Therefore, from Eq. (16) we obtain

L−1〈Q〉=
∫

dθ {qK(θ )ρK(θ ) + qK̄(θ )ρK̄(θ )}+
∫ 1

0

dσsmax

∫

dθ qσ(θ )ρσ(θ ) , (18)

where for the odd-spin classical charges we have qK(θ ) = qK̄(θ ) = Mc2esθ and
qσ(θ ) = qK(θ+i π4 (1−σ))+qK̄(θ−i π4 (1−σ)). In principle, the integration measure smax could
be absorbed in a redefinition of ρσ, but we prefer to keep it explicit. Besides conservation laws,
another key ingredient in describing thermodynamics is the total phase-space density ρ t : in
the quantum regime, this is defined through a set of integral equations [29]. We obtain a finite
scaling from the quantum to the classical case by setting

ρ t
K(θ ) = lim

ħh→0
ħhρ t

q;K(θ ) , ρ t
σ(θ ) = lim

ħh→0
ħhρ t

q;n(θ )
�

�

�

σ=nħh/smax

. (19)

The resulting equations in the classical field theory are thus

ρ t
K(θ ) =

cM
2π

coshθ −
∫

dθ ′

2π
ϕ(θ − θ ′)(ρK(θ

′) +ρK̄(θ
′))−

∫ 1

0

dσ smax

∫

dθ ′

2π
ϕσ(θ − θ ′)ρσ(θ ′) ,

(20)

ρ t
σ(θ ) =

cmσ
2π

coshθ −
∫

dθ ′

2π
ϕσ(θ − θ ′)(ρK(θ

′) +ρK̄(θ
′))−

∫ 1

0

dσ′smax

∫

dθ ′

2π
ϕσ,σ′(θ − θ ′)ρσ′(θ ′) .

(21)

Above, we omit the equation for the antikinks since it is the same as the kinks’ one. In passing,
we notice the physical interpretation of these equations [72]: ρ t is nothing else than the
reduced phase-space of a gas of extended particles with rapidity-dependent length, the latter
being set by the scattering kernel. Indeed, the very same expression is postulated by the
soliton-gas picture [36,41].

The root density and the total root densities are the macroscopic variables upon which
thermodynamics is built. However, they come as two independent quantities and do not yet
describe, for example, thermal states. To do this, one should bind the two through a minimiza-
tion of a proper free energy: this is where our procedure and the soliton-gas picture begin to
differ.

The entropy and large-soliton regularization — Let us consider the very concrete problem of
determining the root density of a thermal state with some inverse temperature β . By starting
with the quantum sine-Gordon, one defines a free energy

Aq = βq〈Hq〉 −Sq[{ρq;K ,ρq;K ,ρq;n}] , (22)

where the entropy Sq is nothing else than the so called Yang-Yang entropy [29]

Sq[{ρq;K ,ρq;K ,ρq;n}] = L

∫

dθ

(

ρ t
q;Ks

�

ρq;K

ρ t
q;K

�

+ρ t
q;K̄

s

 

ρq;K̄

ρ t
q;K̄

!

+
∑

n

ρ t
q;ns

�

ρq;n

ρ t
q;n

�

)

, (23)
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where for notation convenience we kept the rapidity dependence of the roots implicit and
defined the function s(x) = −x log x − (1− x) log(1− x). The classical free energy is readily
obtained from the quantum expression (22) by using our semiclassical scaling. Since the
expectation value of the energy diverges ∼ ħh−1, the quantum temperature should be likewise
rescaled to attain a finite value. However, our main focus is now the entropy

Sq[{ρq;K ,ρq;K ,ρq;n}]
ħh→0
= L

∫

dθ

¨

ρK

�

1− log

�

ρK

ρ t
K

��

+ρK̄

�

1− log

�

ρK̄

ρ t
K̄

��

+

∫ 1

δħh

dσ smaxρσ

�

1− log

�

ρσ
ρ t
σ

��

− logħh

�

ρK +ρK̄ + 2

∫ 1

δħh

dσ smaxρσ

�«

. (24)

Above, we can recognize several terms: For example, kinks contribute to the entropy with
ρK̄

�

1− log
�

ρK̄/ρ
t
K̄

��

, which is nothing else than the entropy of classical particles (i.e. with
Maxwell-Boltzmann statistics) in a renormalized volume set by the total root density. Similar
contributions are associated to antikinks and breathers. Nonetheless, a further∝ logħh term
seems to prevent a straightforward semiclassical limit. However, it turns out to be crucial in
order to get a well-defined expression in the classical model, as we now discuss. Above, we
introduced a ħh−dependent cutoff in the breathers’ spectral parameter σ > δħh. Naively, one
could have imposed δħh = 0, but when converting the sum over the quantum breathers to an
integral, it should not be forgotten that in the quantum-classical correspondence (14) σ has a
lower bound∝ ħh. As σ approaches zero, the spatial extension of the breather grows, and δħh
is exactly the ingredient we need to regularize the large-soliton problem faced by the soliton-
gas picture. Indeed, in the soliton-gas picture [36, 41] and in previous semiclassical limits of
sine-Gordon [38,39,42], the logħh term in Eq. (24) has been overlooked and the cutoff δħh was
absent. We notice that the∝ logħh term can be seen as the chemical potential introduced in
Ref. [40]: however, in our case it is a divergent quantity, while in the quoted reference it is
eventually sent to zero.

In contrast, one should fix δħh with the following strategy: for finite ħh, minimize the free
energy by finding the saddle point δAq/δρ = 0, then impose that the resulting equations
remain consistent (i.e. non-singular) as ħh → 0. The dangerous terms are those where the
breathers’ spectral parameter is small. In spirit, this computation closely follows the steps of a
previous semiclassical limit of the attractive Non-Linear-Schrödinger equation [55]. Therefore,
we only report the result, leaving an overview of the computation to Appendix B. In particular,
we find that δħh should be fixed by asking

log
�

ħh−1δħhsmax

�

= 1 , (25)

leading to the following equations describing the classical Thermodynamic Bethe Ansatz (we
report only those for kinks and breathers, the one for the antikinks is the same as the kinks’
one)

σϵσ(θ ) = −2+ β c2 mσ
σ

coshθ +
1
σ

∫

dθ ′

2π
ϕσ(θ − θ ′)(e−ϵK + e−ϵK̄ )

+
1
σ

∫

dθ ′

2π

∫ 1

0

dσ′ϕσ,σ′(θ − θ ′)
e−(σ

′)2ϵσ′ (θ
′) − 1

smax(σ′)2
, (26)
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ϵK(θ ) = log smax − 1+ βMc2 coshθ +

∫

dθ ′

2π
ϕ(θ − θ ′)(e−ϵK + e−ϵK̄ )

+

∫

dθ ′

2π

∫ 1

0

dσϕσ(θ − θ ′)
e−σ

2ϵσ(θ ′) − 1
smaxσ2

, (27)

where we introduced the effective energies ϵ and, for later use, the filling functions ϑ as

ϑK(θ ) = e−ϵK (θ ) =
ρK(θ )
ρ t

K(θ )
, ϑσ(θ ) = e−σ

2ϵσ(θ ) = (smaxσ)
2ρσ(θ )
ρ t
σ(θ )

, (28)

and an analogous definition holds for the antikinks. Before moving further, a few comments
are due: commonly in the literature, the filling functions are defined as the ratio between the
root density and the total root density, but this choice is not convenient in our case. Indeed,
ρσ(θ )
ρ t
σ(θ )
≃ 1/(σsmax)2 as σ → 0 (see Appendix B). Hence, we define the non-singular part as

the filling function. With our definition, limσ→0 ϑσ(θ ) = 1. This is also reflected in our def-
inition of the effective energy ϵ, since limσ→0 ϵσ(θ ) remains finite. Secondarily, even if we
insist in using the more conventional notation, the equations (26-27) differ from those de-
rived within the soliton-gas picture by i) an extra contribution to the source term and ii) the
presence of a “−1” term in the integrals over breathers. Notice that this modification guar-
antees that (e−σ

2ϵσ(θ ) − 1)/(smaxσ
2) remains finite for σ → 0. Eqs. (26) and (27) are the

main result of our work and describe the exact thermodynamics of the classical field theory.
The classical thermodynamics is approached by the solution of the quantum TBA in the proper
limit: in principle, it should be possible to verify the limit by numerically solving the quantum
TBA and taking small interactions, or equivalently many breathers. However, in practice, con-
vergence is slow as observed in the analogue semiclassical limit of the attractive Non-Linear
Schrödinger equation [55], and many breathers are expected to be needed to attain conver-
gence. Hence, we leave aside this numerical check and we instead perform in what follows a
posteriori analytical and numerical benchmarks of the classical TBA, showing its validity.

3.2 The expectation value of the vertex operator

After having derived the equations governing the thermodynamics, we would like to test their
prediction on observables that can be analytically computed in some limiting cases and nu-
merically tabulated in all regimes. Conserved charges seem to be the ideal candidates, given
their simple expression in terms of the root densities (18). For example, one could focus on
the energy. However, on thermal states the expectation value of the Hamiltonian diverges,
due to the UV-black body catastrophe (see also Refs. [55, 60]). Therefore, we revert to other
observables such as the expectation value of the vertex operator 〈cos(gφ)〉. This observable is
of central importance for experiments: for example, in the coupled condensates implementa-
tion, matter-wave interferometry [12, 14, 73] gives access to projective measurements of the
relative phase profiles of the two condensates, which map into the sine-Gordon phase. From
these measurements, the expectation value of the vertex operator can be recovered and it is
routinely used in experiments to quantify the “phase locking” of the field.

Within the quantum case, this observable can be computed in closed form for any Gen-
eralized Gibbs Ensemble, and thus on thermal states as well, by observing that cos(gφ) is
proportional to the derivative of the Hamiltonian w.r.t. the bare mass m, and then using the
Hellmann-Feynman theorem [74]. We stress that the applicability of the Hellmann-Feynmann
theorem does not rely on the knowledge of the operatorial form of the charges to be used in
the GGE, which in the quantum sine-Gordon is still an open challenge [70], but in contrast
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Figure 2: The vertex operator at equilibrium. We compare the temperature de-
pendence of the expectation value of the vertex operator obtained by solving the
Thermodynamic Bethe Ansatz (TBA) equations Eq. (26-27) [symbols] against the
numeric predictions of the Transfer Matrix approach [full black line]. As a compar-
ison, we plot the low temperature asymptotics derived from the Klein-Gordon field
theory [red dashed line]. While at large β the three curves coincide, a clear devi-
ation of the Klein-Gordon approximation is observed at higher temperature, while
the agreement between the Transfer Matrix and the exact prediction remains excel-
lent. At equilibrium, the mass scale m, sound velocity c and interactions g can be
absorbed in a rescaling of distances and fields. Therefore, we set m = c = g = 1 in
the above leaving β as the only free parameter. Numerical methods are discussed in
Appendix D.

uses a representative state of the ensemble [32, 33] whose GGE is defined by the rapidity oc-
cupancies in the thermodynamic limit, namely the root densities. From the quantum result,
the semiclassical limit can be taken: the details are discussed in Appendix C.

Before reporting the formula, we need a preliminary definition of the so-called dressing
operation in the classical theory. Due to the singular behavior of the canonical definition of
the filling function discussed previously, it is convenient to redefine the standard expression of
the dressing operation by removing the singular part. Let us consider a triplet of test functions
{τK(θ ),τK̄(θ ),τσ(θ )}. One defines then the dressing operation {τK(θ ),τK̄(θ ),τσ(θ )} →
{τdr

K (θ ),τ
dr
K̄
(θ ),τdr

σ (θ )} as the solution of the following linear integral equations

στdr
σ (θ ) =

τσ(θ )
σ
−

1
σ

∫

dθ ′

2π
ϕσ(θ − θ ′)[ϑK(θ

′)τdr
K (θ

′) + ϑK̄(θ
′)τdr

K̄
(θ ′)]

−
1
σ

∫ 1

0

dσ′

smax

∫

dθ ′

2π
ϕσ,σ′(θ − θ ′)ϑσ′(θ ′)τdr

σ′(θ
′) , (29)

τdr
K (θ ) = τK(θ )−

∫

dθ ′

2π
ϕ(θ − θ ′)[ϑK(θ

′)τdr
K (θ

′) + ϑK̄(θ
′)τdr

K̄
(θ ′)]

−
∫ 1

0

dσ
smax

∫

dθ ′

2π
ϕσ(θ − θ ′)ϑ(θ ′,σ)τdr

σ (θ
′) . (30)

These classical dressing equations naturally emerge as the semiclassical limit of the quan-
tum ones (see Appendix C). Notice the connection between the total root densities and the
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dressed derivative of the momenta 2πρ t
K(θ ) = (∂θ pK)dr(θ ) and 2πρ t

σ(θ ) = σ
2(∂θ pσ)dr(θ ),

with pK(θ ) = Mc sinhθ and pσ(θ ) = mσc sinhθ the kink’s and breather’s momenta, respec-
tively. The expectation value of the vertex operator can be then computed with the following
expression (we omit the obvious θ−dependence of the functions for the sake of notation)

2
m2c2

g2
〈1− cos(gφ)〉=

∫

dθ
2π

∫ 1

0

dσ
smax

mσc(coshθεdr
σ − c sinhθ pdr

σ )ϑσ

+

∫

dθ
2π

Mc(coshθεdr
K − c sinhθ pdr

K )ϑK

+

∫

dθ
2π

Mc(coshθεdr
K̄
− c sinhθ pdr

K̄
)ϑK̄ . (31)

We are finally in the right position to test our thermodynamic prediction: in Figure 2
we numerically solve the set of integral equations defining thermal states (26,27), then we
plug the result in Eq. (31). The resulting data are compared against an ab-initio numerical
evaluation of the vertex operator on thermal states obtained through the Transfer Matrix ap-
proach [75, 76], finding perfect agreement for all temperature regimes. Despite the similar
name, this Transfer Matrix method is different from the one we previously mentioned in the
context of integrability and we shortly discuss it in Appendix D. We stress that we perfectly
capture the low-temperature regime, where other methods gave incorrect results, see Ref. [42]
for a compact overview. It turns out that the low temperature regime is even amenable to an
analytical analysis: this is a very instructive calculation that i) shows the importance of cutoff
δħh in the entropy, leading us to the correct equations (26,27), and ii) helps shining light on
the role of the, so far missing, radiative modes. Indeed, at low temperatures the phase field
is expected to be pinned down at one of the potential minima, let’s say φ = 0. Hence, upon
Taylor expanding the cosine potential, the sine-Gordon Hamiltonian (1) is well-approximated
by the Klein-Gordon model HK L =

∫

dx {12 c2Π2(x) + 1
2(∂xφ)2 +

m2c2

2 φ
2}. The Klein-Gordon

field theory has only a single radiative mode, thus is distributed according to a Rayleigh-Jeans
distribution 1/[β × (energy)], leading to

2
m2c2

g2
〈1− cos(gφ)〉

β→∞
≃ m2c2〈φ2〉K L = m2c3

∫

dθ
2π

1
βmc2 coshθ

. (32)

We will now recover this result from sine-Gordon. First, we simplify Eqs. (26,27): for small
temperatures, the kink-antikink fillings are exponentially suppressed, hence we can entirely
neglect them. Likewise, only breathers with small σ will contribute: therefore, we can safely
approximate mσ ∼ Mπσ. We furthermore can make additional approximations: we toss
away the “−2” term in Eq. (26) which is subleading with respect to βMc2π. Since only
breathers with small spectral parameter are important, we can approximate ϕσ,σ′(θ ) with
the proper limit. In particular, the scattering shift collapses to a Dirac−δ in the rapidity space

ϕσ,σ′(θ−θ ′)
σ,σ′→0
= 4πsmax min(σ,σ′)δ(θ−θ ′). Lastly, by neglecting further terms subleading

w.r.t. βMc2π, we can extend the integration domain of the spectral parameter to the whole
real axis. We finally reach the simplified equation

σϵσ(θ )
β→+∞
= β c2πM coshθ +

∫ ∞

0

dσ′
2min(σ,σ′)

σ

e−(σ
′)2ϵσ′ (θ ) − 1
(σ′)2

. (33)

Albeit non-trivial, these equations can be exactly solved [37, 55], leading to an exact low-
temperature analytical expression for the filling function (28)

ϑσ(θ )
β→+∞
=

(βσMc2π coshθ )2

4sinh2
�

βσ
2 Mc2π coshθ

� . (34)
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We now revert to the dressing equations (29) by invoking the same approximations and with
some simple manipulations, the dressing equations supplemented with Eq. (34) are readily
recast in a scaling form

τdr
σ (θ )

β→+∞
=

�

lim
σ→0

τσ(θ )
σ

� u
�

βσMc2π coshθ
�

σ2 (βMc2π coshθ )
, (35)

where u(x) satisfies

u(x) = x −
∫

dy
2min(x , y)

4 sinh2(y/2)
u(y) . (36)

An explicit solution can be found by taking a second derivative on both sides and obtaining

the differential equation x sinh2(x/2)d2u(x)
d2 x = u(x), which leads to u(x) = x coth(x/2)− 2.

We use this solution in Eq. (31) and, upon neglecting kinks and antinkins, we find

2
m2c2

g2
〈1− cos(gφ)〉= m2c3

∫

dθ
2π

1
βmc2 coshθ

∫ ∞

0

dx
x2 coth(x/2)− 2x

4 sinh2
� x

2

� . (37)

Noticing the identity
∫∞

0 dx x2 coth(x/2)−2x
4sinh2( x

2 )
= 1, we finally have the the equality of the above

expression with Eq. (32). We have therefore shown the consistency of the low-temperature
regime of our sine-Gordon thermodynamics. Notice that the “−1” in the integrand of Eq. (33),
which has been overlooked in the soliton-gas picture, is crucial to obtain the correct result.
Before finally moving to the nonequilibrium scenario, we would like to further comment on
the radiation-soliton interplay: our analysis of the vertex operator shows how the breathers
for small spectral parameter (each of them having solitonic nature) can collectively behave as
the radiative mode of the Klein-Gordon field theory. However, since all the modes contribute
to the vertex operator, how this reorganization happens is not evident. A better understanding
can be achieved by computing, in the low-temperature limit, the total energy carried by the
modes with rapidity θ and integrated over the spectral parameter

∫ 1

0

dσsmax mσc2 coshθρσ(σ)
β→∞
=

mc coshθ
2πβ

. (38)

We can compare this result with the thermal mode occupation of Klein-Gordon: the mode

density at fixed rapidity n(θ ) is populated as n(θ ) = d[ 1
2πmc sinh(θ )]

dθ
1

βmc2 coshθ , where the
1/[β × (energy)] term comes from the Rayleigh-Jeans distribution of radiation in the momen-
tum space, while the prefactor is the Jacobian to pass from momenta to rapidities. Multiplying
the Klein-Gordon mode density by the energy mc2 coshθ we match Eq. (38), undoubtedly
showing that radiative modes can be thought of as a “condensation” of extended solitons with
the same rapidity.

4 From thermodynamics to transport: Generalized hydrodynam-
ics

We built the thermodynamics of the classical sine-Gordon theory, but the same concepts can
be extended to nonequilibrium states, such as homogeneous quantum quenches [77,78], and
transport settings [48] through Generalized Hydrodynamics. Here, we take this second path
and study the paradigmatic transport setting, namely the partitioning protocol [56]. To this
end, we need to write down the proper hydrodynamic equations. As it is assumed within
the well-established method of Generalized Hydrodynamics [22,34,35], within a local density

15

https://scipost.org
https://scipost.org/SciPostPhys.15.4.140


SciPost Phys. 15, 140 (2023)

Figure 3: Hydrodynamic transport stemming from partitioning protocols. We
show the ray-dependent profiles ζ = x/(c t) of the vertex operator [Left] and topo-
logical charge density [Right] in partitioning protocols. As an example, we fix
m = c = g = 1 and consider three cases in total: in two of them [blue dots and
yellow triangles] we choose a temperature imbalance with zero topological charge.
In the third case [green diamonds] we study equal temperatures with a chemical po-
tential imbalance of the topological charge. The effect of the latter barely affects the
vertex operator, but has a clear effect on the topological charge. Continuous lines
are obtained as the solution of Eq. (41), symbols are Monte Carlo data (see D for
details). Error bars are estimated as the variance of 20 independent Monte Carlo
runs with ≈ 500 samples each. Upon close inspection, it can be seen that the solid
lines have some residual irregularities: this is a discretization error due to the finite
grid (we used ≈ 3000 points).

approximation the root density is promoted to be a weakly space-time dependent function that
locally parametrizes the state. In the simplest scenario where the sine-Gordon Hamiltonian is
kept homogeneous in space and constant in time, while the only inhomogeneity is carried by
the initial state, the large scale dynamics is captured by the following continuity equations

∂tρσ(θ , t, x) + ∂x[v
eff
σ ρσ(θ , t, x)] = 0 , ∂tρK(θ , t, x) + ∂x[v

eff
K ρK(θ , t, x)] = 0 . (39)

As usual, we omit the antikinks’ equation since it is analogous to the kinks’ one. Above, the
effective velocity veff is a state-dependent renormalized velocity that is defined by properly
“dressing” the group velocity, thus obtaining veff

σ = (∂θεσ)
dr/(∂θ pσ)

dr and veff
K = (∂θεK)

dr/(∂θ pK)
dr

(although exceptions to this definition are known [79]). The dressing is performed by using
the root-density at a given space and time position, such that the effective velocity gets an
implicit dependence in space and time as well. The equations (39) have been proposed for
the first time in quantum models in the seminal papers Refs. [34, 35], but further progresses
have been made including corrections beyond the Eulerean scale [80–83] and inhomogeneities
and time-dependence in the Hamiltonian [49,50]. We leave these questions for future devel-
opments: the interested reader can find these extensions, together with many other results
and applications, in the recent review paper Ref. [22]. Eq. (39) can be equivalently recast in
more convenient equations for the filling function ϑ, which is also promoted to be a weakly
space-time dependent function

∂tϑσ(θ , t, x) + veff
σ ∂x[ϑσ(θ , t, x)] = 0 , ∂tϑK(θ , t, x) + veff

K ∂x[ϑK(θ , t, x)] = 0 . (40)
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Since veff is state-dependent itself, the equivalence of the two formulations may appear not
evident, but passing from one to the other requires standard manipulations already discussed
in the literature [34, 35] and thus is not reported here. Of course, we checked that these
hydrodynamic equations are consistent with taking the semiclassical limit of the Generalized
Hydrodynamics of the quantum sine-Gordon model. As anticipated, we aim to use these equa-
tions to study the paradigmatic partitioning protocol: in this setting, the state is initialized
in two different halves, each of them described by a Genealized Gibbs Ensemble and thus
identified by a left(right) filling function ϑL(R). For example, thermal states at different tem-
peratures are a common choice. Then, at t > 0 the two halves are joined and let to evolve with
the sine-Gordon Hamiltonian, generating non-trivial currents and activating transport. While
generic (non-integrable) systems usually feature diffusive behavior, integrability induces bal-
listic transport. This is reflected into the scale invariant solution of Eq. (40) when applied to
the partitioning protocol: after a short time transient which depends on the details of the in-
terface between the two initial halves, the evolving hydrodynamic state is not an independent
function of t and x , but only depends on the ratio ζ = x/(c t). This allows one to derive an
exact implicit solution to the partitioning protocol [34,35]

ϑσ(θ ,ζ) = Θ(veff
σ (θ ,ζ)− ζ)ϑL

σ(θ ) +Θ(ζ− veff
σ (θ ,ζ))ϑR

σ(θ ) . (41)

Above, Θ is the Heaviside-theta function. We report only the equations for the breathers,
but analogous equations hold for kinks and antikinks. The above solution is implicit due to
the state-dependence of the effective velocity, but an iterative numerical scheme ensures fast
convergence.

To test our hydrodynamic equations, we compare the solution of Eq. (41) against ab-initio
numerical simulations. The Transfer Matrix method used in the previous section cannot be
generalized out of equilibrium, therefore we employ Monte Carlo schemes. These techniques
are standard, but some care should be taken in properly defining the junction between the
two initial halves: we report a short overview in Appendix D. We focus on the partitioning of
thermal states, possibly deformed with a non-trivial topological charge.

Indeed, in sine-Gordon a charge counting the kink-antikink difference, but being insensi-
tive to breathers, can be defined as

Z =
g

2π

∫

dx ∂xφ , (42)

and it is commonly known as the topological charge. This charge is explicitly conserved by the
sine-Gordon Hamiltonian and captures the winding number of the field across the system. In
terms of charge eigenvalues on the excitations, which we denote with z, one has zK(θ ) = 1,
zK̄(θ ) = −1 and zσ(θ ) = 0: thermal states can be easily deformed to take into account a
non-trivial topological charge by adding a chemical potential coupled to the topological charge
eigenvalue in Eqs. (26-27) βH → βH+µZ . The topological charge gives us an extra parameter
to benchmark and a further observable to test our prediction. In Figure 3 we show partitioning
protocols for a variety of parameters, finding excellent agreement between hydrodynamics and
Monte Carlo data, thus proving the validity of the hydrodynamic equations (40).

5 Conclusion and Outlook

In this paper, we revisited the thermodynamics of the classical sine-Gordon field theory, identi-
fying a common issue in previous works due to solitons of vanishing mass, but growing spatial
extension. These solitons cause subtleties in taking the thermodynamic limit, which we cir-
cumvent by considering the semiclassical limit of the quantum model. In this framework, the
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Planck constant acts as a regulator putting a maximum cap to the size of solitons, allowing us
to first safely take the thermodynamic limit and only then the classical one. Our result shows
that solitons alone account for the exact thermodynamic of sine-Gordon without any explicit
contribution of any radiative: In fact, radiative modes in this context can be rather seen as a
collective effect of light solitons. We also studied transport in the form of partitioning proto-
cols, laying the foundations for further developments of the Generalized Hydrodynamics for
the classical sine-Gordon model. This work opens up several interesting directions that we
are eager to explore. First of all, while the physical role of the Planck constant in acting as
an infrared regulator is clear, a regularization of the large-soliton problem within the purely
classical realm is highly desirable and would allow to tackle other integrable models without
an obvious quantum counterpart.

Large solitons with arbitrary spatial extension are present in a plethora of classical and
even quantum models with possibly far-reaching consequences. For example, this is the case
in certain quantum magnets with non-abelian symmetries that feature superdiffusive transport
such as the isotropic Heisenberg chain [84]: there, extended excitations with classical nature
have been identified as the culprit of the anomalous transport [54]. It has been previously
put forward that superdiffusion can also be understood as a fluctuating Goldstone mode of
the non-abelian symmetry in an effective bath of heavier excitations [85] (see also [86]): it
is natural to wonder if, in analogy to the condensation of solitons into radiative modes we
observed in sine-Gordon, the Goldstone mode of the Heisenberg chain can be seen as a con-
densation of large solitons. Lastly, remaining within the sine-Gordon framework, we aim to
use this work as a stepping stone to extend the Generalized Hydrodynamics approach to fea-
ture inhomogeneities in the sine-Gordon’s couplings: although a general hydrodynamic theory
of inhomogeneous interactions has been already developed [49,50], we expect complications
arising due to binding-unbinding of solitons into breathers, similarly to the bound state re-
combination featured by other models [55, 87, 88]. This question is not of mere theoretical
interest, but we expect to have direct experimental application, too, as for instance the coupled
quasicondensate experiment [12]. The latter realizes a sine-Gordon simulator with inhomo-
geneous couplings and, depending on the parameters, is well described by the semiclassical
regime. We envision that a full hydrodynamic treatment may shed new light on the dynamics
and relaxation of the experiment.

Data and code availability

Data analysis of Monte Carlo sampling, a Mathematica notebooks for the Transfer Matrix ap-
proach and a solver for the classical Thermodynamic Bethe Ansatz and partitioning are avail-
able on Zenodo upon reasonable request [89].
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A The semiclassical limit of the quantum scattering shift

Here, we explicitly show how to recover the classical breather-breather phase shift ϕσ,σ′(θ ) in
the semiclassical limit. As it has been explained in the main part of this paper, for the quantum
scattering the definition ϕq;n,n′(θ ) = i∂θ log Sn,n′(θ ) holds true. Therefore, the natural starting
point for the semiclassical limit is the logarithm of the quantum breather-breather scattering
matrix reported in Eq. (10). Focusing on the second term only (the first term will drop out in
the semiclassical limit), we get

log Sn,m(θ )∝ log
min(n,m)−1
∑

k=1

sin2
�

(|n−m|+ 2k)πξ4 − i θ2
�

sin2
�

(|n−m|+ 2k)πξ4 + i θ2
�

cos2
�

(m+ n− 2k)πξ4 + i θ2
�

cos2
�

(m+ n− 2k)πξ4 − i θ2
� , (A.1)

in which we replace the discrete parameter n with the continuous spectral parameter σ fol-
lowing the relation (14). This brings an explicit ħh-dependence such that we can take the limit
ħh→ 0. The sum is then converted to an integral giving a factor ħh−1, which leads to the reported
scaling behavior in Eq. (15) and the fact that the first factor in Eq. (10) vanishes. Concretely,
we arrive at

log Sσ,σ′(θ ) =

min(σ,σ′)
∫

0

dτsmax log

�

sin2
�

(−|σ′ −σ| − 2τ)π4 + i θ2
�

cos2
�

(σ′ +σ− 2τ)π4 + i θ2
�

sin2
�

(−|σ′ −σ| − 2τ)π4 − i θ2
�

cos2
�

(σ′ +σ− 2τ)π4 − i θ2
�

�

.

(A.2)

From here, we can use the definition of ϕσ,σ′(θ ) = i∂θ log Sσ,σ′(θ ) and exchange the deriva-
tive ∂θ with ∂τ while keeping track of the appropriate factors stemming from the chain rule.
Following this procedure and using trigonometric identities the integral can be carried out,
and we obtain the classical phase shift

ϕσ,σ′(θ ) =
2smax

π
log

�

[cosh(θ )− cos((σ+σ′)π/2)][cosh(θ ) + cos((σ−σ′)π/2)]
[cosh(θ )− cos((σ−σ′)π/2)][cosh(θ ) + cos((σ+σ′)π/2)]

�

. (A.3)

An analogous calculation can be done for the breather-kink phase shift ϕσ(θ ). The semiclas-
sical limit of the kink-kink phase shift ϕ(θ ) boils down to

ϕ(θ ) =
smax

π

∫ ∞

0

dt
t

sinh(tπ/2)
cosh(πt/2)

cos(θ t) =
smax

π
log

coshθ + 1
coshθ − 1

. (A.4)

We did not manage to analytically perform the integral, but we numerically checked the last
identity with machine precision. It is also useful to calculate the normalization of the breather-
breather scattering

∫

dθ ′ϕσ,σ′(θ − θ ′). To do so, we make use of the fact that ϕσ,σ′(θ ) is the

derivative of i log Sσ,σ′ , hence
∫

dθ ′ϕσ,σ′(θ − θ ′) = i log Sσ,σ′(θ )
�

�

�

θ=+∞

θ=−∞
. To evaluate this, we

can conveniently use Eq. (A.2) and simply take the limit of logarithms of hyperbolic functions,
giving

∫

dθ ϕσ,σ′(θ
′ − θ ) = −2smax

min(σ,σ′)
∫

0

dτ
�

(−|σ′ −σ| − 2τ)π− 2π+ (σ′ +σ− 2τ)π
�

= 4πsmax min(σ,σ′) . (A.5)

Note that the extra−2π in the integral comes from crossing a branch-cut in the complex plane.
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B Linking the Planck constant and the large-soliton cutoff

In this Appendix, we discuss in more detail how to obtain the finite equations (26)-(27) de-
scribing the classical sine-Gordon model in thermal equilibrium. A very similar procedure
was used in our previous paper to obtain the out-of-equilibrium phase of the Non-Linear
Schrödinger equation with attractive interactions [55].

The starting point is the minimization of the classical version of the free energy (22).
However, the semiclassical entropy (24) still has a term∝ log(ħh) diverging in the limit ħh→ 0.
At the same time, the ratio ρσ(θ )/ρ t

σ(θ ) develops a singularity∝ σ−2, which is why we keep
an explicit cutoff σ > δħh > 0 in the first place. Inspired by our previous work on the Non-
Linear Schrödinger equation [55], we define the effective energies ϵ according to Eq. (28). By
first computing the saddle-point δAq/δρ = 0, and then expressing the so-obtained equations
in terms of the effective energies, we get

− ϵK(θ ) + βMc2 coshθ + logħh+
∫

dθ ′

2π
ϕ(θ − θ ′)

�

e−ϵK (θ ′) + e−ϵK̄ (θ
′)
�

+

∫

dθ ′

2π

∫ 1

δħh

dσsmaxϕσ(θ − θ ′)
e−σ

2ϵσ(θ ′)

(smaxσ)2
= 0 , (B.1)

−σ2ϵσ(θ )− 2 log(smaxσ) + β c2mσ coshθ + 2 logħh+
∫

dθ ′

2π
ϕσ(θ − θ ′)

�

e−ϵK (θ ′) + e−ϵK̄ (θ
′)
�

+

∫

dθ ′

2π

∫ 1

δħh

dσ′smaxϕσ,σ′(θ − θ ′)
e−(σ

′)2ϵσ′ (θ
′)

(smaxσ′)2
= 0 , (B.2)

with the explicit cutoff δħh, that we find self-consistently in what follows. In the integrals over
the breathers, we single out the diverging part which can be then analytically computed by
using Eq. (8)

∫

dθ ′

2π

∫ 1

δħh

dσ′smaxϕσ,σ′(θ − θ ′)
e−σ

′2ϵσ′ (θ
′)

(smaxσ′)2

=
∫

dθ ′

2π

∫ 1

δħh

dσ′smaxϕσ,σ′(θ − θ ′)
1

(smaxσ′)2
+

∫

dθ ′

2π

∫ 1

δħh

dσ′smaxϕσ,σ′(θ − θ ′)
e−σ

′2ϵσ′ (θ
′) − 1

(smaxσ′)2

= 2
�

log
�

σ

δħh

�

+ (1−σ)
�

+

∫

dθ ′

2π

∫ 1

δħh

dσ′smaxϕσ,σ′(θ − θ ′)
e−σ

′2ϵσ′ (θ
′) − 1

(smaxσ′)2
. (B.3)

Plugging this result back into the full equation (B.2) gives (we focus on the equation for the
breathers, the equations for the kinks closely follow the same analysis)

−σ2ϵσ + 2
�

− log
�

ħh−1δħhsmax

�

+ 1−σ
�

+ β c2mσ coshθ

+

∫

dθ ′

2π
ϕσ(θ − θ ′)(e−ϵK (θ ′) + e−ϵK̄ (θ

′)) +

∫

dθ ′

2π

∫ 1

δħh

dσ′ϕσ,σ′(θ − θ ′)
e−(σ

′)2ϵσ′ (θ
′) − 1

smax(σ′)2
= 0 ,

(B.4)

where, indeed, the logσ singularities of the two terms exactly balance. One is left with the task
of suitably choosing δħh. To this end, we consider the σ→ 0 limit of this expression: if ϵσ does
not diverge, then (e−(σ

′)2ϵσ′ (θ
′)−1)/(σ′)2 is non-singular and we can safely remove the cutoff

in the integral. We now observe that the kernels vanish in this limit lim
σ→0
ϕσ = lim

σ→0
ϕσ,σ′ = 0 as
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well as the breather mass mσ → 0. Therefore, taking the σ→ 0 limit of the equation within
these assumptions, we are left with

lim
σ→0
[Eq. (B.4)]→

�

− log
�

ħh−1δħhsmax

�

+ 1= 0
�

, (B.5)

which unambiguously fixes δħh. A similar procedure can be carried out for the kink equations
(B.1), leading to the finite expressions of the equations (27).

C The expectation value of the vertex operator

In this Appendix, we compute the expectation value of the vertex operator in the classi-
cal field theory by taking advantage of quantum results. To this end, one first notices that
∂mĤ =

∫

dx 2mc2

g2 (1 − cos(gφ)), then uses the Hellmann-Ferynman theorem: for any eigen-

state of the quantum Hamiltonian |E〉 it holds 〈E|∂mĤ|E〉 = ∂m(〈E|Ĥ|E〉) = ∂mE. The deriva-
tive of the energy is easy to compute, the only caveat is that one must derive the eigenvalues
of finite-size eigenstates before eventually taking the thermodynamic limit. We notice that
for each physical root density, there exist representative eigenstates |E〉 such that they are
described by ρ in the thermodynamic limit [32, 33]. These are standard computations in in-
tegrability [50,74] leading to

1
L
∂m〈Hq〉=

∫

dθ
2π

Mq

m
c
�

coshθεdr
q;K(θ )− c sinhθ pdr

q;K

� ρq;K(θ )

ρ t
q;K(θ )

+

∫

dθ
2π

Mq

m
c
�

coshθεdr
q;K̄
(θ )− c sinhθ pdr

q;K̄

� ρq;K̄(θ )

ρ t
q;K̄
(θ )

+
∑

n

∫

dθ
2π

mq;n

m
c
¦

coshθεdr
q;n(θ )− c sinhθ pdr

q;n(θ )
© ρq;n(θ )

ρ t
q;n(θ )

. (C.1)

Above, L is the system’s size introduced for extensive reasons, and we have already ap-
proximated the quantum soliton mass with the semiclassical limit, hence Mq = ħh−1M , thus
featuring a linear dependence in the bare mass m. Here, the superscript “dr” stands for the
quantum dressing operation [29] analogous to the classical one in Eq. (20-21). For any test
functions {τK(θ ),τK̄(θ ),τn(θ )}, the quantum dressing operation {τK(θ ),τK̄(θ ),τn(θ )} →
{τdr

K (θ ),τ
dr
K̄
(θ ),τdr

n (θ )} is defined by the following coupled integral equations

τdr
q;K(θ ) = τq;K(θ )−

∫

dθ ′

2π
ϕq(θ − θ ′)

 

τdr
q;K(θ

′)
ρq;K(θ ′)

ρ t
q;K(θ ′)

+τdr
q;K̄
(θ ′)
ρq;K̄(θ

′)

ρ t
q;K̄
(θ ′)

!

−
∑

n

∫

dθ ′

2π
ϕq;n(θ − θ ′)τdr

q;n(θ
′)
ρq;n(θ ′)

ρ t
q;n(θ ′)

, (C.2)

τdr
q;n(θ ) = τq;n(θ )−

∫

dθ ′

2π
ϕq;n(θ − θ ′)

 

τdr
q;K(θ

′)
ρq;K(θ ′)

ρ t
q;K(θ ′)

+τdr
q;K̄
(θ ′)
ρq;K̄(θ

′)

ρ t
q;K̄
(θ ′)

!

−
∑

n′

∫

dθ ′

2π
ϕq;n,n′(θ − θ ′)τdr

q;n′(θ
′)
ρq;n′(θ ′)

ρ t
q;n′(θ

′)
. (C.3)

From here, one can show how the classical dressing operation naturally emerges in the semi-
classical limit. We first replace the quantum expressions with the classical ones with the correct
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scaling of ħh (see Eqs. (15,17, 19), pass over from the sum over breathers to an integral ac-
cording to Eq. (14), and see that ħh drops out everywhere.
Note that through the non-singular parametrisation of the breather filling (28), an extra
(smaxσ)−2 appears in the integral over the spectral parameter σ. Since this is inconvenient,
we redefine the dressing operation for the breathers in such a way that τdr

σ = σ
2
�

τdr
n

�

σ=nħh/smax

while the kinks remain unaltered τdr
K = τ

dr
K . With this, we recover the dressing operation re-

ported in the main text in Eq. (20-21). Using the quantum-classical correspondence for the
dressing operation, the classical expectation value of the vertex operator (31) readily follows
from Eq. (C.1).

D Numerical methods

In this Appendix we shortly overview the numerical methods used in this paper. A mathematica
notebook for the Transfer Matrix approach used to compute equilibrium quantities (Figure
2) and a solver for the thermodynamic equation Eqs. (26-27) and partitioning protocols are
available on Zenodo upon reasonable request [89]. However, we only provide the Monte Carlo
data but not the source code, since it is a standard method.

D.1 Solving the thermodynamics and partitioning

The first step is defining a convenient discretization of the phase space. To this end, we use a
cartesian discretization that is nonlinear in the σ space, building a tassellation of the domain
phase space [0,1]× [−Λ,Λ] in pairs {σi ,θi}, where Λ is a large rapidity cutoff. In principle,
rapidities can be also discretized according to a non-linear function, but this is not very im-
portant. In contrast, the non-linear discretization in σ is chosen to be denser at the origin,
i.e. where the Eqs. (26-27) become less regular. Each of these points is taken as a represen-
tative of a rectangle with edges placed on the midpoints between the chosen point and the
neighbouring ones. The space of kinks is discretized only on the rapidities. The set of integral
equations governing the thermodynamics are then discretized: in this respect, it is crucial to
have a proper discretization of convolutions involving ϕ, which features singularities. Let us
imagine ϕ is convoluted with a test function τσ(θ ) smooth in the phase space

∫

dσ

∫

dθϕσi ,σ(θ j − θ )τσ(θ ) =
∑

a,b

∫

σa+σa+1
2

σa+σa−1
2

dσ

∫

θb+θb+1
2

θb+θb−1
2

dθϕσi ,σ(θ j − θ )τσ(θ )

≃
∑

a,b

ϕ
(d)
{σi ,θ j},{σa ,θb}

τσa
(θb) , (D.1)

where ϕ
(d)
{σi ,θ j},{σa ,θb}

=

∫

σa+σa+1
2

σa+σa−1
2

dσ

∫

θb+θb+1
2

θb+θb−1
2

dθϕσi ,σ(θ j − θ ) .

We experienced that this discretization gives stable and fast-convergent results provided the
integration kernelϕ(d){σi ,θ j},{σa ,θb}

is well-approximated. To this end, we isolate the singular part

ϕ
(S)
σ,σ′(θ ) by defining it as

ϕ
(S)
σ,σ′(θ ) =

2smax

π
log





θ2 + π
2

4 (σ+σ
′)2

θ2 + π
2

4 (σ−σ′)2



+
2smax

π
σσ′ log

�

θ2 + 1

θ2 + π
2

4 (σ+σ′ − 2)2

�

, (D.2)

and the remaining being the non-singular part ϕ(NS)
σ,σ′ (θ ) = ϕσ,σ′(θ ) − ϕ

(S)
σ,σ′(θ ). With this

definition, ϕ(S) absorbs the singularities of ϕ while retaining the same asymptotic behavior (it
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Figure 4: The discretized solution of the filling function. Here, we show the dis-
cretized filling function resulting from a numerical solution of the TBA equations. As
an example, we show the case g = m = c = 1 and β = 0.3 and zero topological
charge, using approximately 3000 points in total in the discretization. Left: filling
function of breathers. Right: filling function of kinks (antikinks not reported, being
identical to kinks) .

vanishes for large rapidities as well as if one of the two spectral parameters is sent to zero).
The singular part is simple enough to analytically perform the integral in Eq. (D.1), while the
integral over the non-singular part is approximated as a constant over the integration domain

ϕ
(d)
{σi ,θ j},{σa ,θb}

≃
σa+1 −σa−1

2
θb+1 − θb−1

2
ϕ(NS)
σi ,σa

(θ j − θb) +

σa+σa+1
2
∫

σa+σa−1
2

dσ

θb+θb+1
2
∫

θb+θb−1
2

dθϕ(S)σi ,σ
(θ j − θ ) . (D.3)

A similar discretization is employed for the kink-kink scattering shift and kink-breather one.
With this approximation, the linear integral equations for the dressing are converted in linear
matrix equations easy to numerically solve. The nonlinear equation determining the effective
energy needs further care for a correct handling of the integral: let us focus only on this part
for the sake of clarity and pick a term σc from the spectral parameter discretization. Its role
will become clear soon: we split the integral as follows

∫ ∞

−∞

dθ ′

2π

∫ 1

0

dσ′ϕσ,σ′(θ − θ ′)
e−(σ

′)2ϵσ′ (θ
′) − 1

smax(σ′)2

=

∫ ∞

−∞

dθ ′

2π

∫ (σc+σc−1)/2

0

dσ′ϕσ,σ′(θ − θ ′)
e−(σ

′)2ϵσ′ (θ
′) − 1

smax(σ′)2

+

∫ ∞

−∞

dθ ′

2π

∫ 1

(σc+σc−1)/2
dσ′ϕσ,σ′(θ − θ ′)

e−(σ
′)2ϵσ′ (θ

′)

smax(σ′)2

+

∫ ∞

−∞

dθ ′

2π

∫ 1

(σc+σc−1)/2
dσ′ϕσ,σ′(θ − θ ′)

−1
smax(σ′)2

.

For small values of the spectral parameter σ′, the kernel ϕσ,σ′(∆θ ) is very peaked around

small rapidity differences ∆σ ≃ 0, but the support grows as σ′ gets larger. While e−(σ
′)2ϵσ′ (θ

′)

quickly decays to zero for large rapidities (at fixed σ′), the −1 factor does not. By splitting the
two terms we ensure that we can use a rapidity cutoff tailored on the fast decaying e−(σ

′)2ϵσ′ (θ
′).

23

https://scipost.org
https://scipost.org/SciPostPhys.15.4.140


SciPost Phys. 15, 140 (2023)

However, for small spectral parameters one wants to retain the two terms together, in order
to balance the 1/(σ′)2 singularity. The last line can be integrated exactly by using the fact
that

∫

dθϕσ,σ′(θ ) = 4πsmax min(σ,σ′), while the rest is discretized in the same spirit as Eq.
(D.1) by reintroducing the cutoff in the rapidity space as well. The so-discretized nonlinear
integral equations can be then solved with standard routines. The choice of σc must be made
in such a way that ϕσ,σ′<σc

(∆θ ) is very peaked in the rapidity space, having the smallest
support as possible, while we still want to retain a few discretized points σi < σc for a correct
discretization of the integrals. Notice that since limσ→1 ϑσ(θ ) = 1 holds by construction,
the rapidity cutoff Λ does not have to be necessarily chosen such that ϑσ(θ ) has support in
λ ∈ [−Λ,Λ] for every σ. It is rather sufficient requiring this only for σ > σc . Eventually, the
convergence of the approximation upon increasing the cutoff and improving the discretization
must be checked. As an example, in Fig. 4 we show the numerically computed filling function
obtained with ∼ 3000 points in the discretization.

D.2 The transfer matrix approach

The Transfer Matrix approach is a standard method to convert one dimensional classical sys-
tems at equilibrium into zero-dimensional quantum mechanical problems, easy to be solved.
Let us consider a Gibbs Ensemble on a finite size [−L/2, L/2] with periodic boundary condi-
tions, with the aim of computing the average of a given local observable of the phase field in
x = 0, i.e. O(φ(0)). Later, the observable can be chosen as the vertex operator. Within a path
integral point of view

〈O(φ(0))〉=

∫

DφO(φ(0))eβ
∫ L/2
−L/2 dx 1

2 (∂xφ)2+
m2c2

g2 (1−cos(gφ))

∫

Dφe
β
∫ L/2
−L/2 dx 1

2 (∂xφ)2+
m2c2

g2 (1−cos(gφ))
=

Tr[e−
L
2 ĤeffO(φ)e−

L
2 Ĥeff]

Tr[e−LĤeff]
, (D.4)

where the path integral is now seen as a propagator in imaginary time induced by a quan-
tum mechanical thermal ensemble with effective temperature L, and an effective quantum
Hamiltonian Ĥeff

Ĥeff =
1

2β
∂ 2
φ +

m2c2

g2
(1− cos(gφ)) . (D.5)

In the thermodynamic limit L → +∞, the effective thermal ensemble is projected on the
ground state. Therefore, 〈O(φ)〉 is simply recovered by numerically computing the ground
state of Ĥeff, and then taking the expectation value of the observable of interest. The only sub-
tlety to be taken care of is that the potential is bounded and the field φ can get arbitrary large
values. Nonetheless, we experienced that takingφ ∈ [−πn/g,πn/g]with n a sufficiently large
integer, imposing periodic boundary conditions and then discretizing the derivative operator
over the interval converges for n large enough. Notice that restricting to the first Brilluoin
zone n= 1 is not sufficient.

D.3 The Monte Carlo sampling

Monte Carlo simulations consist of two steps: i) a standard proposal-rejection scheme to sam-
ple the initial thermal distribution and ii) a deterministic evolution of the so-generated field
configuration with the equation of motion. The phase field is discretized on a equispaced
grid of points with lattice spacing a, the classical Hamiltonian is likewise discretized: when
sampling equilibrium ensembles, the distribution of the phase φ and the conjugated momen-
tum factorize, the second being a simple i.i.d. Gaussian distribution for each lattice site. The
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φ−part of the Hamiltonian is discretized as

H[φ] = a
∑

j

1
2a2
(φ j+1 −φ j)

2 +
m2c2

g2
(1− cos(gφ j)) . (D.6)

Field configurations are then randomly updated by selecting a field site j and proposing an
updateφ j → φ′j+δφ, with δφ Gaussianly distributed with zero mean. The new configuration
is then accepted with probability P = exp(−βH[φ′])/exp(−βH[φ]). After a sufficient number
of moves, the Markovian process samples the thermal distribution. To sample the partitioning
protocols with two different temperatures and possibly topological charges, several choices can
be made: for example, the inverse temperature β can be promoted to be a smooth function
interpolating between the two ensembles at the interface. However, we found it difficult to
implement the topological charge imbalance in this setting. Therefore, we rather used Dirichlet
boundary conditions by pinching the field in the center as well. More precisely, we enclose
the field in two intervals [−L/2,0] and [0, L/2] imposing these boundary conditions: at the
center we fix φ(0) = 0, while at the boundary φ(L/2) and φ(−L/2) are chosen according
to the desired value of the topological charge (42), enforcing a microcanonical ensemble for
the latter. In this setup, it is easy to account for two different temperatures as well. We stress
that different ways to describe the interface at t = 0 will lead to different finite-time transient,
but all of these will converge to the same late-time partitioning profile. For t > 0, the barrier
is lifted and φ(0) is not pinned to zero, but rather allowed to evolve. In contrast, we retain
Dirichlet boundary conditions at the two extrema of the system. The equations of motion are
then discretized according to the scheme [59]

φ j(t + dt) = 2φ j(t)−φ j(t − dt) +
dt2

a2
(φ j+1(t) +φ j−1(t)− 2φ j(t))− dt2 m2c2

g
sin(gφ j(t)) ,

(D.7)
which guarantees an all-time bounded discretization error, while other higher order methods
such as Runge-Kutta would lead to exponential instabilities. We notice that simplectic meth-
ods exactly preserving integrability for any discretization order may be envisaged [60], but
on the practical side we observed convergence for sufficiently small discretizations. The initial
conditions for the above equations are obtained by assigning toφ j(t = 0) a configuration sam-
pled from the Monte Carlo, while φ(t = dt) = φ j(t = 0) + dtc2Π j , with Π j being Gaussianly

distributed according to ∼ exp(−β c2

2 Π j).
In practice, for the parameters using in Figure 3 we attain convergence with a lattice spac-

ing a = 0.1 and dt = 10−4. We use 4000 lattice sites for a total length L = a×4000= 400, the
field configurations are let to evolve until a maximum time t = 110 to avoid finite-size effects.
For each parameter choice, we run 20 independent Monte Carlos, each of them collecting ap-
proximately 500 samples. Then, we consider the total average as the representative value and
the error bars are estimated as the variance over the independent runs.
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