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Abstract

In two-dimensional statistical physics, correlation functions of the O(N) and Potts mod-
els may be written as sums over configurations of non-intersecting loops. We define
sums associated to a large class of combinatorial maps (also known as ribbon graphs).
We allow disconnected maps, but not maps that include monogons. Given a map with
n vertices, we obtain a function of the moduli of the corresponding punctured Riemann
surface. Due to the map’s combinatorial (rather than topological) nature, that function
is single-valued, and we call it an n-point correlation function. We conjecture that in
the critical limit, such functions form a basis of solutions of certain conformal bootstrap
equations. They include all correlation functions of the O(N) and Potts models, and cor-
relation functions that do not belong to any known model. We test the conjecture by
counting solutions of crossing symmetry for four-point functions on the sphere.

Copyright L. Grans-Samuelsson et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 10-05-2023
Accepted 06-09-2023
Published 09-10-2023

Check for
updates

doi:10.21468/SciPostPhys.15.4.147

Contents

1 Introduction 3
1.1 Global symmetry in the O(N) and Potts models 3
1.2 Making a mess of correlation functions 4
1.3 From loops to combinatorial maps 5
1.4 Highlights of the article 6

2 Two-dimensional combinatorial maps 7
2.1 Connected and disconnected maps 7

2.1.1 Connected maps 7
2.1.2 Disconnected maps 8
2.1.3 Weakly connected maps 9

¶ Now at: Microsoft Station Q, Santa Barbara, California 93106-6105 USA.
∥ Now at: Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100084 China.

1

https://scipost.org
https://scipost.org/SciPostPhys.15.4.147
mailto:linneag@microsoft.com
mailto:jesper.jacobsen@ens.fr
mailto:rongvoram.n@outlook.com
mailto:sylvain.ribault@ipht.fr
mailto:hubert.saleur@ipht.fr
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.15.4.147&amp;domain=pdf&amp;date_stamp=2023-10-09
https://doi.org/10.21468/SciPostPhys.15.4.147


SciPost Phys. 15, 147 (2023)

2.2 Counting planar maps 10
2.2.1 Counting planar weakly connected maps 10
2.2.2 Counting all planar maps 11
2.2.3 What about non-planar maps? 14

2.3 Planar maps with four vertices 14
2.3.1 Signature of a map 14
2.3.2 Counting maps with a minimum signature 15

3 Correlation functions in loop models 16
3.1 Weights of loop configurations 17

3.1.1 Weights of closed loops 17
3.1.2 Dependence on local angles at vertices 18
3.1.3 Reference edges for computing weights 19

3.2 Lattice approximation 20
3.2.1 Valencies and angles on a square lattice 20
3.2.2 Comparison with the Coulomb gas approach 21

4 Conformal bootstrap 22
4.1 Models and correlation functions 22

4.1.1 Crossing symmetry and factorization 22
4.1.2 Loop models and their spectra 23
4.1.3 Correlation functions 24

4.2 Solutions of conformal bootstrap equations 25
4.2.1 Main conjectures 25
4.2.2 Further conjectures for four-point functions on the sphere 26
4.2.3 Relation with loop models 26

4.3 Numerical tests 27
4.3.1 Cases from previous work 27
4.3.2 Systematic scan of examples 28

5 Concluding remarks 29
5.1 Solving loop models: the next steps 29
5.2 More evidence for the conjectures, please! 29
5.3 Generalizations: A wish list 30
5.4 Which crossing symmetry equations do we want to solve? 30
5.5 Why these maps, why these weights, why these loop ensembles? 31

A List of examples 32
A.1 All planar maps with zero to three edges 32

A.1.1 Case
�

�M0,4(0, 0,0, 0)
�

�= 1 32
A.1.2 Case
�

�M0,4(
1
2 , 1

2 , 0, 0)
�

�= 1 32
A.1.3 Case
�

�M0,4(1, 0,0, 0)
�

�= 3 33
A.1.4 Case
�

�M0,4(
1
2 , 1

2 , 1
2 , 1

2)
�

�= 3 33
A.1.5 Case
�

�M0,4(1, 1
2 , 1

2 , 0)
�

�= 2 33
A.1.6 Case
�

�M0,4(1, 1,0, 0)
�

�= 4 33
A.1.7 Case
�

�M0,4(
3
2 , 1

2 , 0, 0)
�

�= 3 33
A.1.8 Case
�

�M0,4(2, 0,0, 0)
�

�= 6 34
A.1.9 Case
�

�M0,4(1, 1, 1
2 , 1

2)
�

�= 3 34
A.1.10 Case
�

�M0,4(1, 1,1, 0)
�

�= 5 34
A.1.11 Case
�

�M0,4(
3
2 , 1

2 , 1
2 , 1

2)
�

�= 5 34

2

https://scipost.org
https://scipost.org/SciPostPhys.15.4.147


SciPost Phys. 15, 147 (2023)

A.1.12 Case
�

�M0,4(
3
2 , 1

2 , 1, 0)
�

�= 4 34
A.1.13 Case
�

�M0,4(
3
2 , 3

2 , 0, 0)
�

�= 5 35
A.1.14 Case
�

�M0,4(2, 1
2 , 1

2 , 0)
�

�= 5 35
A.1.15 Case
�

�M0,4(2, 1,0, 0)
�

�= 7 35
A.1.16 Case
�

�M0,4(
5
2 , 1

2 , 0, 0)
�

�= 7 35
A.1.17 Case
�

�M0,4(3, 0,0, 0)
�

�= 11 35
A.2 All connected planar maps with four or five edges 36

A.2.1 Case
�

�

�Mc
0,4(1, 1,1,1)
�

�

�= 3 36

A.2.2 Case
�

�

�Mc
0,4(

3
2 , 1, 1, 1

2)
�

�

�= 4 36

A.2.3 Case
�

�

�Mc
0,4(

3
2 , 3

2 , 1
2 , 1

2)
�

�

�= 4 36

A.2.4 Case
�

�

�Mc
0,4(2, 1, 1

2 , 1
2)
�

�

�= 5 36

A.2.5 Case
�

�

�Mc
0,4(

5
2 , 1

2 , 1
2 , 1

2)
�

�

�= 6 36

A.2.6 Case
�

�

�Mc
0,4(

3
2 , 3

2 , 1, 1)
�

�

�= 6 37

A.2.7 Case
�

�

�Mc
0,4(

3
2 , 3

2 , 3
2 , 1

2)
�

�

�= 6 37

A.2.8 Case
�

�

�Mc
0,4(2, 1,1, 1)
�

�

�= 6 37

A.2.9 Case
�

�

�Mc
0,4(2, 3

2 , 1
2 , 1)
�

�

�= 7 37

A.2.10 Case
�

�

�Mc
0,4(2, 2, 1

2 , 1
2)
�

�

�= 8 38

A.2.11 Case
�

�

�Mc
0,4(

5
2 , 1, 1, 1

2)
�

�

�= 8 38

A.2.12 Case
�

�

�Mc
0,4(

5
2 , 3

2 , 1
2 , 1

2)
�

�

�= 8 38

A.2.13 Case
�

�

�Mc
0,4(3, 1, 1

2 , 1
2)
�

�

�= 10 38

A.2.14 Case
�

�

�Mc
0,4(

7
2 , 1

2 , 1
2 , 1

2)
�

�

�= 12 38

References 39

1 Introduction

1.1 Global symmetry in the O(N) and Potts models

The O(N) model and the Q-state Potts model are generalizations of the Ising model. In addi-
tion, they can be used for describing systems such as polymers, percolation or random walks.
Both models can be defined on lattices, and have critical limits where they become conformal
field theories on continuous spaces.

In addition to conformal symmetry, these field theories also enjoy the global symmetries
of the original models, which are described by the orthogonal group O(N) and the symmetric
group SQ respectively. It is therefore natural to characterize the fields by their transformation
properties under conformal symmetry and global symmetry. The action of global symmetry is
described by finite-dimensional representations of the symmetry group. Each representation
describes the behaviour of infinitely many primary fields. For example, in the case of O(N),
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the two simplest irreducible representations are the singlet and vector representations, and
the O(N) model has infinitely many primary fields that are O(N) singlets or vectors.

In two dimensions, the action of the global and conformal symmetries have recently been
determined [1]. A striking feature of the resulting spectra is the presence of degeneracies: two
fields that transform in different irreducible representations of the symmetry group, or even
two fields that belong to different models, can have the same conformal dimension. Let us
illustrate this by displaying the numbers of primary fields for a few of the lowest conformal
dimensions that appear in these models:

Dimension O(N) model Potts model

δ∆
(0, 1

2 )
− 1

δ( 1
2 ,0) 1 −

δ(1,0) 1 −

δ( 3
2 ,0) 2 −

δ(2,0) 5 1

δ( 5
2 ,0) 11 −

δ(3,0) 38 2

(1)

Our admittedly unconventional notations for conformal dimensions are explained in Table
(60). By the number of primary fields we really mean the number of irreducible representa-
tions. For example, in the O(N)model, the primary fields with the conformal dimension δ( 5

2 ,0)
transform in the representation [1](2.29i)

Λ( 5
2 ,0) = [5] + [32] + 2[311] + [221] + [11111] + [3] + 2[21] + [111] + [1] , (2)

which is a sum of 9 different irreducible representations of O(N) (written as integer partitions),
including two representations [311] and [21] that come with nontrivial multiplicities.

The appearance of degeneracies in the two-dimensional O(N) and Potts models can be
understood in terms of the diagram algebras that are Schur–Weyl dual to the groups O(N)
and SQ in the lattice spectra of the models [1, 2]. The problem is that these algebras are not
dynamical symmetries, i.e. they do not constrain correlation functions. For example, in the
O(n)model, the operator product of two fields with dimensions δ( 1

2 ,0) and δ(1,1) involve fields
with the dimension δ( 5

2 ,0) that transform in the representations [111] and [21], but not in the
rest of Λ( 5

2 ,0) [3]. The diagram algebra that has Λ( 5
2 ,0) as an irreducible representation can

therefore help us understand the spectrum, but not the operator product expansions.

1.2 Making a mess of correlation functions

The inadequacy of global symmetry for taming the Potts and O(N) models, and the lack of
a sharp distinction between the two models, become even clearer at the level of correlation
functions.

Correlation functions must be invariant under global symmetry. In particular, a four-point
function of the O(N)model must behave as an O(N)-invariant four-tensor. For example, there
is one primary field V(1,0) of dimension δ(1,0), which belongs to the symmetric two-tensor rep-
resentation [2]. Since [2]⊗ [2] = [4] + [31] + [22] + [2] + [11] + [] is a sum of 6 irreducible
representations, there are 6 invariant four-tensors in [2]⊗4, and therefore 6 four-point func-
tions of the type




V(1,0)V(1,0)V(1,0)V(1,0)
�

in the O(N) model.
On the other hand, correlation functions are subject to conformal boostrap equations — in

the case of four-point functions on the sphere, crossing symmetry equations. These equations
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depend only on conformal dimensions, and know nothing about global symmetry. As ex-
plained in more detail in Section 4.1, we can numerically determine the dimensions of spaces
of solutions of crossing symmetry equations. We can then try to identify the solutions with the
four-point functions that are predicted by global symmetry in the O(N) or Potts model.

In the cases of a few four-point functions, let us display the numbers of O(N)- and SQ-
invariant four-tensors, together with the dimension of the space of solutions of crossing sym-
metry (“Bootstrap”). Our four-point functions may belong to the O(N)model, the Potts model,
neither, or both. Accordingly, the spectrum that we assume in the crossing symmetry equations
is that of the O(N) model, the Potts model, or the union of the two spectra.

Four-point function Models O(N) SQ Bootstrap


V∆
(0, 1

2 )
V∆

(0, 1
2 )

V∆
(0, 1

2 )
V∆

(0, 1
2 )

·

Potts − 4 4


V( 3
2 ,0)V( 3

2 , 2
3 )

V∆
(0, 1

2 )
V∆

(0, 1
2 )

·

− − − 5




V(1,0)V(1,0)V(1,0)V(1,0)
�

O(N) 6 − 6


V(3,0)V(2,0)V∆
(0, 1

2 )
V∆

(0, 1
2 )

·

Potts − 5 9
¬

V(2, 1
2 )

V(2,0)V( 3
2 ,0)V( 1

2 ,0)

¶

O(N) 77 − 10
¬

V(3,0)V(2, 1
2 )

V( 3
2 ,0)V( 1

2 ,0)

¶

O(N) 660 − 15



V(2,0)V(2,0)V(2,0)V(2,0)
�

O(N), Potts 2862 16 21

(3)

In the simplest cases, it is possible to identify which solutions of crossing symmetry correspond
to which invariant four-tensors [3, 4]. But this does not explain the four-point functions that
belong to neither the Potts nor the O(N) model, because they mix fields from both. Moreover,
as the fields’ conformal dimensions increase, the numbers of invariant four-tensors grow much
faster than the number of solutions of crossing symmetry. And it is even possible to add diag-
onal fields (i.e. fields with zero conformal spin) with arbitrary conformal dimensions, which
belong to neither model, but lead to more solutions of crossing symmetry [5].

We will now forget about the correlation functions of one model or the other, and focus on
the solutions of crossing symmetry. Of course, we will lose some information, since many dif-
ferent O(N) four-tensors can correspond to the same solution of crossing symmetry. Shedding
group-theoretic superstructures will simplify the problem, and hopefully we will be focussing
on more fundamental objects. But we will have to resort to a completely different approach.

1.3 From loops to combinatorial maps

The O(N)model and and the Q-state Potts models were originally defined as statistical models
on lattices, with an integer parameter N or Q. In two dimensions, they also have a loop
formulation where N or Q takes arbitrary complex values. In this formulation, correlation
functions are sums over configurations of non-intersecting loops. For example, let us draw a
loop configuration on a Riemann surface of genus 2:

5
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(4)

The configuration includes closed loops (in red), and segments that end at vertices. We draw
a vertex as a dot if it is the endpoint of at least one segment, and as a cross otherwise. For a
given correlation function, the number and valencies of vertices are fixed. On the other hand,
the number of closed loops can vary a lot, depending on the configuration.

The main idea of this article is to build a correlation function by summing not over all
possible loop configurations, but over a subset, defined by some constraints. These constraints
must be such that the correlation function has a critical limit, is conformally invariant, and is a
single-valued function of the Riemann surface’s moduli. In order to satisfy these requirements,
the constraints can only specify which vertices are connected by how many segments, and
how these segments are ordered around each vertex. In other words, the constraints must be
combinatorial.

The mathematical object that describes such constraints is a combinatorial map: basically,
a graph embedded in a two-dimensional oriented manifold. Combinatorial maps appear in
many contexts, and are known under various other names, such as: ribbon graphs, fatgraphs,
or rotation systems. We will always use the term combinatorial map, except when making
contact with a work by Do and Norbury on the moduli space of curves [6]. Since their fatgraphs
are not quite the same as our combinatorial maps, but are related by graph duality, it will be
convenient to keep calling them fatgraphs.

To each combinatorial map, we will associate a correlation function: a function of the
vertices’ positions, which also depends on the Riemann surface’s moduli, and on a few other
parameters. Unlike a conformal block, this is a well-defined, single-valued function. In the
critical limit, it is a solution of conformal bootstrap equations.

While this function is defined unambiguously, we may be abusing terminology by calling it
a correlation function, since we are not defining it as a correlation function of local fields. In
fact our definition is manifestly non-local, since it relies on a combinatorial map. However, it
can happen that a non-locally defined quantity can nevertheless be interpreted as a correlation
function of local fields. This is the case for certain cluster connectivities of the Potts model [7],
and also for some two-point functions of the loop models that we are considering [12]. It
remains to be seen whether this is the case for the more general correlation functions that we
are constructing.

1.4 Highlights of the article

• The definition (2.3) of weakly-connected combinatorial maps, which leads to simple re-
sults when it comes to counting maps, and will have a simple interpretation in conformal
field theory.

• The definition (2.6) of the signature of a planar map with four vertices, which is more
mysterious from the point of view of combinatorics, but which also has a simple inter-
pretation in conformal field theory.

• The weight (44) of a loop configuration, together with a definition (45) of the angles of

6
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edges at vertices. In contrast to the Coulomb gas formalism, our approach features an
unambiguous definition of angles.

• The conjectures of Section 4.2 about the numbers of solutions of crossing symmetry
equations, culminating with Conjecture 4.5 that each combinatorial map corresponds to
one solution.

• Our evidence for these conjectures is summarized in Section 4.3. It consists in numerical
studies of crossing symmetry in four-point functions on the sphere. We collect results
from previous work on special cases, such as the O(N) and Potts models, and perform a
systematic scan of four-point functions in loop models.

2 Two-dimensional combinatorial maps

In this section, we will introduce the class of combinatorial maps that will turn out to be
relevant to loop models. We will then focus on the subclass of planar maps, and review results
on counting such maps. Then we will further focus on planar maps with four vertices, which
will be relevant for interpreting our numerical conformal bootstrap results.

2.1 Connected and disconnected maps

A graph is a combinatorial object made of finitely many vertices and edges. A combinatorial
map is a graph where each vertex comes with a cyclic permutation of the incident half-edges.

2.1.1 Connected maps

Definition 2.1 (Connected map)
A connected map is a connected graph, together with a cyclic permutation of the half-edges around
each vertex. The corresponding compact orientable surface is built by gluing topological discs along
the graph’s edges, with their arrangement at each vertex determined by the cyclic permutation.
These discs are the map’s faces. We require that there are no monogons, i.e. that each face has at
least 2 incident edge sides.

Our definition of a combinatorial map is nonstandard in two ways: we forbid mono-
gons, and we call a connected map what is usually called simply a map. The surface’s genus
g = gEuler can be found by computing the Euler characteristic,

2− 2gEuler = #vertices−#edges+#faces . (5)

If g = 0, the map is called planar, although it actually lives on the sphere.
We consider maps whose vertices are labelled. In practice this means that we do not

identify two maps when they are related by a permutation of vertices. Let us illustrate this
in an example that involves a vertex of valency 5, i.e. a vertex with 5 incident half-edges
(although it only has 4 incident edges):

̸= (6)

7
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We do not explicitly write labels on vertices: rather, we distinguish them by their positions in
the plane, which may be considered fixed. As a result, two topologically different embeddings
may be identical as maps:

= ̸= (7)

In this example, the first two embeddings are topologically different because they are not
related by deforming their edges on the sphere. To relate them, it is necessary to move the
vertices along a path with nontrivial monodromy.

Moreover, we only consider maps that do not contain monogons; equivalently we forbid
edges that can be pulled inside a vertex. For example, the following two maps are the same
on the sphere, and they are forbidden:

= (8)

On the other hand, the following map is allowed: its only face has 2 incident edge sides and
is therefore not a monogon, although both edge sides belong to the same edge:

(9)

2.1.2 Disconnected maps

Let us now consider graphs that are not necessarily connected. The surface that corresponds
to a disconnected map is obtained by gluing faces from different connected components. In
the case of planar maps, this just means drawing several graphs side by side, or inside one
another. This allows us to have vertices of valency zero, which we write as crosses. Examples
include:

and ̸= (10)

We may also glue a non-trivial Riemann surface to a map. This allows us to have topologically
non-trivial faces. In this case, the surface’s genus g is not given by the Euler characteristic (5):
the genera of faces have to be added,

g = gEuler +
∑

face

gface . (11)

For example, here is a g = 1 map whose tetragon face has genus one:

(12)
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In this context, our prohibition of monogons still means forbidding edges that can be pulled
inside a vertex. A face is therefore not considered a monogon if it contains a handle of the
Riemann surface, a connected component of the graph, or even a vertex of valency zero.

Definition 2.2 (Set of all maps)
For g, n ∈ N, and for r1, r2, . . . , rn ∈

1
2N with
∑n

i=1 ri ∈ N, let Mg,n(r1, r2, . . . , rn) be the set of
genus g combinatorial maps without monogons, with n vertices of valencies 2r1, 2r2, . . . , 2rn, and
with faces that are allowed to be topologically non-trivial.

We write 2r ∈ N for the valency of a vertex because r will correspond to a Kac index
of conformal field theory in Section 4. Moreover, this makes some combinatorial formulas
simpler, starting with the number of edges, which is given by the handshaking lemma:

#edges=
n
∑

i=1

ri ∈ N . (13)

Just like a connected map, a disconnected map is called planar if g = 0, i.e. if the underlying
Riemann surface is the sphere. When drawing planar maps, we only draw edges and vertices,
and not the sphere itself.

2.1.3 Weakly connected maps

We will now propose a weaker definition of connected maps, which is better adapted to map
counting. It will also have a natural interpretation in conformal field theory, when it comes to
decomposing correlation functions into conformal blocks, see Conjecture 4.2.

Definition 2.3 (Set of weakly connected maps)
Let a trivial map be one of two maps: the empty map on the sphere, and one vertex of valency

zero on the sphere. Let us call splitting a map the operation of cutting the surface along a closed
loop that does not intersect any edge, and eliminating the two resulting boundaries by shrinking
them to nothing.

A map is weakly connected if it cannot be split into two non-trivial maps. For g, n ∈ N, and
for r1, r2, . . . , rn ∈

1
2N with
∑n

i=1 ri ∈ N, let Mc
g,n(r1, r2, . . . , rn) be the set of weakly connected

combinatorial maps of genus g without monogons, with n vertices of valencies 2r1, 2r2, . . . , 2rn.

For example, the following map is not weakly connected, because we can split it into two
non-trivial maps using the red loop:

(14)

This map is also not connected, because its only face contains a handle, and is therefore not
topologically a disc. As the name suggests, any connected map is also weakly connected, but
the reverse is not true. For example, the following planar map is weakly connected, although
the underlying graph has 3 connected components:

(15)
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2.2 Counting planar maps

For any values of the parameters g, n, ri , we would like to determine the numbers of maps
�

�Mg,n(ri)
�

� and of weakly connected maps
�

�

�Mc
g,n(ri)
�

�

�. We will do this in the planar case g = 0

by finding bijections with combinatorial sets whose numbers of elements are found in the
mathematical literature.

2.2.1 Counting planar weakly connected maps

If a face is incident to at least two vertices of valency zero, and we split that face along a closed
loop around these two vertices, we obtain two nontrivial maps, except if the original map
belonged to M0,2(0,0) or M0,3(0,0, 0). Therefore, in any weakly connected map except the
sphere with two or three vertices of valency zero, a face can be incident to at most one vertex
of valency zero. It follows that a planar weakly connected map can be seen as a connected
map where some faces are marked, in the sense that they are incident to a vertex of valency
zero. By graph duality, this is equivalent to a connected map where some vertices are marked.
Since we forbid monogons, graph duality is actually a bijection between our planar weakly
connected maps and the planar tight maps of [8].

Therefore, the number of weakly connected maps coincides with the number of planar
tight maps N0,n(di) from [8],

�

�

�Mc
0,n(r1, r2, . . . , rn)

�

�

�= N0,n(2r1, 2r2, . . . , 2rn) . (16)

The number of connected maps without monogons is included as the case where all ri are
nonzero, since a planar connected map is nothing but a planar weakly connected map without
vertices of valency zero.

Let us review some known results on these numbers: these are quasi-polynomials in r2
i

of degree n− 3, i.e. polynomials that also depend on ri mod Z. In the case n = 4, the quasi-
polynomial has degree one, and reads

�

�

�Mc
0,4

�

�

�=

� 4
∑

i=1

r2
i −

1
2

�

, (17)

where we use the floor function ⌊x⌋=max (N∩ (−∞, x]). This formula includes three cases,
depending on the number 0, 2,4 of indices ri in N + 1

2 . If this number is 2 it reduces to
∑4

i=1 r2
i −

1
2 , if it is 0 or 4 it reduces to

∑4
i=1 r2

i − 1. For example,
�

�

�Mc
0,4(2, 3

2 , 1, 1
2)
�

�

� = 7,

and the corresponding maps are given in Eq. (A.26). Let us also give an example with vertices

of valency zero:
�

�

�Mc
0,4(

3
2 , 3

2 , 0, 0)
�

�

�= 4, and the corresponding maps are:

(18)

In the case n= 5, the quasi-polynomial has degree two. We write three different expressions,
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depending on whether 0, 2 or 4 arguments are half-integer:

�

�

�Mc
0,5

�

�

� =
ri∈N

1
2

5
∑

i=1

r4
i + 2
∑

i< j

r2
i r2

j −
5
2

5
∑

i=1

r2
i + 2 , (19a)

�

�

�Mc
0,5

�

�

� =
r1,r2∈N+

1
2

1
2

5
∑

i=1

�

r2
i

�2
+ 2
∑

i< j

�

r2
i

�

�

r2
j

�

−
2
∑

i=1

�

r2
i

�

−
1
2

5
∑

i=3

r2
i , (19b)

�

�

�Mc
0,5

�

�

� =
r1,r2,r3,r4∈N+

1
2

1
2

5
∑

i=1

�

r2
i

�2
+ 2
∑

i< j

�

r2
i

�

�

r2
j

�

−
1
2

r2
5 . (19c)

In these formulas,
�

r2
�

= r2 − 1
4 ∈ 2N if r ∈ N + 1

2 . Extracting these expressions from the
general results of [8] is straightforward in principle, but tedious in practice.

2.2.2 Counting all planar maps

We will relate the problem of counting all planar maps to the problem of counting lattice
points on the moduli space of curves, which was solved by Do and Norbury [6]. Their solution
involves summing over fatgraphs, which are graph duals of our maps. More specifically, our
planar maps correspond to pointed stable fatgraphs of genus zero.

Let us recall the definition of such fatgraphs from [6](Definition 2.7). Stable fatgraphs
come with a genus function, which is however trivial if the genus is zero. We also simplify and
correct the definition of [6] so that it corresponds to the set of graphs that is actually summed
over.

Definition 2.4 (Fatgraphs)
A pointed stable fatgraph of genus zero is a planar fatgraph whose faces are marked, together
with an equivalence relation over vertices, and a set of labels distributed on equivalence classes,
such that:

• Any vertex of valency one is labelled or part of a non-trivial equivalence class (or both).

• The graph whose vertices are the connected components of our planar graph, and whose
edges are defined by the equivalence relation, is a tree, i.e. a connected graph with no
cycles.

For n ∈ N, and r1, r2, . . . , rp ∈
1
2N with 0≤ p ≤ n, let F0,n(r1, . . . , rp, 0, . . . 0) be the set of pointed

stable fatgraphs of genus zero with p marked faces incident to 2r1, . . . , 2rp edges, and n−p labels.

Let us illustrate this definition by enumerating all the fatgraphs in a few examples. We
draw fatgraph vertices as squares, to distinguish them from the vertices of our maps:

• In the case
�

�F0,4(2,0, 0,0)
�

� = 6, we are considering fatgraphs with one tetragonal face,
and there is only one such fatgraph:

(20)

Notice that the tetragonal face is twice incident to the middle vertex, and also twice
incident to each one of the two edges. Since there is only one connected component,
the equivalence relation must be trivial, i.e. each vertex is its own equivalence class. It
remains to distribute three labels on the fatgraph, while ensuring that the two vertices
of valency one have at least one label each. There are 6 ways to do so: 3 with one label
on each vertex, and 3 with no label on the middle vertex. (The two outer vertices are
indistinguishable.)
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• In the case
�

�F0,5(
1
2 , 1

2 , 1
2 , 1

2 , 0)
�

�= 3, our faces are four monogons. We have to group them
pairwise, and there are 3 ways to do it. This yields two connected subgraphs, with one
vertex each. The two vertices must be equivalent, which we denote by a dashed line:

(21)

Since there is only one equivalence class, it must be labelled.

• In the case
�

�F0,5(1,1, 0,0, 0)
�

� = 16, our faces are two digons. We can either have two
connected components with one face each, or one connected fatgraph that includes both
faces:

(22)

On the disconnected fatgraph, we have to distribute three labels over three equivalence
classes, with the two outer vertices receiving at least one label each. The two outer
vertices are distinguishable, because they are associated to two different faces of the
fatgraph. This leads to 12 ways of distributing the labels. (The non-trivial equivalence
class receives a label in 6 cases.) On the connected fatgraph, we have to distribute three
labels over two indistiguishable vertices. There are 4 ways to do it: either a vertex
receives all the labels, or the labels are split over both vertices.

Proposition 2.5 (Bijection between planar maps and planar fatgraphs)
To any pointed stable fatgraphs of genus zero, we associate a planar map by performing graph
duality on each connected component, gluing faces that are equivalent, and replacing each label
with a vertex of valency zero. This is a bijection from F0,n(r1, r2, . . . , rn) to M0,n(r1, r2, . . . , rn).

In particular, the absence of monogons in our maps follows from our condition on fat-
graph vertices of valency one. Let us see how this bijection acts on two fatgraphs from the set
F0,5(1,1, 0,0, 0). We number the two faces as 1,2 and the three labels as 3, 4,5. Faces and
labels correspond to the vertices of the resulting planar maps:

4

1 2

5 3
1

2 3

4

5 (23)

1

2

3, 4 5

1

2 3

4

5 (24)

Armed with this bijection, we can use known results for sums over fatgraphs [6](Corollary
3.6). In such sums, the summand is the inverse of the order of the automorphism group of
the fatgraph: however, for n ≥ 3, automorphisms are trivial, so the sums really count fat-
graphs. There is one more subtlety: some fatgraphs come with an implicit integer coefficient,
which may be interpreted as an Euler characteristic. For n = 4,5, this happens if the number
#{i|ri = 0} of vanishing parameters is large enough. If we insist on just counting fatgraphs,
we have to correct the known results [6] by subtracting a function Z0,n of that number, which
we now define:

Z0,4(k) =
k≤3

0 , Z0,4(4) = 1 , (25)

Z0,5(k) =
k≤2

0 , Z0,5(3) = 1 , Z0,5(4) = 4 , Z0,5(5) = 6 (26)
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(We do not have an expression for higher values of k and n.). In particular, in the case n= 4,
we obtain [6](Appendix A):

�

�M0,4

�

� =
ri∈N

4
∑

i=1

r2
i + 2− Z0,4 (#{i|ri = 0}) =

4
∑

i=1

r2
i + 2−

4
∏

i=1

δri ,0 , (27a)

�

�M0,4

�

� =
r1,r2∈N+

1
2

4
∑

i=1

�

r2
i

�

+ 1 , (27b)

�

�M0,4

�

� =
r1,r2,r3,r4∈N+

1
2

4
∑

i=1

�

r2
i

�

+ 3 . (27c)

Of course, this can also be obtained from the number of weakly connected maps
�

�

�Mc
0,4

�

�

� (17)

by adding the number of maps that are not weakly connected: 3 if all ri are integer, 3 if they
are all half-integer, and 1 if we have two integers and two half-integers. For n≥ 5, we find:

�

�M0,5

�

� =
ri∈N

1
2

5
∑

i=1

r4
i + 2
∑

i< j

r2
i r2

j +
7
2

5
∑

i=1

r2
i + 7− Z0,5 (#{i|ri = 0}) , (28a)

�

�M0,5

�

� =
r1,r2∈N+

1
2

1
2

5
∑

i=1

�

r2
i

�2
+ 2
∑

i< j

�

r2
i

�

�

r2
j

�

+ 2
2
∑

i=1

�

r2
i

�

+
3
2

5
∑

i=3

r2
i + 2− Z0,5 (#{i|ri = 0}) ,

(28b)

�

�M0,5

�

� =
r1,r2,r3,r4∈N+

1
2

1
2

5
∑

i=1

�

r2
i

�2
+ 2
∑

i< j

�

r2
i

�

�

r2
j

�

+ 3
4
∑

i=1

�

r2
i

�

+
11
2

r2
5 + 3 . (28c)

Alternatively, it is possible to deduce these results from numbers of weakly connected
maps (19), by adding the numbers of maps that are not weakly connected. For example,
�

�M0,5(
3
2 , 1

2 , 1, 1, 0)
�

� = 22 while
�

�

�Mc
0,5(

3
2 , 1

2 , 1, 1, 0)
�

�

� = 10. The 10 weakly connected maps in

this case are:

(29)

The 12 maps that are not weakly connected are:

(30)

For planar maps with n≥ 6 vertices, we expect that
�

�M0,n

�

� is again given by the results in [6],
minus a correction.
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2.2.3 What about non-planar maps?

The bijection between maps and fatgraphs can be generalized to the non-planar case. In
particular, maps with topologically non-trivial faces correspond to fatgraphs with a non-trivial
genus function.

The problem is however that we do not know how to count fatgraphs of nonzero genus.
The weighted count of [6] is the sum of inverses of orders of fatgraphs’ automorphism groups:
a rational number that is in general not integer. Nontrivial automorphisms groups can only
occur for n≤ 2: such cases are very simple if g = 0, but can be more complicated if g ≥ 1.

It may well be that the methods of [6] and/or [8] can be extended to counting non-planar
maps. On the subject of counting maps, our ambition is however limited to extracting available
results from the literature.

2.3 Planar maps with four vertices

In practice, our numerical bootstrap code only deals with four-point functions on the sphere.
Therefore, planar maps with four vertices deserve special attention. We are interested not
only in counting them, but also in characterizing them more finely, with the ultimate aim of
associating a specific bootstrap solution to a given map.

As a step in that direction, we will introduce the notion of the signature of a planar map
with four vertices, which is inspired by the decomposition of four-point functions into con-
formal blocks. This notion can be generalized straightforwardly to all planar maps, and less
straightforwardly to non-planar maps.

2.3.1 Signature of a map

Definition 2.6 (Signature of a planar map with four vertices)
Given four points on the sphere, let Ls,Lt ,Lu be the sets of closed loops that split the four points
into {1,2}∪ {3, 4}, {1,4}∪ {2, 3} and {1, 3}∪ {2,4} respectively. For a planar map M with four
numbered vertices and x ∈ {s, t, u}, let e(M) be the union of the edges’ embeddings in the sphere,

and σx(M) =
1
2

min
L∈Lx

|L ∩ e(M)| ∈
1
2
N. The signature of M is σ(M) = (σs(M),σt(M),σu(M)).

For example, the following map has the signature (1, 3
2 , 3

2), which we justify by drawing
loops Ls, Lt , Lu that minimize the numbers of intersections with the edges:

1

2 3

4

σs = 1

Ls

σt =
3
2

Lt

σu =
3
2

Lu

(31)

A map M is weakly connected if and only if ∀x ∈ {s, t, u},σx(M)> 0. To prevent a map from
being weakly connected, it is enough to remove minx∈{s,t,u} 2σx(M) edges. Sometimes, it is
possible to disconnect the map by removing fewer edges: in our example, it suffices to remove
the vertical edge, although minx∈{s,t,u} 2σx(M) = 2.

Conjecture 2.7 (Total signature)
The total signature |σ(M)|=

∑

x∈{s,t,u}σx(M) is given by the number of edges
∑4

i=1 ri , plus the
number of distinct subloops L ⊂ M. A subloop is a subset of e(M) that is homotopic to a circle,
and has at least one vertex inside and one outside. Two subloops are considered distinct if and
only if they do not intersect except possibly at vertices.
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This conjecture is motivated by inspecting examples. In the case (ri) = (2, 2, 1
2 , 1

2), let us
draw three maps with 0, 1 and 2 subloops, and check that the total signature varies accordingly.

For each map we indicate the total signature asσs(M) +σt(M) +σu(M) =
4
∑

i=1

ri +#{subloops}:

1+ 3
2 +

5
2 = 5+ 0 2+ 3

2 +
5
2 = 5+ 1 3+ 1

2 +
7
2 = 5+ 2

(32)

In the second map, we can draw two different subloops, but they are not distinct according to
our definition, because they share one edge.

2.3.2 Counting maps with a minimum signature

Definition 2.8 (Set of maps with a minimum signature)
We define a partial order on signatures by σ ≥ σ′ ⇐⇒ ∀x ∈ {s, t, u},σx ≥ σ′x . Then for any
r1, r2, r3, r4,σs,σt ,σu ∈

1
2N, the set of maps whose signature is at least (σs,σt ,σu) is

M0,4(r1, r2, r3, r4|σs,σt ,σu) =
¦

M ∈M0,4(r1, r2, r3, r4)
�

�

�σ(M)≥ (σs,σt ,σu)
©

. (33)

In particular, M0,4

�

r1, r2, r3, r4

�

�

1
2 , 1

2 , 1
2

�

=Mc
0,4(r1, r2, r3, r4) is the set of weakly connected

maps. This definition is motivated by the conformal bootstrap approach of Section 4.2, where
sets of maps with a minimum signature have a natural interpretation. This leads to a lower
bound on the number of maps with a minimum signature:

Conjecture 2.9 (Lower bound on the number of maps with a minimum signature)
For any r1, r2, r3, r4 and σ ≥ (1

2 , 1
2 , 1

2), we have

�

�M0,4(r1, r2, r3, r4|σ)
�

�≥
�

�

�Mc
0,4(r1, r2, r3, r4)

�

�

�−
∑

x∈{s,t,u}

�

�

σx −
1
2

�2�
. (34)

We do not have a combinatorial proof of this inequality, but it is obeyed in all the examples
that we have considered. The term subtracted on the right-hand side involves the function

σ 1
2 1 3

2 2 5
2 3 7

2 4 9
2

�

�

σ− 1
2

�2�
0 0 1 2 4 6 9 12 16

(35)
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Let us consider the example of Mc
0,4(

5
2 , 1, 1, 1

2), which contains 8 maps:

σ = (3
2 , 2, 3

2) σ = (3
2 , 2, 3

2) σ = (5
2 , 2, 3

2) σ = (3
2 , 2, 5

2)

σ = (5
2 , 1, 5

2) σ = (5
2 , 1, 5

2) σ = (1
2 , 3, 5

2) σ = (5
2 , 3, 1

2)

(36)

The 4 maps in the rightmost two columns are uniquely characterized by their signatures, while
the 4 maps in the leftmost two columns are not. The conjectured inequality is saturated for
the 4 maps in the top row:

�

�M0,4

�5
2 , 1, 1, 1

2

�

�

3
2 , 2, 3

2

��

�= 4 , (37)
�

�M0,4

�5
2 , 1, 1, 1

2

�

�

5
2 , 2, 3

2

��

�=
�

�M0,4

�5
2 , 1, 1, 1

2

�

�

3
2 , 2, 5

2

��

�= 1 . (38)

On the other hand, the conjectured inequality is not saturated for the 4 maps in the bottom
row:

�

�M0,4

�5
2 , 1, 1, 1

2

�

�

5
2 , 1, 5

2

��

�= 2> 0 , (39)
�

�M0,4

�5
2 , 1, 1, 1

2

�

�

1
2 , 3, 5

2

��

�=
�

�M0,4

�5
2 , 1, 1, 1

2

�

�

5
2 , 3, 1

2

��

�= 1> −2 . (40)

3 Correlation functions in loop models

In order to explain why there may be a relation between combinatorial maps and solutions
of crossing symmetry, we would like to associate a correlation function to each combinatorial
map. We write correlation functions as sums over loop configurations of the type

ZM ,W (Σ) =
∑

E∈E(Σ)|M(E)=M

W (E) , (41)

where:

• M ∈ Mg,n(r1, . . . , rn) is a combinatorial map of genus g with n vertices of valencies
2r1, . . . 2rn.

• Σ is a Riemann surface of genus g with n punctures.

• E(Σ) is an ensemble of configurations of non-intersecting loops on Σ, made of segments
that end at punctures, together with closed loops.

• The constraint M(E) = M means that the segments of the loop configuration E induce
the combinatorial map M .

• W (E) is a weight function that we will define, depending on finitely many parameters.
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The resulting object ZM ,W (Σ) may be considered a function of the moduli of the punctured
Riemann surface, parametrized by M and W .

There are at least two methods for constructing loop ensembles E(Σ). Physicists usually
work on a finite lattice, which breaks conformal symmetry but leads to finite ensembles. Math-
ematicians have introduced conformal loop ensembles, which preserve conformal symmetry
but are infinite. We will remain agnostic on the definition of E(Σ), and focus on determining
loop weights that preserve conformal symmetry. After that, we will discuss how to approx-
imate ZM ,W (Σ) on a lattice. But we will not prove that our lattice sums have well-defined
continuum limits, and our construction remains conjectural.

3.1 Weights of loop configurations

An important building block of the weight function W (E) on the ensemble of loop configura-
tions is a weight function w(C) on the set of closed loops.

3.1.1 Weights of closed loops

Definition 3.1 (Combinatorial signature of a loop in a punctured Riemann surface)
Let Σ be a genus g Riemann surface with n punctures labelled 1, . . . , n. Let C be a closed loop on
Σ. We define the combinatorial signature of C as

χΣ(C) =

(

(−1,;) , if C cuts a handle but keeps Σ connected,

(g ′, I) , with 1 /∈ I ⊂ {1, . . . , n} , if Σ− C is not connected,
(42)

where in the last case g ′ is the genus and I the set of punctures of the connected component that
does not contain the first puncture.

For example, here are four loops with their combinatorial signatures:

(0,;) (0, {2}) (1, {3}) (−1,;)

2
1

3

(43)

Then a loop weight is a function on the image ImχΣ, equivalently a function on the set of
loops that only depends on their combinatorial properties. This is stronger than requiring that
it only depends on the topology of loops: for example, on a torus with no punctures, there
are infinitely many topologically distinct closed loops, but only two possible combinatorial
signatures, namely (−1,;) and (0,;).

For example, in the case g = 0 and ri = 0, ImχΣ is made of the subsets of {2, . . . , n}, so
that w ∈ C2n−1

. Moreover, there is only one map in M0,n(0, . . . , 0). We therefore recover the

fact that there is one n-point function of diagonal fields for any w ∈ C2n−1
[5,9].

Now, in loop configurations such that M(E) = M , not all closed loops are allowed. To begin
with, there can be no closed loop around one vertex whose valency is not zero. Moreover, the
signature χΣ(C) = (g ′, I) obeys

∑

i∈I ri ∈ N, i.e. the loop C preserves the conservation of
r modulo integers (13). These conditions depend only on the valencies ri , and not on the
particular choice of the combinatorial map M . The weight function w : ImχΣ → C needs be
defined only over allowed loops.
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3.1.2 Dependence on local angles at vertices

The constraint M(E) = M and the weights of closed loops depend only on the combinatorial
properties of loop configurations. This is necessary for the sum ZM ,E(Σ) to be conformally
invariant in the critical limit, and a single-valued function of the moduli of Σ. However, con-
formal symmetry and single-valuedness allow loop weights to depend on local angles. The
weight of a loop configuration can therefore depend on the relative angles θi,1, . . . ,θi,2ri

of the
2ri segments that meet at zi .

Such angles are well-defined provided the segments are differentiable at zi . However,
assuming differentiability would be too strong a restriction on the ensemble E(Σ), as we expect
typical loop configurations to be fractal and therefore far from differentiable. Actually, we do
not need an unambiguous definition of angles in individual loop configurations: only the sum
over configurations needs be well-defined. We will propose how to achieve this on the lattice
in Section 3.2. For the moment, we will assume that the local angles θi,1, . . . ,θi,2ri

make sense.
We then introduce an angular momentum si (sometimes called pseudo-momentum [1]) at

each vertex, and write the weight of a loop configuration E as

W (E) =
n
∏

i=1

exp
¦

i
2 si

�

∑2ri
ki=1θi,ki

�©∏

C∈E

w (χΣ(C)) , (44)

where the second product is over the closed loops that belong to E. Writing this formula
is pretty straightforward: the subtle issue is to choose reference directions for the angles
θi,1, . . . ,θi,2ri

, such that the weights W (E) do not depend on this choice.
To define the angles, we will actually introduce not only a reference direction at each

vertex, but also a reference edge, which we call edge number 1. We assume that its angle
obeys θi,1 ∈ [0, 2π), and further assume

θi,ki
∈ [θi,1,θi,1 + 2π) θi,1

θi,2

θi,2ri

(45)

These conventions take into account the cyclic ordering of the half-edges arount our ver-
tex. Thanks to this ordering, the angles are a priori not defined under individual shifts
θi,k→ θi,k+2πmk with (mk) ∈ Z2ri , but under a global shift θi,k→ θi,k+2πm with m ∈ Z. In
terms of the angular momentum, this implies si ∈

1
ri
Z.

Any change of the reference edge or reference direction modifies the weights W (E) by
an E-independent factor. In particular, a small change δθi of the reference direction leads
to θi,k → θi,k − δθi for any k, except if the reference direction crosses the reference edge
i.e. θi,1 − δθi < 0. In this case we have θi,k → θi,k − δθi + 2π. In both cases, the weights
are multiplied with an E-independent phase W (E)→ e−irisiδθi W (E). Similarly, changing the
reference edge from one edge to the next leads to W (E)→ eiπsi W (E).

Before discussing subtleties with the choice of a reference edge, let us summarize the
parameters of the sum ZM ,W (Σ):

• The combinatorial map M , including the valencies 2ri ∈ N.

• The weight function W depends on an angular momentum si ∈
1
ri
Z at each vertex.
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• The weight function W also depends on a number of continuous parameters: the weights
of closed loops. There is at least 1 such parameter (the weight of contractible loops),
and at most 2n−1 if g = 0.

3.1.3 Reference edges for computing weights

We need to single out a reference edge for each vertex in a given combinatorial map M . This
is a priori not trivial, because the edges are not marked. Nevertheless, in most combinatorial
maps, it is possible to mark edges, using which vertices they connect — even when all edges
from a vertex connect to the same other vertex, for example:

1

2 3

4 1

2 3

4
(46)

In the first example, the edges that end at vertex 3 all lead to vertex 1, but they can be dis-
tinguished from one another by their order around vertex 1, relative to the edges 1− 2 and
1−4. In the second example, the three edges 1−2 are distinguished from one another by the
presence of two vertices of valency zero on one face.

If however the combinatorial map M has a nontrivial symmetry, we cannot mark edges.
The simplest example is the two-point function on the sphere:

1 2 (47)

In this case, instead of marking an edge, we can assume that the same edge serves as a refer-
ence for both vertices. Changing this edge to the next one leads to a phase eiπ(s1−s2), which
is trivial if s1 ≡ s2 mod 2. We take this as a necessary condition for the two-point function on
the sphere to be nonzero, in addition to the obvious condition r1 = r2. These combinatorial
conditions are a bit weaker than the constraint (r1, s1) = (r2, s2) that the two fields have the
same conformal dimensions.

There are other combinatorial maps whose symmetries prevent us from marking edges, for
example:

(48)

The Z3 symmetry of this map allows us to change the reference edge to the next-to-next-to-
next edge, leading to a phase e3iπ(s1−s2). We require this phase to be trivial, which leads to the
condition

s1 − s2 ∈
2
3
Z , (49)

while si ∈
2
9Z. If this condition is violated, our combinatorial map does not lead to a correlation

function. Some other combinatorial maps in M3,2(1,1) do not have the Z3 symmetry, and lead
to nonzero correlation functions, with no conditions on si beyond si ∈

1
ri
Z.
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3.2 Lattice approximation

Let us indicate how correlation functions can be computed on a lattice. In particular, we will
discuss how to represent vertices of arbitrary valencies, and how to compute angles. After
that, we will compare our lattice sums with previous work on loop models.

3.2.1 Valencies and angles on a square lattice

For simplicity, we consider a square lattice. In this lattice, each node has valency 4, so it seems
difficult to draw a combinatorial map with vertices of valencies > 4. The well-known solution
is for a vertex of the combinatorial map to be represented by several nodes of the lattice:

(50)

In the critical limit, the lattice spacing goes to zero. If they are kept at finitely many lattice
steps from one another, our 6 nodes coincide in the critical limit, and may be considered as
one and the same vertex.

Similarly, lattice angles belong to {0, π2 ,π, 3π
2 }. To represent more general angles, we

should not focus on one lattice node, but consider a larger region — say, compute the an-
gle of an edge at the first point where that edge intersects the circle of radius ℓ lattice steps
centered at the node:

ℓ
(51)

For a lattice of size L, with L→∞ in the critical limit, we define local angles by taking

1≪ ℓ≪ L . (52)

We conjecture that with this definition of angles, the lattice version ZL,ℓ(E , f , w) of the sum
over configurations (41) has a well-defined limit, up to a simple rescaling. More specifically,
there exists a function φ(L, g, n) of the lattice size L, genus g and number of punctures n,
such that limL→∞φ(L, g, n)ZL,ℓ(E , f , w) ∈ C∗. In particular, since φ(L, g, n) does not depend
on the positions zi of the punctures, we obtain a non-trivial function of these positions, which
is defined up to a zi-independent factor.

Our definition of angles does not contradict the expectation that loops and segments are
fractal, and therefore non-differentiable. We are not defining angles for individual segments:
actually, we are not even trying to follow a given segment when we vary the lattice size. We
are only conjecturing that a sum over an ensemble of loop configurations has a finite limit.
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3.2.2 Comparison with the Coulomb gas approach

In the Coulomb gas approach to the O(N) model [10], oriented loops are viewed as domain
walls between regions of different heights h in a solid-on-solid model. The heights of two
adjacent regions differ by ±h0, where the sign determines the orientation of the corresponding
loop. The value of the height field at a given point can be obtained by counting (algebraically)
the number of walls encountered when going from this point to the boundary of the system.
The fugacity N of closed loops is reproduced by assigning a weight e

i
2θ s0 to each turn of a

domain wall by an angle θ . Since closed loops on the sphere turn by a total angle ±2π, the
parameter s0 should be chosen such that N = eπis0 + e−πis0 .

This approach can describe not only closed loops, but also lines from a vertex to another
vertex, which correspond to the segments of our loop ensembles, i.e. to the edges of our com-
binatorial maps. Such lines are also associated with dislocations of the height field. A line that
turns by an angle Θ from a vertex to another vertex again gives rise to a weight e

i
2Θs0 .

It is possible to trade angles for heights. For example, when a line winds p times around a
vertex, the height at the vertex increases by ±ph0 compared to the height at infinity, since we
cross p walls to reach the vertex along some given straight line:

(53)

The height associated to an angle θ is in general hθ =
�

θ
2π

�

h0, and we are doing the replace-

ment e
i
2θ s0 → eiπ

hθ
h0

s0 , or e
i
2Θs0 → eiπ

h(z1)−h(z2)
h0

s0 for a line that joins two vertices at positions z1
and z2. Some information is lost when truncating angles to integer multiples of 2π, but this
does not matter when doing statistics over large angles.

Heights can be ambiguous. In our example, the red straight line from the left crosses p = 5
walls, but from a different orientation it could be p = 4. Worse, it is actually possible to reach
the vertex from infinity without crossing any line, by following a spiral. These ambiguities
mean that the height field is not single-valued.

Nevertheless, the Coulomb gas approach, which treats the height field as a free boson and
builds the O(N) model as a perturbed free boson theory, gives correct results for scaling di-
mensions [10]. The approach is able to describe magnetic operators, which create dislocations
(our vertices with indices (r, 0)), electric operators, which are exponentials of the height field
(our vertices of valency zero), and electro-magnetic operators (vertices with nonzero indices
(r, s)) [11]. The Coulomb gas approach can be used for deriving the winding angle distribu-
tion for self-avoiding random walks [12], and its generalisation to self-avoiding stars [13]. All
these well-established results confirm the validity of the approach [14].

The Coulomb gas calculations make crucial use of the lattice approximation. In partic-
ular, in the case of the Brownian motion, computing probability distributions directly in the
continuum gives rise to unphysical divergences [15], which can be cured by the lattice ap-
proximation. (See [16] for a recent review.) It is expected that this problem does not arise for
self-avoiding walks (or, more generally, in the O(N) loop model), because such walks cannot
visit the same point several times. This suggests that a genuine definition of angles in the
continuum may be possible.

In the present article, we have proposed an unambiguous definition of correlation func-
tions in loop models, including in particular their dependence on angles, without the need for
a height field. This definition can be approximated on a lattice, but we hope that it also makes
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sense in the continuum. While our approach is broadly consistent with the Coulomb gas ap-
proach, it is not obvious to us that the two approaches are equivalent, and it is not clear that
the Coulomb gas approach can provide a satisfactory definition of the whole set of correlation
functions that we have built from combinatorial maps.

4 Conformal bootstrap

With our construction of correlation functions in loop models, we have shown that combina-
torial maps may well parametrize correlation functions in conformal field theory. But in which
conformal field theory? This is the question that we will now address, using the conformal
bootstrap approach.

4.1 Models and correlation functions

In the bootstrap approach, a correlation function may be characterized as a solution of linear
equations such as crossing symmetry or modular invariance. A model or theory is a set of
correlation functions that are related by non-linear equations, which we will call factorization
constraints. After reviewing these notions, we will introduce the correlation functions and the
models we are interested in.

4.1.1 Crossing symmetry and factorization

For technical simplicity, we now focus on four-point functions on the sphere. From the axiom of
the existence and convergence of operator product expansions, it follows that a four-point func-
tion
¬

∏4
i=1 Vδi

(zi)
¶

has three equivalent decompositions into conformal blocks G(x)
δ
(c|δi|zi),

called the s-channel, t-channel and u-channel decompositions. Schematically,

® 4
∏

i=1

Vδi
(zi)

¸

=
∑

δ∈S(x)
D(x)
δ
(c|δi)G

(x)
δ
(c|δi|zi) , ∀ x ∈ {s, t, u} , (54)

where S(x) is the x-channel spectrum, and D(x)
δ
(c|δi) an x-channel four-point structure con-

stant.
Given the spectra, we therefore have a linear system of equations for the four-point struc-

ture constants, called crossing symmetry equations. This linear system only depends on the
representations of the conformal algebra that appear in our spectra and four-point function.
Here we parametrize a representation of the conformal algebra by a pair δ = (∆, ∆̄) of left-
and right-moving conformal dimensions of a primary state. This primary state generates the
representation when it is a highest-weight representation. Loop models also involve logarith-
mic representations, which are not generated by their primary states. This technical subtlety
has been thoroughly dispatched in previous work [3,17], and plays no role in our analysis: we
will treat logarithmic representations on the same footing as highest-weight representations.

In loop models, the linear system (54) turns out to have a finite-dimensional space of solu-
tions, whose dimension does not depend on the central charge c, which can vary continuously.
We write this dimension as

d0,4

�

δi

�

�S(x)
�

= dim
¦�

D(s)
δ

, D(t)
δ

, D(u)
δ

�

�

�

�(54)
©

. (55)

We could similarly define the dimensions dg,n of spaces of solutions of the conformal bootstrap
equations for n-point functions on a Riemann surface of genus g.
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Operator product expansions do not just imply linear crossing symmetry equations: they
also imply that four-point structure constants factorize into three-point structure constants.
A major complication, which does occur in loop models, is the existence of non-trivial field
multiplicities, i.e. the possibility that several different fields share the same dimensions δ.
Calling mδ ∈ N this multiplicity, the factorization constraint reads

D(s)
δ
(δ1,δ2,δ3,δ4) =

mδ
∑

k=1

C
�

δ1,δ2, (δ, k)
�

C
�

δ3,δ4, (δ, k)
�

, (56)

where for simplicity we omit the dependence on the central charge c, and the possible mul-
tiplicities of the fields with dimensions δ1,δ2,δ3,δ4. Field multiplicities can also manifest
themselves by the existence of larger numbers of crossing symmetry solutions for four-point
functions
¬

∏4
i=1 Vδi

(zi)
¶

, since the solutions that correspond to different fields Vδ1
(z1) (say)

with the same dimension δ1 can be linearly independent — although this is not always true [3].

Definition 4.1 (Conformal field theory)
A consistent conformal field theory on the plane is a set of correlation functions that obey crossing
symmetry and factorization, such that for any representation δ that appears in the spectrum of a
correlation function, there exist correlation functions of the corresponding field Vδ.

4.1.2 Loop models and their spectra

We would like to define a loop model as a set of correlation functions that includes those of
the O(N) model [3] and of the Potts model [4]. It should also include correlation functions
that mix fields from both models, and correlation functions that involve arbitrary diagonal
fields [5].

A loop model depends on a parameter β2 ∈ C which is related to the central charge by

c = 13− 6β2 − 6β−2 , (57)

and which obeys the constraint
ℜβ2 > 0 . (58)

In terms of β2, the Kac table conformal dimensions are given in terms of Kac table indices (r, s)
by

∆(r,s) =
1
4

�

rβ − sβ−1
�2 −

1
4

�

β − β−1
�2

. (59)

We introduce the following notations and terminology for primary fields and their left- and
right-conformal dimensions δ = (∆, ∆̄):

Name Non-diagonal Degenerate Diagonal

Fields V(r,s) V〈1,s〉 V∆
Dimensions δ(r,s) =

�

∆(r,s),∆(r,−s)
�

δ〈1,s〉 =
�

∆(1,s),∆(1,s)
�

δ∆ = (∆,∆)

Parameters r ∈ 1
2N
∗, s ∈ 1

rZ s ∈ N∗ ∆ ∈ C

Restrictions −1< s ≤ 1 s ∈ {2,3} None

(60)

An essential structural feature of loop models is the existence of the degenerate field V〈1,3〉.
This leads to constraints on structure constants, which may be considered as a symmetry called
interchiral symmetry [18]. In practice, interchiral symmetry determines how structure con-
stants behave under the shift s→ s+2 of the second Kac table index. This allows us to impose
restrictions on the values of s for non-diagonal and degenerate fields, see Table (60). In the
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case of diagonal fields, interchiral symmetry determines how structure constants behave under
P → P + β−1, where the momentum P is defined by

∆=∆(0,0) + P2 . (61)

In crossing symmetry equations (54), we can then replace conformal blocks with infinite linear
combinations called interchiral blocks. For example, in the case of a non-diagonal field, an
interchiral block reads

eG(x)
δ(r,s)
=
∑

s′∈s+2Z

c(x)(r,s′)G
(x)
δ(r,s′)

, (62)

for some coefficients c(x)(r,s′) that are explicitly known [3].

For r0 ∈
1
2N
∗, we introduce the set of non-diagonal fields whose first Kac index is no less

than r0, and differs from r0 by an integer:

Sr0
=
§

δ(r,s)

�

�

�

�

r ∈ r0 +N, s ∈
1
r
Z∩ (−1,1]
ª

. (63)

With this notation, let us write the spectra of the O(N) and Potts models, and the family of
spectra that appear in four-point functions of diagonal fields [5]:

SO(N) = S 1
2
∪S1 ∪
�

δ〈1,3〉
	

, (64)

SPotts = S2 ∪
�

δ〈1,2〉,δ〈1,3〉
	

∪
§

δ∆
(0, 1

2 )

ª

, (65)

S∆ = S1 ∪ {δ∆} . (66)

These spectra are infinite but discrete: in particular, while ∆ may take arbitrary complex
values, a particular spectrum S∆ only involves one value.

4.1.3 Correlation functions

We will consider correlation functions of non-diagonal and/or diagonal fields,
® d
∏

i=1

V∆i
(zi)

n
∏

i=d+1

V(ri ,si)(zi)

¸

. (67)

We do not include degenerate fields, whose correlation functions are severely constrained by
BPZ differential equations. Nevertheless, the existence of degenerate fields of the type V〈1,s〉
implies the conservation of the first Kac index r modulo integers [19], where by convention
a diagonal field V∆(z) has r = 0. Given the identification of r with half the number of edges
in a combinatorial map, this constraint is formally identical to the requirement (13) that the
number of edges be integer.

Let us focus on a four-point function, and its spectra S(s),S(t),S(u). The constraint (13) also
applies to these spectra, for examples the fields in S(s) must have r ∈ r1 + r2 +Z. In practice,
if we include fields that violate this constraint, we find that their structure constants vanish
when we compute them by solving crossing symmetry. Similarly, the presence of degenerate
fields is constrained by the fusion rules

V〈1,s〉 ∈ V(r1,s1) × V(r2,s2) =⇒
�

r1 = r2 ,
s ∈ |s1 − s2|+ 1+ 2N .

(68)

Taking interchiral symmetry into account, this constraint reduces to r1 = r2 and
s ≡ s1 − s2 + 1 mod 2.
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Let us consider the case where we build the s-channel, t-channel and u-channel spectra by
allowing all non-diagonal fields that respect constraint (13). Then we denote the dimension
of the space of solutions of crossing symmetry as

d c
0,4(δi) = d0,4

�

δi

�

�Sr1+r2 mod 1,Sr1+r4 mod 1,Sr1+r3 mod 1

�

, (69)

where by convention r mod 1 ∈ {12 , 1}. We also consider the case where we add one diagonal
field in each channel where the constraint (13) allows it. This amounts to adding 1 or 3 diag-
onal fields, depending on ri mod 1. Calling d0,4(δi) the dimension of the space of solutions,
we have for example

d0,4(δi) =
r1≡r2≡r3≡r4 mod 1

d0,4

�

δi

�

�S∆s ,S∆t ,S∆u
�

, (70)

d0,4(δi) =
r1+

1
2≡r2+

1
2≡r3≡r4 mod 1

d0,4

�

δi

�

�

�S∆s ,S 1
2
,S 1

2

�

, (71)

for any ∆s,∆t ,∆u ∈ C.

4.2 Solutions of conformal bootstrap equations

4.2.1 Main conjectures

Conjecture 4.2 (Correlation functions without diagonal fields in the spectrum)
For any n-point function of diagonal and non-diagonal fields on a Riemann surface of genus g,

the dimension of the space of solutions of conformal bootstrap equations with spectra made only

of non-diagonal fields is the number of weakly connected maps
�

�

�Mc
g,n(ri)
�

�

�. In particular,

d c
0,4(δi) =
�

�

�Mc
0,4(ri)
�

�

� . (72)

This conjecture justifies our definition 2.3 of weakly connected maps. In contrast to con-
nected maps, weakly connected maps can have vertices of valency zero, so they allow us to
account for correlation functions that involve diagonal fields.

Conjecture 4.3 (Correlation functions with diagonal fields in the spectrum)
For any n-point function of diagonal and non-diagonal fields on a Riemann surface of genus g,

the dimension of the space of solutions of conformal bootstrap equations with spectra made of
non-diagonal fields, plus one diagonal or degenerate field whenever allowed by fusion rules, is the
number of maps

�

�Mg,n(ri)
�

�. In particular,

d0,4(δi) =
�

�M0,4(ri)
�

� . (73)

As they are written, these conjectures are only supposed to be true if Mg,n(ri) does not
include maps with non-trivial symmetries. As we discussed at the end of Section 3.1, non-
trivial symmetries can indeed lead to some would-be correlation functions actually vanishing,
depending on the values of the second indices si of the non-diagonal fields. Maps with symme-
tries are rare, in particular they occur only if n≤ 2. IfMg,n(ri) includes maps with symmetries,
the conjectures are still valid if si obeys conditions of the type (49), including in particular if
si = 0. If however these conditions are violated, we have to remove the corresponding maps
from Mg,n(ri), and we predict fewer bootstrap solutions.
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4.2.2 Further conjectures for four-point functions on the sphere

Our conjectures are only valid for spectra that include all non-diagonal fields that are allowed
by the r-conservation condition (13), plus possibly one diagonal or degenerate field. It is also
interesting to count correlation functions with more general spectra.

The general idea is that removing one field from a spectrum S(x) in one channel removes
one correlation function, since we are imposing a linear constraint D(x)

δ
= 0 in our system

of crossing symmetry equations. However, it can happen that D(x)
δ
= 0 already holds for all

solutions, in which case imposing it as a constraint changes nothing [3]. Conversely, adding
one field generally adds one correlation function, provided the field is of the type V(r,s), V〈1,s〉 or
V∆, respects fusion rules including r-conservation, and was absent from the original spectrum.
Again, exceptions can occur. However, we conjecture that whenever we add/remove one
diagonal field V∆ with a generic conformal dimension (say ∆ ̸= ∆(r,s) for any r, s ∈ Q), we
gain/lose one correlation function.

Consider the identification of the first Kac index r of a non-diagonal field, with half the
number of edges at the corresponding vertex. So far, we have been applying this identification
to the fields in our correlation function (67): what about fields in the spectra S(x)? The idea is
now that the number of edges in the channel x , as measured by the signature σx of Definition
2.6, corresponds to the smallest r-index in S(x).

Conjecture 4.4 (Four-point functions with smaller spectra)
For any four-point of diagonal and non-diagonal fields on the sphere, the dimension of the space
of solutions of crossing symmetry with spectra of the type Sr0

(63) is the number of combinatorial
maps with a minimum signature,

d0,4

�

δi

�

�Sσs
,Sσt

,Sσu

�

=
�

�M0,4 (ri|σs,σt ,σu)
�

� . (74)

In the case σx = 0, we define S0 = S∆ (66) for some arbitrary dimension ∆.

This reduces to Conjecture 4.2 if σx ∈ {
1
2 , 1}, and to Conjecture 4.3 if σx ∈ {0, 1

2}. Quite
curiously, this conjecture has purely combinatorial consequences when it comes to counting
maps with a minimum signature. Reducing the spectrum from S 1

2
or S1 to Sσ indeed amounts

to setting
�

(σ− 1
2)

2
�

(35) structure constants to zero. For each one of these extra constraints,
we lose at most one solution. This leads to an inequality on two numbers of solutions that are
both given by combinatorial formulas according to Conjectures 4.2 and 4.4. As a corollary, we
obtain Conjecture 2.9 for numbers of maps with a minimum signature.

4.2.3 Relation with loop models

Let us first indicate how the parameters of loop models are related to the parameters of con-
formal field theory. We now summarize the relations, before discussing them in more detail:

Loop models Conformal field theory

2r = vertex valency

s = vertex angular momentum
(r, s) = Kac table indices of V(r,s)

w(contractible loop) −2cos(πβ2)→ central charge

w(non-contractible loop) 2 cos(2πβP)→ dimension of V∆

(75)

To begin with, each vertex comes with a valency 2r and an angular momentum s, which are
identified with the Kac table indices (r, s) of conformal field theory. This identification has
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been consistently observed in various approaches to loop models, including most recently in
an integrable approach [20].

Then let us consider the weight function w(C), which is defined on closed loops. For
contractible loops, the value of this function is related to the central charge (57). In the O(N)
model and Q-state Potts model, the weight of contractible loops is given in terms of the model’s
parameter by w = N and w =

p

Q respectively. This parameter is subject to rather strong
constraints if we want the correlation functions to have critical limits [21], and we also know
which value of β2 corresponds to a given weight w, among the infinitely many possibilities [3].
On the CFT side, the constraint on β2 (58) is much weaker, and comes from the convergence
of the operator product expansion.

In the case of non-contractible loops, the weight is related to a conformal dimension of a
diagonal field V∆ via the momentum P (61). If the loop is around one vertex of valency zero,
the diagonal field sits at that vertex, as already checked in the case of the sphere three-point
functions via direct lattice calculations [9]. The loop weight is invariant under P → P + β−1,
and we expect that the correct value of P is the one that minimizes the real part of the confor-
mal dimension. Bootstrap solutions for the other values of P are also expected to contribute to
the loop model correlation function, but only as subleading corrections that become negligible
in the critical limit.

In the presence of a combinatorial map that is not weakly connected, there exist non-
contractible loops that are not around one vertex. In this case, the corresponding diagonal
field propagates in some channel, depending on the closed loop’s combinatorial signature. In
the case of sphere four-point functions, such diagonal fields appear in spectra of the type S∆
(66). The invariance of the weight under P → P + β−1 corresponds to the invariance of the
corresponding interchiral block under the same shift.

With these relations between parameters, we expect:

Conjecture 4.5 (Critical limit of correlation functions in loop models)
When it exists, the critical limit of a loop model correlation function ZM ,W (41) is a solution of

the conformal bootstrap equations. Moreover, the set of correlation functions
n

lim
critical

ZM ,W

o

M∈Mg,n(r1,...,rn)
, (76)

is a basis of solutions of the corresponding conformal bootstrap equations.

4.3 Numerical tests

We have tested our conjectures 4.2, 4.3 and 4.4 on the numbers of solutions of crossing sym-
metry equations, by numerically computing them in a number of cases. The principles of these
numerical computations are explained in [3], and we do not repeat them here. Rather, we list
the cases where tests were done.

4.3.1 Cases from previous work

The 30 simplest four-point functions of the O(N)model were investigated in [3](Section 4.3).
These four-point functions are of the type

¬

∏4
i=1 V(ri ,si)

¶

with ri ∈
1
2N
∗ and
∑

ri ≤ 4. The

spectrum is of course SO(N) (64), or actually the subset of SO(N) that is allowed by fusion
rules, depending on the four-point function and on the channel. These results are consistent
with Conjectures 4.2 and 4.3. Some cases are not immediately captured by the conjectures,
due to the fusion rules of degenerate fields: the conjectures can then easily be adapted. For
example, the four-point function




V(1,0)V(1,0)V(1,1)V(1,1)
�

has a 4-dimensional space of solutions

whereas
�

�M0,4(1, 1,1, 1)
�

� = 6 and
�

�

�Mc
0,4(1,1, 1,1)
�

�

� = 3: in this case, fusion rules allow the
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degenerate field to appear in the s-channel but not in the t- and u-channels, so that only one
out of the three disconnected maps should be taken into account.

Four-point functions of diagonal fields
¬

∏4
i=1 V∆i

¶

were investigated in detail in [5], with

spectra of the type S∆. The space of solutions was found to be one-dimensional. This case
was particularly useful for understanding the role of diagonal fields in the spectrum.

Four-point functions of the Potts model were investigated in [4](Section 4.3). More specif-
ically, 28 four-point functions with 0 ≤

∑

ri ≤ 6 and ri ∈ {0, 2,3, 4} were computed. Con-

jecture 4.3 predicts the numbers of solutions with the spectrum S
∆
(0, 1

2 ) in all channels, see
Eq. (27a). However, to obtain the Potts model spectrum SPotts (65), we have to remove the
fields V(1,0), V(1,1), and to add degenerate fields whenever allowed by fusion rules. We now
notice that for all cases with 3 ≤

∑

ri ≤ 6, the number of solutions from [4] agrees with
Eq. (27a), minus 6, plus 1 whenever a degenerate field is allowed. This provides support for
Conjecture 4.3, if we assume that removing the two primary fields V(1,0), V(1,1) in each one of
the three channels reduces the number of solutions by 6.

For
∑

ri ∈ {0, 2}, things are more complicated. For


V(2,s)V∆
(0, 1

2 )
V∆

(0, 1
2 )

V∆
(0, 1

2 )

·

with

s ∈ {0, 1
2 , 1}, Eq. (27a) predicts 6 solutions with the spectrum S

∆
(0, 1

2 ) . With the spectrum SPotts,

3 solutions are found. For


V∆
(0, 1

2 )
V∆

(0, 1
2 )

V∆
(0, 1

2 )
V∆

(0, 1
2 )

·

, we expect 1 solution with S
∆
(0, 1

2 ) , and

therefore again 1 solution with SPotts, after adding the degenerate fields V〈1,2〉, V〈1,3〉 but remov-
ing V(1,0), V(1,1). In fact, 4 solutions are observed. We conclude that in these cases, removing
V(1,0), V(1,1) only kills 3 solutions, rather than 6. This is consistent with Conjecture 4.3, but
only provides weak support, as long we do not know in which case removing a field from the
spectrum actually reduces the number of solutions.

4.3.2 Systematic scan of examples

In Appendix A, we have listed the combinatorial maps with zero to three edges, and the con-
nected maps with four or five edges, together with their signatures. Our list is complete mod-
ulo symmetries. Moreover, we have singled out the 53 maps such that

�

�M0,4(δi|σ)
�

� = 1.
For any such map, according to Conjecture 4.4, the corresponding space of solutions is one-
dimensional.

With our numerical methods, one-dimensional spaces are particularly easy to handle. Actu-
ally, in order to determine the dimension of a space of solutions, we set a number of four-point
structure constants to zero, until the space becomes one-dimensional. But there is always the
risk of choosing a structure constant that is identically zero on the space in question, which
would make us overestimate its dimension. This risk is absent if the space is one-dimensional.
We can then single out one solution by normalizing a four-point structure constant to one, and
the numerical results converge towards that solution when the numerical cutoffs increase.

For each combinatorial map, there are finitely many choices of si ∈
1
ri
Z ∩ (−1,1]. We

have not tested all the corresponding correlation functions. Rather, for each map such
that
�

�M0,4(δi|σ)
�

� = 1, we have tested the correlation function such that si = 0, plus
another correlation function (unless there is no other, which happens in the three cases
(ri) = (0, 0,0, 0), (1

2 , 1
2 , 0, 0), (1

2 , 1
2 , 1

2 , 1
2)).

For example, let us consider the case (ri) = (
5
2 , 1, 1, 1

2). The 8 connected maps are dis-
played in Eq. (36). Modulo the Z2 symmetry that permutes the two bivalent vertices, we
have the 4 maps of Eq. (A.28). Out of these 4 maps, the 2 maps with σ = (5

2 , 2, 3
2) and

σ = (1
2 , 3, 5

2) obey
�

�M0,4(δi|σ)
�

�= 1. In the second case, this means that the crossing symme-

try equations with
�

S(s),S(t),S(u)
�

=
�

S 1
2
,S3,S 5

2

�

are conjectured to have a one-dimensional
space of solutions. This applies to four-point functions with the stated values of (ri), starting
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with
¬

V( 5
2 ,0)V(1,0)V(1,0)V( 1

2 ,0)

¶

, but also including for example
¬

V( 5
2 , 4

5 )
V(1,1)V(1,0)V( 1

2 ,0)

¶

, or even
¬

V( 5
2 , 14

5 )
V(1,7)V(1,−4)V( 1

2 ,6)

¶

— but we consider this latter four-point function equivalent to the
previous one by the interchiral symmetry si → si + 2.

In all tested cases, we have found a one-dimensional space of solutions, in agreement with
Conjecture 4.4. (Our code is available at GitLab [22].) This suggests that our definition of the
signature of a map is sound combinatorially, and relevant to conformal field theory. Moreover,
most correlation functions belong neither to the O(N) model, nor to the Potts model. This
supports the idea that there exists a conformal field theory that includes and generalizes both
models, and also includes diagonal fields with arbitrary conformal dimensions.

5 Concluding remarks

5.1 Solving loop models: the next steps

• If Conjecture 4.5 holds, we have a bijection between combinatorial maps and solutions
of conformal bootstrap equations, and the obvious question is: which map corresponds
to which solution? We know it in quite a few cases, which are listed in bold in Appendix
A. However, we do not know it in general. A solution can in principle be singled out
by imposing a number of linear constraints in addition to the conformal bootstrap equa-
tions. Constraints may include the vanishing of some four-point structure constants, or
more general linear relations.

• After solving crossing symmetry as a linear system of equations for four-point structure
constants, it remains to factorize four-point structure constants into three-point struc-
ture constants as in Eq. (56). In the case of correlation functions of diagonal fields,
factorization has been investigated numerically, but it is not clear how to interpret the
results [5].

• Understanding factorization would be essential for defining fusion in loop models [23,
24], and more generally for interpreting correlation functions in the context of a field
theory with well-defined operator product expansions. Do our correlation functions fit
in standard axiomatic formalisms of two-dimensional CFT such as the Moore–Seiberg
formalism [25] or the Fuchs–Runkel–Schweigert formalism [26]? The latter formalism
relies on topological objects whereas our maps are combinatorial, presumably because
that formalism accomodates conformal blocks whereas we are only dealing with single-
valued correlation functions.

5.2 More evidence for the conjectures, please!

We are ready to admit that our numerical bootstrap results are not as far-reaching as our
conjectures. More tests of the conjectures would be welcome. Tests that could be performed
using existing techniques include:

• Numerically solving conformal bootstrap equations for higher correlation functions n> 4
and/or in higher genus g > 0. Our results are limited to four-point functions on the
sphere (g, n) = (0,4), because this is the first nontrivial case, with correlation functions
that depend on one geometric modulus, namely the cross-ratio of the four positions.
The number of geometric moduli for an n-point function in genus g is 3g−3+ n. There
is another case with one modulus: the one-point function on the torus; however, the
conformal maps in this case are rather trivial. Cases with more moduli would certainly be
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numerically challenging, and no longer accessible by running Python code on standard
computers for a few minutes.

• Directly testing Conjecture 4.5 on the critical limit of correlation functions is doable in
principle. Such correlation functions can be computed on the lattice by transfer matrix
or Monte-Carlo methods. The problem is that rather large lattices would be needed for
reaching a good precision, especially if we wanted to accurately compute angles.

5.3 Generalizations: A wish list

• We do understand the spaces of solutions that are relevant to the O(N)model [3], but the
same cannot be said of the Potts model. The Potts model does not have the fields V(1,0)
and V(1,1), and we do not know in general how their elimination affects the number
of solutions. Global symmetry can help us single out the relevant solutions in simple
cases [4], but not in general. On the side of combinatorial maps, the lattice definition
of the model implies that maps are bicolorable, with all vertices of valency zero on faces
of the same color [27]. Bicolorability just implies r ∈ N, and the further constraint
eliminates some maps in some cases, without solving the problem.

• The case of Riemann surfaces with boundaries would be interesting. Our approach is
able to account for the various primary fields of loop models via the weights of loop
configurations: could it also account for all conformal boundary conditions? The princi-
ples of conformal invariance and single-valuedness, which led us to conjecturally solve
crossing symmetry in terms of combinatorial maps, might also determine which bound-
ary conditions are possible. In particular, it would be nice to understand whether there
is a bijection between boundary conditions and primary fields, as in theories that are
diagonal and rational [28].

• A challenge would be to understand the Potts and O(N) models in higher dimensions,
and in particular the numbers of solutions of crossing symmetry in these models. In their
spectra, there are probably fewer degeneracies than in two dimensions (if any), which
makes the problem simpler. And we expect that correlation functions are well described
by global symmetry invariants, according to the following heuristic argument: invariants
are obtained by contracting tensor indices, and the possible contractions can be repre-
sented as graphs. In two dimensions, bootstrap solutions correspond to planar graphs,
and this is why we can have fewer solutions than invariants. In higher dimensions,
without the constraint of planarity, there should be as many solutions as invariants.

5.4 Which crossing symmetry equations do we want to solve?

We have been focussing on crossing symmetry equations under the assumption of interchiral
symmetry. By our definition, interchiral symmetry determines how structure constants behave
under s→ s + 2 where s is the second Kac index, as follows from the existence of the degen-
erate field V〈1,3〉. However, in some Potts model correlation functions such as connectivities,
interchiral symmetry is enhanced to s→ s+ 1, because all relevant three-point structure con-
stants involve the field V∆

(0, 1
2 )
[18]. Conversely, we could relax interchiral symmetry, and work

with the original conformal blocks, rather than interchiral blocks.
In the example of the four-point function of V∆

(0, 1
2 )

, we have numerically found that tighten-

ing interchiral symmetry can indeed lower the number of crossing symmetry solutions, while
relaxing interchiral symmetry can increase it. It would be particularly interesting to under-
stand the extra solutions that violate interchiral symmetry, and whether they belong to a CFT
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without any degenerate field. Let us display the numbers of solutions that we find, depending
on the spectrum (the same in all channels) and on the interchiral symmetry:

Spectrum s→ s+ 2 s→ s+ 1

SPotts ∪SO(N) 7 4

SPotts 4 4

S
∆
(0, 1

2 ) 1 1

S∆(0,s) ∪S∆(0,s+1) 4 1

(77)

For generic values of ∆, the enhanced interchiral symmetry makes no sense for the spectrum
S∆ if ∆ ̸= ∆(0, 1

2 )
. We therefore introduce the spectrum S∆(0,s) ∪ S∆(0,s+1) , which is invariant

under s → s + 1, so that it makes sense to impose the enhanced interchiral symmetry on
structure constants.

5.5 Why these maps, why these weights, why these loop ensembles?

We have defined combinatorial maps, and the weights in sums over loop configurations, in or-
der to reproduce CFT correlation functions with all their parameters, and to recover numerical
results on numbers of solutions of crossing symmetry. It would be interesting to have more
intrinsic justifications for these definitions, and to explore possible generalizations. Questions
include:

• Why do we have to forbid monogons? This basic assumption is convenient combinato-
rially, as it eliminates many maps, so that numbers of maps depend polynomially on the
valencies, rather than factorially. It is also convenient for computing angles on the lat-
tice, since our proposed scheme (51) would not work in the presence of small monogons.
And monogons can be consistently eliminated in the lattice model, using projectors of
the Jones–Wenzl type in the corresponding diagram algebras. However, all this only
shows that it is easy to forbid monogons, without providing a compelling reason for
doing so.

In the related problem of polymer networks, monogons lead to divergences that are dealt
with by renormalization [29,30]. The idea is that in the critical limit, a vertex of valency
2r with two half-edges that form a monogon actually behaves like a vertex of valency
2r −2. This behaviour is not specific to two dimensions, and provides a physical reason
for ignoring monogons.

• Why do all closed loops have the same weight? Given a combinatorial map with marked
vertices, we can usually distinguish the faces, and the weight of a closed loop could
depend on the face it lives in. The CFT interpretation of the resulting correlation function
would be tricky, because it would be map-dependent, and involve different values of the
central charge (which is a function of the weight of closed loops). A possibility would be
that the combinatorial map determines the positions of defects that change the central
charge.

• Instead of or in addition to loops, we could consider other variables that give rise to
equivalent representations of the same statistical models: spins, Fortuin–Kasteleyn clus-
ters, flows. This could result in different spectra of primary fields, and different combi-
natorial representations of correlation functions.

31

https://scipost.org
https://scipost.org/SciPostPhys.15.4.147


SciPost Phys. 15, 147 (2023)

Acknowledgements

We are grateful to Jérémie Bouttier, Séverin Charbonnier, Bertrand Duplantier, Emmanuel
Guitter, Paul Norbury, and Paul Roux, for valuable discussions and correspondence. Moreover,
we wish to thank Jérémie Bouttier, Emmanuel Guitter, Adam Nahum and Paul Roux for helpful
suggestions on the draft text. We are grateful to Bernard Nienhuis for the review he wrote for
SciPost, which led to significant clarifications.

Rongvoram Nivesvivat gratefully acknowledges the personal hospitality of the Jia family
in Beijing in Fall 2022.

Funding information This work is partly a result of the project ReNewQuantum, which
received funding from the European Research Council. This work was also supported by the
French Agence Nationale de la Recherche (ANR) under grant ANR-21-CE40-0003 (project
CONFICA).

A List of examples

In this appendix we systematically display planar maps by increasing number of edges
∑

ri ∈ N. We display all maps with
∑

ri ≤ 3, and all connected maps with
∑

ri ≤ 5.
To save space and avoid redundancies, we sometimes make use of the symmetry of our

sets of maps under permutations of vertices and/or edges. Such symmetries exist whenever
two or more vertices have the same valency. In such cases, a displayed map may come with a
multiplicity m, which is the size of a relevant group of permutations. (We do not necessarily
use the largest available group.) Then m − 1 is the number of similar maps that we do not
display explicitly.

For each map, we indicate the signature σ, see Definition 2.6. Two maps that are related
by a symmetry may or may not have the same signature. The signature is written in bold if
our set of maps M0,4 contains no other map with a larger or equal signature σ′ ≥ σ — in
other words, if

�

�M0,4 (δi|σ)
�

� = 1. In this case, Conjecture 4.4 states that the corresponding
crossing symmetry equations have a one-dimensional space of solutions.

A.1 All planar maps with zero to three edges

A.1.1 Case
�

�M0,4(0, 0, 0, 0)
�

� = 1

σ = (0,0,0)

(A.1)

A.1.2 Case
�

�

�M0,4(
1
2 ,

1
2 , 0, 0)
�

�

� = 1

σ = (0,
1
2 ,

1
2)

(A.2)
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A.1.3 Case
�

�M0,4(1, 0, 0, 0)
�

� = 3

σ = (0,1,1)
m= 3

(A.3)

A.1.4 Case
�

�

�M0,4(
1
2 ,

1
2 ,

1
2 ,

1
2)
�

�

� = 3

σ = (0,1,1)
m= 3

(A.4)

A.1.5 Case
�

�

�M0,4(1,
1
2 ,

1
2 , 0)
�

�

� = 2

σ = (
3
2 , 0,

3
2) σ = (

1
2 , 1,

1
2)

(A.5)

A.1.6 Case
�

�M0,4(1, 1, 0, 0)
�

� = 4

σ = (0, 1,1) σ = (1,1,1) σ = (2,0,2) σ = (2,2,0)

(A.6)

A.1.7 Case
�

�

�M0,4(
3
2 ,

1
2 , 0, 0)
�

�

� = 3

σ = (0,
3
2 ,

3
2) σ = (1,

1
2 ,

3
2)

m= 2

(A.7)
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A.1.8 Case
�

�M0,4(2, 0, 0, 0)
�

� = 6

σ = (0,2,2)
m= 3

σ = (1,1,2)
m= 3

(A.8)

A.1.9 Case
�

�

�M0,4(1, 1,
1
2 ,

1
2)
�

�

� = 3

σ = (0,
3
2 ,

3
2) σ = (1,

1
2 ,

3
2) σ = (1,

3
2 ,

1
2)

(A.9)

A.1.10 Case
�

�M0,4(1, 1, 1, 0)
�

� = 5

σ = (1,1, 1) σ = (1,1, 1) σ = (0,2,2)
m= 3

(A.10)

A.1.11 Case
�

�

�M0,4(
3
2 ,

1
2 ,

1
2 ,

1
2)
�

�

� = 5

σ = (1,1, 1) σ = (1,1, 1) σ = (0,2,2)
m= 3

(A.11)

A.1.12 Case
�

�

�M0,4(
3
2 ,

1
2 , 1, 0)
�

�

� = 4

σ = (1, 3
2 , 1

2) σ = (1,
3
2 ,

3
2) σ = (2,

1
2 ,

3
2) σ = (0,

5
2 ,

5
2)

(A.12)
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A.1.13 Case
�

�

�M0,4(
3
2 ,

3
2 , 0, 0)
�

�

� = 5

σ = (0, 3
2 , 3

2) σ = (1, 3
2 , 3

2)
m= 2

σ = (2,
1
2 ,

5
2)

m= 2

(A.13)

A.1.14 Case
�

�

�M0,4(2,
1
2 ,

1
2 , 0)
�

�

� = 5

σ = (
5
2 , 0,

5
2) σ = (3

2 , 1, 3
2)

m= 2
σ = (

1
2 , 2,

3
2)

m= 2

(A.14)

A.1.15 Case
�

�M0,4(2, 1, 0, 0)
�

� = 7

σ = (0,2,2) σ = (3,0,3)
m= 2

σ = (1,1, 2)
m= 2

σ = (2,1,2)
m= 2

(A.15)

A.1.16 Case
�

�

�M0,4(
5
2 ,

1
2 , 0, 0)
�

�

� = 7

σ = (0,
5
2 ,

5
2) σ = (2,

1
2 ,

5
2)

m= 2
σ = (1,

3
2 ,

5
2)

m= 2
σ = (2, 3

2 , 3
2)

m= 2

(A.16)

A.1.17 Case
�

�M0,4(3, 0, 0, 0)
�

� = 11

σ = (2,2, 2)
m= 2

σ = (0,3,3)
m= 3

σ = (1,2,3)
m= 6

(A.17)
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A.2 All connected planar maps with four or five edges

A.2.1 Case
�

�

�Mc
0,4(1, 1, 1, 1)
�

�

� = 3

σ = (1,1,2) σ = (2,1,1) σ = (1,2,1)

(A.18)

A.2.2 Case
�

�

�Mc
0,4(

3
2 , 1, 1,

1
2)
�

�

� = 4

σ = (3
2 , 1, 3

2) σ = (3
2 , 1, 3

2) σ = (
1
2 , 2,

3
2) σ = (

3
2 , 2,

1
2)

(A.19)

A.2.3 Case
�

�

�Mc
0,4(

3
2 ,

3
2 ,

1
2 ,

1
2)
�

�

� = 4

σ = (1,1, 2) σ = (2,1,2) σ = (1,2, 1) σ = (2,2,1)

(A.20)

A.2.4 Case
�

�

�Mc
0,4(2, 1,

1
2 ,

1
2)
�

�

� = 5

σ = (1, 3
2 , 3

2)
m= 2

σ = (2,
1
2 ,

5
2)

m= 2
σ = (2,

3
2 ,

3
2)

(A.21)

A.2.5 Case
�

�

�Mc
0,4(

5
2 ,

1
2 ,

1
2 ,

1
2)
�

�

� = 6

σ = (2,1, 2)
m= 3

σ = (2,1, 2)
m= 3

(A.22)

36

https://scipost.org
https://scipost.org/SciPostPhys.15.4.147


SciPost Phys. 15, 147 (2023)

A.2.6 Case
�

�

�Mc
0,4(

3
2 ,

3
2 , 1, 1)
�

�

� = 6

σ = (1,
3
2 ,

5
2)

m= 2
σ = (2, 3

2 , 3
2)

m= 2
σ = (2,

1
2 ,

5
2)

m= 2

(A.23)

A.2.7 Case
�

�

�Mc
0,4(

3
2 ,

3
2 ,

3
2 ,

1
2)
�

�

� = 6

σ = (2, 2, 1)
m= 3

σ = (2,2, 1)
m= 3

(A.24)

A.2.8 Case
�

�

�Mc
0,4(2, 1, 1, 1)
�

�

� = 6

σ = (1,2, 2)
m= 3

σ = (1,2, 2)
m= 3

(A.25)

A.2.9 Case
�

�

�Mc
0,4(2,

3
2 ,

1
2 , 1)
�

�

� = 7

σ = (
1
2 , 2,

5
2) σ = (3

2 , 1, 5
2) σ = (

5
2 , 1,

5
2)

σ = (3
2 , 2, 3

2) σ = (3
2 , 2, 3

2) σ = (
5
2 , 2,

3
2) σ = (

5
2 , 3,

1
2)

(A.26)
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A.2.10 Case
�

�

�Mc
0,4(2, 2,

1
2 ,

1
2)
�

�

� = 8

σ = (1, 3
2 , 5

2)
m= 2

σ = (2, 3
2 , 5

2)
m= 2

σ = (2, 3
2 , 5

2)
m= 2

σ = (3,
1
2 ,

7
2)

m= 2

(A.27)

A.2.11 Case
�

�

�Mc
0,4(

5
2 , 1, 1,

1
2)
�

�

� = 8

σ = (3
2 , 2, 3

2)
m= 2

σ = (
5
2 , 2,

3
2)

m= 2
σ = (5

2 , 1, 5
2)

m= 2
σ = (

1
2 , 3,

5
2)

m= 2

(A.28)

A.2.12 Case
�

�

�Mc
0,4(

5
2 ,

3
2 ,

1
2 ,

1
2)
�

�

� = 8

σ = (1,2, 2)
m= 2

σ = (2,2, 2)
m= 2

σ = (2,1, 3)
m= 2

σ = (3,1,3)
m= 2

(A.29)

A.2.13 Case
�

�

�Mc
0,4(3, 1,

1
2 ,

1
2)
�

�

� = 10

σ = (2, 3
2 , 5

2)
m= 4

σ = (1, 5
2 , 5

2)
m= 2

σ = (3,
1
2 ,

7
2)

m= 2
σ = (3,

3
2 ,

5
2)

m= 2

(A.30)

A.2.14 Case
�

�

�Mc
0,4(

7
2 ,

1
2 ,

1
2 ,

1
2)
�

�

� = 12

σ = (2,2, 3)
m= 6

σ = (3,1, 3)
m= 6

(A.31)
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