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Abstract

In this paper, we explore a new type of global symmetries — the fermionic higher-form
symmetries. They are generated by topological operators with fermionic parameter,
which act on fermionic extended objects. We present a set of field theory examples
with fermionic higher-form symmetries, which are constructed from fermionic tensor
fields. They include the free fermionic tensor theories, a new type of fermionic topo-
logical quantum field theories, as well as the exotic 6d (4,0) theory. We also discuss
the gauging and breaking of such global symmetries and the relation to the no global
symmetry swampland conjecture.
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1 Introduction

In recent years, a lot of progress has been made in the rapidly evolving field of general-
ized global symmetries, with fruitful applications in both high energy and condensed matter
physics. These include higher-form symmetries which act on extended objects, higher-group
symmetries which combine symmetries of different form degrees, and more generally, non-
invertible and higher-categorical symmetries [1–3].

In this paper, we explore the possibilities of fermionic p-form global symmetries in d-
dimensional quantum field theories, which act on p-dimensional fermionic extended oper-
ators. They are generated by (d − p − 1)-dimensional topological operators with fermionic
parameters (spinors with Grassmannian components). We will be restricting ourselves to the
cases of invertible fermionic global symmetries.

One simple example is the case of a free Rarita-Schwinger field ψµ, as we explain in sec-
tion 2. Similar to the U(1)Maxwell theory, we can define a gauge invariant “Wilson loop” op-
erator by integratingψµ along a circle C. The operator is charged under a (d−2)-dimensional
topological operator. We also extend the discussion to the cases of a free fermionic p-form
gauge field (first defined in [4–6], and whose properties were recently discussed in [7]) and a
more general type of actions with fermionic tensor gauge fields and a single derivative in each
term.

Another playground for p-form fermionic symmetry is the 6d (4,0) theory, which is conjec-
tured to be the UV completion of strongly coupled 5d maximal supergravity [8]. In particular,
we consider the free limit of 6d (4,0) theory with a free kinetic term for the fermionic 2-form
gauge field (the exotic gravitino) ΨMN (M , N = 0, . . . , 5) in the 6d (4,0) supermultiplet. We
show that ΨMN possesses a fermionic 2-form symmetry in this limit. We also discuss the di-
mension reduction of the free action on S1. The fermionic 2-form symmetry is reduced to a
fermionic 2-form symmetry and a fermionic 1-form symmetry in 5d, however only one of them
is preserved after integrating out a 5d fermionic gauge field.

Analogous to the bosonic higher-form symmetries, we consider the gauging of fermionic
p-form global symmetries by coupling to a background fermionic (p+ 1)-form gauge field, in
section 4. Nonetheless, unlike the case of bosonic p-form symmetry, we found that even for
the case of a free fermionic p-form gauge field, an ’t Hooft anomaly exists which obstructs the
gauging of fermionic p-form global symmetries. On the other hand, we also present a few
cases where the fermionic symmetries can be gauged.

One may also wonder what is the fate of the fermionic p-form global symmetry after the
corresponding fermionic p-form gauge field is coupled to other fields. We discuss the case
of a charged Rarita-Schwinger field under a bosonic U(1) gauge group as well as the case of
supergravity in section 5. In these cases, the fermionic 1-form global symmetry is explicitly
broken by the coupling terms with the U(1) gauge fields Aµ or the Christoffel connection. We
also briefly discuss the relation to the no global symmetry swampland conjecture [9–11].

The structure of the paper is as follows: in section 2 we introduce the notion of fermionic p-
form symmetries and discuss the examples of free fermionic p-form gauge fields. In section 3
we discuss examples with unbroken fermionic p-form symmetries, including a generalized
fermionic “BF” theory and the free limit of 6d (4,0) theory. In section 4 we discuss the gauging
of fermionic p-form symmetries. In section 5 we present a few examples where the fermionic
symmetries are explicitly broken, and discussed the swampland implications. Finally, we put
some discussions and future directions in section 6. The conventions in the formula are orga-
nized in appendix A.
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2 Fermionic higher-form symmetries

We introduce the notion of fermionic p-form symmetries, which are the fermionic counter-
parts of the p-form symmetries acting on bosonic p-dimensional operators [1]. We work in
d-dimensional Minkowski space-time1 R1,d−1, and the results can be applied to Euclidean cases
as well.

An invertible fermionic p-form symmetry is generated by topological operators Uε(M
(d−p−1)),

defined on a (d−p−1)-dimensional submanifold M (d−p−1) ⊂ R1,d−1. The symmetry parameter
ε ∈ G is a fermionic spinor, i.e. it has anti-commuting (Grassmannian) components. The
symmetry group G is also fermionic, which can be interpreted as the non-compact translation
group of spinors with Grassmannian components, namely Rs, where s is the number of spinor
components. Thus, it is always Abelian. Uε(M (d−p−1)) acts on p-dimensional operators V (C(p))
as

〈Uε(M (d−p−1))V (C(p))〉= R(ε)〈C
(p),M (d−p−1)〉〈V (C(p))〉 . (1)

〈C(p), M (d−p−1)〉 is the linking number (cf. (A.13)) between C(p) and M (d−p−1). R is a repre-
sentation of the symmetry group G.

As usual, when the symmetry parameter ε is space-time independent, we call it a fermionic
p-form global symmetry. Otherwise it is a gauge symmetry.

Now we discuss some examples.

Fermionic 0-form symmetry. A common example of fermionic 0-form symmetry is the global
supersymmetry, with a spinor ε as the symmetry parameter. The (d −1)-dimensional topolog-
ical operator is

Uε(M
(d−1)) = exp

�∫

M (d−1)

i(ε̄J + J̄ ε)
�

= ei(ε̄Q+Q̄ε) .

(2)

J is the supercurrent (d − 1)-form and Q is the supercharge, which acts on the space of local
operators.

As another simple example, let us consider a free Dirac spinor ψ with the action

S =

∫

−ψ̄γµ∂µψdd x . (3)

This action admits a fermionic shift symmetry

ψ→ψ+ ε , (4)

where the spinor parameter ε satisfies dε = 0. It is a fermionic 0-form symmetry generated
by the topological operator

Uε(M
(d−1)) = exp

�

i

∫

M (d−1)

1
(d − 1)!

ϵµ1...µd−1ν

�

ε̄γνψ− ψ̄γνε
�

dVµ1...µd−1

�

, (5)

where ϵ is the Levi-Civita symbol in d dimensions and dVµ1...µd−1 is the volume element on the
(d − 1)-dimensional submanifold M (d−1).
Conveniently, Uε(M (d−1)) can be written compactly using differential form notation

Uε(M
(d−1)) = exp

�

i

∫

M (d−1)

⋆
�

ε̄γ(1)ψ− ψ̄γ(1)ε
�

�

, (6)

1The fermionic p-form symmetry exists on any flat space-time as well, such as the torus. We briefly comment
on the cases of curved space-time manifold in section 5.2, but we leave the detailed analysis in future work.
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where ⋆ is the Hodge star operator. The combination ε̄γ(1)ψ can be regarded as a 1-form
ε̄γ(1)ψ= ε̄γµψ d xµ. The Dirac equation /∂ψ= 0 is translated into d ⋆γ(1)ψ= 0, and together
with Stokes’ theorem we see that Uε(M (d−1)) is on-shell topological.

As another comment, note that we can relax the spinor parameter ε in (4) to only satisfy
a weaker constraint, i. e. the Dirac equation /∂ ε = 0. Now the parameter ε is space-time
dependent in general, but the action (3) is still invariant. In this case, we say the shift symmetry
(4) is a “semi-local” symmetry.2

Fermionic 1-form symmetry. The first new example is the case of fermionic 1-form symme-
try. Let us consider a free Rarita-Schwinger field ψµ in d ≥ 3 with the action

S[ψµ] =

∫

−ψ̄µγµνρ∂νψρ dd x . (7)

For d ≥ 4,ψµ is fermionic due to spin-statistics theorem, while there is no restriction in d = 3.
The equation of motion for ψµ is

γµνρ∂νψρ = 0 , (8)

which is equivalent to3

γµHµν = 0 , (9)

where we define the field strength Hµν as exterior derivative of the Rarita-Schwinger field:
Hµν = 2∂[µψν]. The action has a fermionic 0-form gauge symmetry

ψµ→ψµ + ∂µλ , (10)

and the gauge transformation parameter λ is a spinor. The field strength Hµν is gauge invari-
ant.

Now we construct the gauge invariant 1-dimensional topological operator4

Vη(C) = exp

�

i

∮

C
(η̄ψµ + ψ̄µη) d xµ

�

= exp

�

i

∫

C
(η̄ψ(1) + ψ̄(1)η)

�

, (11)

as the fermionic analog of Wilson loop for the 1-form gauge field Aµ, andψ(1) =ψµ d xµ is the
fermionic one-form. The spinor parameter η is an analogue of the charge for a bosonic Wilson
loop. In our case, since ψµ is a non-compact gauge field, η do not need to be quantized.

We define a fermionic 2-form J(2) = 1
2 Jµν d xµ ∧ d xν whose components are given as

Jµν ≡ γµνρψρ . (12)

By the equation of motion (8), this two form is conserved

∂ µJµν = −γνµρ∂ µψρ = 0 . (13)

This fact indicates that we can define a closed (d − 2)-form current (⋆J )(d−2) (analogous to
the free Maxwell theory, cf. ∂ µFµν = 0) and the closure of this (d − 2)-form current ensures
the topological feature of the (d − 2)-dimensional operator Uε(M (d−2))

Uε(M
(d−2)) = exp

�

i

∫

M (d−2)

�

ε̄ (⋆J )(d−2) + (⋆J̄ )(d−2) ε
�

�

, (14)

2In an analogous setup, a free non-compact scalar with action S =
∫

Md
∂µφ∂

µφ also has a shift symmetry
φ→ φ + a, where the action is invariant if a only satisfies the weaker condition ∂µ∂

µa = 0. This is known as the
“Galileon symmetry” [12].

3In d = 3, this reduces to Hµν = 0, which means that ψµ has no physical degrees of freedom. We will discuss
these topological fermionic p-forms in a more general context in section 3.

4We also analyse the behaviour of the vacuum expectation value of the fermionic Wilson loop in the appendix B.
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where J̄µν = ψ̄ργµνρ. In components, it reads

Uε(M
(d−2)) = exp

�

i

�

ε̄

∫

M (d−2)

1
(d − 2)!

1
2!
ϵµ1...µd−2µν

γµνρψρ dVµ1...µd−2 + c.c.

��

. (15)

Let us check the action of Uε(M (d−2)) on Vη(C) and verify

〈Uε(M (d−2))Vη(C)〉= exp
�

i(ε̄η+ η̄ε)〈C, M (d−2)〉
�

〈Vη(C)〉 , (16)

where 〈O〉 means the vacuum expectation value of an operator O. The left-hand side of (16)
is by definition computed as the path integral

〈Uε(M (d−2))Vη(C)〉=
∫

DψµDψ̄µeiS[ψµ,ψ̄µ]+i
∫

M(d−2)(ε̄ (⋆J )(d−2)+(⋆J̄ )(d−2) ε)+i
∫

C(η̄ψ(1)+ψ̄(1)η) .

(17)
As a starting point, we consider one of the (d − 2)-form integrals

∫

M (d−2)

ε̄ (⋆J )(d−2) =

∫

M (d−1)

ε̄ (d ⋆J )(d−1) =

∫

M (d)
J(1)(M

(d−1))∧ ε̄ (d ⋆J )(d−1)

=

∫

ε̄Jµγ
µνρ∂νψρ dd x .

(18)

Here in the first step we used Stokes’ theorem and ∂M (d−1) = M (d−2). In the second step,
we introduced a one-form delta-function current J(1) with support on the M (d−1) submanifold.
Explicitly, it is given in local coordinates as5

Jµ(x , M (d−1)) =

∫

M (d−1)

1
(d − 1)!

ϵµµ1...µd−1
δ(d)(x − y) dVµ1...µd−1(y) . (19)

This is quite similar to the delta-function differential forms (cf. (A.12)) used in describing
D-brane (Membrane) sources in String (M-) theory and mathematically it is the cohomology
class of the Poincaré dual of M (d−1) [14]. We use this trick to write the (d − 2)-form integral
as an integral on the entire manifold M (d) and this will help us to absorb it into the free action
by a change of variables.

We now take a look back at the path integral and under the change of variable
ψµ→ψ′µ =ψµ − εJµ the action becomes

S[ψµ − εJµ] =

∫

−
�

ψ̄µ − ε̄Jµ
�

γµνρ∂ν
�

ψρ − εJρ
�

dd x

= S[ψµ] +

∫

�

ψ̄µγ
µνρε∂νJρ + ε̄Jµγ

µνρ∂νψρ − Jµε̄γ
µνρε∂νJρ

�

dd x .

The last term can be regularized by a local counter term [15]. The third term is identified with
the RHS of (18), and similarly the second term is identified with the hermitian conjugate of
the third term. (cf. (14))

Apply this change of variable in the path integral (17), we get

〈Uε(M (d−2))Vη(C)〉= ei(ε̄η+η̄ε)
∮

C Jµd xµ
∫

Dψ′µDψ̄′µeiS[ψ′µ,ψ̄′µ]+i
∫

C(η̄ψ
′
(1)+ψ̄

′
(1)η)

= exp
�

i(ε̄η+ η̄ε)〈C, M (d−2)〉
�

〈Vη(C)〉 .
(20)

5We are using a slightly different definition from [13], since for us the Poincaré dual J(d−p)(C(p)) of a p-cycle
C(p) is characterized by

∫

C(p) A(p) =
∫

M (d)
J(d−p)(C(p))∧ A(p) for any p-form A(p) instead of by

∫

C A=
∫

M
A∧ J .
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Recall that ∂M (d−1) = M (d−2), and 〈C, M (d−2)〉 is the linking number of C and M (d−2)

〈C, M (d−2)〉= I(C, M (d−1)) =

∮

C
J(1)(M

(d−1)) . (21)

The action of the fermionic 1-form symmetry on the original Rarita-Schwinger field ψµ is the
shift by a fermionic 1-form ξµ

6

ψµ −→ψµ + ξµ ,

∂[νξρ] = 0 .
(22)

One can also define a topological operator generating a (d − 3)-form magnetic symmetry,
similar to the Maxwell theory, using the field strength H of the Rarita-Schwinger field

Uθ (M
(2)) = exp

�

i

∫

M (2)

�

(θ̄H)(2) + c.c.
�

�

, (23)

and H satisfies the Bianchi identity dH = 0. However, the charged object under such symmetry
is not clear. In the bosonic case, one finds ’t-Hooft lines via electromagnetic duality as charged
operators under the magnetic higher-form symmetry. We have not yet found EM-type dualities
between fermionic p-forms,7 and we will investigate it in a future work.

Fermionic p-form symmetry. The flat spacetime Rarita-Schwinger action (7) for a fermionic
one-form ψµ can be generalised to a free action for ‘fermionic p-forms’ ψ(p) [4–7]

S[ψ(p)] = −(−1)
p(p−1)

2

∫

ddx ψ̄µ1µ2...µp
γµ1µ2...µpνρ1ρ2...ρp ∂νψρ1ρ2...ρp

. (24)

This action is invariant under the gauge transformation

δψµ1µ2...µp
= p ∂[µ1

Λµ2...µp] , (25)

andΛµ2...µp
is the components of the fermionic (p−1)-formΛ(p−1) gauge parameter. The gauge

transformation can be written compactly as δψ(p) = dΛ(p−1). We define the gauge invariant
field strength H(p+1) of the field ψ(p) as H(p+1) ≡ dψ(p), i. e.

Hµ1...µp+1
= (p+ 1)∂[µ1

ψµ2...µp+1] . (26)

The equations of motion derived from the action (24) read

γµ1...µpν1...νp+1 Hν1...νp+1
= 0 , (27)

which after some gamma matrices identities are equivalent to the single-gamma-trace equa-
tions

γµ1 Hµ1µ2...µp+1
= 0 . (28)

The latter cannot be obtained directly from an action. For 2p+1> d, the action (24) identically
vanishes because of the rank of the gamma matrix exceeds the highest possible value d, while
for 2p+1= d, the equations of motion are equivalent to H(p+1) = 0, which implies thatψ(p) is
a pure gauge. The only case the theory described by (24) has propagating degrees of freedom
is when 2p < d.
Analogous to the 1-form case, we define a conserved (p+ 1)-form J(p+1) with components

Jµ1µ2...µp+1
≡ γµ1...µp+1ν1...νp

ψν1...νp , (29)

and ∂µJ µµ1...µp = 0 is achieved by requiring equation of motions (27).
6Just as we discussed in the 0-form case, one can relax the flatness condition of ξµ, i.e. require it to be “flat”

under the Rarita-Schwinger differential operator γµνρ∂ν instead of the usual space-time derivative.
7See [16] for an early attempt on this subject.
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We can then build topological operators on (d−p−1)-dimensional submanifolds M (d−p−1)

Uε(M
(d−p−1)) = exp

�

i C(d, p)

∫

M (d−p−1)

�

ε̄ (⋆J )(d−p−1) + (⋆J̄ )(d−p−1)ε
�

�

, (30)

which act on the following p-dimensional objects

Vη(C(p)) = exp

�

i

∫

C(p)
(η̄ψ(p) + ψ̄(p)η)

�

, (31)

and the numerical constant is computed (A.14) as C(d, p) = −p!(−1)
(p+1)(2d−p)

2 , it depends
on space-time dimension and the degree of the fermionic differential form. The symmetry
transformation of Vη(C(p)) is a straight generalisation of (16)

〈Uε(M (d−p−1))Vη(C(p))〉= exp
�

i(ε̄η+ η̄ε)〈C(p), M (d−p−1)〉
�

〈Vη(C(p))〉 . (32)

3 Examples with fermionic higher-form global symmetries

3.1 Fermionic “BF” theory

In this section, we consider a generalization of the free p-form fermionic fields, which consists
of an arbitrary number of fermionic p-form fields ψ(p),α with different p and label α. For the
action, it is different for the cases of even and odd space-time dimension d.

For odd d, it can be written as a sum

S =
∑

ci

∫

M (d)
ψ̄(pi),αi

∧ γ(d−pi−qi−1) ∧ dψ(qi),βi
+ c.c. (33)

γ(d−pi−qi−1) is the (d − pi − qi − 1)-form γ-matrix, i.e. γ(r) =
1
r!γµ1...µr

d xµ1 . . . d xµr . Hence S
is the integration of a general sum of d-forms, each of which consists of two fermionic fields
and a single exterior derivative.
To see how this generalises the free fermionic p-form action (24), we consider a single sum-
mand

S = c

∫

M (d)
ψ̄(p),α ∧ γ(d−p−q−1) ∧ dψ(q),β + c.c.

∝
∫

ddx ψ̄µ1...µp ,α γν1...νd−p−q−1
ϵµ1...µpν1...νd−p−q−1ρσ1...σq ∂ρψσ1...σq ,β + c.c.

∝
∫

ddx ψ̄µ1...µp ,α γ
µ1...µpρσ1...σq ∂ρψσ1...σq ,β + c.c. ,

(34)

where in the last step we used the identity of gamma matrices for odd dimensions

γµ1...µp = i
d+1

2
1

(d − p)!
ϵµ1...µpν1...νd−pγνd−p ...ν1

. (35)

For even d, this identity becomes

γµ1...µpγd+1 = −(−i)
d
2+1 1
(d − p)!

ϵµp ...µ1ν1...νd−pγν1...νd−p
, (36)

where the chirality matrix γd+1 (see (A.2) for definition) appears.
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The general action takes the form of

S =
∑

ci

∫

M (d)
ψ̄(pi),αi

∧ γ(d−pi−qi−1) (1+ diγd+1)∧ dψ(qi),βi
+ c.c. (37)

The actions (33), (37) are gauge invariant under the gauge transformations

δψ(p),α = dλ(p−1),α . (38)

We prove that there is a fermionic p-form global symmetry associated to each fermionic
p-form field ψ(p),α, acting on the p-dimensional object

Vα,η(C(p)) = exp

�

i

∫

C(p)
(η̄ψ(p),α + ψ̄(p),αη)

�

. (39)

We only need to construct the topological operator generating the fermionic p-form symmetry,
which takes the form of

Uα,ε(M
(d−p−1)) = exp

�

i

∫

M (d−p−1)

�

ε̄K(d−p−1),α + K̄(d−p−1),αε
�

�

. (40)

The (d − p− 1)-form8 K(d−p−1),α appears in the equation of motion of ψ(p),α as

dK(d−p−1),α = 0 . (41)

It is then obvious that Uα,ε(M (d−p−1)) acts on Vα,η(C(p)) in the standard way

〈Uα,ε(M
(d−p−1))Vα,η(C(p))〉= exp

�

i(ε̄η+ η̄ε)〈C(p), M (d−p−1)〉
�

〈Vα,η(C(p))〉 . (42)

Using the general form of the action (33), we can expand out for odd d

K(d−p−1,α) = −
∑

i|αi=α

ciγ(d−pi−qi−1) ∧ψ(qi),βi
−
∑

j|β j=α

c jγ(d−p j−q j−1) ∧ψ(q j),β j
, (43)

and for even d

K(d−p−1,α) =−
∑

i|αi=α

ciγ(d−pi−qi−1)(1+ diγd+1)∧ψ(qi),βi

−
∑

j|β j=α

c jγ(d−p j−q j−1)(1+ d jγd+1)∧ψ(q j),β j
. (44)

When d = pi +qi +1 for all i, the action (33) describes a non-trivial TQFT (defined on flat
manifold) with a rich spectrum of gauge invariant extended operators, which have non-trivial
correlation functions (42). Note that comparing with the bosonic TQFT constructed with p-
form gauge fields, we have many more possibilities from the insertion of γ-matrices in the
action (33).

As a more concrete example, we look at the fermionic analog of the bosonic BF theory:

S =

∫

dd x
�

−χ̄µνγµνρσ∂ρψσ − ψ̄µγµνρσ∂νχρσ
�

. (45)

The action is gauge invariant under the 0-form symmetry

δεψµ = ∂µε , (46)

8In the previous sections, we used its dual (p+ 1)-form J(d+1).
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and the 1-form symmetry
δλχµν = 2∂[µλν] . (47)

We can write down the following gauge invariant observables

Vη(C) = exp

�

i

∮

C
(η̄ψµ + ψ̄µη) d xµ

�

, (48)

supported on a loop C and

Wξ(S) = exp

�

i

∮

S

1
2
(ξ̄χµν + χ̄µνξ) dSµν

�

, (49)

supported on a surface S.
In d = 4 dimensions, both of them are topological9 and they have non-trivial actions on

each other

〈Vη(C)Wξ(S)〉= exp
�

1
2
(ξ̄γ5η+ η̄γ5ξ)〈S,C〉

�

〈Wξ(S)〉 ,

〈Wξ(S)Vη(C)〉= exp
�

1
2
(ξ̄γ5η+ η̄γ5ξ)〈C,S〉

�

〈Vη(C)〉

= exp
�

1
2
(ξ̄γ5η+ η̄γ5ξ)〈S,C〉

�

〈Vη(C)〉 .

(50)

Note that here the chirality matrix γ5 appears, since in 4d the action (45) that we started with
is equivalent to

S =

∫

dd x
�

iχ̄µνϵ
µνρσγ5∂ρψσ + c.c.

�

, (51)

due to the identity γµνρσ = −iϵµνρσγ5.
For d > 4, although Vη(C) and Wξ(S) have a trivial correlation function between each

other, we can still construct topological operators acting on them following the general pre-
scriptions above. For even dimensions d = 2m

Uε(M
(d−2)) = exp

�

2(−i)m
∫

M (d−2)

(ε̄γ(d−4)γd+1 ∧χ(2) + c.c.)

�

,

Uλ(M
(d−3)) = exp

�

2(−i)m
∫

M (d−3)

(λ̄γ(d−4)γd+1 ∧ψ(1) + c.c.)

�

,

(52)

and for odd dimensions d = 2m+ 1

Uε(M
(d−2)) = exp

�

2(−1)(m−2)(2m−3)im

∫

M (d−2)

(ε̄γ(d−4) ∧χ(2) + c.c.)

�

,

Uλ(M
(d−3)) = exp

�

2(−1)(m−2)(2m−3)im

∫

M (d−3)

(λ̄γ(d−4) ∧ψ(1) + c.c.)

�

,

(53)

such that their actions on Vη(C) and Wξ(S) have the same simple form

〈Uε(M (d−2))Vη(C)〉= exp
�

i(ε̄η+ η̄ε)〈C, M (d−2)〉
�

〈Vη(C)〉 ,
〈Uλ(M (d−3))Wξ(S)〉= exp

�

i(λ̄ξ+ ξ̄λ)〈S, M (d−3)〉
�

〈Wξ(S)〉 .
(54)

We also briefly discuss the example of a Rarita-Schwinger fieldψµ in 3d. In this case the action
is

S =

∫

−ψ̄µγµνρ∂νψρd3 x . (55)

9In fact, we can also insert γ5 in the spinor bilinears in the integrand, i.e. η̄ψµ→ η̄γ5ψµ, to define topological
operators.

9

https://scipost.org
https://scipost.org/SciPostPhys.15.4.142


SciPost Phys. 15, 142 (2023)

Since γµνρ = −εµνρ, the action is topological. In this case there is a fermionic 1-form sym-
metry associated to ψµ. One may also put the theory on a manifold M (3) with boundary
M (2) = ∂M (3), for example M (3) = R1,1 ×R≥0, M (2) = R1,1. In this case one can repeat the
discussion of chiral edge modes (see e. g. [17]) in the case of bosonic Chern-Simons theory.
There will be fermionic chiral edge modes propagating on M (2), whose velocity v depends on
the boundary condition ofψµ on M (2). Note that these fermionic edge modes are non-compact.

We comment on the spectrum of these TQFTs. In general when we have a d-dimensional
fermionic TQFT whose Lagrangian is a sum of d-forms, the equation of motion for each
fermionic p-form fieldψ(p) is given by dψ(p) = 0. ψ(p) can be interpreted as a pure gauge [7],
and it is considered as infinitely massive. Hence the TQFT is a gapped theory.

We can also construct fermionic higher-group-like gauge theories. We take the following
2-group example, where the gauge transformation ofψ (1-form spinor) and χ (2-form spinor)
fields are

δψ= dε+ κλ ,

δχ = dλ .
(56)

We can construct the following gauge invariant field strengths:

F = dψ−κχ ,

H = dχ ,
(57)

which are analogues of the fake curvature and (fake) 2-curvatures of the bosonic 2-group
gauge theory [18–21].

One can construct gauge invariant actions in d space-time dimensions using F , H and
gamma matrices. These possibilities would be further explored in future works.

3.2 6d exotic theories

Fermionic 2-forms appear in exotic six-dimensional supermultiplets [22,23]. These are mass-
less representations of extended Poincaré supersymmetry in parallel to the standard super-
gravity multiplets. Intriguingly, the highest spin field in these multiplets is either a spin-2
boson which is not a graviton10 or a “two indexed” exotic gravitino ΨMN (M , N = 0, . . . , 5) [7,
8, 25]. The N = (4,0) and N = (3,1) maximally supersymmetric cases are conjectured by
Hull [8, 26–28] to play a role in some strongly coupled regimes of 5d maximal supergravity
and further studies have been carried out recently [7, 25, 29–38]. Nonetheless similar chiral
multiplets with less supersymmetry (e.g. N = (2,1), N = (2,0) and etc.) are discussed a bit
in [23,25,33], and further properties are yet to be studied.

Free exotic theories. Our interests are focused on the exotic fermionic field ΨMN and it is
contained in the covariant field content of all these exotic multiplets. To begin with, we first
look at the 6d N = (p, q) massless little group Glittle = SU(2) × SU(2) × GR

(p,q), which is the

subgroup of Spin(5,1)×GR
(p,q) preserving a null-momentum vector. Omitting the R-symmetry

part GR
(p,q) for a moment, the spacetime little group representation (4,1) of SU(2) × SU(2)

corresponds to a covariant chiral fermionic 2-form-spinor field ΨMN , which we refer to as the
aforementioned exotic gravitino. This spinor field is anti-symmetric and its field strength is
self-dual and gauge invariant as when introduced in [8]

ΨMN = −ΨN M ,

HMN P ≡ 3∂[MΨN P] , H = ⋆ H invariant under δΨMN = 2∂[MεN] ,
(58)

10See [24] for a discussion on bosonic “higher-biform symmetries” of these exotic gravitons.
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where εN is an arbitrary vector-spinor. Remarkably, the self-duality equation of H alone is not
strong enough to ensure that ΨMN propagates degrees of freedom in (4,1) of the little group
after gauge fixing.11 One can show [25,39] that the Rarita-Schwinger type field equation (27)
for p = 2

ΓMN PQRHPQR = 0 , (59)

together with chirality condition
Γ7ΨMN = ΨMN , (60)

describe the correct little group representation (4,1), and they imply the self-dual condition
H = ⋆H. We use ΓM to denote the 6d gamma matrices and Γ7 is the chirality matrix. This field
equation (59) comes from the free action (24) for p = 2, and in particular, the discussions for
fermionic p-form symmetries apply here. The only difference is that the exotic gravitino is in
addition a chiral fermionic field (60). We thus claim that for 6d free exotic theories there is
chiral fermionic 2-form symmetry.

Dimensional reduction of 6d chiral fermionic 2-form to 5d. The reduction of free chiral
fermionic 2-form ΨMN to five dimensions has been studied in [25] at the level of actions.
Following their conventions, Γ7 matrix is diagonal in a representation that relates the 6d and 5d

gamma matrices block-wisely. The 6d free chiral fermionic 2-form ΨMN =

�

ψ̂MN
0

�

described

by the Lagrangian
L6d = Ψ̄MNΓ

MN PQR∂PΨQR , (61)

yields upon reduction to 5d the following Lagrangian

L5d = ψ̄µνγ
µνρστ∂ρψστ + 2iψ̄µνγ

µνρσ∂ρψσ − 2iψ̄µγ
µνρσ∂νψρσ , (62)

where the two 5d fields are identified as ψµν = ψ̂µν and ψµ = ψ̂µ5 (µ,ν = 0, . . . , 4). There
are 5d gauge variations descending from δψ̂MN = 2∂[MεN]

δψµν = 2∂[µεν] , δψµ = ∂µε5 , (63)

under which the 5d action is invariant. This allows us to define a loop operator

Vη(C) = exp

�

i

∮

C
(η̄ψµ + ψ̄µη) d xµ

�

, (64)

and a surface operator

Wξ(S) = exp

�

i

∮

S

1
2
(ξ̄ψµν + ψ̄µνξ) dSµν

�

. (65)

Varying the action (62) with respect to ψ̄µ and ψ̄µν give rise to

−2iγµνρσ∂νψρσ = 0 , γµνρστ∂ρ(ψστ − 2iγσψτ) = 0 , (66)

which lead to a conserved 2-form current

Jµν ≡ 2iγµνρσψ
ρσ , ∂ νJµν = 0 . (67)

11This is the opposite of what happened with the 6d bosonic chiral 2-form BMN , where the self-dual condition
⋆(dB) = dB does describe the correct little group representation (3,1) and it implies the usual second order field
equation d ⋆ (dB) = 0.
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and a conserved 3-form current respectively

J̃µνρ ≡ −2γµνρστ(ψ
στ − 2iγσψτ) , ∂ ρJ̃µνρ = 0 . (68)

We then construct topological operators

Uε(V) = exp

�

i

∫

V

�

ε̄ (⋆J )(3) + (⋆J̄ )(3)ε
�

�

, (69)

supported on 3d volume V and

Ũε̃(S̃) = exp

�

i

∫

S̃

�

¯̃ε (⋆J̃ )(2) + (⋆ ¯̃J )(2)ε̃
�

�

, (70)

with surface support S̃. They act on Vη(C) and Wξ(S) as

〈Uε(V)Vη(C))〉= exp (i(ε̄η+ η̄ε)〈C,V〉) 〈Vη(C))〉 ,

〈Ũε̃(S̃)Wξ(S)〉= exp
�

i( ¯̃εξ+ ξ̄ε̃)〈S, S̃〉
�

〈Wξ(S)〉 .
(71)

As a conclusion, when compactified on a circle, the six dimensional chiral fermionic 2-form
symmetry gives fermionic 2-form symmetry and fermionic 1-form symmetry in five dimen-
sions. Similar result also exists in reduction from ten to nine dimensions: one considers 10d
free chiral fermionic 4-form described by the action (24) for p = 4, which reduces to a system
involving 9d fermionic 4-form and 3-form. For the same reason, 10d fermionic 4-form sym-
metry leads to 9d fermionic 4-form and 3-form symmetries. However, these fermionic fields
do not fit into super Poincaré multiplets.

To make contact with five-dimensional (linearised) supergravity, we can use the second
equation of motion (66) to eliminate ψµν and obtain a free Rarita-Schwinger Lagrangian for
ψµ in 5d [25], which exhibits solely fermionic 1-form symmetry. Alternatively, the same equa-
tion of motion can be used to integrate out ψµ and leave alone a fermionic 2-form action for
ψµν in five dimensions (it could be an ingredient of dual description of five-dimensional su-
pergravity studied in [40]), which only gives rise to fermionic 2-form symmetry. We also see
that this switching between fermionic 1-form and 2-form symmetries has the origin from one
dimension higher.

4 Gauging of fermionic higher-form symmetries

In this section, we discuss the gauging of fermionic p-form global symmetries introduced in
this paper. In certain examples (e. g. free fermionic p-form field), the gauging of fermionic
p-form symmetries is obstructed by an ’t Hooft anomaly, which can be cancelled by a higher-
dimensional anomaly TQFT.

Free fermionic p-form gauge field We consider the free fermionic p-form gauge field writ-
ten in the differential form notations (we set the coefficient to be (−1) for simplicity)

S[ψ]free =

∫

M (d)
−ψ̄(p) ∧ γ(d−2p−1) ∧ dψ(p) . (72)

To gauge the p-form shifting symmetry of ψ(p), we introduce a background (p + 1)-form
fermionic field Ψ(p+1), with the following gauge transformation

δψ(p) = ε(p) ,

δΨ(p+1) = dε(p) .
(73)
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After coupling Ψ(p+1) with the (p+ 1)-form current J(p+1), the action becomes

S[ψ]free =

∫

M (d)
−ψ̄(p) ∧ γ(d−2p−1) ∧ dψ(p) +Ψ(p+1) ∧ (⋆J(p+1))

=

∫

M (d)
−(dψ(p) −Ψ(p+1))∧ (⋆J(p+1)) ,

(74)

which is not gauge invariant under 73 (Note that J(p+1) is not gauge invariant). Hence the
fermionic symmetry has an ’t Hooft anomaly.

To better illustrate the point, let us rewrite (72) in terms of an integration of a (d+1)-form
on M (d+1), where M (d) = ∂M (d+1) is the boundary of M (d+1).

S[ψ]free =

∫

M (d+1)

−dψ̄(p) ∧ Γ(d−2p−1) ∧ dψ(p) . (75)

Γ(d−2p−1) is the antisymmetric product of γ-matrices Γi in (d+1)-dimensions. When d is even,
we can use a set of Γi (i = 0, . . . , d)with the same dimension as the γ-matrices in d-dimensions.
When d is odd, Γi can be chosen as

Γi =

�

0 γi
γi 0

�

(i = 0, . . . , d − 1) , Γd =

�

I 0
0 −I

�

, (76)

and dimensions of the spinors Ψ(p+1) and ψ(p) after the uplift are also doubled.
We use the gauge invariant linear combination Ψ(p+1) − dψ(p) to write the gauged action

on M (d+1) as

S[ψ]gauge invariant =

∫

M (d+1)

−(Ψ̄(p+1) − dψ̄(p))∧ Γ(d−2p−1) ∧ (Ψ(p+1) − dψ(p)) . (77)

Nonetheless, the extra terms cannot be absorbed into the d-dimensional action, hence they
are interpreted as an ’t Hooft anomaly polynomial. We can also write the extra terms as a
(d + 2)-form (all the spinors are lifted to (d + 2)-dimensions)

Id+2 = −2Ψ̄(p+1)∧Γ(d−2p−1)∧dΨ(p+1)+dΨ̄(p+1)∧Γ(d−2p−1)∧dψ(p)+dψ̄(p)∧Γ(d−2p−1)∧dΨ(p+1) ,
(78)

which is gauge invariant. Unlike the bosonic cases,12 Id+2 contains the matter field ψ(p) as
well.

Fermionic “BF” theory with gaugeable fermionic symmetry We discuss the examples of
fermionic “BF” theories with a mixed ’t Hooft anomaly, where one can gauge a part of fermionic
global symmetries.

We construct an action in d-dimensions, in the form of

Sfree =

∫

M (d)
−χ̄(k) ∧ γ(d−p−k−1) ∧ dψ(p) + c.c. (79)

The theory has a fermionic p-form global symmetry

δψ(p) = λ(p) , (80)

12For instance, the mixed anomaly between electric and magnetic 1-form symmetries in the 4d Maxwell the-
ory [1].
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and a fermionic k-form global symmetry

δχ(k) = ρ(k) . (81)

They have background gauge fields Ψ(p+1) and X(k+1) respectively.
Similar to the discussion for a free fermionic p-form field, one cannot gauge the fermionic

p-form and k-form global symmetries simultaneously, due to a mixed ’t Hooft anomaly in
(d + 1)-dimensions. However, one can gauge only one of these symmetries.

For instance, the new action after the gauging the p-form symmetry is

Sgauge invariant =

∫

M (d)
−χ̄(k) ∧ γ(d−p−k−1) ∧ (dψ(p) −Ψ(p+1)) + c.c. (82)

It is gauge invariant under
δψ(p) = ε(p) ,

δΨ(p+1) = dε(p) .
(83)

Nonetheless, the gauge symmetry of the field χk is broken after the gauging process.
In the special case of k = 0, which is a spinor coupled to a fermionic p-form field, there is

no gauge symmetry to break.

Other theories with gaugeable fermionic symmetries We can also construct actions where
all the fermionic fields are accompanied with a derivative, for instance

S[ψ]free = −
∫

M (d)
dψ̄(p) ∧ ∗dψ(p) . (84)

In this case, the fermionic p-form global symmetry (dλ(p) = 0)

δψ(p) = λ(p) , (85)

can be gauged by coupling to the background gauge field Ψ(p+1):

S[ψ]gauge invariant = −
∫

M (d)
(Ψ̄(p+1) − dψ̄(p))∧ ∗(Ψ(p+1) − dψ(p)) . (86)

5 Examples with broken fermionic symmetries

5.1 Rarita-Schwinger field coupled to gauge field

In this section, we discuss an interacting system with a Rarita-Schwinger field ψµ coupled
to a gauge field Aµ and a spinor ξ, where the fermionic 1-form symmetry associated to ψµ
is broken by the coupling term. The gauge field Aµ can be Abelian or non-Abelian, and the
spinor ξwhich plays the role of auxiliary field is also coupled to the gauge field Aµ. This model
was firstly introduced in [41] as extended gauged Rarita-Schwinger theory, where an exact off-
shell fermionic gauge invariance is achieved with help of the auxiliary field ξ. This off-shell
fermionic gauge invariance is a generalization of the fermionic 0-form gauge symmetry (10),
and we replace ∂µ by the usual gauge covariant derivative Dµ. In addition, this theory has no
superluminal modes and it is consistent as a non-supersymmetric, classical field theory in four
dimensions. However, whether it can be properly quantized remains a open question and for
more details we refer to [42,43] and references therein.
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We use the following action, which can be defined in general d space-time dimensions,
and for d > 3:

S = −
1
4

∫

dd x FµνFµν −
1
4

∫

dd x
�

ψ̄µγ
µνρ

→
Dνψρ − ψ̄µ

←
Dνγ

µνρψρ

�

+
i g
4

∫

dd x
�

ξ̄Fµνγ
µνρψρ − ψ̄µγµνρFνρξ

�

−
i g
8

∫

dd x
�

ξ̄Fµνγ
µνρ

→
Dρξ− ξ̄

←
Dµγ

µνρFνρξ
�

.

(87)
The covariant derivatives are13

→
Dµψν = ∂µψν − i gAµψν ,

ψ̄ν
←
Dµ = ∂µψ̄ν + i gAµψ̄ν ,
→
Dµξ= ∂µξ− i gAµξ ,

ξ̄
←
Dµ = ∂µξ̄+ i gAµξ̄ .

(88)

The above action (87) has a fermionic 0-form gauge symmetry

δεAµ = 0 , δεψ̄µ = ε̄
←
Dµ , δεψµ =

→
Dµε , δεξ̄= ε̄ , δεξ= ε , (89)

and the usual 0-form gauge symmetry

δαAµ =
1
g
∂µα , δαψ̄µ = −iαψ̄µ , δαψµ = iαψµ , δαξ̄= −iαξ̄ , δαξ= iαξ .

(90)
The equations of motion for ψµ, ξ and Aµ read

1
2
γµνρ

→
Dν
�

ψρ −
→
Dρξ

�

= 0 ,

−
i g
4

Fµνγ
µνρ

�

ψρ −
→
Dρξ

�

= 0 ,

−
1
2
∂µFµν +

i g
4
∂µ

�

ξ̄γµνρψρ − ψ̄ργρµνξ+
1
2
ξ̄
←
Dργ

ρµνξ−
1
2
ξ̄γµνρ

→
Dρξ

�

−
i g
2
ψ̄µγ

µνρψρ −
g2

4
ξ̄Fµργ

µνρξ= 0 .

(91)

Applying
→
Dµ on the first equation, one gets the second equation by virtue of the antisym-

metrization in covariant derivatives, thus the equation of motions of ξ is a subset of those of
ψµ and indicating that ξ is auxiliary.

One can construct the following Wilson loop observable that is gauge invariant under both
(89) and (90) gauge symmetries:

Lη,ζ(C) = TrexpP
∮

C

 

0 (ψ̄µ − ξ̄
←
Dµ)η

ζ̄(ψµ −
→
Dµξ) 0

!

d xµ . (92)

We used an off-diagonal 2×2 matrix form, similar to the fermionic part of Wilson loops in the
literature [44,45]. Nonetheless, the loop operator (92) is explicitly Lorentz covariant.

13As mentioned, the non-Abelian version of the model is also valid and for simplicity we demonstrate here
computations only in the Abelian case.
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However, one cannot construct a topological generator for fermionic global 1-form sym-
metry, as the equations of motion (91) are not in form of a total derivative of d. Suppose that
we write down the operator

Uε(M
(d−2)) = exp

�

i

∫

M (d−2)

�

ε̄(⋆J )(d−2) + (⋆J̄ )(d−2)ε
�

�

, (93)

J µν = γµνρ
�

ψρ −
→
Dρξ

�

. (94)

J µν does not satisfy the on-shell condition d ⋆J = 0.
∫

M (d−1) d ⋆J is not a quantized quantity
either.

Now we comment on the physical interpretation of the model from the perspective of
fermionic 1-form symmetry breaking. When the gauge coupling g = 0, the theory (87) is
reduced to a free Rarita-Schwinger field with a free Maxwell sector. Hence (93) become topo-
logical and the fermionic 1-form symmetry is restored. When one turns on a non-zero g, the
fermionic 1-form symmetry is explicitly broken. It would be interesting to compute the vac-
uum expectation value of the loop parameter (92) and analyze its behaviour for different g in
the future.

5.2 Swampland implications

We briefly discuss how to relate the fermionic global symmetries we discussed in this paper
with the no global symmetry swampland conjectures.

Analogous to the bosonic global symmetries, a quantum gravity theory with an exact
fermionic global symmetry should live in the swampland. Since one cannot consistently gauge
the fermionic shifting symmetry in a fermionic p-form field (see section 4), such symmetries
should be explicitly broken.

For instance, in the usual formulations of supergravity, the local supersymmetry transfor-
mation of ψµ is

δεψµ =∇µε

= ∂µε+
1
4

wab
µ γabε ,

(95)

where wab
µ is the spin-connection written in matrix form.

If we write down the loop operator for the Rarita-Schwinger field ψµ

Vη(C) = exp

�

i

∮

C
(η̄ψµ + ψ̄µη) d xµ

�

, (96)

it is not gauge invariant on a general curved background. The fermionic 1-form global sym-
metries are explicitly broken in supergravity theories, which is consistent with the no global
symmetry swampland conjectures.

We can also consider the fate of fermionic 0-form shift symmetry δψ= ε for a spinor field
(dε= 0). In a usual supergravity theory, the free action for ψ becomes

S[ψ]sugra = −
∫

dd x
Æ

|det{g}| ψ̄γµ∇µψ , (97)

which breaks the shift symmetry of ψ. Of course, one can still ask about the possibilities to
take ε to be covariantly constant, i.e. ∇µε = 0. If the curved space-time admits such spinors
then this shift symmetry (with dε = 0 replaced by ∇µε = 0) is unbroken. Such a global
symmetry exists on a space-time with covariantly constant spinors, but it is not preserved
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in general curved space-time. Hence we do not have such fermionic global symmetries in a
gravity theory.

For a fermionic p-form field in curved space-time with action

S[ψ] =

∫

M (d)
−ψ̄(p) ∧ γ(d−2p−1) ∧∇ψ(p) , (98)

one can also introduce the shifting symmetry δψ(p) = ε(p), where the parameter ε(p) satisfies
the covariantly flat condition

∇ε(p) = 0 . (99)

Nonetheless, such a symmetry is broken on a general space-time manifold as well.

6 Discussions

In this paper, we introduced and explored the concept of fermionic p-form global symmetries.
We discussed physical examples with the symmetry and their gaugings, as well as examples
where the fermionic p-form global symmetries are broken. Here we clarify some points and
discuss the future directions.

• Non-compactness of the fermionic symmetry group

In the cases of fermionic p-form global symmetries, the symmetry parameter is a spinor
with Grassmannian components, thus the symmetry group is always a non-compact
fermionic translation group. This feature obstructs the partial breaking of such symme-
tries, since the fermionic charge associated to the symmetry is not quantized. One may
need to compactify the space of spinors, in order to construct more non-trivial models
with fermionic p-form global symmetries.

• SUSY transformation of Wilson loops in SUSY gauge theories

In SUSY gauge theories, there is a natural fermionic symmetry acting on the Wilson
loop objects, which is the SUSY transformation, see e. g. [46]. In our language, such a
symmetry is still a fermionic 0-form symmetry that acts on local fields, e. g. Aµ. Since
the action of symmetry is not related to the linking of a (d −2)-dimensional topological
operator with the Wilson loop.
Similar considerations has been carried out in the context of supergeometry [47], where
the authors introduced global p-form (super)symmetries generated by tensorial super-
currents. These supercurrents are made out of superforms which are generalisation of
ordinary bosonic differential forms, and the additional spinorial components in the su-
performs are related to the tensor spinor currents that appear in our construction of
fermionic higher-form symmetries.

• Non-invertible fermionic higher-form symmetries

The fermionic topological defect lines (TDL) were recently studied in 2d fermionic
CFTs [48], which generate non-invertible 0-form fermionic symmetries. It is tentative
to discuss the analogue of fermionic topological defects in 3d or higher dimensional
fermionic CFTs, where non-invertible fermionic higher-form symmetries potentially ex-
ist.

• String theory realizations

One may attempt to realize the fermionic p-form global symmetries in string theory.
Nonetheless, one needs a massless fermionic p-form gauge field in the space-time, that
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is almost free. Such a scenario only happens in the free, tensionless limit of superstring
theory, where we only have an infinite tower of free, massless higher-spin fields. It would
be interesting if one can construct a setup that is not a completely free system.

• 6d (4,0) theory

A free theory based on the 6d N = (4, 0) supermultiplet exists, and its circle reduction
yields linearised 5d N = 8 supergravity [8]. The interacting (4,0) theory is also con-
jectured to exist, and as an extension of the free (4,0) tensor theory the interacting one
could be the strong coupling limit of of 5d non-linear maximal supergravity (see [38]
for a recent review). In this context, the presumed interacting (4,0) theory would be a
new superconformal phase [49] of M-theory at six dimensions with maximal supersym-
metry. On the other hand, standard folklore states that there is no global symmetries
in quantum gravity. According to this criterion, fermionic 2-form symmetries of the free
limit must be either gauged or broken in the UV. Naive gauging can not be applied to
free fermionic p-form symmetries as shown in section 4. It would be interesting to ask
how the gauging/breaking mechanism goes when we moving from the free theory to the
interacting version. For instance, given the relation between 5d linearised SUGRA and
free (4,0) theory, one can argue that couplings between ΨMN and exotic graviton CMN PQ
break the fermionic 2-form symmetry explicitly, while the couplings between linearised
graviton hµν and gravitino ψµ break fermionic 1-form symmetry in 5d. Moreover, as al-
ready pointed out in [8], extended objects exist and carrying various charges according
to the (4,0) superalgebra. We can ask how to break the fermionic 2-form symmetry by
these localized UV input.

• Fermionic TQFTs

We have also constructed a novel type of topological quantum field theories (on flat
manifolds) using fermionic tensor fields, with an action of the form

S =







∑

pi+qi=d−1 ci

∫

M (d) ψ̄(pi) ∧ dψ(qi) (odd d) ,

∑

pi+qi=d−1 ci

∫

M (d) ψ̄(pi) ∧ (1+ γd+1)dψ(qi) (even d) .
(100)

This is beyond the scope of usual spin TQFTs, which only contain 0-form spinors, see
for example [50]. In particular, the name “fermionic higher-form symmetry” was also
mentioned in [51]. It would be interesting to further investigate the properties of the
fermionic tensor TQFTs and their relations with the known models.
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A Conventions

We use the “mostly plus” signature for d-dimensional Minkowski metric: η= diag(−,+, . . . ,+) .
Gamma matrices γµ (µ= 0, . . . , d − 1) satisfy the anti-commutation relation

{γµ,γν}= 2ηµν . (A.1)

Hermitian property of gammas is (γµ)† = γ0γµγ0. In d = 2m dimensions the chirality matrix
is defined as

γd+1 = (−i)m+1γ0γ1 . . .γd−1 . (A.2)

For a spinor ψ, its Dirac conjugate is ψ̄= iψ†γ0.
A differential p-form ω(p) is expressed in components as

ω(p) =
1
p!
ωµ1...µp

d xµ1 ∧ . . .∧ d xµp , (A.3)

and its exterior derivative (dω)(p+1) is a (p+ 1)-form with components

(dω)µ1...µp+1
= (p+ 1)∂[µ1

ωµ2...µp+1] . (A.4)

The components of the wedge product of a p-form ω(p) and a q-form η(q) are

(ω∧η)µ1...µpν1...νq
=
(p+ q)!

p!q!
ω[µ1...µp

ην1...νq] . (A.5)

The Hodge star operator ⋆ maps p-forms to (d − p)-forms and our convention is

(⋆ω)µ1...µd−p
=

1
p!
ϵµ1...µd−p

ν1...νpων1...νp
, (A.6)

where ϵµ1...µd
is the Levi-Civita symbol and ϵ01...d−1 = 1, ϵ01...d−1 = −1.

On a curved manifold with metric gµν, the Levi-Civita symbol ϵ generalises to a tensor
according to the normalisation

ϵ01...d−1 =
Æ

|det{g}| , ϵ01...d−1 =
−1

p

|det{g}|
. (A.7)

The invariant volume form is
Æ

|det{g}| dd x ≡
Æ

|det{g}| d x0 ∧ . . .∧ d xd−1 =
1
d!
ϵµ1...µd

d xµ1 ∧ . . .∧ d xµd , (A.8)

here we would also write dVµ1...µd ≡ d xµ1 ∧ . . .∧ d xµd for short.
Integration of d-forms over the manifold M (d) is given as
∫

M (d)
υ(d) =

∫

M (d)

1
d!
υµ1...µd

d xµ1 ∧ . . .∧ d xµd =

∫

M (d)

1
d!
υµ1...µd

dVµ1...µd

=

∫

M (d)
υ01...d−1 dd x

≡
∫

M (d)
υ(x)01...d−1d x0d x1 . . . d xd−1 ,

(A.9)

and integration of a scalar (0-form) φ is defined as the integral of its Hodge dual
∫

M (d)
⋆φ =

∫

M (d)
φ
Æ

|det{g}| dd x . (A.10)
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Useful formulae:

⋆ω∧η= ⋆η∧ω=
1
p!
ωµ1...µp

ηµ1...µp
Æ

|det{g}| dd x ,

d ⋆ υ∧ω= (−1)d−p−1 1
p!
∂µυ

µν1...νpων1...νp

Æ

|det{g}| dd x ,
(A.11)

where ω and η are both p-forms and υ is a (p+ 1)-form.
Let C(p) denote a p-cycle (closed oriented submanifold of dimension p), its Poincaré dual is

the cohomology class of a (d− p)-form J(d−p)(C(p)) such that for any p-form A(p) the following
relation holds

∫

C(p)
A(p) =

∫

M (d)
J(d−p)(C(p))∧ A(p) . (A.12)

For submanifolds U and V with dimension p and d−p−1 and such that V is the boundary of a
(d−p)-dimensional submanifold W , i.e. ∂W = V (in fact, both U and V should be boundaries
of some other submanifolds in order to define the linking number [14]). The linking number
〈U , V 〉 is given as the intersection number I(U , W ) of U and W

〈U , V 〉= I(U , W ) =

∫

M (d)
J(d−p)(U)∧ J(p)(W ) =

∫

U
J(p)(W ) . (A.13)

This agrees with the definition of [52].
The free fermionic p-form action (24) is

S[ψ(p)] = −(−1)
p(p−1)

2

∫

ddx ψ̄µ1µ2...µp
γµ1µ2...µpνρ1ρ2...ρp ∂νψρ1ρ2...ρp

= −(−1)
p(p−1)

2 (−1)p
∫

ddx ψ̄µ1µ2...µp
∂νJ νµ1µ2...µp

= −p!(−1)
p(p−1)

2 (−1)p(−1)p(d−p)(−1)d−p−1

∫

ψ̄∧ (d ⋆J )

= −C(d, p)

∫

ψ̄∧ (d ⋆J ) ,

with
C(d, p) = −p!(−1)

(p+1)(2d−p)
2 . (A.14)

The shifted p-form action used in section 2
�

J̄µ1...µpν
= −ψ̄ρ1...ρpγρp ...ρ1νµp ...µ1

�

S[ψ(p) − εJ(p)]

= S[ψ(p)] + (−1)
p(p−1)

2

∫

ddx
�

(−1)pε̄Jµ1...µp
∂νJ νµ1µ2...µp + (−1)p∂νJ̄ νρ1...ρpεJρ1...ρp

�

= S[ψ(p)] + (−1)
p(p−1)

2

∫

p!(−1)p(−1)p(d−p)(−1)d−p−1J ∧
�

d ⋆ [J̄ ε+ ε̄J ]
�

,

= S[ψ(p)] + C(d, p)

∫

J ∧
�

d ⋆ [J̄ ε+ ε̄J ]
�

,

suggesting that Uε(M (d−p−1)) should be

Uε(M
(d−p−1)) = exp

�

i C(d, p)

∫

M (d−p−1)

�

⋆[J̄ ε+ ε̄J ]
�

�

.
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B VEV of the fermionic Wilson loop

In this section we give a brief discussion of the vacuum expectation value (VEV) 〈Vη(C)〉 of
the fermionic Wilson loop (11). As mentioned, the free action (7) for ψµ in d = 3 dimensions
solely captures topological degrees of freedom. This is due to the fact that the equations of
motion lead to the vanishing of field strength. Consequently, in this particular scenario, VEV
can be conveniently normalised as 〈Vη(C)〉= 1, disregarding divergent terms that signify self-
interactions. This omission of divergent terms is in line with the common practice in Abelian
Chern-Simons theory. When one moves away from the critical dimension (i. e. d = 2p + 1),
the behaviour of 〈Vη(C)〉 becomes similar to the Wilson loop in Maxwell theory.
For instance, in d = 4, we introduce the source Jµ(x) ≡ η

∮

C d yµδ(x − y) to rewrite 〈Vη(C)〉
as the Jµ-sourced path integral

〈Vη(C)〉=
∫

DψµDψ̄µeiS[ψµ,ψ̄µ]+i
∫

C(η̄ψ(1)+ψ̄(1)η)

=

∫

DψµDψ̄µeiS[ψµ,ψ̄µ]+i
∫

M(4) d4 x (J̄µψµ+ψ̄µJµ)

= Z[Jµ, J̄µ] .

(B.1)

To evaluate the partition function Z[Jµ, J̄µ] in the presence of source Jµ, we need to use the
free Rarita-Schwinger propagator, which in momentum space takes the reverse index form in
suitable gauge [53]

Sµν(p) = −
i
2

γν/pγµ
p2

. (B.2)

Insert the propagator in (B.1) and use the explicit delta-function expression of the source, we
have the following result14

〈Vη(C)〉= Z[Jµ, J̄µ] = exp

�

−η̄η
∮

C
d xµ

∮

C
d yν

γνγργµ(x − y)ρ

4π2(x − y)3

�

. (B.3)

The gamma matrices are numerical constants and thus the VEV 〈Vη(C)〉 exhibits a perimeter
law.
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