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Abstract

We present a general approach to the bulk-boundary correspondence of noninvertible
topological phases, including both topological and fracton orders. This is achieved by a
novel bulk construction protocol where solvable (d + 1)-dimensional bulk models with
noninvertible topology are constructed from the so-called generalized Ising (GI) mod-
els in d dimensions. The GI models can then terminate on the boundaries of the bulk
models. The construction generates abundant examples, including not only prototype
ones such as Z2 toric code models in any dimensions no less than two, and the X-cube
fracton model, but also more diverse ones such as the Z2 ×Z2 topological order, the 4d
Z2 topological order with pure-loop excitations, etc. The boundary of the solvable model
is potentially anomalous and corresponds to precisely only sectors of the GI model that
host certain total symmetry charges and/or satisfy certain boundary conditions. We
derive a concrete condition for such bulk-boundary correspondence. The condition is
violated only when the bulk model is either trivial or fracton ordered. A generalized
notion of Kramers-Wannier duality plays an important role in the construction. Also,
utilizing the duality, we find an example where a single anomalous theory can be real-
ized on the boundaries of two distinct bulk fracton models, a phenomenon not expected
in the case of topological orders. More generally, topological orders may also be gen-
erated starting with lattice models beyond the GI models, such as those with symmetry
protected topological orders, through a variant bulk construction, which we provide in
an appendix.
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1 Introduction

Bulk-boundary correspondence has been a key concept for understanding topological phases
of matter since the discovery of quantum Hall effect. Transport responses in quantum Hall
bars are fundamentally contributed by the chiral gapless edge modes on the boundaries. [1–
6] More generally, the nontrivial boundary properties of various topological phases in d + 1
spacial dimensions can be understood as a consequence of anomalies of the boundary theory
in d dimensions [7–14] – obstructions in realizing a theory in a local lattice model in the d
spatial dimensions with a tensor product of local Hilbert spaces, a local Hamiltonian, and an
onsite symmetry action if any. The edge theory of an integer quantum Hall insulator has an
invertible gravitational anomaly characterized by the imbalanced left and right moving modes.
The boundary low energy effective theories for onsite-symmetry protected topological phases
have ’t Hooft anomalies, which prevent an onsite symmetry realization on a lattice without
a topological bulk, as well as the theory to be coupled to gauge fields. Each of the above
anomalies is invertible, as the anomaly can be matched by an invertible phase in one dimension
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higher, the outcome model in one higher dimension with a boundary is a local lattice model.
This connection between the bulk topological phases of matter and the boundary anomaly has
significantly deepened our understanding of both sides.

In recent years, the bulk-boundary correspondence for noninvertible topological phases,
and the notion of noninvertible anomaly have attracted much interest [6,15–44]. Particularly,
the boundary of two dimensional non-invertible topological phases, even when gappable, does
not admit a local lattice model. As the simplest example, the one-dimensional transverse-field
Ising model, restricted to the Z2 symmetric sector, is not realizable as a one-dimensional model
with a tensor product Hilbert space and a local Hamiltonian. Nevertheless, it can be real-
ized as a boundary theory of the two-dimensional Z2 toric code model [36, 37, 45], and is
termed to have a noninvertible anomaly. A modular covariance condition satisfied by the Ising
model with restricted Hilbert space follows from this bulk-boundary correspondence: Thread-
ing different anyon fluxes in the bulk changes the total symmetry charge and the boundary
condition of the boundary Ising model. This leads to a vector of parition functions for the
boundary model. Then, under modular transformations (certain large diffeomorphisms on
the underlying spacetime manifold), this partition function vector transforms covariantly, ac-
cording to the topological S and T matrices of the bulk topological order, which capture the
statistics of anyons. Such correspondence between the d-dimensional model subject to global
constraints and the (d +1)-dimensional topological order has been termed as the matching of
non-invertible anomaly. The vector of partition functions in this example can also be implied
from the categorical symmetry1 of the Ising model [47–49]. The modular covariance condition
also holds in various one-dimensional critical systems on the boundary of two dimensional sys-
tems with topological excitations and topological defects [37,50]. Related findings with more
mathematical oriented discussions are in [51–53]. More examples of generalized symmetries,
whose generators under multiplication form a fusion category, have been uncovered in models
with either restricted [47,54–56] or non-restricted Hilbert spaces [57] in recent years.

Along one direction to generalize the above example, in this paper, we consider a wide class
of qubit lattice models in arbitrary spatial dimensions, which can have sets of Z2 symmetries
that may be global or within subsystems and are dubbed generalized Ising (GI) models. We
provide a generic construction, which, when applied to each GI model, produces at least one
exactly solvable lattice model in one dimension higher, dubbed a bulk model. The ground state
subspace of each bulk model is stable against local perturbations.2 The construction generates
abundant topological or fracton ordered models: not only prototype ones such as the Z2 toric
code models in two spatial dimensions or higher, and the X-cube fracton model [59]; but also
more diverse types such as Z2 × Z2 topological order, four-dimensional Z2 topological order
with pure-loop topological excitation, etc.

A main result that follows from the construction, is a concrete demonstration that the
lattice model with (discrete) global symmetries terminates on the boundary of the bulk model
with topological or fracton order in generic dimensions. The boundary-bulk correspondence
is explicit in UV. That is, there exists an isomorphism between the GI models subject to global
constraints which are either symmetry charge projections or boundary conditions, and the
boundary of the topological order and/or fracton order. The isomorphism is between the
Hilbert spaces, as well as between the local operator algebras generated by Hamiltonian local
terms. The latter means that any Hamiltonian local terms allowed on the boundary of the
topological and/or fracton order must be a product of local terms in the GI model Hamiltonian.
In this sense, the most general Hamiltonian allowed on the boundary of the topological order
is the GI model.

1Field theories of categorical symmetries are in development. [46] In essence, n + 1-dimensional topological
field theory can act on n-dimensional quantum field theories.

2That is, the model is locally topologically ordered [58].
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Such bulk boundary correspondence can be regarded as examples of non-invertible anoma-
lies.3 It happens in the constructed bulk models under a specific condition (Claim 1): collo-
quially speaking, either there is a non-local symmetry that can be dualized to a generalized
boundary condition, or a generalized boundary condition that can be dualized to a non-local
symmetry. When the condition is violated, the constructed bulk model is either trivial or has a
fracton order. The condition, which highlights the equal roles of non-local symmetry charges
and boundary conditions and the necessity of duality shows up explicitly through the generic
bulk construction.

Up to date, commuting projector Hamiltonians realizing topological ordered phases in
three or more dimensions are far from exhaustive. There are a few constructions that gen-
eralize naturally in any spacial dimensions d > 2. Examples include the higher dimensional
(generalized) toric codes [60, 61], Dijkgraaf-Witten models [62], Walker-Wang models (with
a non-modular category as an input) [63], and generalized double semion models [64].

Our construction adds to this list, and yet, in some sense, is simpler. The construction
generates a stabilizer Hamiltonian in d+1 spatial dimensions, from a d-dimensional model on
a qubit lattice with a set of Z2 symmetries. The construction does not start with the categorical
data of the underlying TQFTs, but is based on observations on the commutation relations of
Hamiltonian local terms in the d-dimensional model. Ground state degeneracy (GSD) that
signals a topological and/or fracton order can also be computed with the stabilizer formalism,
say using the standard polynomial representation [58,65].

The simplicity of such stabilizer codes in generic dimensions is inviting for an explicit
analysis of the bulk-boundary correspondence, which is summarized above. This result of
boundary-bulk correspondence is in complementary to many existing boundary analysis of
commuting projector models of TQFTs: The boundary of the ground state of a discrete gauge
theory has a global symmetry and is constrained to the charge-neutral sector [47, 49]; for
discrete gauge theories in 2 + 1 spacetime dimensions for a few Abelian groups, the local
operators on the boundary have been matched with topological operators in the bulk, and
share the same set of F -symbols and R-symbols [66,67]; the boundary of a Levin-Wen model
has generalized symmetries generated by topological operators restricted to the boundary,
which are found either through a lattice analysis [68], or at an abstract level [46,69,70]; the
gapped surface of (confined) Walker-Wang models can be topologically ordered and protected
by symmetries that are anomalous [14,71].

As far as long range orders in the bulk is concerned, one distinction of our construction is
that it generates fracton ordered models as well. This is particularly interesting given that the
bulk-boundary correspondence for fracton orders is yet barely explored [33,43].4 One intrigu-
ing result we obtain is that, with some appropriate boundary condition, a single anomalous
theory can live on the boundaries of two distinct bulk fracton models, a phenomenon not
expected in the case of conventional topological orders.

As a heads-up, let us give an outline of the construction. We define a large class of GI mod-
els whose Hamiltonian local terms (HLTs) are either products of Pauli-Z operators or products
of Pauli-X operators. The HLTs and symmetries of the GI model satisfy a couple of conditions.
Being so, a dual model can always be obtained through a generalized Kramers-Wannier duality.
A bulk model – a model of one dimension higher, can be constructed on alternating layers of
the GI model lattice and the dual lattice. The HLTs of the bulk model are within the stabilizer

3This is in a weaker sense, referring to that a model, due to global constraints, is not a local lattice model on
its own (thus has a global gravitational anomaly), yet is isomorphic to the boundary of a long range entangled
phase. More completely, the model subject to distinct global constraints should be captured by a vector of partition
functions. And each distinct sector of the Hilbert space of a lattice model can be the boundary of a (d + 1)-
dimensional model with topological orders, where the topological charge in the bulk determines the boundary
sector.

4See also Ref. [44] that appeared soon after the first version of our arXiv preprint.
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formalism. Each term is a product of local terms of the GI model and its dual. By virtue of the
properties of the GI models, we show the bulk model has several nice properties:

• Any ground state is robust against local perturbations.

• When the GI model has non-local X -type symmetries, or when the dual model has
non-local Z-type symmetries, the bulk model is either topologically ordered or fracton-
ordered.

• When the bulk model has a pure topological order, its boundary has non-invertible
anomaly. The symmetric sector of the GI model that satisfies certain (generalized)
boundary conditions is a boundary termination for the bulk model.

• When the bulk model has fracton orders, it can have an anomaly-free boundary, such
that when discrete global symmetries appear on the boundary, the boundary Hilbert
space includes all charged sectors, rather than only the symmetric sector.

The rest of this paper is organized as follows. In Section 2, we define GI models and give
a few examples. In Section 3, we introduce the generalized Kramers-Wannier duality which
plays an important role in our construction of bulk models. In Section 4, we construct the
bulk model, and together describe a few prototype examples. Then we prove that it has a
stable spectral gap and a robust GSD on a topologically nontrivial space manifold. Hence it
has a topological or fracton order. The bulk-boundary correspondence is analyzed in Section
5. In Section 6, we study a collection of examples of topological and fracton orders generated
from the construction. Particularly, an interesting example demonstrates that two distinct
fracton models can host the same anomalous boundary theory. In the end, we summarize
and discuss future questions. In Appendix G, we also give a variant bulk construction that
generates topological and/or fracton orders from qubit lattice models beyond the GI model and
is applicable to some models with symmetry protected topological orders. Further technical
details are also summarized in appendixes.

2 Generalized Ising models

A GI model is referred to a model on a lattice of qubits in arbitrary spatial dimensions, whose
Hamiltonian and Z2 symmetries has the following properties. The Hamiltonian consists of two
types of terms: GI terms and generalized transverse field terms. A generalized Ising (transverse
field) term is a product of Pauli-Z (Pauli-X ) operators acting on a local subset of qubits, and is
denoted by OZ

α (OX
i ) with some index α (i) referring the subset. Generically, α and i are from

different index sets. Written explicitly, the Hamiltonian is then

H = −
∑

α

JαOZ
α −

∑

i

hiOX
i , (1)

where Jα and hi are real coefficients. We suppose the model lives on a d-dimensional parallel-
ogram with either periodic or open boundary condition along any direction. We will impose
some additional assumptions on the model later in this section.

The model may have many Z2 symmetries. For our purpose, we only consider one group
of Z2 symmetries: all Z-type symmetries generated by products of Pauli-Z operators (minus
sign factor excluded), and all those X -type symmetries generated by Pauli-X operators (minus
sign factor excluded) that commute with all Z-type symmetries. We refer this selected group of
symmetries the compatible symmetries in the GI model. Compatibility is to emphasize that the
generator of each X -type Z2 symmetry commutes with not only the Hamiltonian but also all
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the Z-type symmetry generators. In fact, this implies that each X -type symmetry generator is
a product of several OX

i operators, analogous to the standard transverse-field Ising model. For
a proof, see Corollary 5 in Appendix B. From now on, X -type Z2 symmetries in the GI model
only refer to those compatible ones.

The many Z2 symmetries may either be local or nonlocal, and it is useful to distinguish
them for our purpose. Let {GZ

r } with some index r be a complete but not necessarily indepen-
dent set of generators of the local Z-type symmetries. We say there are nZ number of nonlocal
Z-type symmetries if one can find a maximal set of symmetry generators {U Z

1 , U Z
2 , · · · , U Z

nZ
}

satisfying that each U Z
k is not a product of the remaining ones and GZ

r . Formally, this ZnZ
2

group is nothing but the quotient of the full Z-type symmetry group over its local symmetry
subgroup. In practice, the set {U Z

k } can be obtained by repeatedly adding new U Z
k that is

independent from GZ
r and the existing U Z

1 , · · · , U Z
k−1 until the list is maximal. Similarly, for

the X -type symmetries, we have the local generators {GX
s } with some index s which belongs

to a generically different index set from that for r, and the independent nonlocal generators
{UX

1 , UX
2 , · · · , UX

nX
} with some nX .

2.1 Assumptions

Before stating our assumptions, let us introduce some useful terminologies. Consider a set
of commuting local operators {Mi} where each Mi is a tensor product of I , X , Y, Z . We say
that a local operator A is locally generated by {Mi} if A is generated by a few Mi ’s in a
neighborhood of A’s support, such that the linear size of this neighborhood exceeds that of A
by an O(1) constant. We say that {Mi} is a complete set of local observables (CSLO) if any
local operator A that is a tensor product of I , X , Y, Z and commutes with all Mi can be locally
generated by {Mi}. In fact, one can show that if {Mi} forms a CSLO, then any local operator
A, not necessarily a product of Paulis, that commutes with all Mi can be locally generated.

We assume the GI models to have the following properties.

• {OX
i } ∪ {G

Z
r } is a CSLO.

• Any local X -type symmetry generator is locally generated by {GX
s }.

The first assumption physically means that when Jα = 0, hi ̸= 0, after restricting to the gauge
invariant sector GZ = GX = 1, the system has a spectral gap stable to local perturbations,
together with either a unique ground state or a robust GSD [72]. This is analogous to the
Ising disordered phase.

Independent of these assumptions, the bulk model to be constructed has a Hamiltonian
whose local terms all commute. These two assumptions ensure that the ground states of the
bulk model to be constructed are robust against local perturbations. The above assumptions
may seem technical, but in many cases, are not hard to verify, as we will see. Also note that
the choices of GZ and GX operators are not unique. It suffices to make one choice that satisfies
the assumptions.

2.2 Examples

Let us now introduce some examples. Periodic boundary condition will be taken for conve-
nience. A particularly simple situation is when OX

i are just the traditional transverse field
terms X i with i labeling the qubits on the lattice. In this case, there is no Z-type symmetry at
all, and our first assumption is trivially satisfied. The simplest example of this class is of course
the standard one-dimensional Ising model: H = −J

∑

i Zi Zi+1 − h
∑

i X i , which has an X -type
Z2 symmetry generated by

∏

i X i . The plaquette Ising models (see Refs. [59,73–75] and the
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Figure 1: Nonlocal symmetry generators of the model in Eq. 3. U Z
1 is illustrated in

(a). U Z
2 is similar but extended along the vertical direction. (b) is an example of an

X -type symmetry generator.

references therein), and the quantum Newman-Moore model [76–80] are other examples of
this class.

The two-dimensional plaquette Ising model has the Hamiltonian

H = −J − h , (2)

defined for qubits on the vertices of a 2D square lattice. Here and throughout, we sometimes
suppress the summation for simplicity when there is little confusion. The product of Pauli
X operators along each row and column generates a Z2 symmetry of the model, known as
a subsystem symmetry. Point excitations of this model in the ordered phase (J > h) has
restricted mobility. The quantum Newman-Moore model has subsystem Z2 symmetries acting
on Sierpinski triangles, but is otherwise similar to the two-dimensional plaquette Ising model,
so let us not write it down explicitly.

Our next example contains nontrivial OX terms in its Hamiltonian. Consider the following
model whose qubits live on the links of a 2D square lattice,

H = −J − h . (3)

Here, the nearest neighboring two-body Z-type terms along the vertical links are not included
as they are not independent: they are equivalent to the two-body Z-type terms along the
horizontal directions up to a local Z-type symmetry of the Hamiltonian.

The local Z-type symmetries of this model are generated by the product of four Z opera-
tors around each vertex. Take the local Z-type symmetries as gauge constraints, the model is
a quantum Z2 gauge theory, and found to arise in the system of Josephson arrays of supercon-
ductor and ferromagnet when deposited on top of a quantum spin Hall insulator [81,82].

There are two nonlocal Z-type symmetries, and we may take U Z
1 (U Z

2 ) to be the prod-
uct of all vertical-link (horizontal-link) Z operators along some horizontal (vertical) line, see
Fig. 1a. There are no local X -type symmetries. Each X -type non-local symmetry generator
of the model is a product of all vertical-link X operators along even number of vertical lines,
and all horizontal-link X operators along even number of horizontal lines. See Fig. 1b for an
example.

Later, we will construct a bulk theory for this model, which has the X-cube fracton order
[59].

3 Generalized Kramers-Wannier duality

In this section, we define generalized Kramers-Wannier dual theories for each GI model. Such
dual theories play an important role in our construction of the bulk models. A dual theory
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lives on a generically different lattice which we dub the dual lattice. The operator map of the
duality can be written as

OZ
α 7→∆

Z
α , OX

i 7→∆
X
i , (4)

where ∆Z
α (∆X

i ) is a local product of Pauli Z (Pauli X ) operators on the dual lattice, such that
the commuting or anticommuting relations between the operators are preserved. Moreover,
the above operator map should be local: if we place the original and the (generically different)
dual lattices together, then each OZ

α (OX
i ) operator should be closed to the corresponding ∆Z

α

(∆X
i ) operator. The dual model Hamiltonian then reads

H ′ = −
∑

α

Jα∆
Z
α −

∑

i

hi∆
X
i . (5)

Such a duality exists for any GI model, because we can always let the dual lattice consist of
qubits labeled by α, and then let∆Z

α = Zα, ∆X
i =

∏

α∈Ii
Xα where Ii is the set of OZ

α terms that
anticommute with OX

i . This is dubbed the standard dual theory. We may treat the dual theory
as a GI model as well, but with the roles of X and Z exchanged, which means we first include
all X -type Z2 symmetries, and then include all compatible Z-type symmetries. Similarly as
in the GI model, here, all Z-type symmetries are generated by products of Hamiltonian local
terms∆Z

i . We denote the local symmetry generators in the dual theory by {Γ X
ρ } and {Γ Z

σ }. The
independent nonlocal symmetry generators are denoted as {ΩX

1 , · · · ,ΩX
mX
} and {ΩZ

1 , · · · ,ΩZ
mZ
}.

In Appendix B, we prove that if we restrict to the symmetric sectors on both sides of the duality,
then the operator map (4) follows from a Hilbert space isomorphism, i.e. an exact duality.

Similar to the original theory, we make the following assumptions for the dual theory:

• {∆Z
α} ∪ {Γ

X
ρ } is a CSLO.

• Any local Z-type symmetry generator is locally generated by {Γ Z
σ }.

In addition, we assume that

• nX +mZ ≥ 1.

In other words, either there exist compatible nonlocal X -type symmetries in the original model,
i.e. nX ≥ 1, or there exist compatible nonlocal Z-type symmetries in the dual model, i.e.
mZ ≥ 1. This will help ensure our bulk model to have a topological and/or fracton order.
Later in the Section 5, we discuss the further conditions on the GI model (and its dual) so
that the GI model has non-invertible anomaly that can be matched with the bulk model to be
constructed.

For example, the standard dual theory of the standard one-dimensional Ising model is
H ′ = −J

∑

i Zi+1/2 − h
∑

i X i−1/2X i+1/2, where we place the dual lattice qubits in between the
original ones, reflected by the 1/2 shifts in the indices. Another example is that the standard
dual theory of both the two-dimensional plaquette Ising model in Eq. 2 and the model in Eq. 3
is

H ′ = −J − h , (6)

which is nothing but the two-dimensional plaquette Ising model with the substitutions X↔ Z
and J↔ h. This dual theory has no local symmetry.

We emphasize that a single GI model may have multiple dual models. Just from the exam-
ple above, another possible dual theory of the two-dimensional plaquette Ising model is Eq. 3
with the substitutions X ↔ Z and J ↔ h. As a consequence, multiple bulk models may be
constructed from a single GI model, as we will see.
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Table 1: Summary of notations.

GI Model
d-dim

• H = −
∑

α JαOZ
α−
∑

i hiOX
i

• Local Symmetries: {GZ
r },

{GX
s }

• Nonlocal Symmetries:
{U Z

k |1≤ k ≤ nZ},
{UX

k |1≤ k ≤ nX }

Dual Model
d-dim

• H ′ = −
∑

α Jα∆
Z
α −

∑

i hi∆
X
i

• Local Symmetries: {Γ X
ρ },

{Γ Z
σ }

• Nonlocal Symmetries:
{ΩX

k |1≤ k ≤ mX },
{ΩZ

k |1≤ k ≤ mZ}

Bulk Model
(d + 1)-dim

• Odd Layers: Original
Lattice (◦)

• Even Layers: Dual Lattice
(•)

• Hbulk: Eq. 7 or Fig. 2.

4 Bulk theory

Given some GI model in d spatial dimensions and a dual model of it, we will now construct
a bulk theory in one higher dimensions such that certain charge and boundary condition sec-
tor(s) of the GI model can live on its boundary. We will explain later what this precisely means.

4.1 Construction and prototype examples

The lattice on which the bulk theory lives is an alternating stack of the original and dual d-
dimensional lattices; see Fig. 2. As an example, we also show the bulk lattice thus constructed
from the standard one-dimensional Ising model and its standard dual model in Fig. 3. Here
and throughout, we often use empty circles (solid dots) to represent qubits in layers of the
original (dual) lattice. We label the original and dual lattice layers by odd and even indices,
then our bulk theory is defined by the following Hamiltonian; see Table 1 for a recap of the
many notations.

Hbulk =−
∑

α,l

∆Z
α,2lO

Z
α,2l+1∆

Z
α,2l+2 −

∑

i,l

OX
i,2l−1∆

X
i,2lO

X
i,2l+1

−
∑

r,l

GZ
r,2l+1 −

∑

s,l

GX
s,2l+1 −

∑

ρ,l

Γ X
ρ,2l −

∑

σ,l

Γ Z
σ,2l , (7)
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1

2

3

4

5

6

7

original

dual

Figure 2: An illustration of the bulk model. Horizontal solid (dashed) lines represent
the original (dual) lattice layers. The various operators in Hbulk are schematically
plotted.

. . .. . .

1
2
3
4
5
6
7
8
9

Figure 3: The 2D bulk lattice constructed from the standard one-dimensional Ising
model and its standard dual model.

where the second subscript of each operator is the layer index. These various operators
are schematically plotted in Fig. 2. The ∆ZOZ∆Z (OX∆XOX ) terms will be called the Z-
suspension (X -suspension) terms; this name is from the special case where∆Z = Z (OX = X ).
The G and Γ terms will be called the gauge symmetry terms. By construction, all local oper-
ators in Hbulk commute with each other, thus the model is exactly solvable. In other words,
Hbulk is a stabilizer Hamiltonian.

The simplest example comes out starting from the standard one-dimensional Ising model
and its standard Kramers-Wannier dual. We obtain the following bulk Hamiltonian,

Hbulk = − − , (8)

which lives on the lattice shown in Fig. 3. There are no gauge symmetry terms in 8. The
Hamiltonian represents nothing but the Z2 toric code model [45]; it can be cast to the standard
form by replacing empty circles and solid dots by vertical and horizontal links, respectively.
Similarly, the three-dimensional toric code model can be generated from the standard two-
dimensional Ising model and its standard dual, the Z2 lattice gauge model without matter.
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From the two-dimensional plaquette Ising model (2) and its standard dual (6), we obtain

Hbulk = − −
� �

, (9)

where the 3D Cartesian frame is indicated in the bracket with z being the out-of-layer direction.
The model is also obtainable via other constructions [83, 84]. Point excitations in this bulk
model are free to move along z direction, but have restricted mobility along x and y directions
like the original two-dimensional model. In other words, the model is fractonic along x and
y , but behaves like a topologically ordered system along z.

Another example, from the two-dimensional model in Eq. 3 and its standard dual theory
in Eq. 6, we obtain

Hbulk = − − − , (10)

where we have associated qubits in the dual lattice layers with z-direction links, and the Carte-
sian frame is the same as that in Eq. 9. This three-dimensional model is topologically equiva-
lent5 to the X-cube fracton model [59]. Recall that the two-dimensional plaquette Ising model
has an alternative dual theory: Eq. 3 with the substitutions X ↔ Z and J ↔ h. The bulk
theory constructed from this pair of models is the same as Eq. 10 but with X and Z exchanged.
We have thus found that multiple bulk models may be constructed from a single GI model by
choosing different dual models.

4.2 Robust ground state degeneracy

We now show that the general bulk theory Hbulk has a stable spectral gap, and any possible GSD
of it is robust. Therefore any degenerate ground states, say on the lattice in d ≥ 2 dimensions
with periodic boundary condition, would imply topological and/or fracton orders. Then we
compute the GSD.

Regarding Hbulk as the negative sum over a set of stabilizers, then in the ground subspace,
all these stabilizers equal to +1, i.e. there is no frustration.6 According to Ref. [72], the fol-
lowing lemma implies that the model has a spectral gap stable to local perturbations, together
with either a unique ground state or a robust GSD.7 In particular, the lemma shows that the
stabilizer Hamiltonian constructed is a quantum code with macroscopic code distance. The
logical operators, if any, are all non-local operators that commutes with the stabilizers.

5Comparing to the X-cube Hamiltonian, the model constructed here lacks the X-shape terms in one of the three
orientations, but those absent terms can be generated by the existing X-shape terms, thus the two models are
topologically equivalent.

6This is possible because the group generated by these stabilizers does not contain −1.
7To meet the conditions in Ref. [72], we also make the following assumptions that are usually fulfilled, and

in particular are satisfied when the bulk model has translation symmetries along all directions: (1) There is an
O(1) upper bound on the geometric sizes of all bulk stabilizers. This leads to certain precise locality requirements
on the d-dimensional models. (2) There is a natural way of taking thermodynamic limit for the GI model and its
dual such that the lattice structure, Hamiltonian local terms, and local symmetry generators (G and Γ operators)
of both models within distance R from any site do not depend on the total system size, as long as the latter is not
too closed to R. This guarantees a similar property for the lattice structure and Hamiltonian local terms of the bulk
model.
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Theorem 1. The stabilizers in Hbulk form a CSLO. In other words, any local operator A that is a
tensor product of I , X , Y, Z and commutes with all the stabilizers in Hbulk can be locally generated
by those stabilizers.

Proof. Up to an unimportant phase factor, we can write A = AZAX where AZ (AX ) is a
product of Pauli Z (Pauli X ) operators on different sites. AZ and AX must themselves be local
and commute with all the stabilizers in Hbulk, because all the stabilizers in Hbulk are either
X -type or Z-type. We will show that AZ and AX are both local products of the operators
appearing in Hbulk.

Each Z operator in AZ has some integer layer index l. Let the maximal and minimal ones
of those layer indices be lmax and lmin, respectively. Suppose lmax is odd, i.e. coinciding with
an original lattice layer. In order to commute with all the X -suspension terms that span the
three layers lmax, lmax+1 and lmax+2, and also by our assumptions on the original d-dimensional
model, the top layer of AZ must be a local product of some GZ terms. Thus we may multiply
AZ by those GZ terms and reduce lmax by at least 1. Now suppose that lmax is even. The
top layer of AZ coincides with a dual lattice layer, and commutes with all the Γ X operators
on that layer. Given our assumptions on the dual d-dimensional model, it follows that the
top layer of AZ must be a local product of some ∆Z operators. Let h = lmax − lmin be the
height of the AZ operator. Whenever h ≥ 2, we may multiply AZ with some Z-suspension
operators and reduce its height by at least 1. Repeat the above two operations to decrease
lmax, and the similar operations to increase lmin. Eventually, the reduced AZ operator acts on
a single dual lattice layer (even layer index), if it is not yet fully reduced to the identity. This
single-layer operator is a product of some ∆Z operators, and must commute with all the ∆X

operators acting on that layer (due to the X -suspension operators), thus it is a local Z-type
symmetry generator of the dual theory and is a local product of some Γ Z operators by our
assumptions on the dual model. Given the locality of the OX , OZ , ∆Z , and ∆X operators, as
well as the locality of the generalized Kramers-Wannier operator map, the above reduction
procedure implies that AZ is locally generated by the stabilizers in Hbulk. The claim for AX
can be proved similarly.

Next, we examine in what cases the model has GSD. It turns out the GSD, for example,
on a (d + 1)-dimensional torus, only depends on properties of non-local symmetries in both
the original (generalized Ising) model and its dual. Specifically, we take periodic boundary
condition along the out-of-layer direction, i.e. identify the first and the L-th layers for some
odd L. We obtain the GSD through a thorough counting, which we elaborate in Appendix D.

Here instead, let us prove the existence of a degeneracy by finding a pair of anticommut-
ing operators that act on the ground subspace. As a general mathematical fact, given a set
of independent X -type operators AX

1 , AX
2 , · · · , AX

n acting on an arbitrary multiple-qubit Hilbert
space, there is always a set of Z-type operators BZ

1 , · · · , BZ
n such that BZ

k anticommutes with
AX

k but commutes with all the other AX operators.8 This means that we can always find some
operators V Z

k acting on the Hilbert space of our original d-dimensional lattice, such that V Z
k

anticommutes with UX
k but commutes with all the other X -type symmetry generators (local or

nonlocal). Let us then consider the operator UX
k,2l0−1 for some k and l0, which is UX

k acting on
an original lattice layer 2l0 − 1, and the operator

Wk =
∏

l

V Z
k,2l−1 , (11)

8The AX
k operators can be represented by column vectors with elements in F2. The search for BZ operators is

then equivalent to the search for dual vectors. Dual vectors exist because full-rank matrices with F2 elements are
invertible.
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where V Z
k,2l−1 is V Z

k acting on the (2l−1)-th layer. The two operators UX
k,2l0−1 and Wk both com-

mute with Hbulk, thus acting within the ground state subspace, and the two operators anticom-
mute with each other. It follows that the ground state subspace can not be one-dimensional.
Indeed, let |ψ〉 be a ground state that is also an eigenstate of UX

k,2l0−1 with some eigenvalue

λ = ±1, then Wk |ψ〉 is another ground state with eigenvalue −λ under the UX
k,2l0−1 operator.

This analysis actually implies that the UX
k,2l0−1 operators for some fixed l0 and all k can take

independent eigenvalues ±1 within the ground subspace. Similarly, the ΩZ
k,2l0

operators can
also take independent eigenvalues within the ground subspace. Hence, the GSD of the system
is at least 2nX+mZ . Our previous assumption nX +mZ ≥ 1 guarantees a nontrivial degeneracy.

If nX increases with the system size, which, for example, happens in the plaquette Ising
model and the model in Eq. 3, the bulk theory will have a fracton order, with a GSD increases
with the system size. The scenario for mZ is similar.

A few simple cases are illuminating, following the formula of GSD given in Theorem 3,
which we summarize in the following claims.

Corollary 1. When the GI model has nX ≥ 1 number of (compatible) X -type non-local symme-
tries, the bulk model has degenerate ground states stable against local perturbations, and

log2 GSD≥ nX . (12)

Corollary 2. When the dual of the GI model has mZ ≥ 1 number of (compatible) Z-type non-local
symmetries, the bulk model has degenerate ground states stable against local perturbations, and

log2 GSD≥ mZ . (13)

Corollary 3. When there is no compatible nonlocal symmetry in neither the GI model nor the
dual model, the bulk model has a unique ground state.

5 Bulk-boundary correspondence

Now let us analyze the boundary physics of the bulk model constructed above, and show that
the GI model we start with can terminate on its boundary. This more precisely means the
following: When the bulk model is placed on a certain space with boundary, in the absence
of bulk excitation, its low-energy physics below the bulk excitation gap is described by the GI
model subject to certain global constraints.

The bulk-boundary correspondence manifests locally, through the matching of Hamiltonian
local terms, as well as globally. Especially, we focus on matching the following two types of
global constraints on the GI model to the boundary of the bulk model.

• Global symmetry charge projection: for a set of indices N ⊂ {1,2, · · · , nX },

UX
N ≡

∏

k∈N
UX

k = ±1 . (14)

• Generalized boundary condition: for a set of indices S such that
∏

α∈S O
Z
α = 1 modulo

GZ ’s,
ηS ≡

∏

α∈S
sign(Jα) = ±1 . (15)

To understand why we call the latter condition a generalized boundary condition, let us
apply the condition to one-dimensional tranverse Ising model on a ring. In this model, {OZ

α}
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can be identified with {Z1Z2, Z2Z3, · · · , ZN Z1}, such that
∏

αO
Z
α = 1, and one way to change

the boundary condition is to flip the sign of the coefficient of the ZN Z1 term in the Hamiltonian;
and correspondingly, the sign of η=

∏

α sign(Jα) is changed.
There are two main results. Consider a bulk model with a finite number of layers, and

with the top and bottom being odd layers. The first is that the boundary Hilbert space Lbdry
of the bulk model with topological and/or fracton orders is isomorphic to that of two copies
of GI models subject to global symmetry constraints. Particularly, under a condition to be
specified below, Lbdry is isomorphic to the sector labeled by +1 eigenvalues of at least one of
the following two types of non-local operators. One is

UX
N ⊗ UX

N , (16)

dubbed global symmetry charges, and the other is

ΩZ
M ⊗Ω

Z
M , (17)

dubbed generalized boundary conditions. The notation here deserves some explanation. UX
N

for N ⊂ {1, 2, · · · , nX } are global symmetry operators of the GI model, and hence the operator
in Eq. 16 does divide the Hilbert space of two GI models into different eigenvalue sectors. On
the other hand, ΩZ

M for M ⊂ {1, 2, · · · , mZ} are symmetry operators of the dual model, then
how does the operator in Eq. 17 acts on two copies of the original model? In fact, we will show
that the eigenvalues of certain ΩZ

M in the dual model imply generalized boundary conditions
given by (15), through the duality map. Therefore, ΩZ

M ⊗Ω
Z
M actually acts on two copies of

the original model as ηS ⊗ηS for some S.
Furthermore, we find that the boundary Hilbert space Lbdry can be divided into many

sectors labeled by the eigenvalues of some nonlocal operators, which are all X -type or Z-type
symmetry operators of the original or dual d-dimensional models acting on certain layers. The
sectors are all isomorphic, and the boundary Hamiltonian Hbdry is block-diagonal with respect
to these sectors. In different sector, the charge projections (14) and generalized boundary
conditions (15) either on the top layer or on the bottom layer may be different. Nevertheless,
the combinations of their values on both the top and the bottom layer need to be consistent
with that UX

N ⊗ UX
N = 1 and ΩZ

M ⊗Ω
Z
M = 1.

In this way, the boundary model of a non-invertible phase with long-range orders is de-
scribed by the GI model with global constraints. When this happens, we dub the constrained
GI model to have (weak) non-invertible anomaly.

The second main result is a concrete condition on the non-local symmetries UX
N , ΩZ

N of
the original and dual d-dimensional models that leads to a bulk model whose boundary the-
ory matches with the GI model with constraints (14) and/or (15). We summarize it in the
following claim.

Claim 1. (Necessary and sufficient condition for an anomalous boundary) The boundary
theory is anomalous if and only if either of the following two conditions is satisfied:

1. For some nonempty subset N ⊂ {1, 2, · · · , nX },

UX
N ≡

∏

k∈N
UX

k , (18)

can be written as a product of OX operators such that its dual – a product of ∆X operators
– equals to the identity modulo local symmetry operators Γ X .

2. For some nonempty subset M ⊂ {1,2, · · · , mZ},

ΩZ
M ≡

∏

k∈M
ΩZ

k , (19)
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can be written as a product of ∆Z operators such that its dual – a product of OZ operators
– equals to the identity modulo local symmetry operators GZ .

Since that a product of a few OZ equals the identity modulo GZ ’s is a generalized boundary
condition (15) in the GI model, and there is an analogy for a product of∆X . Thus, colloquially
speaking, the conditions say that only for those non-local symmetry operators in either the GI
or the dual model, which is dual to a generalized boundary conditions, the projections of them
lead to the (weak) non-invertible anomaly.

In the special case where OX = X and∆Z = Z , the condition is simple, that is nX +mZ ≥ 1.
The reason is that in this case, any non-local symmetry UX orΩZ is dual to the identity, because
the original (dual) theory does not have any Z-type (X -type) symmetry.

The following subsections are devoted to analyze the boundary theory from the simplest to
the most general case, which leads to the results above. The examples of the boundary theory
of toric code model and the X-cube model are presented. A complete and detailed treatment
is given in Appendix E.

To begin with, let us define the boundary of our bulk model. We will take an odd number
of layers, with layer indices from 1 to L ∈ 2Z + 1, and take open boundary condition along
the out-of-layer direction, so the 1-st and the L-th layers are the boundary layers. The two
boundary layers both have the original (instead of the dual) lattice structure on which our GI
model is defined, cf. Fig. 2 and 3. How about the boundary condition along the intra-layer di-
rections? Previously, we have assumed periodic boundary condition when discussing concrete
examples, but our construction does not really demand any particular boundary condition. In
the following, we just require that the boundary condition for each original (dual) lattice layer
be the same as the original (dual) d-dimensional model, but is otherwise arbitrary. However,
we emphasize that if one changes the boundary condition for a GI model, its symmetry, the
dual model, and the validity of our assumptions should all be reexamined. An example will
be given below.

We define the bulk Hamiltonian Hbulk to be of the same form as (7), including all the terms
that are completely inside the system. This Hamiltonian determines a degenerate ground state
subspace, which we consider as the boundary Hilbert spaceLbdry. All additional local operators
that commute with local terms in Hbulk, and thus act within the boundary Hilbert space Lbdry,
are allowed terms in the most general boundary Hamiltonian Hbdry. Lbdry together with Hbdry
is the boundary theory that we are going to determine. Note that there is not a unique choice of
Hbdry, since the product of any two boundary terms is another allowed boundary term. Instead,
we will focus on a canonical choice of Hbdry. We prove in Appendix E.5 that the boundary terms
given in the canonical choice together with the stabilizers in the bulk Hamiltonian are sufficient
to generate any allowed boundary local term. Thus the canonical Hbdry we consider is a quite
general one.

5.1 Simplest situation: OX = X and ∆Z = Z

Let us start with the simplest situation where OX
i = X i and ∆Z

α = Zα, with i and α labeling
qubits in the original and dual lattices, respectively. In this case, the original model (the dual
model) has no Z-type (X -type) symmetry at all. With periodic boundary condition along the
out-of-layer direction, the GSD is determined by the number of non-local X -type symmetries
in the original model and the number of non-local Z-type symmetries in the dual model, in-
dependent of the number of layers, log2 GSD= nX +mZ .

Note that one obvious type of operators that commute with Hbulk is the nonlocal Z-type
symmetry operator ΩZ

k,2l0
in any even layer. Thus, we can divide Lbdry into several sectors

labeled by the eigenvalues of the nonlocal operators ΩZ
k,2l0

(k = 1, · · · , mZ) for some fixed l0.
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Notice that under the Kramers-Wannier duality, ΩZ
k from the dual theory corresponds to the

identity operator of the original theory. Hence, ΩZ
k,2l0

is related to ΩZ
k,2l for any other l by the

multiplications of several Z-suspension operators. More explicitly, ΩZ
k =

∏

α∈A Zα for some set
A such that

∏

α∈AO
Z
α = 1, then

∏

α∈A Zα,2lOZ
α,2l+1Zα,2l+2 = ΩZ

k,2lΩ
Z
k,2l+2. This is the reason

that we only need to consider ΩZ
k,2l0

operators acting on a single layer. Let Lbdry,0 ⊂ Lbdry be

the particular sector where ΩZ
k,2l0
= 1 for all k. Denote by L the Hilbert space for our original

d-dimensional lattice and by LG the gauge invariant subspace of it (a.k.a., the symmetric
subspace for all local symmetries).

We claim that Lbdry,0 is isomorphic to the following fictitious space,

Lfic :=
�

|φ〉 ∈ LG ⊗LG

�

� UX
i ⊗ UX

i |φ〉= |φ〉, i = 1, · · · , nX

	

. (20)

where the two copies of LG represent the two boundary layers of our physical system. That
is, Lbdry,0 is the ZnX

2 symmetric sector of LG ⊗LG under the symmetry generated by UX
i ⊗UX

i ,
i = 1, · · · , nX .

Furthermore, Lbdry,0 is an invariant subspace of Hbdry whose action in this sector, when
represented in Lfic, can take the form

H I
GI(Jα, hi) +H II

GI(J
′
α, h′i) , (21)

where H I
GI and H II

GI act on the two copies of LG in Eq. 20, respectively.
Let us understand the result of the boundary Hilbert space first. Note that the Pauli-X

operator acting on any qubit in the two boundary layers commute with the bulk Hamiltonian.
States in Lbdry,0 can be labeled by the eigenvalues of these Pauli-X operators, subject to the
following two constraints. First, each local X -type symmetry generator equals to 1, since the
generator is a local term in the bulk Hamiltonian. This constraint gives rise to the gauge
invariance requirement in Eq. 20. Second, since UX

k is dual to the identity operator under the
Kramers-Wanner duality,9 UX

k,1UX
k,L is equal to the product of several X -suspension operators,

and thus, is equal to 1. This constraint leads to the ZnX
2 symmetry projection.

Now we consider the boundary Hamiltonian local terms. The Pauli-X operators on the two
boundary layers are allowed, since, as just mentioned, they commute with the bulk Hamilto-
nian. Furthermore, these operators commute with ΩZ

k,2l0
, and thus act within each sector of

the boundary Hilbert space. Under the isomorphism from Lbdry,0 to Lfic, these operators take
the same form,

X i,1 7→ X i ⊗ 1 , X i,L 7→ 1⊗ X i . (22)

Another set of operators that can be added to Hbdry are OZ
α,1Zα,2 and Zα,L−1OZ

α,L . They all
commute with the bulk Hamiltonian and with ΩZ

k,2l0
as well. Their image in Lfic is,

OZ
α,1Zα,2 7→OZ

α ⊗ 1 , Zα,L−1OZ
α,L 7→ 1⊗OZ

α . (23)

This map may seem obvious since it preserves the commuting/anticommuting relations with
the boundary X operators, but a careful proof is actually necessary. For example, extra minus
sign factors also seem allowed and it is not immediately clear whether they can be gauged
away. Our proof for this result is given in Appendix E.2. A crucial ingredient in the proof is
that ΩZ

k,2l0
= 1 for all k; one can see this by noticing that each ΩZ

k,2 is equal to the product of

several OZ
α,1Zα,2.

With the above analysis, we conclude that the Lbdry,0 block of Hbdry, when represented
in Lfic, may take the form (21), where H I

GI and H II
GI act on the two copies of LG in Eq. 20,

9UX
k is a product of several X i operators. One can obtain a dual operator by applying the Kramers-Wannier

operator map (4). Such a dual operator has to commute with all the Zα operators, so it must be the identity.
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respectively. We will refer to Eq. 21 as the effective boundary Hamiltonian in the Lbdry,0 sector,
where the “effectiveness” is in the sense that the Hamiltonian acts on the fictitious space Lfic.

Other sectors with different eigenvalues of ΩZ
k,2l0

can be analyzed by considering unitary
operators that map them to Lbdry,0. Denote by L′ the Hilbert space for the d-dimensional dual
lattice. We can find some X -type operators ΘX

k acting on L′ such that ΘX
k anticommutes with

ΩZ
k but commutes with all the other Z-type symmetry generators (local or nonlocal); this is

always possible as we mentioned earlier. It follows that

(L−1)/2
∏

l=1

ΘX
k,2l ,

is an operator that commutes with the bulk Hamiltonian and can flip the eigenvalue of ΩZ
k,2l0

.
Hence, we have found that each of the mZ sectors of Lbdry is isomorphic to Lfic defined in
Eq. 20. The above unitary operator that can alter the sign of ΩZ

k,2l0
commutes with all the

OX = X operators on the two physical boundaries, but necessarily anticommute with some
OZ
α,1Zα,2 and Zα,L−1OZ

α,L operators.
In consequence, the effective boundary Hamiltonian in each of the other sectors still takes

the form of Eq. 21, but the signs of some GI terms in both H I
GI and H II

GI are flipped compared
to those in the Lbdry,0 sector.

Crucially, such sign changes cannot be canceled by any unitary rotation in Lfic. To see this,
we write ΩZ

k =
∏

α∈A Zα for some subset A. Then under the generalized Kramers-Wannier
duality map, ΩZ

k ↔
∏

α∈AO
Z
α = 1.10 It leads to that in an arbitrary sector of Lbdry,

ΩZ
k,2l0
= ΩZ

k,2 =
∏

α∈A

(OZ
α,1Zα,2) . (24)

In Lfic, we have
1=

∏

α∈A

(OZ
α ⊗ 1) . (25)

Suppose there is an isomorphism from this sector of Lbdry to Lfic, such that

OZ
α,1Zα,2 7→ ηαOZ

α ⊗ 1 (ηα = ±1) , (26)

then we necessarily have
ΩZ

k,2l0
=
∏

α∈A

ηα . (27)

It means that as we go from one sector to another with a different ΩZ
k,2l0

, some of the ηα must

change signs! A similar statement holds for the Zα,L−1OZ
α,L operators. The Hamiltonian in this

sector, is isomorphic to the following one in Lfic,

H I
GI(ηαJα, hi) +H II

GI(ηαJ ′α, h′i) . (28)

We have seen that Hbdry has a block-diagonal action on ⊕aLbdry,a, where a is the sector
index. In fact, there are no local operators (but only non-local ones) that can map between
sectors, as well as commuting with all bulk Hamiltonian local terms. This is because any local
operator commuting with the bulk Hamiltonian local terms can be generated by the set of
boundary local terms considered above, as we mentioned previously and proved in Appendix
E.5.

10This comes from the fact that
∏

α∈AOZ
α

should commute with all Hamiltonian local terms in the GI model, yet
the model, in which OX = X , has no Z-type symmetry .
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Let us now discuss some examples. Consider the two-dimensional toric code model con-
structed in Eq. 8 as a bulk theory for the standard one-dimensional Ising model with periodic
boundary condition. Following our prescription, we shall take open boundary condition along
the vertical direction, while keep periodic boundary condition along the horizontal direction;
see Fig. 3. The Ising model has only one UX operator, given by UX =

∏

i X i , and similarly,
its standard dual model has only one ΩZ operator given by ΩZ =

∏

i Zi+1/2. Thus, from our
discussion above, Lbdry can be divided into two sectors with ΩZ

2l0
= ±1. Each of the two sec-

tors can be regarded as two spin chains, subject to the symmetry condition UX ⊗UX = 1. The
boundary Hamiltonian in one of the two sectors may be the sum of two Ising model Hamiltoni-
ans acting on the two fictitious spin chains, respectively, and with periodic boundary condition.
Then the boundary Hamiltonian in the other sector will again be the sum of two Ising model
Hamiltonians, but now with antiperiodic boundary condition, i.e. one Ising term on each of
the two spin chains changes its sign.

To give a complementary perspective, we may alternatively start from the standard one-
dimensional Ising model with open boundary condition, namely

H = −J
N−1
∑

i=1

Zi Zi+1 − h
N
∑

i=1

X i , (29)

defined on a chain of N spins labeled by 1, 2, · · · , N . Again, the model has one Z2 symmetry
generator UX =

∏N
i=1 X i . Its standard dual theory is

H ′ = −J
N−1
∑

i=1

Zi+1/2 − h

�

X3/2 +
N−1
∑

i=2

X i−1/2X i+1/2 + XN−1/2

�

, (30)

defined on a chain of N −1 spins labeled by 3/2, 5/2, · · · , N −1/2. This dual model has no Z2
symmetry at all! One can construct the bulk theory accordingly, which now lives on a lattice
with left and right boundaries. We can take open boundary condition along the vertical direc-
tion as well, and analyze its boundary theory with the result established above. We see that
the boundary Hilbert space contains only one sector, and can be regarded as two disconnected
open spin chains under a Z2 symmetry projection UX ⊗ UX = 1. The boundary Hamiltonian
may take the form of an Ising Hamiltonian on each of the two chains. The two effective open
spin chains are not connected because our formalism does not allow any boundary terms on
the left and right boundaries. This is actually just a matter of choice. We may redefine the
bulk Hamiltonian by removing certain terms near the left and right boundaries. This will en-
large the boundary Hilbert space a bit, and allow boundary terms acting on the left and right
boundaries. One can check that, with a rectangular geometry, the low-energy physics of the
toric code model can be a one-dimensional Ising model defined on a closed chain with periodic
boundary condition and the Z2 even projection, as discussed in Refs. [36,37,47].

We have seen that when nX ≥ 1, there are the symmetry projections UX
k ⊗ UX

k = 1,
k = 1, · · · , nX . When mZ ≥ 1, the boundary conditions for H I

GI and H II
GI in the effective

boundary Hamiltonian will simultaneously change as we alter the values of the ΩZ
k,2l0

op-
erators. Either phenomenon implies the boundary theory to be anomalous. Conversely, when
nX + mZ = 0, the whole boundary Hilbert space Lbdry is simply isomorphic to LG ⊗ LG , on
which the effective boundary Hamiltonian takes the form of Eq. 21, or more generally consists
of local terms generated by those in Eq. 21. This is a nonanomalous theory. Therefore, we
reach the following conclusion.

Necessary and sufficient condition for an anomalous boundary. In the special case
where OX = X and ∆Z = Z , non-invertible anomaly on the boundary exists if and only if

nX +mZ ≥ 1 , (31)
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or equivalently, the GSD of the bulk model with periodic boundary condition along the out-of-
layer direction satisfies

GSD> 1 . (32)

That is, we can always build a bulk model on a lattice with odd layers, such that its boundary
has non-invertible anomaly, that can be matched by a GI model with distinct sectors of Hilbert
space. The equivalent condition (32) follows from that in the case OX = X and ∆Z = Z ,
GSD= 2nX+mZ .

5.2 Less simple situation: ∆Z = Z

Next, we consider the less simple situation where OX
i are general but ∆Z

α = Zα. That is, we
adopt the standard dual theory. This includes the model in Eq. 10 with the X-cube fracton
order that we constructed as a bulk theory for Eq. 3.

The analysis of the boundary theory is similar to the simplest case. We track how non-local
operators ΩZ

m, U Z
n and UX

n′ manifest on the boundary Lbdry.
Again, we divide Lbdry into different sectors. These sectors are now labeled by the eigen-

values of not only ΩZ
k,2l0

(k = 1, · · · , mZ), but also U Z
k,2l−1 (k = 1, · · · , nZ) for all the internal

layers, namely 3 ≤ 2l − 1 ≤ L − 2. The Lbdry,0 sector, defined by ΩZ
k,2l0

= 1 and U Z
k,2l−1 = 1

for all the internal layers, is isomorphic to a fictitious space of the same form as Eq. 20. Now,
states in Lbdry,0 are labeled by the eigenvalues of all the OX and U Z operators acting on the
two boundary layers, subject to the constraints GX

s,1 = GX
s,L = 1 and UX

k,1UX
k,L = 1. As in the

previous situation, UX
k,1UX

k,L is generated by the X -suspension operators. The operator map
from Lbdry,0 to Lfic is again

OX
i,1 7→OX

i ⊗ 1 , OX
i,L 7→ 1⊗OX

i ,

OZ
α,1Zα,2 7→OZ

α ⊗ 1 , Zα,L−1OZ
α,L 7→ 1⊗OZ

α ,
(33)

thus the Lbdry,0 block of Hbdry takes the same form as Eq. 21.
Other sectors of Lbdry can again be analyzed by establishing isomorphisms to Lbdry,0, and

thus to Lfic. The eigenvalue of each ΩZ
k,2l0

can be adjusted without affecting any U Z
k,2l−1 by the

operator
∏(L−1)/2

l=1 ΘX
k,2l whose definition is the same as that in Section 5.1. The eigenvalues of

the internal-layer U Z operators can be altered with some X -type operators that commute with
not only the bulk Hamiltonian, but also with OZ

α,1Zα,2 and Zα,L−1OZ
α,L , and thus act trivially on

the effective boundary Hamiltonian. That is, eigenvalues of U Z labels extra degeneracy of the
boundary model that are unrelated to symmetry charge projections or boundary conditions.
More explicit description of such operators is given in Appendix E.2.

Suppose for a nonempty subset M ⊂ {1, 2, · · · , mZ}, ΩZ
M ≡

∏

k∈MΩ
Z
k is dual to the iden-

tity modulo the GZ operators. One can show that altering the eigenvalue of ΩZ
M,2l0

will nec-

essarily flip the signs of some OZ terms in both H I
GI and H II

GI, with a proof essentially the same
as that in Section 5.1. We also prove in Appendix E.2 that, if such M does not exist, and at
the same time nX = 0, the boundary theory is nonanomalous. That is to say that the bound-
ary theory in this case is a direct sum of identical sectors. The Hilbert space of each sector
is isomorphic to LG ⊗ LG with the operator mapping rule in Eq. 33. The effective boundary
Hamiltonian of each sector takes the form of Eq. 21, or more generally consists of local terms
generated by those in Eq. 21.

Necessary and sufficient condition for an anomalous boundary. We conclude that, in
the special case where ∆Z = Z , the boundary theory is anomalous if and only if either of the
following two conditions is satisfied:

1. nX ≥ 1, so that there are the symmetry charge constraints UX
k ⊗ UX

k = 1.
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Figure 4: Examples of (a) a U Z operator, (b) a UX operator, and (c) an ΩZ operator
of the bulk model in Eq. 10, all viewed from z direction.

2. For some nonempty subset M ⊂ {1,2, · · · , mZ},
∏

k∈MΩ
Z
k is dual to the identity modulo

the GZ operators.

The boundary of the X-cube model. Now we illustrate with the example of the model in
Eq. 10, which describes the X-cube fracton order, and is constructed from Eq. 3 and its standard
dual in Eq. 6. We put the model on a 3D cubic lattice with Lx × L y × Lz number of vertices,
with periodic boundary condition along x and y , and open boundary condition along z. The
two boundary surfaces are “smooth”, and L is related to Lz by L = 2Lz − 1 (the height of the
system is Lz−1 number of lattice constants). We label the lattice vertices by integer coordinates
r = (x , y, z) ∈ Z3 such that x ∼ x + Lx , y ∼ y + L y , and 1 ≤ z ≤ Lz . We denote by Z(r ;∆r )
the Pauli Z operator acting on the link connecting the two neighboring vertices r and r +∆r
with ∆r = x̂ , ŷ , ẑ; similar for Pauli X operators. Symmetries of the two-dimensional models
have been described in words previously. A careful analysis of degeneracy relations shows that
nZ = 2, nX = Lx + L y − 2, mX = 0, and mZ = Lx + L y − 1. More explicitly, the U Z operators
acting on the (2z − 1)-th layer can be chosen as

Lx
∏

x=1

Z(x , y0, z; ŷ) for some y0 , (34)

and
L y
∏

y=1

Z(x0, y, z; x̂) for some x0 . (35)

See Fig. 4a for an example. The UX operators acting on the (2z−1)-th layer can be chosen as

Lx
∏

x=1

X (x , y, z; x̂)X (x , y + 1, z; x̂) (y = 1,2, · · · , L y − 1) , (36)

and
L y
∏

y=1

X (x , y, z; ŷ)X (x + 1, y, z; ŷ) (x = 1,2, · · · , Lx − 1) , (37)

where we have excluded y = L y in (36) and x = Lx in (37) because they are not independent.
See Fig. 4b for an example. The ΩZ operators acting on the 2z0-th layer can be chosen as

Lx
∏

x=1

Z(x , y, z0; ẑ) (y = 1,2 · · · , L y) , (38)

and
L y
∏

y=1

Z(x , y, z0; ẑ) (x = 1, 2 · · · , Lx − 1) , (39)

where we have excluded x = Lx in (39) because it is not independent. See Fig. 4c for an
example. According to our general theory, Lbdry can be divided into 2mZ+nZ (L−3)/2 number of
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sectors. The boundary theory in Lbdry,0 may be two copies of the model in Eq. 3, subject to
the nX number of symmetry projections UX

k ⊗ UX
k = 1. Other sectors are all isomorphic to

Lbdry,0, and the isomorphisms may flip the signs of some GI terms in both H I
GI and H II

GI in the
effective boundary Hamiltonian. More explicitly, the eigenvalue of each U Z operator acting
on the (2z−1)-th layer with 3≤ 2z−1≤ L−3 can be independently flipped by the operators

L y
∏

y=1

X (x1, y, z; ŷ) for any fixed x1 , (40)

and
Lx
∏

x=1

X (x , y1, z; x̂) for any fixed y1 , (41)

which correspond to the two operators in (34) and (35), respectively. It is not generically
true that the eigenvalues of the internal-layer U Z operators can be adjusted with single-layer
operators as in this example, but it is indeed true that these adjustment operators can be chosen
to commute with Hbdry. Given some fixed even layer 2z0, one can independently flip the signs
of the ΩZ operators acting on this layer by the string operators

Lz−1
∏

z=1

X (Lx , y, z; ẑ) (y = 1, 2, · · · , L y) , (42)

and
Lz−1
∏

z=1

X (Lx , y2, z; ẑ)X (x , y2, z; ẑ) (x = 1, 2, · · · , Lx − 1, y2 arbitrary) , (43)

which are in one-to-one correspondence with the operators in (38) and (39). Each
of the above anticommutes with some terms in Hbdry. For example, the string opera-

tor
∏Lz−1

z=1 X (Lx , y, z; ẑ) anticommutes with Z(Lx − 1, y, 1; x̂)Z(Lx , y, 1; x̂)Z(Lx , y, 1; ẑ) and
Z(Lx − 1, y, Lz; x̂)Z(Lx , y, Lz; x̂)Z(Lx , y, Lz − 1; ẑ). One can verify that the two conditions
for anomaly are both satisfied, thus the boundary theory of this model is indeed anomalous.

5.3 The most general situation

Now we briefly discuss the most general situation: no further assumption on either OX or∆Z .
We may again divide Lbdry into several sectors, which are now labeled by the eigenvalues

of U Z
k,2l−1 for all internal layers (3 ≤ 2l − 1 ≤ L − 2), ΩX

k,2l for all l, and ΩZ
k,2l0

for some fixed
layer 2l0, as they are non-local operators commuting with the bulk Hamiltonian. A caveat
is that the eigenvalues of either the U Z operators or the ΩX operators may not be totally
independent. It may happen that a product of several Z-suspension operators centered on
some internal odd layer 2l−1 equals to a nonlocal Z-type symmetry generator (independent of
GZ ’s) acting on that layer. This will induce some relation between the U Z operators on the same
internal layer. In terms of the d-dimensional GI model, this means that a product of several OZ

operators equals to a nonlocal Z-type symmetry generator (independent of GZ ’s) and is dual
to the identity. A similar possibility exists for the ΩX operators. These possible degeneracy
relations reduce the apparent number of sectors in Lbdry. Without loss of generality, we may
assume there are some integers ν and µ, such that the many sectors of Lbdry are labeled by
the independent eigenvalues of U Z

k>ν,2l−1 for all internal layers, ΩX
k>µ,2l for all l, and ΩZ

k,2l0
.

As before, we define Lbdry,0 to be the sector where the U Z , ΩX and ΩZ operators just
mentioned all equal to 1. One can show that Lbdry,0 is again isomorphic to the fictitious space
in Eq. 20 with a similar operator mapping:

OX
i,1 7→OX

i ⊗ 1 , OX
i,L 7→ 1⊗OX

i ,

OZ
α,1∆

Z
α,2 7→OZ

α ⊗ 1 , ∆Z
α,L−1O

Z
α,L 7→ 1⊗OZ

α .
(44)
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The ZnX
2 symmetry projection exists because UX

k,1UX
k,L can be generated by the X -suspension

operators, the Γ X operators, and the ΩX operators.
Other sectors are all isomorphic to Lbdry,0, and thus to Lfic. The discussions for the ΩZ

and internal-layer U Z operators turn out to be very similar to the ∆Z = Z case, and will
not be repeated. The eigenvalue of ΩX

k>µ,2l can be adjusted with a Z-type operator that may

anticommute with some OX
i,1 operators, and thus may flip the signs of some OX terms in

H I
GI while leaving H II

GI invariant. We refer the readers to Appendix E.3 for a more explicit
description of those isomorphisms.

The change of eigenvalues of ΩX
k>µ,2l may conflict with the global conditions UX

k′ ⊗UX
k′ = 1

in the following sense. Changing the signs of certain OX terms in a GI model is equivalent to
altering some X -type symmetry charges, since UX

k′ for all 1 ≤ k′ ≤ nX is a product of several
OX operators.11 In order to have an anomalous boundary, we expect some of the symmetry
charge projections, such as UX

k′⊗UX
k′ = 1 for some k′, should hold in all sectors of the boundary

theory.
Fortunately, we prove in Appendix E.3 the following result: If for a nonempty subset

N ⊂ {1,2, · · · , nX }, UX
N ≡

∏

p∈N UX
p can be written as a product of OX operators such that

the product is dual to the identity modulo the Γ X operators, then altering the eigenvalue of
ΩX

k>µ,2l does not affect the corresponding symmetry charge projection UX
N ⊗ UX

N = 1. A clue

for the claim is that UX
N ,1UX

N ,L is a product of the X -suspension and Γ X operators, and thus
does not depend on the value of ΩX

k>µ,2l .
The necessary and sufficient condition for an anomalous boundary in the most general

situation is given in Claim 1. The first sufficient condition about UX operators is discussed
above. The second sufficient condition about ΩZ operators is a direct generalization of the one
in the previous subsection and can be proved analogously. When both sufficient conditions are
violated, we prove in Appendix E.3 that the boundary theory is nonanomalous. More precisely,
the boundary theory in this case is a direct sum of identical sectors.12 The Hilbert space of
each sector is isomorphic to LG ⊗LG with the operator mapping rule in Eq. 44. The effective
boundary Hamiltonian of each sector takes the form of Eq. 21, or more generally consists of
local terms generated by those in Eq. 21.

We would like to also remind the readers that each UX (ΩZ) operator can always be ex-
panded as a product of some OX (∆Z) operators, but there may be multiple ways of doing it.
The first (second) condition in Claim 1 holds as long as there is one expansion of UX

N (ΩZ
M)

in terms of the OX (∆Z) operators such that the requirement is satisfied.

6 Examples

We have shown that our basic construction can generate a bulk model with prototypes of topo-
logical orders, such as Z2 topological order in any dimensions greater than 2 and the X-cube
model. Now let us explore further examples. They exploit the capacity of our construction:
(1) the construction can produce lattice gauge theories whose gauge group is beyond Z2, (2)
the construction can provide a bulk topological order from a GI model describing a symmetry
protected topological (SPT) phase, (3) the construction can provide bulk topological orders
with only quasi-loop excitations, (4) the same GI model can be matched with more than one

11Think about flipping the sign of a single transverse-field term in the one-dimensional transverse field Ising
model. The sign-flip can be undone via a basis rotation. Nevertheless, the rotation anti-commutes with the Z2

symmetry generator.
12Note that each (new) sector here may be the sum of several (old) sectors discussed above with different values

of UX
k ⊗ UX

k .
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bulk model with distinct fracton orders. In other words, when fracton order is present, the
boundary cannot determine a unique bulk.

6.1 Bulk Z2 ×Z2 topological order in two dimensions

The following example shows that the bulk construction can produce bulk topological orders
whose gauge group is beyond Z2. The GI model we start with is a one-dimensional model with
two global X -type symmetries.

HGI = −J
Nx
∑

i=1

Zi−1Zi Zi+1 − h
Nx
∑

i=1

X i . (45)

The Z2 ×Z2 symmetry is generated by
∏

i X3iX3i+1 and
∏

i X3i+1X3i+2.
The standard dual model obtained from the generalized Kramers Wannier duality is the

following,
H ′GI = −J

∑

i

Zi + h
∑

i

X i−1X iX i+1 . (46)

The bulk model generated through our construction is the following.

H = −
Nx
∑

i=1

Ny/2
∑

j=1

�

Ai,2 j−1 + Bi,2 j

�

, (47)

Ai, j = Zi, j−1Zi−1, j Zi, j Zi+1, j Zi, j+1 ,

Bi, j = X i, j−1X i−1, jX i, jX i+1, jX i, j+1 .

We prove in the appendix that this model is topologically ordered. The GSD on a torus
is 24. Alternatively, we may obtain the GSD from observing that the Hamiltonian local terms
satisfy in total two constrains,

Ny/2
∏

j=1

Nx/3
∑

i=1

A3i, jA3i+1, j = 1 , (48)

Ny/2
∏

j=1

Nx/3
∑

i=1

A3i+1, jA3i+2, j = 1 . (49)

In other words, the anyon theory of this stabilizer code has total quantum dimension
D = 22. In fact, the anyon theory of the bulk model is the Z2×Z2 topological order, equivalent
to that of the stack of two toric code models. This is due to a proof showing that the topological
phase of any 2d stabilizer code on qubits with translation symmetry is uniquely determined by
its total quantum dimension D = 2n. Its anyon theory is the same as that of n copies of toric
code. [85] In our case, n= 2.

The phase diagram of the model (45) is simple. When J ≥ h, the ground state breaks
both Z2 symmetries spontaneously, and when 0< J ≤ h, the ground state is the trivial Z2×Z2
symmetric state. Comparing (45) and (46) we observe that the model (45) enjoys a self-duality
at J = h. In fact, the ground state at J = h is the critical state described by the 4-state Potts
model, whose central charge equals to 1. [86–89] Due to the bulk-boundary correspondence,
all these phases appear as well on the boundary of Z2 ×Z2 topological order.
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6.2 Bulk topological order from a symmetry protected topological model

The one-dimensional spin systems with Z2 × Z2 symmetry have more phases than those de-
scribed by the model (45). Particularly, there is a SPT phase which is usually described by the
following stabilizer models,

H = −
∑

i

Z2i Z2i+1Z2i+2 −
∑

i

X2i−1X2iX2i+1 . (50)

In this convention, the symmetry is generated by

U Z
odd =

∏

i

Z2i+1 , UX
even =

∏

i

X2i . (51)

We ask if we can obtain a solvable model with a topological order adapting the bulk con-
struction to SPT models. Indeed, we find that given a minimal variation to the bulk construc-
tion, we obtain a two-dimensional Z2×Z2 topological order from a GI model, in whose phase
diagram, the SPT is one gapped phase.

To show this, we begin with the GI model. It is the Hamiltonian (50) with additional
transverse field terms.

HGI = −J

�

∑

i

Z2i Z2i+1Z2i+2 +
∑

i

X2i−1X2iX2i+1

�

− heven

∑

i

X2i − hodd

∑

i

Z2i+1 . (52)

The next step is to obtain the dual model, whose Hamiltonian is the following,

H ′GI = −J
∑

i

(Z2i+1 + X2i)− heven

∑

i

X2i−1X2i+1 − hodd

∑

i

Z2i Z2i+2 . (53)

Obviously, the dual model is the same as two copies of Ising models in transverse fields.
Variant construction Now to construct the bulk model, note that (52) does not satisfy

an assumption on the GI models – the local operators {OX
i } and {GZ

r } = ; here do not form a
CSLO. The price is that the GSD in the bulk model we would obtain from the basic construction
is not robust. Part of the degeneracy originates from symmetry breaking orders.

Nevertheless, the violation is modest, and the construction, with a slight variation, can
still generate a topological ordered bulk model. Let us give a minimal variation of the basic
construction, essentially we modify the rule how we assign the terms across three layers to
be centered on odd or even layers, based on the commutation relations of Hamiltonian local
operators OZ

α ’s and OX
i ’s. The variation is based on the observation that in (52) {X2i} and

{Z2i+1} actually form a CSLO. The spirit is that we now assign the three-layer Hamiltonian
local terms built with these terms in a CSLO to be centered in the same (odd) layers. We
elaborate on the prescription in Appendix G. In particular, we give a sufficient condition when
the bulk model from the variant construction has robust ground state subspace. Applying to the
current example with SPT order, the modification is enough to provide us a pure topologically
ordered bulk model.

The bulk Hamiltonian is

Zi,j+1,x̂Zi+1,j+1,0̂Zi+1,j+1,x̂

Zi+1,j+1,ŷ

Zi+1,j,ŷ

Xi,j+1,0̂Xi+1,j+1,x̂Xi+2,j+1,0̂

Xi+1,j+1,x̂+ŷ

Xi+1,j,x̂+ŷ

Xi,j+1,x̂

Xi,j,x̂

Xi,j,ŷ Xi+1,j,ŷ

Zi,j+1,0̂

Zi,j,0̂

Zi,j,x̂+ŷ Zi+1,j,x̂+ŷ+ + +H = −
∑

i,j
.

(54)
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Figure 5: The phase diagram of the model (52) with Z2 × Z2 symmetry. The black
square locates the critical point described by free boson conformal field theory. All
other transition between two gapped phase are described by the Ising conformal field
theory.

This model has a topological order, and its GSD on a torus is 24, when there are in total even
number of layers. This can be derived through the standard polynomial representation, as
we show in appendix F. As the model is a stabilizer code with translation symmetry, we can
conclude that its ground state is the Z2 ×Z2 topologically ordered state. [85].

We show the phase diagram of the model (52) with Z2×Z2 symmetry in Fig.5. The phase
diagram as well as the critical phases is most easily determined from the dual model (53).

6.3 Pure-loop toric code in four dimensions

There is a toric code model in four dimensions that potentially can be used as a thermally
stable quantum memory [90,91]. This comes from that the model has no point-like topological
excitations, but only loop-like ones. Correspondingly, the effective topological field theory for
the model, given by the action S = 2

2π

∫

ad b in 5D Euclidean spacetime, where a, b are two-

forms, has two 2-form Z2 symmetries generated by membrane operators e
∮

a and e
∮

b. In this
subsection, we show how this model comes out of our construction.

Consider the GI model on a 3d cubic lattice, described by the following Hamiltonian

H = −J



 + other orientations



− h , (55)

where qubits live on the links of a 3D cubic lattice with periodic boundary condition, and p, l
label plaquettes and links, respectively. The model is homogeneous in the three directions
x , y, z. There is obviously no Z-type symmetry. To find the X -type symmetries, it is helpful to
note that the four-Z terms in H also appear in the Hamiltonian of the three-dimensional toric
code model. We can thus take the local X -type symmetry generators to be star operators of
the following form,
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namely products of six Pauli X operators sharing a single vertex. The model has nX = 3. Take
three planes that cut through links and are perpendicular to the x , y, z directions, respectively.
The three nonlocal symmetry generators can be taken as the products of Pauli X operators on
the links cut by these three planes, respectively. It is illuminating to view the model as having
a 1-form symmetry: given each closed membrane that intersect with links, the product of Pauli
X operators on the intersecting links commutes with the Hamiltonian.

We consider the standard dual theory of the above model. It is convenient to place the dual
model on the same cubic lattice, but with qubits living on plaquettes. Each four-Z term in H
is dual to a single-Z term associated with the corresponding plaquette. Each single-X term in
H is dual to the product of four Pauli X operators on the plaquettes sharing the corresponding
link. The dual model is actually equivalent to the original one up to the substitutions J↔ h
and Z↔ X .

We can now construct the bulk model according to our prescription. To this end, it is
convenient to imagine expanding each link in the original model (55) along the 4th spatial
direction w, such that the links become plaquettes parallel to the w axis. In this way, the
constructed bulk model can be naturally placed on a 4-dimensional cubic lattice with qubits
living on plaquettes. We can write the bulk Hamiltonian as

Hbulk = −
∑

l

∏

∂ p∋l

Xp −
∑

c

∏

p∈∂ c

Zp , (56)

where l, p, and c label links, plaquettes (squares), and cubes, respectively. Each term in the
first sum is the product of six Pauli-X operators on plaquettes common to a link, and each term
in the second sum is the product of six Pauli-Z operators on plaquettes forming a cube.

6.4 Same anomalous boundary for two distinct bulks

We have seen that the two-dimensional plaquette Ising model (2) has two different dual mod-
els: one is Eq. 6, and the other is Eq. 3 with the substitutions X ↔ Z and J ↔ h. Periodic
boundary condition has been assumed for these models in our previous discussion. As a result,
two distinct bulk models can be constructed: one with the Hamiltonian Eq. 9 hosts point-like
quasiparticle restricted to move along inter-layer direction; and the other, whose Hamiltonian
is Eq. 10 with the substitution X ↔ Z , has X-cube fracton order. This example suggests that
two different fracton models can share the same boundary theory.

Indeed, let us construct one boundary theory that can terminate the above two distinct
bulk models. The literal boundary theory with periodic boundary condition along the intra-
layer directions does not work straightforwardly. This is because the boundary Hilbert space
Lbdry for the two bulk models have different numbers of sectors. To get around, we take the
open boundary conditions along intra-layer directions. In result, Lbdry has a single sector for
both models.

Now we describe the construction. We place the two-dimensional plaquette Ising model
on a 2D open square lattice with Lx × L y sites, with the same Hamiltonian (2) (only include
terms that are completely inside the system). We take the first dual model to be its standard
dual, defined on an open square lattice with (Lx − 1)× (L y − 1) sites. One can verify that this
dual model has no Z2 symmetry at all. We define the second dual model on an open square
lattice of the same size (Lx × L y number of vertices), but now with qubits living on the links.
As in the periodic case, we take the dual of each GI term OZ

α of the plaquette Ising model to
be the product of four Pauli-Z operators around a plaquette. The X -type gauge symmetries
of the dual model are generated by the product of all Pauli-X operators around each vertex.
The dual of each transverse-field term X i of the plaquette Ising model is uniquely determined
modulo the gauge symmetry terms. One can verify that this second dual model has no Z-type
symmetry at all. We can then construct two bulk models according to the two dual theories,

26

https://scipost.org
https://scipost.org/SciPostPhys.15.4.150


SciPost Phys. 15, 150 (2023)

and take open boundary condition along the out-of-layer direction as well. The boundary
Hilbert space Lbdry for both models, following the treatment in the Section 5, only has one
sector now.

We note that although open boundary condition is taken along the intra-layer directions,
our construction actually forbids boundary terms on the four surface planes perpendicular to
the layers, according to our result in Appendix E.5. The X -suspension, Z-suspension, and
gauge symmetry operators (“bulk” operators) near these surface areas have coefficients as
large as those deep inside the bulk, and therefore fix all local degrees of freedom there. With
this somewhat artificial setup, the boundary theory only contains local degrees of freedom
near the 1st and the L-th layers.

Consequently, we can have exactly the same anomalous boundary theory for these two
models: two copies of the two-dimensional plaquette Ising model (possibly with different J
and h coefficients), subject to the symmetry projections UX

k ⊗UX
k = 1 for k = 1, 2, · · · , nX where

nX = Lx + L y − 1.

7 Conclusions and Discussions

In this paper, we systematically construct d+1-dimensional commuting projector models with
long-range orders from d-dimensional GI models – qubit lattice models with non-commuting
Hamiltonian local terms. The simplicity of the construction allows us to analyze the precise
correspondence between the boundary of the long-range ordered state and the GI model.
Under a certain condition, the boundary model is subject to global constraints, which are either
symmetry charge projections, and/or boundary conditions, implying that the boundary theory
to be anomalous. Furthermore, the anomalous boundary model is isomorphic to two copies
of the GI models from which the bulk model is constructed, also subject to global constraints.
The condition for the anomaly is a surprising requirement on the non-local symmetries in
either the GI model or its dual model. This is in contrary to the most common intuition that
for all non-local symmetries appearing on the boundary of a long-range ordered state, up to
those in the system trivially stacked onto the boundary, only the charge-neutral states under
the symmetry contribute to the boundary Hilbert space.

Many open questions following this work worth future exploration. For example, we have
not discussed the consequences of bulk anyon fluxes terminating on the boundary theory. Such
results will be part of the properties of non-invertible anomaly in higher dimensions. Our con-
struction also has the potential leading to many tangible and interesting generalizations. In
particular, qubit stabilizer models only describe a limited class of topological phases [92]. An
immediate generalization to Zn qudit lattice models is worthwhile. With it, we postulate that
the bulk models with topological/fracton orders can be constructed staring with a qudit lattice
models with any discrete finite Abelian symmetries G in transverse fields, since G can always
be written as G =

∏m
i=1Zni

, with a positive integer m, and integers ni ≥ 2. One question
with further stretch is whether the generalization of our models to topological models beyond
stabilizer models can generate new topological lattice models, especially in three dimensions
or higher. More particularly, the lattice models of topological phases related by Morita equiv-
alence are related by generalized Kramers-Wannier duality. [93–95] It is interesting to adapt
our alternating layer construction to Morita equivalent topological lattice models and study the
topological properties of the resulting bulk model. The Haah’s code model [96] does not seem
to fit into our construction. Nevertheless, the stabilizers in its Hamiltonian do have a clear
trilayer structure, viewed from the (1,1, 1)-direction. It is interesting to figure out whether
some generalized construction works for this representative type-II fracton model. The low
energy effective field description for our alternating layer in generating topological theories
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in one dimensional higher is also in demand. Our construction might remind the readers of
the coupled-layer construction in generating topologically ordered models, fracton models, or
their hybrids [83, 97–104], in which the model in each layer to begin with is the same, and
inter-layer coupling terms are introduced. We leave it for future works to unravel whether
there is a relation between our approach and the conventional coupled-layer constructions.
Last but not least, our constructed bulk model is straightforward so that their boundary phase
diagrams with various Abelian global symmetries can in principle be accessed via numerics.
This suggests the possibility of the numerical verification for the conjecture that gapped phases
on the boundary of (d +1)-dimensional topological order with a discrete gauge group G have
one-to-one correspondence with the gapped phases on the d-dimensional system with the
global G symmetry.
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A Elementary results in the stabilizer formalism

In this section, we introduce some elementary results in the stabilizer formalism, and set up
a few terminologies that will be used in the rest of the appendix. Basics of the stabilizer
formalism can also be found in [106,107].

A set of stabilizers is a set of operators satisfying the following properties:

• They are tensor products of I , X , Y, Z multiplied by ± sign factors.

• They mutually commute.

• The group generated by them does not contain −1.

The last property guarantees that all the stabilizers are able to simultaneously take the eigen-
value +1. A set of stabilizers is called independent if any product of a nonempty subset of
those operators is not proportional to the identity. Specifying the eigenvalue of each indepen-
dent stabilizer will reduce the Hilbert space dimension by a half. To see this, suppose we have
chosen the eigenvalues λ1,λ2, · · · ,λk for k independent stabilizers U1, U2, · · · , Uk, respectively,
with λi = ±1 for all i. One can see that the (k + 1)-th independent stabilizer Uk+1 has zero
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trace in this eigen-subspace, i.e.

Tr

�

Uk+1

k
∏

i=1

�

1+λiUi

2

�

�

= 0 , (A.1)

due to the zero trace of Pauli operators and the requirement of independence. Thus, Uk+1 has
equal number of +1 and −1 eigenvalues in this eigen-subspace, and specifying its eigenvalue
will further cut down the Hilbert space dimension by a half. As a consequence, it is impossible
to find more than N number of independent stabilizers where N is the total number of qubits.
A set of stabilizers is called complete if it includes N number of independent stabilizers. Each
possible list of eigenvalues of a complete set of stabilizers uniquely determines a state in the
Hilbert space.

The following two lemmas about stabilizer extension are useful.

Lemma 1. Any set of independent stabilizers can be extended to a complete and independent one.

Proof. Suppose we have N − k number of independent stabilizers with k > 0. Any set of
eigenvalues for those operators determines 2k number of degenerate eigenstates. It is therefore
always possible to find some operator A, not necessarily a tensor product of I , X , Y, Z , that is
independent from and commutes with the existing stabilizers. We can expand A as a linear
combination of the 4N number of tensor product operators of I , X , Y, Z which are linearly
independent. Let U be any existing stabilizer, UAU−1 = A implies that any tensor product
operator entering the expansion of A with a nonzero coefficient must also commute with U .
Therefore, we can always find a tensor product of I , X , Y, Z that is independent from and
commutes with the existing stabilizers. We can add this new operator to the list of stabilizers
and start over again, until the list is complete.

Corollary 4. A set of independent stabilizers is complete if and only if it is maximal, i.e. not
belonging to a larger set of independent stabilizers.

Lemma 2. Suppose we are given a set of independent stabilizers that are all products of Pauli X
operators (and the identity operators on the other sites; same below). We can extend the set of
stabilizers to a complete one by adding operators that are products of Pauli Z operators.

Proof. Let N be the number of qubits in the Hilbert space and let M be the number of inde-
pendent stabilizers given. We can represent those stabilizers by an N × M matrix in F2, the
field of integers modulo 2, such that the (i, j) entry of the matrix is 1 when the j-th stabilizer
contains an X operator acting on the i-th qubit, and is 0 otherwise. Each column of the matrix
corresponds to a stabilizer, and each row corresponds to a qubit in the Hilbert space. Multiply-
ing one stabilizer onto another one will lead to an equivalent set of independent stabilizers,
which amounts to adding one column of the matrix onto another one. We are also free to per-
mute the rows of the matrix, which amounts to reordering the qubits. Using these two types
of operations, this stabilizer matrix can be cast to the following canonical form

�

IM
A

�

, (A.2)

where IM is the M×M identity matrix, and A is an arbitrary (N −M)×M matrix. To prove the
claim, we will now introduce N −M number of new stabilizers, each of which is a product of
Pauli Z operators. Those new stabilizers can be similarly represented by an N×(N−M)matrix
in F2; the (i, j) entry of the matrix is 1 when the j-th new stabilizer contains a Z operator acting
on the i-th qubit, and is 0 otherwise. We choose this new stabilizer matrix to be

�

AT

IN−M

�

. (A.3)
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One can check that the N operators represented by those two matrices indeed mutually com-
mute and are independent. This completes the proof.

B Hilbert space isomorphism in the generalized Kramers-Wannier
duality

In the main text, we introduced the generalized Kramers-Wannier duality by the operator map
in Eq. 4. In this section, we will prove that this operator map follows from an isomorphism of
symmetric subspaces.

The following result that follows from our definition of the symmetry groups in the main
text and Lemma 2 will be useful.

Corollary 5. Let L (L′) be the full Hilbert space of the original (dual) model. The following
statements hold.

1. {OX
i } ({∆Z

α}) together with all the Z-type (X -type) symmetry generators of the original
(dual) theory form a complete set of stabilizers in L (L′).

2. {OZ
α} ({∆X

i }) together with all the symmetry generators of the original (dual) theory form
a complete set of stabilizers in L (L′).

It is also useful to establish the following result.

Lemma 3. Let {U Z
1 , U Z

2 , · · · , U Z
m, UX

1 , UX
2 , · · · , UX

n } be a set of stabilizers acting on some multiple-
qubit Hilbert space L, such that each U Z

p (UX
q ) is a product of several Pauli Z (Pauli X ) operators

acting on different qubits. Let L0 be the subspace where U Z
p = UX

q = 1 for all p and q. There
exists an orthonormal basis of L0 such that

1. Any operator OZ that is a product of several Pauli Z operators and commutes with all the
stabilizers is diagonal in this basis.

2. Any operator OX that is a product of several Pauli X operators and commutes with all the
stabilizers has matrix elements in this basis equal to either 0 or 1.

Proof. Let |{Zi}〉 be the standard eigenbasis for all Pauli Z operators in L, i.e. tensor products
of the states (1,0)T and (0,1)T . Consider the following list of states,

|{Zi}〉 :=
∏

q

�

1+ UX
q

2

�

∏

p

�

1+ U Z
p

2

�

|{Zi}〉 . (B.1)

Notice that these states generate all states in L0. Moreover, the above states have the following
simple properties: (1) |{Zi}〉 = 0 if and only if the spin configuration {Zi} violates the U Z

constraints. (2) Given any two nonzero states |{Zi}〉 and |{Z ′i }〉, they are equal if |{Zi}〉 can
be mapped to |{Z ′i }〉 by the action of several UX operators, otherwise they are orthogonal. We
can restrict the above list of states to a nonzero and nonequal subset. After normalization, this
subset of states form an orthogonal basis of L0, and it has the desired properties claimed in
the statement of the lemma.

The key result for this section is the following.

Theorem 2. The operator map in the generalized Kramers-Wannier duality follows from an iso-
morphism of Hilbert spaces when we restrict to the symmetric sectors on both sides.
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Proof. We start by defining some notations. Let L and L′ be the full Hilbert spaces of the
original theory and the dual theory, respectively. We denote by LZ ⊂ L the symmetric subspace
for all Z-type symmetries, and by L0 ⊂ L the symmetric subspace for both Z-type and X -type
symmetries. Thus L0 ⊂ LZ ⊂ L. Similarly, we define L′X and L′0 such that L′0 ⊂ L′X ⊂ L′.

Each possible list of eigenvalues of a complete set of stabilizers uniquely determines a state
in the Hilbert space (see Appendix A). Therefore, according to Corollary 5, the eigenvalues of
all OZ

α uniquely determine a state in L0, and the eigenvalues of all ∆Z
α uniquely determine a

state in L′X . Denote by |{OZ
α}〉 ∈ L0 the simultaneous eigenstates of all OZ

α (here we use the
same notation for an operator and its eigenvalue). By Lemma 3 just proved above, we can
always choose the phase factors of those states such that the matrix elements of each OX

i in
this basis are either 0 or 1. Similarly, we denote by |{∆Z

α}〉 ∈ L
′
X the simultaneous eigenstates

of all ∆Z
α, such that the matrix elements of ∆X

i are either 0 or 1.
We define a homomorphism f : L0 → L′X such that f maps |{OZ

α}〉 to the state |{∆Z
α}〉

with the eigenvalues satisfying ∆Z
α = OZ

α . As long as f is well-defined which is to be proved
below, the operator OX

i is mapped to ∆X
i under this map, i.e. f OX

i = ∆
X
i f . This is because

the commuting or anticommuting relations between {OZ
α} and {OX

i } are the same as those
between {∆Z

α} and {∆X
i }. We will prove that f is actually an isomorphism from L0 to the

subspace L′0 ⊂ L′X .
L0
� � //

f

  

OO
∼=
��

LZ
� � // L

L′0
� � // L′X

� � // L′

Since the ∆Z
α operators are not necessarily independent, we need to first confirm that f

is well-defined, i.e. the desired image state always exists in L′X . Although ∆Z
α may not be

independent, they are generated from an independent subset of operators which are able to
independently take eigenvalues ±1. Therefore, to prove that f is well-defined, it suffices to
show that whenever

∏

α∈S∆
Z
α = 1 in L′ for some set S,

∏

α∈S O
Z
α = 1 is also true in L0. This is

not hard; since
∏

α∈S∆
Z
α commutes with all ∆X

i ,
∏

α∈S O
Z
α must commute with all OX

i by the
duality, and is therefore either the identity or a Z-type symmetry of the original theory which
is set to 1 in L0.

Next, we would like to show Im f ⊂ L′0. Corollary 5 says that {∆Z
α} and all the X -type

symmetry generators of the dual theory form a complete set of stabilizers in L′. It follows that
each Z-type symmetry generator of the dual theory is a product of some ∆Z

α operators, which
is then dual to either the identity or a Z-type symmetry generator of the original theory. Given
that all symmetry generators are set to 1 in L0, the image of f must be contained in L′0.

From the definition, we see that f maps a basis of L0 to a set of linearly independent states
in L′0. It follows that f is injective and dimL0 = dimIm f ≤ dimL′0. Now, we can construct
another map g : L′0 → LZ similar to f (the roles of X and Z need to be exchanged), and
eventually show that dimL′0 ≤ dimL0. Therefore, we must have dimL′0 = dimL0 = dimIm f ,
which implies that the restricted map f : L0 → L′0 is one-to-one. This is the isomorphism
claimed by the theorem.

C A toy example for sanity checks

In this subsection, we introduce a toy example that will be used later for testing our results.
Consider the model

H = −J − h , (C.1)
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and its dual model

H ′ = −J − h , (C.2)

both defined on a 2D square lattice of the size Lx × L y , with periodic boundary condition, and
with qubits living on the links. One may shift the dual lattice relative to the original one along
y by half the lattice constant, such that the centers of each dual pair of operators coincide.
We emphasize that there is no vertical-link single Z (single X ) term in H (H ′). The Z-type
symmetries of H are the same as those for Eq. 3. Each X -type symmetry generator of H is a
product of all vertical-link X operators along even number of vertical lines, which is nonlocal.
The dual model H ′ is equivalent to H under the substitutions J ↔ h and Z ↔ X . One may
check that nZ = mX = 2 and nX = mZ = Lx − 1. A three-dimensional bulk model can thus be
constructed according to our prescription.

D Ground state degeneracy of the bulk model

In this section, we compute the GSD of the bulk model with periodic boundary condition along
the out-of-layer direction. We denote by L ∈ 2Z the total number of layers.

We need to introduce some new parameters that enter our final result. Let GZ=
¬

U Z
1 ,· · · ,U Z

nZ

¶

be the group generated by the U Z operators of the original theory. We define two subgroups
of it:

• GZ ,1 ={g ∈ GZ| g =
∏

α∈AO
Z
α

∏

r∈R GZ
r for some sets A and R}.

• GZ ,0 ={g ∈ GZ| g =
∏

α∈AO
Z
α

∏

r∈R GZ
r for some sets A and R satisfying

∏

α∈A∆
Z
α = 1}.

Obviously, GZ ,0 ⊂ GZ ,1. We can always redefine the U Z operators such that, for some in-
tegers ν and ν̄, with ν̄ ≥ ν GZ ,0 =




U Z
1 , · · · , U Z

ν

�

and GZ ,1 =



U Z
1 , · · ·U Z

ν̄

�

. Similarly, let

G′X =
¬

ΩX
1 , · · · ,ΩX

mX

¶

be the group generated by the ΩX operators of the dual theory. We
define the following two subgroups:

• G′X ,1 ={g ∈ G
′
X | g =

∏

i∈I ∆
X
i

∏

ρ∈R Γ
X
ρ for some sets I and R}.

• G′X ,0 ={g ∈ G
′
X | g =

∏

i∈I ∆
X
i

∏

ρ∈R Γ
X
ρ for some sets I and R satisfying

∏

i∈I O
X
i = 1}.

We have G′X ,0 ⊂ G′X ,1. We can always redefine the ΩX operators such that, for some integers

µ and µ̄, with µ̄ ≥ µ, G′X ,0 =
¬

ΩX
1 , · · · ,ΩX

µ

¶

and G′X ,1 =
¬

ΩX
1 , · · · ,ΩX

µ̄

¶

. We show two examples
below in which nZ > v̄.

Our main result for this section is the following.

Theorem 3. Let D be the GSD of the bulk model, then

log2 D = nX +mZ − [(ν̄− ν) + (µ̄−µ)] + [(nZ − ν) + (mX −µ)](L/2) . (D.1)

Examples. As the first example, consider the X-cube order described by the Hamiltonian in
Eq. 10 that is constructed from Eq. 3 and Eq. 6. We put the model on a 3D cubic lattice with
Lx × L y × Lz number of vertices, with periodic boundary condition along all three directions.
The number of layers L is given by L = 2Lz . The model has nZ = 2, nX = Lx + L y −2, mX = 0,
mZ = Lx + L y − 1, and ν̄= ν= µ̄= µ= 0. It follows that log2 D = 2(Lx + L y + Lz)− 3, which
is a well-known result [59].
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As the second example, consider the model in Appendix C. We take periodic boundary
condition along the out-of-layer direction, and the number of layers L has to be an even integer.
The model has nZ = mX = 2, nX = mZ = Lx − 1, ν̄= µ̄= 1, and

ν= µ=

¨

1 (Lx odd) ,
0 (Lx even) .

(D.2)

It follows that

log2 D =

¨

2Lx + L − 2 (Lx odd) ,
2Lx + 2L − 4 (Lx even) ,

(D.3)

which we have verified numerically.
The rest of this section is to prove the theorem. Our strategy for counting the GSD is as

follows. We extend the set of stabilizers in Hbulk to a complete one by including r number of
additional stabilizers C1, C2, · · · , Cr which are independent modulo the stabilizers in Hbulk, i.e.
each Ck can not be generated by the other Ck′ operators and the stabilizers in Hbulk. Then the
GSD is nothing but 2r . The first useful result is the following.

Lemma 4. The stabilizers in Hbulk together with all the nonlocal symmetry operators, namely
U Z

k,2l−1, UX
k,2l−1, ΩX

k,2l , and ΩZ
k,2l , form a complete set of stabilizers.

Proof. As an equivalent statement, any operator A that is a product of Pauli operators and
commutes with all these stabilizers can be generated by them (see Corollary 4). As in Theorem
1, we writeA=AZAX . If suffices to show that bothAZ andAX are generated by the stabilizers
in the theorem statement.

We will focus on AX , and AZ is similar. Since AX commutes with all the GZ and U Z

operators, each odd layer of AX is a product of several OX operators. Therefore, using the X -
suspension operators, we are able to remove the X operators in AX on all but one odd layers.
Say this remaining odd layer is just the 1st layer. We may thus assume AX only contains X
operators on the 1st layer or with even layer indices. To commute with the Z-suspension terms,
different even layers of AX must differ from each other only by some Γ X and ΩX operators.
Thus, using the Γ X and ΩX operators, AX can be cast to the form A1

X

∏

p∈Λ
∏L/2

l=1 Xp,2l for some
set Λ, where A1

X is an operator that only acts on the 1st layer. This AX has to commute with
the ΩZ

k,2l and Γ Z
σ,2l operators, which are the Z-type symmetry generators for the dual theory.

It follows from our Lemma 2 that
∏

p∈Λ Xp must be a product of ∆X
i , Γ X

ρ and ΩX
k . Therefore,

using the X -suspension operators, the Γ X and the ΩX operators, we are able to reduce AX to
an operator that acts on the 1st layer. In order to commute with the GZ , U Z and Z-suspension
operators, this single-layer operator is an X -type symmetry generator of the original theory,
and thus a product of the GX and UX operators. This completes the proof.

Next, we shall restrict the nonlocal symmetry operators to a subset such that, modulo the
stabilizers in Hbulk, the subset is independent and equivalent to the original set. First notice
that, starting from UX

k,2l0−1 for some l0, using the X -suspension, Γ X and ΩX operators, we are

able to generate UX
k,2l−1 for all l. This is because each UX

k operator acting on the original
lattice can be written as a product of several OX operators, and is then dual to an X -type
symmetry generator of the dual theory. It thus suffices to retain UX

k,2l0−1 while dropping the

UX operators acting on all the other layers. Similarly, it suffices to retain ΩZ
k,2l0

while dropping

the ΩZ operators acting on all the other layers. Secondly, according to the definition of GZ ,0,
each U Z

k,2l−1 with k ≤ ν is a product of some Z-suspension and GZ operators, and thus can
be dropped. Similar for the ΩX

k,2l operators with k ≤ µ. Thirdly, according to the definition

of GZ ,1,
∏L/2

l=1 U Z
k,2l−1 for ν < k ≤ ν̄ can be generated by the Z-suspension and GZ operators,
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thus we can drop the U Z
k,1 operators acting on the 1st layer with ν < k ≤ ν̄. Similarly, we can

drop the ΩX
k,2 operators acting on the 2nd layer with µ < k ≤ µ̄. After all these steps, we are

left with the following reduced set of nonlocal symmetry operators:

• UX
k,2l0−1 for all k and some l0; ΩZ

k,2l0
for all k and some l0.

• U Z
k,2l−1 for ν < k ≤ ν̄ and l ̸= 1; ΩX

k,2l for µ < k ≤ µ̄ and l ̸= 1.

• U Z
k,2l−1 for ν̄ < k ≤ nZ and all l; ΩX

k,2l for µ̄ < k ≤ mX and all l.

We complete the proof for Theorem 3 by the following claim.

Lemma 5. The above stabilizers are independent modulo the stabilizers in Hbulk. Equivalently,
they can independently take the eigenvalues ±1 in the ground state subspace.

Proof. It suffices to find operators that can independently flip the signs of the above stabilizers
without affecting the stabilizers in Hbulk. In the main text, we have discussed how to flip the
signs of UX

k,2l0−1 or ΩZ
k,2l0

, and let us not repeat it here. According to the definition of GZ ,1

and ν̄, each U Z
k>ν̄ is independent from (not a product of) the OZ and GZ operators. As a re-

sult, there exist some X -type operators V X
k>ν̄ acting on the Hilbert space of the original model

such that each V X
k>ν̄ anticommutes with U Z

k>ν̄ but commutes with all the other U Z
k′>ν̄, O

Z and
GZ operators. We can then use the operator V X

k>ν̄,2l−1 to flip the sign of U Z
k>ν̄,2l−1, without

affecting the other stabilizers listed above and the stabilizers in Hbulk. The scenario for the
ΩX

k>µ̄,2l operators is similar. Flipping the sign of a U Z
k,2l−1 operator with ν < k ≤ ν̄ and l ̸= 1

is somewhat complicated, consisting of several steps: (1) Let V X
k≤ν̄ be X -type operators acting

on the Hilbert space of the original theory such that V X
k for each k ≤ ν̄ anticommutes with U Z

k
but commutes with all the other local or nonlocal Z-type symmetry generators of the original
theory (GZ

r and U Z
k′ for all the other k′). Apply V X

k,2l−1 with some k ∈ {ν + 1,ν + 2, · · · , ν̄}
to flip the sign of U Z

k,2l−1. This will necessarily flip the signs of some Z-suspension operators
centering on the (2l − 1)-th layer as well, which we need to fix. (2) We can restrict the ∆Z

operators of the dual theory to an independent and equivalent subset: ∆Z
α1

,∆Z
α2

, · · · . It suf-
fices to fix the Z-suspension operators centering on the (2l − 1)-th layer with these α-indices
(α1,α2, · · · ) because they can generate all the other Z-suspension operators centering on the
(2l − 1)-th layer with the help of the GZ

r,2l−1 and U Z
k≤ν,2l−1 operators. There exists a set of op-

erators EX
α1

, EX
α2

, · · · such that EX
αn

anticommutes with ∆Z
αn

while commutes with all the other

independent ∆Z operators. We can use
∏l−1

l ′=1 EX
αn,2l (

∏L/2
l ′=l EX

αn,2l) when l0 ≥ l (l0 < l) to
fix the eigenvalues of the Z-suspension operators centered on the (2l − 1)-th layer without
affecting ΩZ

k,2l0
. This step will flip the signs of some Z-suspension operators centering on the

1st layer. (3) Apply V X
k,1 with the same k as in the first step. Notice that the Γ Z operators will

not be affected by the above steps, because Γ Z
σ,2l0

are unaffected, and the other Γ Z operators

can all be generated from the Γ Z
σ,2l0

, Z-suspension, and GZ operators.

E Further details on the bulk-boundary correspondence

This section is devoted to understanding the boundary theory of our bulk model: the boundary
Hilbert space Lbdry and the boundary Hamiltonian Hbdry which are defined in Section 5. The
bulk model is defined in d +1 spatial dimensions, and we expect the boundary theory to have
an effective d-dimensional description that will enable us to examine whether it is anomalous
or not.
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In Appendix E.1, we derive a complete and independent set of stabilizers characterizing
the full Hilbert space of our system, which turns out to be useful for understanding Lbdry. We
work out a d-dimensional effective description of the boundary theory as well as a condition
for anomaly in Appendix E.2 for a special case and in Appendix E.3 for the general situation.
The analysis uses a classification result about possible local terms in Hbdry, which is proved in
Appendix E.5. In Appendix E.4, we discuss in what cases the anomaly condition is violated.

E.1 Stabilizers characterizing the full Hilbert space

Our strategy for analyzing Lbdry is as follows. We first find a complete and independent set
of stabilizers that characterizes the full Hilbert space, done in this subsection. Then we divide
this set into two subsets, such that one subset of stabilizers is equivalent to the stabilizers
appearing in the bulk Hamiltonian. It follows that the boundary Hilbert space is characterized
by the other subset of stabilizers. Once this is done, we will find a natural d-dimensional
description of Lbdry.

The first useful result is the following.

Lemma 6. The following operators form a complete (but not independent) set of stabilizers.

1. All the OX operators on the two boundary layers.

2. All the X -suspension and Z-suspension terms in the bulk Hamiltonian.

3. All GZ
r,2l−1 and U Z

k,2l−1, namely the Z-type symmetry generators of the original theory acting
on all odd layers.

4. All Γ X
ρ,2l and ΩX

k,2l , namely the X -type symmetry generators of the dual theory acting on all
even layers.

5. Γ Z
σ,2l0

and ΩZ
k,2l0

for all σ, k and some fixed l0.

Proof. Our strategy is similar to that for Theorem 1 in the main text. Suppose A = AZAX
commutes with all the above operators, where AZ (AX ) is a product of Pauli Z (Pauli X )
operators. We will show that A is a product of the above operators. Once this is proved, it
follows from Corollary 4 that those stabilizers are complete.

Let us start with AZ . Similar to the case of Theorem 1, because of the existence of the
X -suspension operators and the OX operators on the boundary layers, we can reduce AZ to an
operator that acts on a single layer with an even layer index, by repeatedly multiplying it with
the Z-suspension operators, the GZ operators and the U Z operators. This single-layer operator
must be a symmetry (local or nonlocal) of the dual theory, namely a product of the ΩZ

k,2l and
Γ Z
σ,2l operators for some l. Note that using the Z-suspension operators, the GZ operators and

the U Z operators, we are able to generate ΩZ
k,2l and Γ Z

σ,2l for all l starting from ΩZ
k,2l0

and Γ Z
σ,2l0

.
We have thus proved that AZ is a product of the operators in the statement of the lemma.

Next, we consider AX . Since AX commutes with all the GZ and U Z operators, each odd
layer of AX is a product of several OX operators. Therefore, using the OX operators on the
boundary layers and the X -suspension operators, we are able to remove all the odd-layer X
operators in AX . We may thus assume AX only contains X operators with even layer indices.
Then, to commute with all the Z-suspension terms, different even layers of AX must differ
from each other only by some Γ X and ΩX operators. Thus, using the Γ X and ΩX operators,
AX can be cast to the form

∏

p∈Λ
∏(L−1)/2

l=1 Xp,2l for some set Λ. This AX has to commute with
the ΩZ

k,2l0
and Γ Z

σ,2l0
operators, which are the Z-type symmetry generators for the dual theory.

It follows from our Corollary 5 that
∏

p∈Λ Xp must be a product of ∆X
i , Γ X

ρ and ΩX
k . One can
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then see that AX is a product of the X -suspension operators, the boundary OX operators, the
Γ X and the ΩX operators. This completes the proof.

The next step is to restrict the set of stabilizers in the above lemma to an independent (and
still complete) subset. This is helpful because only independent stabilizers can independently
take eigenvalues ±1. Let us start by defining some notations. The local Z-type symmetry
generators GZ

r of the original theory may not be independent, and we can restrict it to an
independent subset with ñZ number of elements. This process is equivalent to choosing a
basis for a vector space over F2. Similarly, we denote by ñX the number of independent local
X -type symmetry generators of the original theory, and denote by m̃X (m̃Z) the number of
independent local X -type (Z-type) symmetry generators of the dual theory. Recall that we
denote the full Hilbert spaces of the original and the dual GI models by L and L′, respectively.
Let dimL= N and dimL′ = N ′. The number of independent OX

i (∆Z
α) operators in the original

(dual) theory is then N − nZ − ñZ (N ′ −mX − m̃X ).
First consider the OX operators on layer 1, one of the two boundary layers. As mentioned

above, only N−nZ−ñZ number of them are independent. For our convenience later, we replace
these N − nZ − ñZ number of independent OX

i,1 operators by the following equivalent set of
stabilizers: nX number of UX

k,1, ñX number of GX
s,1, and additional N−nZ− ñZ−nX− ñX number

of OX
i,1 operators. The same applies to the OX operators on layer L, the other boundary layer.

It turns out that UX
k,1 and UX

k,L are not independent from each other. Using the X -suspension
operators, and the Γ X , ΩX operators acting on all even layers, one can generate the operators
UX

k,1UX
k,L , because each X -type symmetry generator of the original theory can be written as a

product of a few OX operators, and the product is dual to the identity or an X -type symmetry
generator in the dual theory. Similarly, GX

s,1GX
s,L can also be generated. Therefore, we can

remove UX
k,L and GX

s,L as redundancies from our list of stabilizers.
The X -suspension operators OX∆XOX are in general not independent. In particular, given

any relation between the OX
i operators, say

∏

i∈ΛO
X
i = 1 for some set Λ, the operator

∏

i∈ΛO
X
i,2l−1∆

X
i,2lO

X
i,2l+1 =

∏

i∈Λ∆
X
i,2l is an X -type symmetry generator acting on the lattice

layer 2l, and is therefore a product of the Γ X and ΩX operators. This means that for each
l, it suffices to retain N − nZ − ñZ number of the X -suspension operators OX

i,2l−1∆
X
i,2lO

X
i,2l+1.

Similarly, for each l, it suffices to retain N ′ − mX − m̃X number of the Z-suspension opera-
tors ∆Z

2lO
Z
2l+1∆

Z
2l+2. Things become even simpler when the standard dual theory is used, i.e.

when∆Z
α = Zα. In this situation, due to the absence of Γ X and ΩX operators, each relation be-

tween the OX
i operators directly translates to a relation between the X -suspension operators,

namely
∏

i∈ΛO
X
i =

∏

i∈ΛO
X
i,2l−1∆

X
i,2lO

X
i,2l+1 = 1, which will be useful later. Moreover, all the

Z-suspension operators are independent in this special case.
With all the above procedures of removing redundancies, let us count how many stabilizers

we are left with. We have

1. nX number of UX
k,1, ñX number of GX

s,1, and additional 2(N − nZ − ñZ − nX − ñX ) number
of OX operators acting on the two boundary layers.

2. (N ′−mX − m̃X )(L−3)/2 number of Z-suspension operators and (N −nZ − ñZ)(L−1)/2
number of X -suspension operators.

3. (nZ + ñZ)(L+1)/2 number of original-theory Z-type symmetry generators acting on all
odd layers and (mX + m̃X )(L−1)/2 number of dual-theory X -type symmetry generators
acting on all even layers.

4. mZ + m̃Z number of dual-theory Z-type symmetry generators acting on some fixed layer
2l0.
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Theorem 2 about the generalized Kramers-Wannier duality implies that
N − nZ − ñZ − nX − ñX = N ′−mX − m̃X −mZ − m̃Z . With this relation, one can check that the
total number of stabilizers listed above is N ′(L−1)/2+N(L+1)/2, same as the total number
of qubits. Therefore, the above stabilizers must be independent. A complete basis of states in
the Hilbert space are labeled by the independent eigenvalues of those operators.

E.2 Simple situation: using the standard dual theory

In this subsection, we restrict to the special situation where the standard dual theory is used,
i.e. ∆Z

α = Zα. This means that the dual theory has no X -type symmetry at all. All the Γ X and
ΩX operators disappear, and mX = m̃X = 0.

Now, we divide the complete and independent set of stabilizers found above into two
subsets:

• Subset A: the Z-suspension and X -suspension operators, GZ
r,2l−1 for all l, GX

s,1 acting on
the first layer, and Γ Z

σ,2l0
acting on the layer 2l0.

• Subset B: the 2(N − nZ − ñZ − nX − ñX ) number of OX operators acting on the two
boundary layers, the nX number of UX

k,1, the mZ number of ΩZ
k,2l0

, and the nZ(L + 1)/2
number of U Z

k,2l−1.

Subset A is actually equivalent to the set of stabilizers appearing in the bulk Hamiltonian:
Firstly, recall that Subset A already contains all the Z-suspension operators, and the X -
suspension operators contained in Subset A are able to generate all the other X -suspension
operators, thanks to the absence of ΩX and Γ X . Moreover, it is obvious that all the GZ op-
erators can be generated by the independent ones we retained here. Finally, all the GX op-
erators can be generated using the independent set of GX

s,1 acting on the first layer and the
X -suspension operators. Similarly, all the Γ Z operators are generated by the independent set
of Γ Z

σ,2l0
acting on the layer 2l0, the Z-suspension operators and the GZ operators. This result

implies that Lbdry, the ground subspace of the bulk Hamiltonian, is completely characterized
by the stabilizers in Subset B.
Example. Consider the bulk model in Eq. 10 that is constructed from Eq. 3 and Eq. 6. We put
the model on a 3D cubic lattice with Lx × L y × Lz number of vertices, with periodic boundary
condition along x and y , and open boundary condition along z. The two boundary surfaces
are “smooth”, and L is related to Lz by L = 2Lz−1 (the height of the system is Lz−1 number of
lattice constants). We have nZ = 2, ñZ = Lx L y−1, nX = Lx+ L y−2, ñX = 0, mZ = Lx+ L y−1,
N = 2Lx L y , and N ′ = Lx L y . It follows that log2(dimLbdry) = 2Lx L y+L which we have verified
numerically.

It is convenient to divide Lbdry into several sectors labeled by the eigenvalues of ΩZ
k,2l0

and

U Z
k,2l−1. Each of these sectors is characterized by a set of stabilizers that are all products of

Pauli X operators. Let us first focus on the sector where ΩZ
k,2l0

= 1 and U Z
k,2l−1 = 1, denoted

by L̃bdry,0 (the reason for a tilde symbol will be clear below). We denote by L the Hilbert
space of the original d-dimensional lattice, and by LG the gauge-invariant subspace of it (the
symmetric sector for all local symmetries). We see that L̃bdry,0 is isomorphic to the following
fictitious space,

L̃fic := ZnX+2nZ
2 symmetric subspace of LG ⊗LG , (E.1)

where the Z2 symmetries are generated by UX
k ⊗ UX

k , U Z
k ⊗ 1 and 1 ⊗ U Z

k . We would like to
choose the isomorphism from L̃bdry,0 to the above fictitious space such that the independent
stabilizers characterizing L̃bdry,0 have the most natural correspondence, i.e. OX

i,1 7→ OX
i ⊗ 1,

OX
i,L 7→ 1⊗OX

i , and UX
k,1 7→ UX

k ⊗1. Thus, we shall identity the simultaneous eigenstates of the
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corresponding stabilizers. One simple consequence is that, all the OX operators on the two
boundary layers, not just the independent ones in Subset B, will satisfy the above mapping
rule:

OX
i,1 7→OX

i ⊗ 1 , OX
i,L 7→ 1⊗OX

i . (E.2)

However, we have not uniquely determined the isomorphism yet, since the eigenstates have
arbitrary phase factors. Thanks to the fact that all the stabilizers are products of Pauli X -
operators, we can choose orthonormal bases for both L̃bdry,0 and the fictitious space according
to Lemma 3, with the roles of X and Z exchanged. Vectors in these orthonormal bases are
automatically eigenstates of the stabilizers and can be identified according to the eigenval-
ues. As one important consequence of this special choice of bases, the operators OZ

α,1Zα,2 and
Zα,L−1OZ

α,L , which all preserve L̃bdry,0 and can be added to the boundary Hamiltonian, have
the simple mapping rule:

OZ
α,1Zα,2 7→OZ

α ⊗ 1 , Zα,L−1OZ
α,L 7→ 1⊗OZ

α . (E.3)

We may take the boundary Hamiltonian Hbdry to be a linear combination of the operators
OX

i,1, OX
i,L , OZ

α,1Zα,2 and Zα,L−1OZ
α,L . From the above discussion, we see that the L̃bdry,0 block

of Hbdry, when represented in the fictitious space L̃fic, takes the form

H I
GI(Jα, hi) +H II

GI(J
′
α, h′i) , (E.4)

where H I
GI and H II

GI act on the two copies of LG in Eq. E.1, respectively. We prove in Appendix
E.5 that any allowed local term in Hbdry can be generated by the four types of terms considered
here and the stabilizers in Hbulk. Therefore, our canonical choice of Hbdry is a quite general
one.

Other sectors with different eigenvalues of ΩZ
k,2l0

or U Z
k,2l−1 can be analyzed by looking

for unitary operators that map them to L̃bdry,0. Given a set of independent Z-type operators
AZ

1 , AZ
2 , · · · , AZ

n acting on an arbitrary multiple-qubit Hilbert space, there is always a set of X -
type operators BX

1 , · · · , BX
n such that BX

k anticommutes with AZ
k but commutes with all the other

AZ operators. It follows that we can always find some X -type operators which commute with
the bulk Hamiltonian but can independently change the eigenvalues ofΩZ

k,2l0
and U Z

k,2l−1. They

generate isomorphisms from all the other sectors of Lbdry to L̃bdry,0 which is equivalent to L̃fic
as we just shown. These isomorphisms commute with OX

i,1 and OX
i,L , but may anticommute

with some OZ
α,1Zα,2 and Zα,L−1OZ

α,L operators. Therefore, the effective boundary Hamiltonian
in each of the other sectors takes the same form as Eq. E.4, but the signs of some GI terms may
be flipped.

Let us try to write down the isomorphisms between different sectors more explicitly, which
turn out to be illuminating. We start from the U Z operators acting on the two boundary layers,
namely U Z

k,1 and U Z
k,L . Let V X

1 , V X
2 , · · · , V X

nZ
be the X -type operators acting on L such that V X

k

anticommutes with U Z
k but commutes with all the other Z-type symmetry generators (local or

nonlocal) of the original theory. V X
k,1 and V X

k,L commute with the bulk Hamiltonian, and thus
can be used to adjust the eigenvalues of U Z

k,1 and U Z
k,L within Lbdry, respectively. Each V X

k,1

may flip the signs of some OZ terms in the H I
GI part of the effective boundary Hamiltonian.

We can, however, apply the unitary operator V X
k ⊗1 to L̃fic to compensate these sign changes,

at the cost of flipping the sign of U Z
k ⊗1.13 A similar statement holds for V X

k,L . This observation
inspires us that there is actually a nicer way of viewing Lbdry: We can alternatively divide Lbdry
into sectors labeled by ΩZ

k,2l0
and U Z

k,2l−1 for all internal layers (3≤ 2l −1≤ L−2). Each new

13V X
k ⊗1 is not an automorphism of L̃fic, so strictly speaking we shall first embed L̃fic to LG⊗LG , and then apply

V X
k ⊗ 1.
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sector now includes several old sectors that differ from each other only by the eigenvalues of
U Z

k,1 and/or U Z
k,L . Let Lbdry,0 be the new sector where ΩZ

k,2l0
= 1 and U Z

k,2l−1 = 1 for internal
layers. Lbdry,0 is isomorphic to a new fictitious space

Lfic := ZnX
2 symmetric subspace of LG ⊗LG , (E.5)

where the Z2 symmetries are generated by UX
k ⊗UX

k . The operator mapping rule from L̃bdry,0 to
L̃fic that we established earlier still works here, now from Lbdry to Lfic. The effective boundary
Hamiltonian takes the form of Eq. E.4 as well. Other new sectors are all isomorphic to Lbdry,0,
and thus to Lfic:

• Denote by L′ the Hilbert space for the d-dimensional dual lattice. We may find some X -
type operators ΘX

k acting on L′ such that ΘX
k anticommutes with ΩZ

k but commutes with

all the other Z-type symmetry generators (local or nonlocal). It follows that
∏(L−1)/2

l=1 ΘX
k,2l

is a multilayer operator that commutes with the bulk Hamiltonian and can flip the eigen-
value of ΩZ

k,2l0
. This multilayer operator may flip the signs of some OZ terms simultane-

ously in both H I
GI and H II

GI.

• Adjusting the values of the internal-layer U Z operators is more complicated, consisting
of three steps: (1) Flip the sign of U Z

k,2l−1 using V X
k,2l−1 defined earlier, but this may unex-

pectedly flip the signs of some Z-suspension operators as well. (2) Fix the Z-suspension
operators using string operators of the form

∏l−1
l ′=1 Xq,2l ′ when l0 ≥ l or

∏(L−1)/2
l ′=l Xq,2l ′

when l0 < l, without affecting the ΩZ
k,2l0

operators. Notice that the Γ Z operators will

not be affected by the above steps either, because Γ Z
σ,2l0

are unaffected, and the other Γ Z

operators can all be generated from the Γ Z
σ,2l0

, Z-suspension, and GZ operators. (3) As

an optional step, apply V X
k,1 (V X

k,L) when l0 ≥ l (l0 < l). With the last step added, the
effective boundary Hamiltonian will be invariant under the above operations.

We have seen that altering the eigenvalue of ΩZ
k,2l0

may change the signs of some OZ terms

in both the H I
GI and H II

GI parts of the effective boundary Hamiltonian. Is it possible to cancel this
effect by some additional unitary rotation on Lfic? The answer depends on a certain property
of theΩZ operators. Let G′Z =

¬

ΩZ
1 , · · · ,ΩZ

mZ

¶

be the group generated byΩZ ’s in the dual theory.

We define a subgroup G′Z ,0 ={g ∈ G
′
Z|g is dual to the identity modulo the GZ operators}. We

can always redefine the ΩZ operators such that for some integer m0, G′Z ,0 =
¬

ΩZ
1 , · · · ,ΩZ

m0

¶

.
We claim and will elaborate below that: When k > m0 (k ≤ m0), it is possible (not possible) to
flip the sign of ΩZ

k,2l0
without affecting the effective boundary Hamiltonian.

First consider k ≤ m0. We write ΩZ
k =

∏

α∈A Zα for some subset A, then under the Kramers-
Wannier operator map, ΩZ

k 7→
∏

α∈AO
Z
α =

∏

r∈R GZ
r for some subset R. In an arbitrary sector

of Lbdry,

ΩZ
k,2l0
= ΩZ

k,2 =
∏

α∈A

(OZ
α,1Zα,2) , (E.6)

where we used the fact that ΩZ
k≤m0,2l0

is related to ΩZ
k≤m0,2 by the multiplication of several

Z-suspension and GZ operators. In Lfic, we have

1=
∏

α∈A

(OZ
α ⊗ 1) . (E.7)

Suppose there is an isomorphism from this sector of Lbdry to Lfic, such that

OZ
α,1Zα,2 7→ ηαOZ

α ⊗ 1 (ηα = ±1) , (E.8)
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then we necessarily have ΩZ
k,2l0

=
∏

α∈Aηα. This means that as we go from one sector to

another with a different ΩZ
k,2l0

, some of the ηα must change signs!
Next, consider k > m0. We wish to correct all the aforementioned sign changes of the

OZ terms in the effective boundary Hamiltonian due to the sign flip of ΩZ
k,2l0

. To this end,

we restrict the OZ operators acting on L to a subset OZ
β1

,OZ
β2

, · · · that is independent modulo

GZ ’s, meaning that each OZ
β j

is not a product of the remaining ones and GZ ’s. Then there exist

operators QX
β1

,QX
β2

, · · · such that each QX
β j

anticommutes with OZ
β j

while commutes with all the

others in the independent subset and also commutes with all GZ ’s. Now, using the operators
QX
β j
⊗ 1 acting on Lfic, we can freely adjust the signs of the OZ

β j
⊗ 1 terms in the effective

boundary Hamiltonian. In other words, we can freely adjust the signs of ηβ j
whose definition

is in Eq. E.8 above. In fact, once we correct all the sign changes of ηβ j
due to the sign flip of

ΩZ
k,2l0

, the sign changes of all ηα are also corrected. To see this, notice that given any relation

of the form
∏

α∈AO
Z
α = 1 mod GZ ,

∏

α∈A Zα must be an element of G′Z ,0 modulo some Γ Z ’s,
which follows from the definition of G′Z ,0 as well as the fact that each Γ Z operator is dual to
the product of some GZ ’s, and thus

∏

α∈Aηα is equal to the eigenvalue of this element of G′Z ,0

acting on the 2l0-th layer. Since each OZ
α is a product of some OZ

β j
and GZ operators, each

ηα is then a product of some ηβ j
and the eigenvalue of some element of G′Z ,0 acting on the

2l0-th layer. Flipping the sign of ΩZ
k>m0,2l0

does not affect any ΩZ
k′,2l0

with k′ ≤ m0, therefore
our statement above about ηα is indeed true.

With all these discussions, we propose the following necessary and sufficient condition for
anomaly.

Claim. When the standard dual theory is used for constructing the bulk model, the boundary
theory is anomalous if and only if either of the following two conditions is satisfied:

1. nX ≥ 1.

2. For some nonempty subset K ⊂ {1,2, · · · , mZ},
∏

k∈K Ω
Z
k is dual to the identity modulo the

GZ operators.

The first condition guarantees a symmetry charge projection UX
k ⊗ UX

k = 1 acting on the two
copies of the GI model in the boundary theory; each copy is allowed to have states with both
values of the symmetry charge, but the total charge of the two copies is fixed. When the second
condition holds,

∏

k∈K Ω
Z
k is dual to a generalized boundary condition, and a boundary condi-

tion projection is applied to the two copies of the GI model in the boundary theory; each copy
is allowed to take both values of the boundary condition, but the boundary condition values of
the two copies are locked together. When neither condition is satisfied, the boundary theory
is a direct sum of identical sectors. The Hilbert space of each sector is isomorphic to LG ⊗LG
with the operator mapping rule in Eq. E.2 and E.3. The effective boundary Hamiltonian of
each sector takes the form of Eq. E.4, or more generally consists of local terms generated by
those in Eq. E.4.

E.3 General situation

To work with the most general situation, let us recall some notations defined in Appendix D. In
general, the nonlocal Z-type symmetry group GZ

∼= ZnZ
2 of our GI model contains a subgroup

GZ ,0
∼= Zν2, whose definition is GZ ,0 ={g ∈ GZ| g =

∏

α∈AO
Z
α

∏

r∈R GZ
r for some sets A and R

satisfying
∏

α∈A∆
Z
α = 1}. We can always choose our symmetry generators such that GZ ,0 is

generated by U Z
1 , · · · , U Z

ν . Similarly, the nonlocal X -type symmetry group G′X ∼= Z
mX
2 of the dual

theory contains a Zµ2 subgroup, whose definition is G′X ,0 ={g ∈ G
′
X | g =

∏

i∈I ∆
X
i

∏

ρ∈R Γ
X
ρ for
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some sets I and R satisfying
∏

i∈I O
X
i = 1}. Without loss of generality, we assume this Zµ2

subgroup is generated by ΩX
1 , · · · ,ΩX

µ .
As in the previous case, we divide the complete and independent set of stabilizers for the

full Hilbert space into two subsets:

• Subset A: the Z-suspension and X -suspension operators, GZ
r,2l−1 for all l, GX

s,1 acting on
the first layer, Γ X

ρ,2l for all l, Γ Z
σ,2l0

acting on the layer 2l0, U Z
1,2l−1, · · · , U Z

ν,2l−1 for all the

internal layers (3≤ 2l − 1≤ L − 2), and ΩX
1,2l , · · · ,Ω

X
µ,2l for all l.

• Subset B: the 2(N − nZ − ñZ − nX − ñX ) number of OX operators acting on the two
boundary layers, the nX number of UX

k,1, the mZ number of ΩZ
k,2l0

, the 2nZ number of

U Z
k,1 and U Z

k,L acting on the boundary layers, the (nZ −ν)(L − 3)/2 number of U Z
k>ν,2l−1

for all the internal layers (3 ≤ 2l − 1 ≤ L − 2), and the (mX − µ)(L − 1)/2 number of
ΩX

k>µ,2l for all l.

One can check that Subset A is equivalent to the set of stabilizers appearing in the bulk Hamil-
tonian. In particular, the Z-suspension operators contained in Subset A are able to generate
all the other Z-suspension operators with the help of the included GZ and U Z operators. A
similar statement applies to the X -suspension operators. Also notice that the stabilizers in the
bulk Hamiltonian are able to generate Subset A. This result implies that Lbdry is completely
characterized by the stabilizers in Subset B.
Example. Consider the model in Appendix C. We take open boundary condition along the
out-of-layer direction, and the number of layers L is an odd integer as explained in Section 5.
One may check that nZ = mX = 2, ñZ = Lx L y − 1, nX = mZ = Lx − 1, ñX = 0, and

ν= µ=

¨

1 (Lx odd) ,
0 (Lx even) .

(E.9)

It follows that

log2(dimLbdry) =

¨

2Lx L y + L (Lx odd) ,
2Lx L y + 2L − 2 (Lx even) ,

(E.10)

which we have verified numerically.
We can divide Lbdry into several sectors labeled by the eigenvalues of ΩZ

k,2l0
, U Z

k>ν,2l−1 for

all internal layers, and ΩX
k>µ,2l . Denote by Lbdry,0 the sector where these operators all equal

to 1. Then Lbdry,0 is again isomorphic to the fictitious space in Eq. E.5. The operator mapping
rule is also similar:

OX
i,1 7→OX

i ⊗ 1 , OX
i,L 7→ 1⊗OX

i ,

OZ
α,1∆

Z
α,2 7→OZ

α ⊗ 1 , ∆Z
α,L−1O

Z
α,L 7→ 1⊗OZ

α .
(E.11)

By taking Hbdry as a linear combination of OX
i,1, OX

i,L , OZ
α,1∆

Z
α,2 and ∆Z

α,L−1O
Z
α,L , the Lbdry,0

block of Hbdry may again have the form of Eq. E.4 when represented in Lfic. We prove in
Appendix E.5 that any allowed local term in Hbdry can be generated by the four types of terms
considered here and the stabilizers in Hbulk.

The next task is to establish isomorphisms from other sectors to Lbdry,0, and therefore to
the fictitious space:

• As before, the eigenvalue of each ΩZ
k,2l0

can be flipped by the operator
∏(L−1)/2

l=1 ΘX
k,2l

without affecting the U Z or ΩX operators. This multilayer operator may flip the signs of
some OZ terms simultaneously in both H I

GI and H II
GI.
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• The V X
k,2l−1 operator mentioned previously is able to flip the eigenvalue of U Z

k,2l−1 where
3 ≤ 2l − 1 ≤ L − 2 and k > ν, but it may also anticommute with some Z-suspension
operators. On each internal layer, there are only N ′−mX−m̃X number of independent Z-
suspension operators, corresponding to the same number of independent ∆Z operators
acting on L′; the remaining ones can be generated with the help of the GZ

r and U Z
k≤ν,2l−1

operators. Thus, it suffices to fix the eigenvalues of these independent Z-suspension
operators. To this end, we first choose an independent subset of the ∆Z operators act-
ing on L′: ∆Z

α1
,∆Z

α2
, · · · . Then, there exists a set of operators EX

α1
, EX
α2

, · · · such that EX
α j

anticommutes with ∆Z
α j

while commutes with all the other independent ∆Z operators.

We can use the multilayer operators
∏l−1

l ′=1 EX
α j ,2l (

∏(L−1)/2
l ′=l EX

α j ,2l) when l0 ≥ l (l0 < l)

to fix the eigenvalues of the Z-suspension operators centered on the (2l − 1)-th layer
without affecting ΩZ

k,2l0
. For a reason explained previously, the Γ Z operators will not be

affected by the above steps either. These multilayer operators may anticommute with
some OZ

α,1∆
Z
α,2 or ∆Z

α,L−1O
Z
α,L operators, thus affecting the effective boundary Hamil-

tonian, but this effect can be completely canceled by additionally applying V X
k,1 or V X

k,L .
In other words, adjusting the values of the internal-layer U Z

k>ν,2l−1 operators does not
affect the effective boundary Hamiltonian.

• The eigenvalues of ΩX
k>µ,2l can be adjusted as follows. Let ΘZ

1 , · · · ,ΘZ
mX

be Z-type op-

erators acting on L′ such that ΘZ
k anticommutes with ΩX

k while commutes with all the
other local or nonlocal X -type symmetry generators of the dual theory. ΘZ

k>µ,2l is able

to flip the sign of ΩX
k>µ,2l , but it may anticommute with some X -suspension operators.

Analogous to the EX operators define above, we can find some P Z
in

operators acting on L
such that they can flip the signs of an independent subset of OX operators, OX

i1
,OX

i2
, · · · ,

respectively. The multilayer operators
∏l

l ′=1 P
Z
in,2l ′−1 can be used to fix the eigenvalues

of the X -suspension operators centered at the 2l-th layer. The GX operators will not be
affected by the above steps. These multilayer operators may anticommute with some
OX

i,1 operators, or equivalently flip the signs of some OX operators in the H I
GI part of the

effective boundary Hamiltonian.

The sign changes of the OZ terms in the effective boundary Hamiltonian due to the sign
flip of ΩZ

k,2l0
can be analyzed in essentially the same way as we did in the previous subsection

right above the claim of anomaly condition, with the same conclusion. Thus we will not repeat
the discussion again, but just note that in the general situation, the definition of G′Z ,0 should
be modified to G′Z ,0 ={g ∈ G

′
Z|g =

∏

α∈A∆
Z
α for some set A such that

∏

α∈AO
Z
α = 1 mod GZ}.

We have seen that altering the eigenvalue of ΩX
k>µ,2l may change the signs of some OX

terms in H I
GI. Denote the combined operator we described above for flipping the sign ofΩX

k>µ,2l

by ΘZ
k,2l

∏l
l ′=1 B

Z
2l ′−1 where BZ is a product of several P Z operators. Applying the unitary

operator BZ⊗1 to Lfic is able to cancel all the sign changes of the OX terms in H I
GI, but this may

flip the signs of UX
p ⊗UX

p for some p, sinceBZ may anticommute with some UX
p operators.14 This

raises an important question: Is there still some symmetry charge projection, such as UX
p ⊗UX

p
for some p, that applies to all sectors of the boundary theory, and thus can be regarded as
a source of anomaly? The answer depends on a certain property of the UX operators. Let
GX =

¬

UX
1 , · · · , UX

nX

¶

be the group generated by the UX ’s in the original theory. We define a

subgroup GX ,0 ={g ∈ GX |g =
∏

i∈I O
X
i for some set I such that

∏

i∈I ∆
X
i = 1 mod Γ X }. We

14BZ ⊗1 may not be an automorphism of Lfic, so strictly speaking we shall first embed Lfic to LG ⊗LG , and then
apply BZ ⊗ 1.
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can always redefine the UX operators such that for some integer n0, GX ,0 =
¬

UX
1 , · · · , UX

n0

¶

.

We claim and will elaborate below that: UX
p ⊗ UX

p = 1 holds in the whole boundary theory for
1≤ p ≤ n0 but not for p > n0.

First consider p ≤ n0. We note that the operator ΘZ
k,2l

∏l
l ′=1 B

Z
2l ′−1 mentioned above com-

mutes with UX
p,1UX

p,L that is equal to a product of some X -suspension and Γ X operators. It
follows that BZ commutes with UX

p , and the symmetry charge projection UX
p ⊗UX

p = 1 for this
p is not affected by altering the eigenvalue of ΩX

k>µ,2l .

Next, consider p > n0. The key is again to understand the dual of UX
p . Each UX operator

can be written as a product of OX operators, though there may be multiple ways of doing it,
thus we can always define some dual for each UX

p . From the definition of GX ,0, we see that
the dual operator for each UX

p>n0
, up to Γ X ’s, is a nontrivial product of some ΩX operators,

which we will denote as Ω̃X
p . We claim that any nontrivial product of the Ω̃X

p (p > n0) op-
erators does not belong to G′X ,0 which is defined both in Appendix D and at the beginning
of this subsection. Suppose this statement is not true, then there is some nonempty subset
P ⊂ {n0 + 1, n0 + 2, · · · , nX } such that the following equations hold.

∏

p∈P

UX
p =

∏

i∈I

OX
i 7→

∏

i∈I

∆X
i =

∏

p∈P

Ω̃X
p mod Γ X , (E.12)

∏

p∈P

Ω̃X
p =

∏

i∈J

∆X
i mod Γ X , s.t.

∏

i∈J

OX
i = 1 . (E.13)

It follows that we can alternatively write
∏

p∈P UX
p =

∏

i∈I∪J O
X
i which is dual to the product

of some Γ X operators, contradicting the fact that
∏

p∈P UX
p does not belong to GX ,0. Hence,

our statement above about the Ω̃X
p operators is indeed true. Consequently, up to a redefinition

of the ΩX operators, we can simply identify Ω̃X
n0+1, Ω̃X

n0+2, · · · as ΩX
µ+1,ΩX

µ+2, · · · , respectively.

Now observe that UX
n0+ j,1UX

n0+ j,L is a product of the X -suspension operators, the Γ X operators,

and ΩX
µ+ j,2l for all l. It follows that the effect of flipping the sign of ΩX

µ+ j,2l for any l is to flip

the sign of UX
n0+ j ⊗ UX

n0+ j while leaving the effective boundary Hamiltonian invariant. As a

result, if we conbine all sectors of the boundary theory together, UX
p ⊗UX

p for p > n0 no longer
have definite values.

With all these discussions, we propose the following necessary and sufficient condition for
anomaly.

Claim. The boundary theory is anomalous if and only if either of the following two conditions is
satisfied:

1. For some nonempty subset K ⊂ {1, 2, · · · , nX },
∏

k∈K UX
k can be written as a product of OX

operators such that the product is dual to the identity modulo the Γ X operators.

2. For some nonempty subset K ⊂ {1,2, · · · , mZ},
∏

k∈K Ω
Z
k can be written as a product of∆Z

operators such that the product is dual to the identity modulo the GZ operators.

The first condition guarantees a symmetry charge projection acting on the two copies of the
GI model in the boundary theory; each copy is allowed to have states with both values of the
symmetry charge, but the total charge of the two copies is fixed. When the second condition
holds,

∏

k∈K Ω
Z
k is dual to a generalized boundary condition, and a boundary condition projec-

tion is applied to the two copies of the GI model in the boundary theory; each copy is allowed
to take both values of the boundary condition, but the boundary condition values of the two
copies are locked together. When neither condition is satisfied, the boundary theory is a direct
sum of identical sectors. The Hilbert space of each sector is isomorphic to LG ⊗LG with the
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operator mapping rule in Eq. E.11. The effective boundary Hamiltonian of each sector takes
the form of Eq. E.4, or more generally consists of local terms generated by those in Eq. E.4.
Note that each (new) sector here may be the sum of several (old) sectors discussed previously
with different values of UX

k ⊗ UX
k .

E.4 Violating the anomaly conditions

In what cases is the necessary and sufficient condition of anomaly in Claim 1 violated? We
find the following result.

Theorem 4. If the anomaly condition is violated, the bulk theory is either trivial, or fracton
ordered. Equivalently, if the bulk theory has a topological order (not including fracton order),
then the anomaly condition must be statisfied.

Proof. Claim 1 consists of two sufficient conditions of anomaly. They combine to give a neces-
sary condition; when both are violated, the boundary theory is claimed to be nonanomalous.

The simplest situation where the two anomaly conditions are both violated is nX +mZ = 0.
It then follows from Theorem 3 that with periodic boundary condition, the bulk GSD is either
trivial or system size dependent, meaning that the bulk model is either trivial or fractonic.

Next, suppose nX ≥ 1. The discussion for the case mZ ≥ 1 is similar and will not be
repeated. Take some arbitrary UX operator, say UX

a with a ∈ {1, 2, · · · , nX }. We can always
write UX

a =
∏

i∈I O
X
i for some index set I . We then must have

∏

i∈I

∆X
i =

∏

b∈B

ΩX
b mod Γ X , (E.14)

for some nonempty set B, otherwise the first anomaly condition would be satisfied. Denote
by ΩX

B :=
∏

b∈BΩ
X
b . We have ΩX

B ∈ G′X ,1 by definition (see Appendix D). We now claim that
ΩX

B /∈ G
′
X ,0. If this claim were not right, we would have ΩX

B =
∏

i∈J ∆
X
i mod Γ X for some set

J (not necessarily the same as I) such that
∏

i∈J O
X
i = 1. We can then alternatively write

UX
a =

∏

i∈I∪J O
X
i with the property that

∏

i∈I∪J ∆
X
i = 1 mod Γ X , contradicting our assump-

tion that the first anomaly condition is violated. We have thus found that µ̄ − µ ≥ 1 (see
Appendix D). According to Theorem 3, the bulk GSD with periodic boundary condition grows
as the system size increases, hence the bulk model has a fracton order.

It is possible to design a concrete fractonic example that violates both sufficient conditions
of anomaly. Consider the following GI model whose qubits live on the links of a 2D square
lattice with periodic boundary condition,

H = −J − h , (E.15)

and consider its standard dual theory which takes exactly the same form. The model has
nX = mX = 0, nZ = mZ = 2. We can take the GZ ’s (U Z ’s) to be the same as the Γ Z ’s (ΩZ ’s).
The first anomaly condition about UX operators is trivially violated. The second anomaly
condition is also violated because in this example, the generalized Kramers-Wannier duality is
trivial. Let us not go into the details, but one can show that with the setup in Section 5, the
boundary theory of this model is indeed nonanomalous: The boundary Hilbert space is 2L−1

copies of LG ⊗LG , and the effective boundary Hamiltonian takes the same form in all sectors.
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E.5 On possible boundary terms

As we defined in the main text, an allowed boundary term is a local operator that commutes
with the stabilizers in the bulk Hamiltonian in Section 5 (open boundary condition along the
out-of-layer direction). The boundary terms that we have considered so far are OX

i,1, OX
i,L ,

OZ
α,1∆

Z
α,2, and ∆Z

α,L−1O
Z
α,L . This set turns out to be complete in the following sense.

Lemma 7. Given any local operator A that is a product of Pauli operators and commutes with
all the stabilizers appearing in the bulk Hamiltonian in Section 5, A can be locally generated by
those bulk stabilizers together with OX

i,1, OX
i,L , OZ

α,1∆
Z
α,2, and ∆Z

α,L−1O
Z
α,L .

Proof. The proof is not much different from that for Theorem 1. We again write A = AZAX .
Both AZ and AX must commute with all the stabilizers in the bulk Hamiltonian, and we will
prove that both of them satisfy the claim of the lemma.

Let us start from AZ . Denote by lmax and lmin the maximal and minimal layer indices of
AZ ’s support, respectively. Since AZ is supposed to be local, i.e. small compared to the system
size, either lmin≫ 1 or lmax≪ L. These two scenarios are nearly identical, so let us just assume
lmax ≪ L. We can then use the reduction procedure described in the proof of Theorem 1 to
reduce lmax until lmax ≤ 2, if AZ is not yet fully reduced to the identity. Now suppose lmax = 2,
in order to commute with the Γ X operators on the 2nd layer, the top layer of AZ must be a local
product of some ∆Z operators. Thus, we can further reduce AZ using the OZ

α,1∆
Z
α,2 operators

so that it no longer has any support on the 2nd layer. If lmax = 1, in order to commute with
the X -suspension operators spanning the 1st, 2nd and 3rd layers, this single-layer AZ must be
a local product of some GZ operators. This completes the proof for AZ .

Next, we consider AX . We similarly define lmax and lmin, and assume lmax ≪ L without
loss of generality. Using the reduction procedure in the proof of Theorem 1, we can reduce
lmax all the way to 1, if AX is not yet fully reduced to the identity operator. If lmax = 1, in
order to commute with the GZ operators, this single-layer AX must be a local product of the
OX

i,1 operators. We have thus completed the proof for AX .

Some minor technical comments: (1) The above result still holds without assuming A to be
a product of Pauli operators. We can expand A as a superposition of the linearly independent
tensor product operators of I , X , Y, Z . Since Pauli operators either commute or anticommute,
SAS−1 = A for a bulk stabilizer S implies that any tensor product operator entering the ex-
pansion of A with a nonzero coefficient must also commute with S. (2) If A is a local operator
that preserves Lbdry but does not commute with the bulk Hamiltonian, its effect on Lbdry is
equivalent to some local operator that commutes with the bulk stabilizers, so it is unneces-
sary to consider such an operators as a boundary term candidate. To see this, notice that this
operator A overlaps with at most finite number of bulk stabilizers since it is local. We can
then repeatedly “symmetrize” the operator by A 7→ (A+ SAS−1)/2 for each overlapping bulk
stabilizer S. The resulting new operator has the same action on Lbdry, commutes with all the
bulk stabilizers, and has a linear size exceeding the old one by at most an O(1) amount.

F The polynomial representation and topological orders

We derive the properties of the bulk model in (54) through the polynomial representation
introduced in [58], see also [65] for pedagogical purpose. The Hamiltonian local terms are
represented by a stabilizer map, which is a matrix with elements in F2[x , x−1, y, y−1], the
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Laurent polynomials whose coefficients are in F2,

S =























1 1+ y 0 0
1+ x̄ 0 0 0
1+ ȳ 0 0 0

0 1+ x̄ 0 0
0 0 1+ x 0
0 0 1 1+ y
0 0 0 1+ x
0 0 1+ ȳ 0























, (F.1)

where x̄ ≡ x−1 and ȳ ≡ y−1. The model has a robust GSD. This is determined from that
kerεS = im S, where εS is the excitation map. [65] The Hamiltonian in the stabilizer formalism
with such a property is also called an exact code.

We compute the GSD on a square lattice with Lx × L y sites and periodic boundary condi-
tions. Treating the ŷ as the layer-indexed direction, we also assume L y to be even. Since the
number of types of stabilizers in the Hamiltonian is the same as the number of qubits in a unit
cell, the GSD can be computed from

log2 D = dimF2
coker S† . (F.2)

The block-diagonal structure in S† allows us to reduce the evaluation further [108,109] to

log2 D =dimF2
coker(SZ)† + dimF2

coker(SX )† (F.3)

=dimF2

F2[x , y]
I ((SZ)†)⊕ bL

+ dimF2

F2[x , y]
I ((SX )†)⊕ bL

. (F.4)

where SZ and SX are sub-matrices of the block matrix S = [SZ , 0; 0, SX ], I(σ) is the ideal of
σ, and bL is the ideal generated by the polynomials that declare boundary conditions.

We find that for the periodic boundary conditions represented by bL = 〈x Lx − 1, y L y − 1〉
with even L y , the associated ideals represented in a Groebner basis [65] are

I
�

(SZ)†
�

⊕ bL = I
�

(SX )†
�

⊕ bL = 〈1+ y2, 1+ x〉 . (F.5)

It follows that
log2 D = 2dimF2

F2
2 = 4 . (F.6)

The degeneracy is the same as two copies of toric code.
Similarly, we can also obtain the GSD for the Z2 ×Z2 model given in (48) from the poly-

nomial representation. The stabilizer map for this model is

SZ2×Z2
=







1+ x + x−1 0
y + y−1 0

0 y + y−1

0 1+ x + x−1






. (F.7)

The model is locally topological ordered, implying the absence of symmetry breaking order.
This is determined by that SZ2×Z2

satisfy the codimension condition,15 codim I(SC)≥ 2, where
SC is the stabilizer map of the classical spin model, which becomes the quantum model after

15We recall that the codimension of an ideal of polynomials fi is the codimension of the algebraic variety de-
fined by the system of polynomial equations fi = 0. For instance, in two-dimensional space, the codimension of
〈(x − 1)(y − 1), x − 1〉 is 1, and the codimension of 〈x − 1, y − 1〉 is 2.

46

https://scipost.org
https://scipost.org/SciPostPhys.15.4.150


SciPost Phys. 15, 150 (2023)

gauging, and I(SC) is the ideal of SC . In the current case, SC is the map (1+ x+ x−1, y+ y−1),
and codim I(SC) = 2.

The GSD on a torus can be evaluated by

log2 D = 2 dimF2

F2[x , y]
〈1+ x + x2, 1+ y2, x3Lx − 1, y L y − 1〉

. (F.8)

Since,
F2[x , y]

〈1+ x + x2, 1+ y2, x3Lx − 1, y L y − 1〉
∼= F2

2 , (F.9)

we obtain that
log2 D = 4 . (F.10)

G The variant bulk construction

We explain the variation from the basic bulk construction, which allows us to produce the pure
topologically ordered model from the SPT model in (52).

Towards constructing the bulk model, we note that (52) does not satisfy the assumptions
in Section 2. The price is that the GSD in the bulk model we would obtain from the basic
construction is not robust. Part of the degeneracy originates from symmetry breaking orders.
Nevertheless, let us give a minimal variation of the construction. This is enough to provide us
a pure topologically ordered bulk.

Firstly, we note that the GI model we begin with has the following property. We group the
operators {OZ

α } and {OX
i } according to their commutation relations.

1. A1 = {OZ
α , OX

i },

2. A2 = {OZ
α′ , OX

i′ }.

The two sets have the property that all operators in each set commute with each other; for
any Z-type (X -type) operator in one set, there are X -type (Z-type) of operators in the other
set that anti-commutes with it. By design, OZ

0 ∈A1.
Now we give the modified rule in constructing the bulk model. For local operators in A1,

their corresponding three-layer local operators are∆Z
α,l−1OZ

α,l∆
Z
α,l+1 and∆X

i,l−1OX
i,l∆

X
i,l+1 in the

bulk model and center at odd layers i.e.,l ∈ 2Z+ 1. On the other hand, for local operators in
A2, their corresponding three-layer local opertors OZ

α,l−1∆
Z
α,lO

Z
α,l+1 and OX

i,l−1∆
X
i,lO

X
i,l+1 in the

bulk model center at even layers, i.e.,l ∈ 2Z. This rule of determining the layer index of local
terms supported on three-layers is the only modification in the variant construction.

Explicitly, the bulk Hamiltonian coming from the variant construction is the following,

H II
bulk =−

∑

l

 

∑

α∈A1

∆Z
α,2lO

Z
α,2l+1∆

Z
α,2l+2 +

∑

i∈A1

∆X
i,2lO

X
i,2l+1∆

X
i,2l+2

!

−
∑

l

 

∑

α∈A2

OZ
α,2l−1∆

Z
α,2lO

Z
α,2l+1 +

∑

i∈A2

OX
i,2l−1∆

X
i,2lO

X
i,2l+1

!

−
∑

r,l

GZ
r,2l+1 −

∑

s,l

GX
s,2l+1 −

∑

ρ,l

Γ X
ρ,2l −

∑

σ,l

Γ Z
σ,2l . (G.1)

In the example of the GI model capturing the Z2 × Z2 SPT phase, the two sets of local
operators are

A1 = {Z2i Z2i+1Z2i+2, X2i−1X2iX2i+1} ,
A2 = {X2i , Z2i+1} . (G.2)

47

https://scipost.org
https://scipost.org/SciPostPhys.15.4.150


SciPost Phys. 15, 150 (2023)

Theorem 5. A sufficient condition for the bulk model to have a robust ground state subspace is
that the GI model has the following properties:

• A2 forms a CSLO.

• The dual of A1, denoted as A′1, forms a CSLO.

• Neither the GI model nor the dual model has local symmetries.

We can see that the Z2 ×Z2 model has these properties. Particularly, in this example, the
dual of A1 is A′1 = {Z2i+1, X2i} is a CSLO.

Now let us prove the above theorem. To prove that the bulk model has a robust ground
state subspace is the same as to prove that the terms in the bulk Hamiltonian form a CSLO.

Suppose there is a local operator that commutes with all terms in the Hamiltonian of the
bulk model, we will show it must be either an identity operator or a product of Hamiltonian
local terms.

The operator is local in the sense that its support on any layer is finite, independent of
total system size along any direction. We begin with considering that the support of the local
operator has a single connected component.

First, it cannot be a local operator that is non-trivial only within a single layer. Such an
operator, if it existed on an odd layer, would commute with all operators in A1 and A2, thus
it would be a local symmetry operator of HGI . However, there is no local symmetry in the GI
model, as required in the properties. Similarly, if the operator is within an even layer, it would
be a local symmetry of the dual model, and this violates the required properties. In the end, a
local symmetry operator within a single layer for the bulk model does not exist.

Second, it cannot be a local operator within two adjacent layers. Suppose there exists such
an operator, and let us call it A. Without losing generality, let us suppose its support is on the
z-th layer (an odd layer) and the z + 1-th layer (an even layer). A can thus be decomposed as
AoAe, with Ao (Ae) on the odd (even) layer. A commutes with all terms in the Hamiltonian of
the bulk model. In particular, A commutes with all terms Ok,z−2∆k,z−1Ok,z , for any operator
Ok in A2. A at most share supports with these operators on the z-th layer. This means Ao
commutes with A2. Through similar steps, one can show that Ae commutes with A′1, the dual
of A1. Next, A also commutes with Ok,z∆k,z+1Ok,z+2,for any operator Ok in A2. Because Ao
on the z-th layer commutes with all Ok ∈ A2, Ae on the z + 1-th layer must commute with
all ∆k ∈ A′2. Thus, Ae commutes with A′1 ∪A

′
2, which is the set of all local operators in the

dual of the GI model. Since we have required that the dual model has no local symmetries,
Ae is an identity operator. Through a similar step, we can show that Ao must commute with
A1. Combined with the derivation several steps above, this means that Ao commutes with
all Hamiltonian local terms in the GI model. And as we require the GI model has no local
symmetries, Ao is at most an identity operator. In conclusion, A= AoAe if commutes with all
Hamiltonian local terms of the bulk model, must be an identity operator.

As the final case, we consider that the local operator A has a support from the zmin-th layer
to the zmax-th layer. Both zmin and zmax are finite, and zmax− zmin ≥ 3. In this case, we can run
the same steps as in the proof of Theorem 1. That is, by multiplying Hamiltonian local terms,
we can reduce the support of A to be within at most two adjacent layers. At this end, we can
use the results above to show that A after the reduction, must be an identity operator. Thus,
the operator A we begin with, is a product of Hamiltonian local terms.

Finally, we consider that the operator has multiple disconnected components. In this case,
we take the operator as a single component operator, which are identity operators on some
layers. Then through the steps above, we can conclude that the operator must be either an
identity operator, or a product of Hamiltonian local terms. This completes our proof.
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