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Abstract

The Geroch-Hansen and Thorne (ACMC) formalisms give rigorous and equivalent defi-
nitions for gravitational multipoles in stationary vacuum spacetimes. However, despite
their ubiquitous use in gravitational physics, it has not been shown that these formalisms
can be generalized to non-vacuum stationary solutions, except in a few special cases.
This paper shows how the Geroch-Hansen formalism can be generalized to arbitrary
non-vacuum stationary spacetimes for metrics that are sufficiently smooth at infinity.
The key is the construction of an improved twist vector, which is well-defined under a
mild topological condition on the spacetime (which is automatically satisfied for black
holes). Ambiguities in the construction of this improved twist vector are discussed and
fixed by imposing natural “gauge fixing” conditions, which also immediately lead to the
equivalence between the Geroch-Hansen and Thorne formalisms for such arbitrary sta-
tionary spacetimes.
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1 Introduction and summary

Multipole moments of a field encode the angular structure of the field as determined by its
sources; successive multipole moments can typically be read off from the angular dependence
of terms in an asymptotic radial expansion. This makes it a tricky business to define gravi-
tational multipoles in general relativity due to general coordinate invariance. Nevertheless,
Geroch [1,2] and Hansen [3] managed to define and calculate gravitational multipoles of sta-
tionary, asymptotically flat vacuum spacetimes in an elegant, manifestly coordinate-invariant
formalism. Thorne [4] developed a separate formalism for extracting coordinate-independent
multipoles from a stationary, vacuum metric, which relies on properties of a preferred family
of coordinate systems called asymptotically Cartesian and mass-centered (ACMC) coordinates.
These two formalisms were shown to give equivalent definitions of multipoles by Gürsel [5].

There are two families of gravitational multipole tensors in a stationary, vacuum spacetime:
the mass multipoles Ma1···aℓ and the current multipoles (or angular momentum multipoles)
Sa1···aℓ . For example, for Kerr, the multipole tensors reduce to single numbers Mℓ, Sℓ at each
order due to axisymmetry, and are given by Mℓ = M(−a2)ℓ and Sℓ = Ma(−a2)ℓ. The most
familiar multipoles are the mass M0 = M and angular momentum S1 = Ma.

The original Geroch-Hansen and Thorne formalisms, as well as the proof of their equiv-
alence, are all stated in asymptotically flat vacuum spacetimes.1 The Geroch-Hansen for-
malism was generalized to electrovacuum solutions (i.e. solutions to the Einstein-Maxwell
equations) [7–9], and scalar-tensor theories [10]. However, for a generic matter content, it
has never been shown how — or if — the Geroch-Hansen formalism can be generalized. In
addition, the equivalence between the Geroch-Hansen and Thorne formalisms has not been
generalized beyond vacuum spacetimes.

Since the extension of Geroch-Hansen to stationary spacetimes with arbitrary matter con-
tent was uncertain, it is also not clear if the entire concept of the two families of multipole
tensors Ma1···aℓ and Sa1···aℓ still applies in such theories. For example, it was suggested that
there could exist theories in which stationary solutions admit a third family of multipole ten-
sors [11].2

1The condition of asymptotic flatness can be relaxed to include a NUT parameter [6].
2Of course, it is clear that in the presence of matter, more information is needed besides these two metric

multipole families for the full metric reconstruction; a simple illustration of this is the Kerr and Kerr-Newman
black holes which both have identical gravitational multipoles Ma1 ···aℓ and Sa1 ···aℓ . Only in vacuum are the two
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Nevertheless, the usage of the multipoles Ma1···aℓ and Sa1···aℓ are ubiquitous in modern
gravitational physics, and especially in phenomenology. For example, multipoles have been
discussed for solutions of N = 2 supergravity theories (with many scalars and gauge fields)
[15–19], or solutions of higher-derivative gravity theories [20–22]. Multipoles have been
argued to be important, theory-independent characteristics of the metric in gravitational wave
phenomenology, as pioneered by Ryan [23,24] and developed and generalized in other works
[25–28]. Measuring the mass quadrupole is already an important facet of tests of deviations
from general relativity with current gravitational wave detections, see e.g. [29].

It is clear that there is a need to expand our formal definitions and understanding of grav-
itational multipoles beyond (electro)vacuum spacetimes, to include solutions in theories with
arbitrary matter content. That is precisely the goal of this paper.

1.1 Summary

This paper discusses how the Geroch-Hansen formalism can be generalized to stationary space-
times with arbitrary matter Lagrangians, in order to give a rigorous definition of gravitational
multipoles for any stationary spacetime. In addition, I show that the equivalence between the
Geroch-Hansen and Thorne multipole formalisms similarly generalizes to arbitrary stationary
spacetimes. The key to these proofs is the definition and properties of an “improved” twist
vector ωI

µ in the Geroch-Hansen formalism (Section 3.1), which can be formulated in terms
of the energy-momentum tensor featuring in Einstein’s equations.

For generic matter content, this paper shows (Section 3.2) that this improved twist vec-
tor can be mathematically defined as long as a certain closed two-form constructed from the
energy-momentum tensor on constant-time slices of the spacetime is also an exact form. Phys-
ically, this condition is that there are no spatial two-cycles over which there is a net flux of per-
pendicular (radial) momentum. This is a rather reasonable assumption for stationary space-
times. For example, for a single, stationary black hole with a spherical horizon, asymptotic
flatness ensures this condition is always satisfied so that the construction ofωI

µ is always guar-
anteed to hold.

The construction of the improved twist vector further contains an ambiguity or “gauge de-
pendence” which affects the (current) multipole moments. I discuss (Section 3.3) the “gauge
fixing” conditions that must be imposed upon the improved twist vector in order for the multi-
pole moments to be unambiguously defined. With the proposed “gauge fixing” conditions, the
equivalence of the Geroch-Hansen and Thorne multipoles also immediately follows for such
arbitrary spacetimes.

Along the way, I also exhibit (Section 3.1.1) the explicit form of the improved twist vector
ωI
µ for N = 2 supergravity with an arbitrary number of vector multiplets, which has not been

reported previously.
An assumption that must be made on the metric, beyond asymptotic flatness, is sufficient

smoothness at infinity (see Sections 2.1 and 2.3 for a more precise definition and discussion)
and the existence of an ACMC coordinate frame (see Section 2.2). Whereas these assumptions
seem rather intuitively mild, they do leave open the possibility that the Thorne ACMC formal-
ism is slightly more general, in the sense that metrics could exist where the Thorne ACMC
formalism applies but the Geroch-Hansen formalism does not. (This is discussed further in
Sections 3.4.3 and 3.4.4.)

The generalization presented here of Geroch-Hansen and Thorne to non-vacuum station-
ary spacetimes puts the definition of multipole moments and their usage in characterizing
arbitrary stationary spacetimes on firmer mathematical ground. These multipoles being well-
defined has been implicitly assumed in many (recent) works, but this paper is the first to show

multipole families sufficient information to reconstruct the metric unambiguously [12–14].
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that gravitational multipoles should indeed be unambiguous observables in the presence of
arbitrary matter fields.

An earlier partial discussion of generalizing the Geroch-Hansen formalism beyond vacuum
spacetimes was given in [30] in the context of so-called bumpy black holes. There — as is also
of the essence in this paper — the key fact allowing the generalization of the multipole formal-
ism was the sufficient fall-off of the energy-momentum tensor; however, for many such bumpy
black holes, only the first few multipole moments can be defined as the (improved) twist vector
cannot be defined at higher orders in 1/r. Correspondingly, the metric cannot be brought into
ACMC form beyond a certain order.3 Other attempts to generalize the notion of multipoles
include generalizing multipoles to de Sitter spacetimes [31] using the Noether charge formal-
ism of [11] which allows generalization of multipoles to non-stationary spacetimes. Perhaps
the most obvious direction for future work is to understand how also the Noether charge for-
malism of [11] generalizes to general non-vacuum spacetimes, and its relation with the the
(extended) Geroch-Hansen and Thorne formalisms discussed here.

Section 2 reviews the Geroch-Hansen and Thorne formalisms and the proof of their equiv-
alence, all for vacuum stationary spacetimes. In Section 3, I discuss the generalization to
non-vacuum spacetimes of the Geroch-Hansen formalism and multipole definitions by con-
structing the improved twist vector and discussing its properties, and I discuss the necessity
of the assumptions of the existence of an ACMC coordinate frame and the smoothness of the
metric at infinity.

2 Geroch-Hansen and Thorne formalisms in vacuum

This Section is a review of the formalisms of Geroch-Hansen [2,3] and Thorne [4] which both
define the gravitational multipoles Ma1···aℓ and Sa1···aℓ of a stationary, vacuum spacetime, as
well as the proof of their equivalence by Gürsel [5].

2.1 Geroch-Hansen multipoles

An elegant and manifestly coordinate-invariant formalism for defining multipoles of a vacuum
spacetime was developed by Geroch [2] for static spacetimes, and later expanded to stationary
spacetimes by Hansen [3]. (See also [32].)

Let ξ be the (asymptotically) timelike Killing vector of the four-dimensional stationary,
asymptotically flat spacetime with metric gµν; the scalar field λ is given by its norm:

λ= ξ2 . (1)

We can define a manifold M as the collection of the orbits of ξ — this is indeed a (three-
dimensional, Riemannian) manifold [33,34] and a natural metric on it is:

hαβ = gαβ −λ−1ξαξβ . (2)

The metric hαβ can also be used to project tensors from the four-dimensional spacetime to M;

note that ξµh
α

µ = 0. The natural covariant derivative D on M is simply [33,34]:

Dα = h
µ

α∇µ . (3)

3This was not shown in [30] but can easily be seen to be the case for the metrics discussed in [30] for which only
a few multipoles are found to be well-defined. The reason the ACMC expansion fails in these cases is essentially
because the energy-momentum tensor has an angular dependence that is “too strong” for its 1/r fall-off — e.g.
Tθφ ∼ cos3 θ sin3 θ/r5 (eq. (4.4) in [30]).
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Note that the correct way to project a tensor covariant derivative is DαTβγ = h
µ

αh
ν

βh
ρ

γ∇µTνρ.
We can also introduce a rescaled version of the three-dimensional metric, hab:

hab = −ξ2 gab + ξaξb . (4)

When we consider the metric hab, we will denote the corresponding three-dimensional man-
ifold M, so that there is no possible confusion with M which is endowed with the metric h.
The metric hab can also be understood as the three-dimensional metric coming from a (time-
like) Kaluza-Klein reduction over ξ. This amounts to introducing coordinates (t, x i) such that
locally ξ= ∂t and the metric takes the standard Kaluza-Klein form:

gµνd xµd xν = λ(d t +A)2 −λ−1hi jd x id x j . (5)

In such coordinates, we have:
hi j = −g00 gi j + g0i g0 j . (6)

We will always denote µ,ν, · · · for four-dimensional indices; a, b, · · · for the induced three-
dimensional indices on M; α,β , · · · for the three-dimensional indices on M, and finally i, j, · · ·
as well as a1, a2, · · · for the three-dimensional indices when we are using coordinates where
ξ = ∂t . Four-dimensional covariant derivatives will always be denoted with ∇µ and three-
dimensional ones by D (or D, D̃). Unfortunately, there are many kinds of indices to keep track
of, but fortunately it is usually clear from the context in what space (and with what metric)
we are working in.

We can introduce the twist vector ωµ, defined by:

ωµ = εµνρσξ
ν∇ρξσ . (7)

Equivalently in form notation, ω= ∗(ξ∧ dξ). The curl of this vector is given by:

∂[µων] = −εµνρσξρRσλξ
λ . (8)

Since the spacetime is a solution to the vacuum Einstein equations, Rµν = 0, this curl vanishes.
It follows that the twist vector is derivable from a potential ω:

∇µω=ωµ , (9)

which defines the scalar field ω. From the Kaluza-Klein point of view (5), the Kaluza-Klein
vector A with field strength F = dA is related to the twist vector ωµ in (7) as ωt = 0 and:

ωi = −λ2(∗3F)i , (10)

where ∗3 is the Hodge dual with respect to hi j . The vanishing of the curl of ωµ is then
simply the statement that the three-dimensional equation of motion for the gauge field F
is sourceless, d(∗3λ2F) = 0, and the scalar ω is the three-dimensional dual gauge potential,
−dω= F̃ = λ2 ∗3 F . The Bianchi identity for F translates to an “equation of motion” for ωi:

Di(λ
−2ωi) = 0 . (11)

The manifold M can be conformally transformed into a new three-manifold M̃ with met-
ric h̃ab by:

h̃ab = Ω
2hab , (12)

where Ω ∼ 1/r2 at spatial infinity (with r the distance from the object). In this way, spatial
infinity of M is brought to a single point Λ, which is a regular point on the compact mani-
fold M̃.
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The conformal factor Ω, together with (local) coordinates at Λ on M̃, must be chosen
such that the metric coefficients h̃ab and Ω are smooth (infinitely differentiable) functions
of the coordinates at Λ. For stationary, vacuum spacetimes it is known that this is always
possible, and that moreover one can choose coordinates such that h̃ab and Ω are analytic at
Λ [12–14, 35, 36]. (The demand of smoothness of h̃ab and Ω at Λ may seem like a trivial
demand, but it is not — see further in Section 3.4.)

Indeed, Geroch and Hansen used the existence of such a conformal factor Ω to provide a
definition of asymptotic flatness. The manifold M with metric hab (and thus the full stationary
four-dimensional spacetime gab) is asympotically flat if there exists a manifold M̃ with metric
h̃ab such that M̃ =M∪Λ where Λ is a single point; h̃ab = Ω2hab is a smooth metric on M̃;
and Ω|Λ = D̃aΩ|Λ = 0, D̃a D̃bΩ|Λ = 2h̃ab|Λ [3]. We will also always assume this particular
definition of asymptotic flatness.

We can now combine the scalar fields λ,ω into new scalar fields ΦM ,ΦJ on M:

ΦM =
1

4λ
(λ2 +ω2 − 1) , ΦJ =

1
2λ
ω , (13)

of which we can introduce their conformal transformed version:

Φ̃M ,J = Ω
−1/2ΦM ,J . (14)

These scalar fields are then used to define symmetric and trace-free (STF) tensors PM ,J
a1···aℓ

on

M̃ for every degree ℓ by PM ,J = Φ̃M ,J for ℓ= 0, and then the recursive definition:

PM ,J
a1···aℓ+1

=
�

D̃aℓ+1
PM ,J

a1···aℓ
−

1
2
ℓ(2ℓ− 1)R̃aℓaℓ+1

PM ,J
a1···aℓ−1

�STF

, (15)

where the STF superscript means to take the symmetric, trace-free part, and D̃, R̃ are quantities
defined on M̃. The gravitational multipoles (which are themselves constant STF tensors) are
then (finally) given by evaluating these tensors at the point Λ:4

Ma1···aℓ =
1

(2ℓ− 1)!!
PM

a1···al
(Λ) , Sa1···aℓ =

ℓ+ 1
2ℓ(2ℓ− 1)!!

PJ
a1···aℓ

(Λ) . (16)

Note that the presence of the term proportional to the Ricci tensor R̃ab in (15) is not
arbitrary. As Geroch showed, multipole moments transform among themselves in a specific
way under a change of origin [1]. In the conformally compactified spacetime M̃, such a change
of origin corresponds to a change of conformal factor, Ω→ Ω′. Geroch [2] showed that (15)
and (16) leads precisely to the correct transformation rules for the multipole moments only
when the Ricci tensor term is included.

Finally, the multipoles defined in (16) are clearly only well defined if the conformal scalars
Φ̃M ,J are smooth at Λ. As Hansen showed [3], their smoothness indeed follows directly from
the Einstein equations, suitably rewritten. In particular, the four-dimensional vacuum Einstein
equations are implied by following equations of motion for the scalars ΦM ,ΦJ and the metric
hab on M:

D2ΦM ,J −
R
8
ΦM ,J =

15
8
κ4ΦM ,J ,

Rab = 2 [(DaΦM )(DbΦM ) + (DaΦJ )(DbΦJ )− (Daψ)(Dbψ)] ,
(17)

4I always use the Thorne normalization for the multipoles; the actual normalization used by Geroch-Hansen
differs by precisely the prefactors in (16).
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where Da,Rab are quantities defined with hab on M, and the scalars κ,ψ are given by:

κ4 =
1

2λ2
[DaλDaλ+ DaωDaω] , (18)

ψ=
1

4λ
(λ2 +ω2 + 1) . (19)

The equations (17) are conformally invariant elliptic equations if ΦM ,J and κ have confor-
mal dimension −1/2 and ψ has dimension 0, i.e. that ΦM ,J transform precisely as (14). The
conformal invariance of the elliptic equations (17) implies that Φ̃M ,J will be smooth every-
where on M̃ — and in particular at Λ— if and only if the conformally transformed coefficient
κ̃ = Ω−1/2κ is smooth. From (18), the elliptic conformally invariant equation of motion for
κ can also be derived, leading eventually to a proof of smoothness of all quantities κ̃, Φ̃M ,J
involved in the transformed version of (17) at Λ, ensuring that the multipoles defined in Sec-
tion 2 are well-defined [3].

2.2 Thorne ACMC-coordinates and multipoles

While elegant and manifestly coordinate invariant, the Geroch-Hansen formalism of extracting
multipoles can be rather cumbersome in practice; for example, it requires a judicious choice
of the conformal factor Ω. Perhaps less elegant but much more practical is Thorne’s formalism
[4]. Thorne introduces “asymptotically Cartesian and mass-centered” (ACMC) coordinates for
asymptotically flat, stationary, and vacuum spacetimes. In such a coordinate system (t, x i),
the metric has the following asymptotic expansion:

g00 = −1+
2M

r
+
S0

r2
+
∞
∑

ℓ=2

1
rℓ+1

�

2(2ℓ− 1)!!
ℓ!

MAℓNAℓ +Sℓ−1

�

,

g0 j =
∞
∑

ℓ=1

1
rℓ+1

�

−
4ℓ(2ℓ− 1)!!
(ℓ+ 1)!

ε jkaℓSkAℓ−1
NAℓ +Sℓ−1

�

,

gi j = δi j +
∞
∑

ℓ=0

Sℓ
rℓ+1

,

(20)

where r =
p

(x1)2 + (x2)2 + (x3)2 is the usual radius, and we use the shorthands Aℓ = a1 · · · aℓ
and NAℓ = na1

· · ·naℓ , where ni = x i/r. Moreover, εi jk is the three-dimensional (flat) Levi-
Civita symbol, and we always sum over repeated i, j, · · · indices. The symbol Sℓ denotes an
arbitrary angular dependence on spherical harmonics of maximal order ℓ. In other words,
Sℓ can contain dependence on ni vectors through products such as NAℓ , NAℓ−1

, · · · but cannot
depend on NAℓ+1

or any other higher-order angular dependence, i.e.:

Sℓ =
∑

ℓ′≤ℓ

cAℓ′NAℓ′ , (21)

for arbitrary constant tensors cAℓ . Note that the symbol S is used as a placeholder; the Sℓ
quantities appearing in each component of the metric can be different.

The first crucial condition that an acceptable ACMC coordinate system satisfies is the angu-
lar dependence at every order in the asymptotic expansion. For example, for g00, the term at
order r−(ℓ+1) can have angular dependence on spherical harmonics up to the maximal order
ℓ, but not higher. A coordinate system which has a higher order angular dependence than
“allowed” is not ACMC.5 The second condition for an ACMC coordinate system — the “mass

5Thorne actually discusses a generalization of this condition by defining ACMC-N coordinates, where N is
roughly the first order r−(N+1) in the asymptotic expansion where the ACMC condition fails. In ACMC-N coordi-
nates, the multipoles up to order N + 1 can still be read off from the metric expansion.
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centered” part — is that there is no mass dipole tensor, Ma1
= 0, and equivalently the r−2 term

in g00 must be a constant.6

The simplicity of the ACMC coordinate expansion is that the multipole tensors MAℓ , SAℓ can
simply be read off from the r−(ℓ+1) terms in the expansions of g00 and g0 j . Different ACMC
coordinate systems may differ in the lower-order angular dependences Sℓ, but will always
agree on the values of the multipoles, as shown by Thorne [4].

2.3 Equivalence of Geroch-Hansen and Thorne formalisms

The equivalence of the Geroch-Hansen and Thorne formalisms was shown by Gürsel [5]. The
proof starts by assuming a coordinate system in which the metric is ACMC as in (20) and
also harmonic, ∂µ(

p
−g gµν) = 0. (For vacuum spacetimes, it is always possible to find such

a “canonical harmonic gauge” that is ACMC, see also the discussion in Section 3.4.) Then,
using these coordinates, the relevant Geroch-Hansen quantities are calculated on the induced
three-dimensional manifold M. This includes the induced metric hi j of (4) and its inverse:

hi j = δi j +
∞
∑

ℓ=2

Sℓ
rℓ+1

, hi j = δi j +
∞
∑

ℓ=2

Sℓ
rℓ+1

, (22)

which Gürsel shows is also automatically harmonic, ∂i(
p

h hi j) = 0. The scalar field λ is simply
g00 of (20). The twist form ωµ is given by ω0 = 0 and:

ωi = −
∞
∑

ℓ=1

�

4ℓ(2ℓ− 1)!!
(ℓ+ 1)!

εi jkε jmaℓSmAℓ−1
∂k

� NAℓ

rℓ+1

�

+
Sℓ−1

rℓ+1

�

(23)

(In (22), (23), and (25), I correct typos in eqs. (30)-(31), (34), and (49) of [5]). Integrating
this gives the scalar field potential ω (through ∇µω=ωµ):

ω= −
∞
∑

ℓ=1

1
rℓ+1

�

4ℓ(2ℓ− 1)!!
(ℓ+ 1)!

SAℓNAℓ +Sℓ−1

�

. (24)

To show that (24) follows from integrating (23), the identities in Appendix A are useful.
The scalar fields ΦM ,J can now easily be computed explicitly from λ in (20) and ω in

(24). Gürsel then chooses a conformal factor and altered coordinates x̃ i on the compactified
manifold M̃ in such a way that:

x̃ i =
x i

r2
+

1
r

∑

ℓ≤2

Sℓ−1

rℓ
, Ω=

1
r2

�

1+
∑

ℓ≤2

Sℓ−1

rℓ

�

, h̃ĩ j̃ = δĩ j̃ +
∑

ℓ≤2

r̃ℓSℓ−1 . (25)

It is critical to be able to choose the coordinates x̃ i and Ω such that Ω, h̃ĩ j̃ , Φ̃M ,J are analytic
functions of x̃ i and that (25) is satisfied. Crucially, this relies (besides various mathematical
lemmas that Gürsel proves) on a property of the Beig-Simon conformal factor [5,12–14]:

Ω(BS) =
1
2

B2
�

�

1+ 4Φ2
M + 4Φ2

J

�1/2 − 1
�

, (26)

where B is a constant chosen such that (D̃i D̃jΩ
(BS))(Λ) = 2h̃(BS)

i j (Λ). Specifically, for a choice

of coordinates x̃ i such that h̃(BS)
ĩ j̃

is harmonic, all of Ω(BS), h̃(BS)
ĩ j̃

, Φ̃(BS)
M ,J are analytic functions of

6It is easy to relax this mass-centered condition to have AC coordinates where the dipole is not necessarily zero.
The resulting multipoles M̃Aℓ , S̃Aℓ that are read off from a metric in AC coordinates are easily related to the true
multipoles MAℓ , SAℓ [17].
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x̃ i . This is shown by Gürsel (in the Appendix of [5]) by explicitly calculating the subleading
angular dependences in the ACMC expansion using the vacuum Einstein equations.

Finally, using (25), Gürsel computes the tensors PM ,J
Al

and the multipoles MAℓ , SAℓ . The
result, of course, is that the multipoles calculated in (16) precisely agree with those in the
ACMC expansion (20) [5].

3 Generalization to arbitrary spacetimes

This section explains how the Geroch-Hansen formalism as well as the proof of its equivalence
with the Thorne formalism can be generalized to arbitrary non-vacuum stationary spacetimes.

We will assume that the metric is governed by Einstein’s equations Rµν−(1/2)Rgµν = Tµν.
Note that this includes solutions in higher-derivative theories of gravity, as long as the solution
considered is perturbatively linear in the higher-derivative coupling [22]. We demand that
the matter content is such that the metric is asymptotically flat. Note that we are still using
the definition of asymptotic flatness using the existence of the conformally compactified three-
dimensional spacetime as introduced by Geroch and discussed in Section 2.1, even though
the spacetime is no longer vacuum. Of course, this condition of asymptotic flatness implicitly
demands specific asymptotic fall-offs for the energy momentum tensor through the Einstein
equations (see e.g. (69)).

We will assume that the metric (both the four-dimensional metric gµν and the three-
dimensional compactified metric h̃i j) are sufficiently smooth in the chosen (harmonic) coor-
dinates in order for the Geroch-Hansen formalism to apply; we will also assume the existence
of a (harmonic) ACMC coordinate system with an expansion of the form (20), especially in
Section 3.3.2. These assumptions of smoothness and the existence of ACMC coordinate sys-
tems intuitively seem rather mild, but are crucial for the application of the Geroch-Hansen
formalism; this is further discussed in Section 3.4.

We will first detail the general definition and construction of the improved twist vectorωI
µ

that allows for the definition of the twist scalar ω in non-vacuum spacetimes in Section 3.1.
Section 3.2 discusses the precise conditions necessary for the existence ofωI

µ. Section 3.3 then
deals with the non-uniqueness of the improved twist vectorωI

µ (as defined in Section 3.1) and
describes the necessary “gauge-fixing” to fix ωI

µ (and thus ω) so that the multipoles are well-
defined. Finally, Section 3.4 discusses the conditions for the existence of an ACMC coordinate
system.

3.1 Construction of the improved twist vector

An immediate problem with generalizing the Geroch-Hansen formalism to non-vacuum space-
times is the definition of the twist vector potential ω. Defining ωµ through (7) means its curl
(8) is proportional to the Ricci tensor:

ωµ = εµνρσξ
ν∇ρξσ , ∂[µων] = −εµνρσξρRσλξ

λ . (27)

For non-vacuum spacetimes with Rµν ̸= 0, this curl then does not vanish, and it is not possible
to define the scalar field potential ω as ∇µω=ωµ.

The solution to this conundrum lies with a definition of an “improvement” vectorωI
µ, such

that the “improved” total twist vector has vanishing curl, ∂[µω
(tot)
ν] = 0 with ω(tot)

µ =ωµ+ωI
µ;

then we can define the twist scalar ω through

∇µω=ω(tot)
µ , (28)
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and apply the Geroch-Hansen formalism again with the scalars λ and ω. I will discuss the
construction of this improvement vector for Einstein-Maxwell theory (which is known) and its
immediate extension to more general N = 2 STU supergravity theories (which was not yet
known) before discussing the fully general case for arbitrary matter.

3.1.1 Einstein-Maxwell and STU supergravities

The Ricci tensor does not vanish in solutions to Einstein-Maxwell theory, with Lagrangian
density:

L= R−
1
4

FµνFµν . (29)

However, it was shown [7] that for stationary solutions where the Maxwell field is also sta-
tionary, LξF = 0 (so that we can also take LξA = 0 — see Appendix B.1), one can define an
“improvement vector”ωI

µ from the electromagnetic field, for which the curl ofω(tot)
µ =ωµ+ωI

µ

vanishes and the scalar ω can be defined as ∇µω = ω(tot)
µ . It is convenient to first introduce

the dual field strength F̃ in the usual way, F̃ = ∗F , so:

F̃µν =
1
2
εµνρσFρσ . (30)

The Bianchi identity is dF = 0, and assures us that F can (locally) be written in terms of a
potential as F = dA. The equations of motion for the Maxwell field can be written as d F̃ = 0, so
the dual field F̃ can also be written in terms of a dual potential, F̃ = d Ã. Define the component
along ξ of both potentials as ρ, ρ̃, so:

ρ ≡ ξ · A , ρ̃ ≡ ξ · Ã . (31)

Of course, in coordinates where ξ= ∂t , these potentials ρ, ρ̃ correspond with the electrostatic
potentials At , Ãt . Note that ρ (resp. ρ̃) do not change under gauge transformations that
preserve LξA = 0 (resp. LξÃ = 0), so they are unambiguously well-defined quantities; see
Appendix B.2. The improvement vector is then given by [7]:

ωI
µ = −

1
2

�

ρ̃∇µρ −ρ∇µρ̃
�

, (32)

which in form notation is:

ωI = −
1
2
(ρ̃ dρ −ρ dρ̃) . (33)

Note that:
dωI = −dρ̃ ∧ dρ , (34)

which can be shown to be the necessary improvement vector such that ω(tot)
µ = ωµ + ωI

µ

satisfies dω(tot) = 0 [7].
The construction of the improved twist vector can be readily generalized to four-

dimensional N = 2 supergravity including an arbitrary number of vector multiplets; this
includes the STU supergravity theories — the arena where gravitational multipoles of many
black holes and horizonless, smooth microstate geometries have been considered [15–19]. We
start with the (bosonic) Lagrangian density:

L= R− 2gI J∂µz I∂ µz̄J −
1
4

IΛΣFΛµνFΣ,µν +
1
4

RΛΣFΛµν F̃Σ,µν , (35)

where F̃ = ∗F is the Hodge dual of F . There are n + 1 gauge fields FΛ = dAΛ,
Λ ∈ {0, 1,2, · · · , n} and n complex scalar fields z I , I = 1,2, · · · , n. The matrices I , R are sym-
metric, real (n+ 1)× (n+ 1) matrices which depend on the scalars — we will not need to be
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concerned with their precise form (but see e.g. appendix A in [19]). Note that the scalars are
not charged under the gauge fields. We assume that both the gauge fields and the scalars are
stationary, so LξF = Lξz I = 0. The improvement twist form ωI

µ is then given by:

ωI
µ ≡ −

1
2
(ρ̃Λ∇µρΛ −ρΛ∇µρ̃Λ) , (36)

or ωI = −(ρ̃ΛdρΛ−ρΛdρ̃Λ)/2, where ρΛ = ξµAΛµ is the component of the gauge fields along
ξ, and similarly ρ̃Λ = ξµÃΛ is the component of the dual gauge field along ξ; note that these
potentialsρΛ, ρ̃Λ are well-defined and not ambiguous under gauge transformations, analogous
to the Einstein-Maxwell case. The precise definition of the dual gauge fields and more details
on the derivation of (36) is given in Appendix B. As far as I know, this is the first presentation
of the Geroch-Hansen improvement vector (36) for N = 2 supergravity theories.

3.1.2 General matter

For general matter content, the status of the Geroch-Hansen multipole formalism was not clear
up until now. For example, if there could exist matter couplings for which no improvement
vector could be found, then this may even have implied the existence of a third family of
multipoles (besides the “usual” two MAℓ , SAℓ) [11]. Luckily, as I show here, it is relatively
simple to show that a stationary solution in a theory with any matter content allows for the
construction of an improvement vector ωI

µ, such that ω(tot)
µ =ωµ +ωI

µ is curl-less and allows
for the definition of the twist scalar ω.

We start by defining the vector Vµ using the energy-momentum tensor Tµν and the (pro-
jection) spatial metric (2) on M:

Vµ = h
µ

σTσνξν = Tµνξν −λ−1ξµξνTνρξρ . (37)

This vector is divergenceless,∇µVµ = 0, since ξ is Killing and energy-momentum is conserved
(∇µTµν = 0). Note that the energy-momentum tensor must also be stationary, LξTµν = 0,
since the energy-momentum tensor is related through the Einstein equations to derivatives
of the stationary metric. The Hodge dual of the one-form V is closed, d ∗ V = 0. Since also
Lξ(∗V) = 0 and using the form identity Lξ = diξ + iξd, we find that:

dW (2) = 0 , W (2) ≡ iξ ∗ V . (38)

So W (2) is a closed two-form, which moreover lives on M (or M) — this can be seen from
iξW (2) = 0 so that Wµν = h

α

µWαν.

We have seen that the form W (2) is certainly a closed two-form on the three-dimensional
manifold M; under mild and reasonable assumptions (see below!), it will also be an exact
form as well, meaning a one-form B(1) exists (on M) such that:

W (2) = dB(1) , (39)

where we denote d to denote the exterior derivative on M; or in components:

�

iξ ∗ V
�

µν
= εµνρσξ

ρVσ =W (2)
µν = 2∂[µB(1)

ν] . (40)

Note that we do not need to distinguish between indices on M or on the full four-dimensional
spacetime, as (40) is valid on either manifold. It follows almost immediately that our sought-
after improvement vector ωI

µ is simply:

ωI
µ = 2B(1)µ . (41)
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The curl of (41) is:

∂[µω
I
ν] = 2∂[µB(1)

ν] = εµνρσξ
ρVσ = εµνρσξ

ρTσλ ξ
λ. (42)

From (27), (42), and the Einstein equations Rµν−Rgµν/2= Tµν, it follows thatω(tot)
µ =ωµ +ω

I
µ

has vanishing curl and allows for the definition of the twist scalar ω through ∇µω=ω(tot)
µ .

Equations of motion for ΦM ,J It is interesting to report the alteration of the equations of
motion (17) in the presence of matter, which can be written as follows:

D2ΦM −
R
8
ΦM =

15
8
κ4ΦM +κ

′ΦM +σ ,

D2ΦJ −
R
8
ΦJ =

15
8
κ4ΦJ +κ

′ΦJ ,

Rab = 2 [(DaΦM )(DbΦM ) + (DaΦJ )(DbΦJ )− (Daψ)(Dbψ)]

+ (Tab − habT c
c ) +

1
2λ2

�

ωI
aω

I
b − 2ωI

(aDb)ω
�

,

(43)

where Tab = h
µ

a Tµνh
ν

b is the energy-momentum tensor projected onto three dimensions. The
new quantities κ′,σ are also determined by the energy-momentum tensor. We can first define
the following shorthands:

T1 =
Tt t

λ2
, T2 = T a

a , T3 =
1
λ2
ωI

a(ω
I ,a − 2Daω) , (44)

where Tt t is calculated in coordinates where ξ= ∂t . Then κ′,σ are given by:

κ′ = α1T1 +α2T2 +
15
16

T3 , (45)

σ = α3T1 +α4T2 −
λ

2
T3 . (46)

The Einstein equations only fix that:7

−λ2+α1

�

λ2 −ω2 − 1
�

+4λα3−ω2−1= −5λ2+4α2

�

λ2 −ω2 − 1
�

+16λα4−3ω2−3= 0 ,
(47)

but otherwise leave undetermined the coefficients α1−4, which are a priori functions of λ and
ω (although note that solutions to (47) exist where the αi are pure constants).

The linearized limit offers more insight into the unknowns αi . In this limit, assuming αi
remain finite, we must have:

(α3)lin = (α4)lin = −
1
2

, (48)

and then we also immediately retrieve the linearized version of (43):

D2ΦM = −
1
2

�

Tt t + T c
c

�

, D2ΦJ = 0 , Rab = Tab − habT c
c . (49)

So, in the linearized theory, ΦJ reduces to a source-less Newtonian potential, while ΦM reduces
to a Newtonian potential with source −(Tt t + T c

c )/2. In the slow-moving limit |Tab| ≪ |Tt t |,

7The four-dimensional Einstein equations decompose into the (t t), (ta), (ab) components. The (ta) compo-
nents are solved by the introduction of ωI

i ; the (ab) components are solved (unambiguously) by R′ab. The equa-
tions of motion for ΦM ,J are only needed to solve the scalar (t t) component of the Einstein equations, and so there
is necessarily some ambiguity with how the terms in this one equation are “divided” among the two equations
of motion for ΦM ,J . Note that we did already fix the coefficient of the term ∼ ωI

a in (45)-(46) to a reasonable
numerical coefficient (which was also explicitly verified for Einstein-Maxwell theory).
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the equation of motion for ΦM further reduces to the correct one for (half of) a Newtonian
gravitational potential with matter distribution Tt t .

The “equation of motion” (11) must still be valid for the twist vector ωa. Using (43), we
see that this implies the following equation of motion for ωI :

Da(λ
−2ωI ,a) = 2

ω

λ

(λ− 2α3)T1 + (λ− 2α4)T2

1+ω2 −λ2
, (50)

where we already used (47). Note that the linearized version of this equation is, using (48):

∂aω
I ,a = 0 . (51)

The Einstein equations thus do not completely determine the unknowns αi for an arbi-
trary unspecified energy-momentum tensor Tµν. Most likely, these will be further determined
when a particular matter theory is specified; e.g. Einstein-Maxwell theory gives the following
additional relation:

1+ 2α3λ+ 2α4λ+ω
2 − 3λ2 = 0 , (52)

but there is no a priori reason the same relation would hold for other theories of matter.
Finally, the modified equations (43) suggest that κ′, resp. σ, should be a scalar with con-

formal dimension −2, resp. −5/2. The smoothness of the conformally transformed Φ̃M ,J (and
thus the well-definedness of the multipole moments) then depends crucially on the smoothness
of the conformally transformed energy-momentum coefficients κ̃′ = Ω−2κ′, σ̃ = Ω−5/2σ.

There are two lingering concerns with the improved twist vector as introduced here. First
of all, when is B(1) in (39) well-defined, i.e. when is the closed two-form W (2) = iξ ∗ V also
exact on M? And secondly, B(1) as defined by W (2) = dB(1) is not unique as it can be shifted
by an exact form, B(1)→ B(1)+ dA(0), which leads to a shift in the twist scalar, ω→ω+2A(0),
which could a priori shift the resulting (current) multipole tensors; what is the correct “gauge”
choice for B(1)?8

I will address these two important issues in the following two subsections, including a
discussion on the conditions that the energy-momentum must satisfy in order for W (2) to
be exact, and the correct “gauge-fixing” conditions for B(1) that give rise to the correct twist
scalar ω. An immediate consequence of the analysis in Section 3.3.2 will be the equivalence
of the Geroch-Hansen and Thorne formalisms, as long as an ACMC expansion exists and the
prescribed “gauge-fixing” of B(1) is adhered to.

3.2 Conditions on exactness of W (2)

When is the closed two-form W (2) = iξ ∗ V also exact on M (or equivalently on M)? To gain
some insight in this question, I first discuss how W (2) and B(1) arise in Einstein-Maxwell theory,
before showing that B(1) is always exact under certain mild assumptions on the topology of M.

3.2.1 Einstein-Maxwell (and N = 2)

We can easily verify that W (2) is exact in Einstein-Maxwell theory. Indeed, we found that (34),
so:

dωI = −dρ̃ ∧ dρ = 2W (2) . (53)

Using that the energy-momentum tensor for Einstein-Maxwell can be expressed as:

Tµν =
1
4

�

F ρ
µ Fνρ + F̃ ρ

µ F̃νρ
�

, (54)

8I would like to thank the anonymous referees for stressing that this point required addressing, which in par-
ticular led to the writing of Section 3.3.
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and noting that dρ = iξF (i.e. (dρ)µ = ξνFνµ) and similarly dρ̃ = iξ F̃ , it is relatively straight-
forward to calculate that indeed:

iξ ∗ V = W (2) = −
1
2

dρ̃ ∧ dρ , (55)

where V is the vector defined through (37); we see that (55) is indeed consistent with (53)
and dωI = 2W (2), i.e. (41). For Einstein-Maxwell theory, then, the closed form W (2) can be
written as the wedge product of two exact one-forms, and so is guaranteed to be exact itself.
This means (39) always holds in Einstein-Maxwell theory, regardless of the particular solution
that is considered. (The same reasoning naturally applies for STU supergravity.)

3.2.2 General matter

Even without knowledge of the matter content of the theory, we can still provide a precise
prescription for when W (2) is exact. Since W (2) is defined on the three-dimensional Rieman-
nian (non-compact) manifold M, (co)homology tells us that W (2) is exact if and only if the
integral of W (2) over all non-trivial two-cycles of M vanishes. (This follows from Poincaré du-
ality, which holds as long as M is a manifold with a finite good cover, which is a mild technical
assumption that I will assume holds.9) Note that we are using results on the cohomology of
non-compact Riemannian manifolds, which is the reason why it was important that V in (37)
and W (2) in (38) live on the three-dimensional manifold M.

Consider any spacetime where there is a single (up to homology) non-trivial two-cycle in
M — for example, a (single) stationary black hole with spherical horizon topology is such a
geometry. The non-trivial two-cycle can be taken to be the two-sphere at spatial infinity. (This
is homologous to the horizon two-sphere.) On this two-sphere, we see that:
∫

S2(∞)
W (2) ∼
∫

S2(∞)

p

−g T0r dΩ2 ∼ lim
r→∞

∫

(r2T0r) sinθ dθdφ = 0 , (56)

where we introduced asymptotically spherical coordinates (r,θ ,φ). The last equality follows
from asymptotic flatness.10 Physically, this integral represents the total radial-pointing mo-
mentum flux through the sphere at infinity — which is clear should vanish in stationary space-
times. We conclude that in any stationary spacetime with a single (up to homology) non-trivial
two-cycle, W (2) will always be exact and (39) holds.

For a more general spacetime, (56) must still hold from asymptotic flatness; the integral
of W (2) will vanish on the two-sphere at infinity. If there any additional non-equivalent two-
cycles in the spacetime, there does not appear to be a generic argument ensuring that the
integral of W (2) on it will always vanish. However, it does seem unlikely that spacetimes
could exist containing two-cycles where the integral of W (2) over them does not vanish. In
such spacetimes, a similar calculation to (56) implies that there would be a non-zero flux of
radial (i.e. perpendicular to the two-cycle) momentum going through this two-cycle, which
seems irreconcilable with the stationarity of the spacetime.

9A good cover is an open covering of M where all non-empty finite intersections of opens in the cover are
diffeomorphic to Rn. Note that every manifold has a good cover, and a compact manifold always has a finite good
cover. So, the quoted results in cohomology are a natural generalization to non-compact manifolds of the more
familiar results of Poincaré duality for compact manifolds. See §5 in [37].

10The fall-off T0r ∼O(r−3) is a straightforward consequence of the ACMC expansion (20), the Einstein equations,
and (A.1). It can also be seen from the asymptotic Bondi expansion [38], where (using u= t−r) Tur ∼O(r−4), and
stationarity of the solution means that Tuu ∼O(r−3), so that Tt r ∼O(r−3). Without stationarity, Tuu ∼ Tt r ∼O(r−2)
would carry information of the Bondi news tensor, see (5.2.8) and (5.2.9) in [38].
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3.3 The improvement form “gauge” choice

The two-form W (2) = iξ ∗ V constructed above is unique and unambiguous, but the one-form
potential B(1) is only defined through its exterior derivative giving W (2):

dB(1) = W (2) . (57)

From the definition (57) alone, it appears that B(1) (and thusωI = 2B(1) is not unique and can
be shifted by a “gauge” transformation B(1) → B(1) + dA(0) for a scalar A(0); this would result
in the twist scalar being shifted as ω → ω+ 2A(0). Clearly, such a shift of twist scalar could
result in the multipole structure being altered — for example, choosing A(0) = −ω/2 would
result in all vanishing current multipoles.

There is thus a need to choose the “correct gauge” for B(1) in the construction ofωI . Since
the gravitational multipoles should be a property of the metric alone, a natural choice is to
chooseωI such that the resulting multipoles only depend on the metric and not on the energy-
momentum tensor (except, of course, indirectly as the metric solves the non-vacuum Einstein
equations. In the following two subsections, we will explore how to make this notion precise.
In the context of linearized gravity, we can find explicit coordinate-independent statements
that fix the gauge ofωI — in particular, (51) and the vanishing of all integrals (60); in the full
non-linear theory we can use ACMC coordinates of the metric to fix the gauge of ωI , i.e. (50)
and (66).

3.3.1 Linearized gravity

The “equation of motion” (50) forωI
µ was a simple consequence of the Bianchi identity dF = 0

for the Kaluza-Klein vector A in (5). The linearized version of (50) was (51), i.e.:

∂iω
I ,i = 0 , (58)

so ωI
i is a divergenceless vector on M at the linearized level.

The linearized divergencelessness of ωI
i can be used to define “multipole moments” of ωI

in a similar way that Geroch originally defined multipoles (in flat space) for a scalar field Φ
satisfying the Laplace equation D2Φ = 0. For such a scalar, the multipole moments can be
defined through integrals of the form [1]:

∫

K

�

ξa1 · · ·ξaℓDmDa1
· · ·DaℓΦ
�

dSm , (59)

where ξa is a conformal Killing vector on M, and K is a two-sphere at infinity; the integral
does not dependent of the precise choice of K due to D2Φ = 0. In particular, if all possible
integrals of the form (59) vanish, i.e. for all possible choices of conformal Killing vector ξ and
all possible integers ℓ ≥ 0, then all the multipole moments of Φ vanish — and in particular,
Φ= 0 is the only such solution to the Laplace equation.

In the case ofωI
i , we wish to demand that its multipole moments vanish, so that it does not

contribute to the metric multipoles ultimately derived from the potential ω. This is precisely
the requirement of the vanishing of all possible integrals of the form:

∫

K

�

ξa1 · · ·ξaℓDa1
· · ·Daℓω

I
m

�

dSm , (60)

which does not depend on the precise choice of K due to (58).
At the linearized gravity level, then, the “gauge” for ωI must be such that (58) is satisfied,

and such that ωI has zero multipoles on the flat three-dimensional background, i.e. all inte-
grals of the form (60) vanish. Note that this also precludes further “gauge” transformations
ωI →ωI + 2dA(0); from (58) it follows that A(0) must be harmonic, D2A(0) = 0; and from the
vanishing of (60) it follows that A(0) = 0 is the only possibly solution.
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Einstein-Maxwell It is interesting to apply the above reasoning on the Einstein-Maxwell
improvement vector (32), i.e.:

ωI
µ = −

1
2

�

ρ̃∇µρ −ρ∇µρ̃
�

. (61)

At the linearized level, the equations of motion for ρ, ρ̃ are simply:

∂ 2ρ = ∂ 2ρ̃ = 0 , (62)

so that indeed:
2∂i(ω

I ,i) = −ρ̃∂ 2ρ +ρ∂ 2ρ̃ = 0 . (63)

Moreover, since both ρ and ρ̃ are harmonic functions, it follows that ωI
i has vanishing multi-

poles; this is most easily seen using the expansion of e.g. ρ using (constant) STF tensors ρAℓ
as:

ρ =
∑

ℓ≥0

ρAℓ

NAℓ

r l+1
, (64)

and then using properties of multiplying two such expansions as discussed in Appendix A. We
conclude that (61) is indeed the unique possible Einstein-Maxell improvement vector under
our “gauge fixing” conditions, to linearized order.11

3.3.2 Using ACMC coordinates

It is not obvious to generalize the above, coordinate-invariant discussion involving the equation
of motion (50) to the non-linear level. However, fixing the gauge for ωI becomes very easy
when we assume and use the existence of a harmonic ACMC coordinate system in which its
expansion satisfies (20) (see Section 3.4 for a further discussion on this assumption).

In such an ACMC coordinate system, the twist vector ωµ will still be given by ω0 = 0 and
(23), which can be slightly rewritten as:

ωi = −
∞
∑

ℓ=1

�

4ℓ(2ℓ− 1)!!
(ℓ+ 1)!

SAℓ∂i

� NAℓ

rℓ+1

�

+
Sℓ−1

rℓ+1

�

. (65)

The condition that ωI
i does not contribute to the multipoles as derived from ω, through

∇µω = ωµ +ωI
µ, is precisely the statement that ωI

i will only contribute to the unimportant,

lower-order angular dependences Sℓ−1 at every order r−(ℓ+1) in the asymptotic expansion, and
will leave the multipole terms ∼ SAℓ unaltered, i.e. that we must have (with ωI

t = 0):

ωI
i =

∞
∑

ℓ=1

Sℓ−1

rℓ+1
. (66)

Indeed, when (66) holds, the integrated expression (24) still holds for the twist vector:

ω= −
∞
∑

ℓ=1

1
rℓ+1

�

4ℓ(2ℓ− 1)!!
(ℓ+ 1)!

SAℓNAℓ +Sℓ−1

�

. (67)

Using ω constructed in this way, the rest of the Gürsel proof of equivalence also immediately
applies; the Geroch-Hansen and Thorne formalisms will give identical multipole moments as
long as (66) holds (and as long as the metric is suitably smooth at infinity — see Section 3.4).

11It is interesting to note that (61) has been used in the literature [7–9, 39, 40] as “the correct improvement
vector” without any reference to the conditions mentioned here (nor other conditions that would fix its gauge),
even though there is then in principle no reason not to considerωI “gauge”-shifted by an arbitrary gradient instead.
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Existence of (66) We can easily show the existence of a “gauge” for ωI
i such that both

dωI = 2W (2) and (66) hold, using the properties of STF tensors listed in Appendix A. We start
by noting that ωI = 2B(1), in an ACMC coordinate system, satisfies B(1)0 = 0 and ∂t B

(1)
i = 0;

moreover, we have:
2∂[iB

(1)
j] = −εi jk0 gklRl0 , (68)

where we used the definition of B(1), the Einstein equations, and we ignored a term ∼ Rgi0
since this involves a product of (the non-constant part of) at least two metric tensors. Since
derivatives can never introduce higher-order angular dependence (i.e. it can never convert a
term Sℓ−1/rℓ+1 into Sℓ′/rℓ

′+1), it suffices to show that:

Ri0 =
∞
∑

ℓ=1

Sℓ−1

rℓ+1
, (69)

in order to conclude that a “gauge” exists where (66) holds. With a few somewhat tedious
calculations, and using that any product of two or more (non-constant parts of) metric tensors
will automatically give subleading angular dependences that satisfy (69), we find:

Ri0 = R j
i j0 = ∂ jΓ

j
i0 + S=

1
2
(∂i∂ j g0 j − (∂ j)

2 g0i) + S , (70)

where we used the shorthand S =
∑∞
ℓ=1 Sℓ−1/r

ℓ+1 to denote any subleading angular depen-
dence. Now, we use the explicit ACMC expansion (20) to calculate:

∂i∂ j g0 j − (∂ j)
2 g0i = −

∞
∑

ℓ=1

4ℓ(2ℓ− 1)!!
(ℓ+ 1)!

SkAℓ−1

�

ε jkaℓ∂ j∂i

� NAℓ

rℓ+1

�

− εikaℓ∂
2
j

� NAℓ

rℓ+1

��

+ S . (71)

Due to the derivatives, the highest possible angular dependence (at order r−(ℓ+3)) of the first
term in the square brackets must be proportional to the tensor [NAℓ i j]STF. This is symmetric
in the indices aℓ and j, but is contracted by the antisymmetric tensor ε jkaℓ — so we conclude
this term must be ∼ S. The second term’s highest angular dependence (at order r−(ℓ+3)) must
be proportional to [NAℓ j j]STF, but this vanishes due to the tensor’s tracelessness; so also this
term is ∼ S. We conclude that Ri0 = S, which is (69) as we needed to show.

Satisfying the equation of motion with (66) Finally, we can also discuss the “equation of
motion” (50) for ωI

i . The most general form of ωI
i (i.e. not necessarily satisfying (66)) is:

ωI
i =

∞
∑

ℓ=1

�

S̃iAℓ−1

NiAℓ−1

rℓ+1
+
Sℓ−1

rℓ+1

�

=
∞
∑

ℓ=1

�

S̃iAℓ−1
∂i

�

NAℓ−1

rℓ

�

+
Sℓ−1

rℓ+1

�

. (72)

At the linear level (as discussed above), (50) becomes ∂iω
I ,i = 0 and so the coefficients S̃Aℓ

are completely undetermined by this equation of motion; it follows that at the linear level it is
certainly possible to choose a “gauge” for ωI that satisfies (66). Note that all coefficients S̃Aℓ
vanishing in (72) is of course precisely equivalent to the statement that all multipole integrals
of the form (60) vanish, discussed above.

To generalize to non-linear order, we can use a similar argument as Thorne uses [4] (see
Section IX and X on p. 327-332 therein) to construct the general non-linear ACMC expres-
sions (20) from the linearized metric expressions hµν (which only features the multipole terms
∼ MAℓ , SAℓ). In essence, Thorne shows, in constructing (20) from the linearized metric, that
new leading order angular dependences (i.e. mixing with the multipole terms ∼ MAℓ , SAℓ) will
not appear at non-linear order as they could be re-interpreted as part of the linearized solu-
tion. Similarly, the only possible terms that appear in (72) order by order in h are of the form
∼ Sℓ−1/rℓ+1, since terms ∼ S̃Aℓ could be reinterpreted as part of the linearized solution (and
subsequently set to zero).
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3.4 The existence of the ACMC expansion and smoothness of the metric

In the Geroch-Hansen formalism (see Section 2.1), a crucial ingredient was the existence of
a conformal factor Ω and local coordinates x̂ i at the point Λ at (compactified) infinity such
that the metric coefficients were smooth when expressed in these coordinates. Gürsel’s proof of
the equivalence between the Geroch-Hansen and Thorne’s ACMC formalisms (see Section 2.3)
relies on the existence of harmonic ACMC coordinates and an appropriate choice of Ω and x̂ i

which are guaranteed to make the metric coefficients smooth at Λ.
For vacuum spacetimes, Thorne showed that the general form of the linearized metric

solution to Einstein’s equations near infinity in the de Donder gauge is non-linearly completed
in a way that satisfies the ACMC condition [4], so that de Donder coordinates are an explicit
example of a possible harmonic ACMC coordinate system. Moreover, the metric coefficients
gµν are analytic functions of the de Donder coordinates for Einstein metrics [41]. (Other
relevant smoothness properties of vacuum spacetime metrics at infinity are given in [5,12–14,
35,36], as also cited above in Sections 2.1 and 2.3.)

Beyond vacuum spacetimes, the smoothness of the metric at infinity is not guaranteed,
nor is the existence of a suitable ACMC coordinate system. In Sections 3.1-3.3, these were
then implicit assumptions underlying the applicability of the Geroch-Hansen formalism for
non-vacuum spacetimes and its equivalence to Thorne’s ACMC formalism. Although these
assumptions of smoothness at infinity and the existence of ACMC coordinates may seem like
mild conditions on the metric, in this Section we will discuss how they could conceivably fail
in a non-vacuum spacetime.

The existence of an ACMC coordinate system, and its relation to the canonical harmonic
gauge of [11] is discussed in Sections 3.4.1 and 3.4.2. The smoothness of the metric and
how this relates to the canonical harmonic gauge and ACMC expansions is then discussed in
Sections 3.4.3 and 3.4.4. The tentative conclusion is that the ACMC formalism can be more
general than the Geroch-Hansen formalism, since it is conceivable that metrics exist for which
ACMC coordinates can be found but are not sufficiently smooth at infinity to allow for the
Geroch-Hansen formalism to be applied.

3.4.1 Existence of ACMC coordinates

When is it possible to choose coordinates satisfying the ACMC condition (20) for a station-
ary, non-vacuum asymptotically flat metric? It is always possible for vacuum spacetimes, so
intuitively it should also be possible for non-vacuum spacetimes as well, as long as the pres-
ence of matter “does not touch the structure at infinity too much”. The discussion below in
Section 3.4.2 gives an indication of making this notion more precise, and gives a simple coun-
terexample by simply adding — by hand — a non-ACMC perturbation to flat space. However,
it is important to stress that this example non-ACMC metric is not a solution to any known
theory of gravity coupled to matter.12

Indeed, it seems that stationary solutions in most theories of (extended) gravity admit an
ACMC coordinate system. This includes black holes and other stationary solutions in theories
of (Einstein) gravity plus matter, such as the STU model discussed in Section 3.1.1 [17, 19];
black holes in higher-derivative-corrected gravity [22]; and black holes in scalar-tensor theo-
ries of gravity such as (Jordan-)Brans-Dicke [42–44].13 In fact, I am only aware of one example

12In fact, the counterexample in Section 3.4.2 is very similar to the multipole situation of bumpy black holes,
of which the multipoles were discussed in [30]; the bumpy deformations of Kerr are not a solution to any known
theory of gravity coupled to matter, nor can they be brought to ACMC-N form for arbitrary high N , as mentioned
in Section 1.1.

13Specifically, using a similar analysis as in [17, 19, 22], I have checked that the metric in eq. (2) (for Φ0 = 1,
necessary for asymptotic flatness) of [43] (which is the metric found in [42]) as well as the asymptotically flat
metric in eq. (0.39) of [44], can be brought to ACMC form. Note that for these stationary (J)DB solutions,
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of a stationary metric in a theory where the ACMC expansion fails. This is the so-called “disfor-
mal Kerr” metric [45,46], which is constructed from “stealth black hole” in a DHOST theory;
the disformal Kerr metric is [45]:

d̃s2 = −
�

1−
2M r
ρ2

�

d t2 −
4
p

1+ DMar sin2 θ

ρ2
d tdφ +

sin2 θ

ρ2

�

(r2 + a2)2 − a2∆ sin2 θ
�

dφ2

+
ρ2∆− 2M(1+ D)rD(a2 + r2)

∆2
dr2 − 2D

p

2M r(a2 + r2)
∆

d tdr +ρ2dθ2 ,

ρ2 = r2 + a2 cos2 θ , ∆= r2 + a2 − 2M(1+ D)r .
(73)

Here, D is a parameter indicating the “disformation” away from Kerr. It is easy to see that there
is no possible coordinate transformation that will make this metric ACMC to all orders. In fact,
for this metric, the metric components are no longer analytic functions of the coordinates (due
to the factor

p
r in gt r), which is a necessary condition for an ACMC coordinate system to exist;

see the discussion below in Sections 3.4.3 and 3.4.4.

3.4.2 The ACMC expansion and canonical harmonic gauge

In [11] (see section 2.3 therein), convenient expressions are given for the most general (not

necessarily vacuum) linearized trace-reversed metric perturbation γµν=η
µαηνβhαβ−

1
2
ηµνηαβhαβ

(where the metric is linearized as gµν = ηµν+hµν+O(h2)) in what was called the “canonical
harmonic gauge”, where ∂µγ

µν = 0:

γ00 = ∂AℓAAℓ ,

γ0i = ∂Aℓ−1
BiAℓ−1

+ ∂pAℓ−1
(εipqCqAℓ−1

) + ∂iAℓDAℓ ,

γi j = δi j∂AℓEAℓ + ∂Al−2
Fi jAℓ−2

+ ∂pAℓ−2
(εpq(iG j)Aℓ−2

)

+
�

∂ jAℓ−1
HiAℓ−1

+ ∂ jpAℓ−1
(εipqNqAℓ−1

)
�STF

+ ∂i jAℓKAℓ .

(74)

The functions AAℓ ,BAℓ ,CAℓ ,DAℓ ,EAℓ ,FAℓ ,GAℓ ,HAℓ ,NAℓ ,KAℓ are all STF tensors; the de Donder
gauge further fixes BAℓ ,EAℓ ,FAℓ ,GAℓ in terms of the others.

The remaining functions AAℓ ,CAℓ ,DAℓ ,HAℓ ,NAℓ ,KAℓ are in general functions of the re-
tarded time u = t − r and r, and their form depends on the details of the solutions. For
vacuum Einstein solutions, DAℓ = HAℓ = NAℓ = KAℓ = 0 [11], but for general non-vacuum
solutions this need not be true.

The existence of an ACMC expansion for this stationary metric is equivalent with the con-
dition that:

�

AAℓ ,CAℓ ,DAℓ ,HAℓ ,NAℓ ,KAℓ

	

=O
�

1
r

�

. (75)

Note that for a stationary metric, these functions can only be functions of r and not of u.
It was implied in [11] that bringing the metric to this canonical harmonic gauge is equiv-

alent to bringing it to a (harmonic) ACMC gauge. However, while true for vacuum solutions,
this is not necessarily true for non-vacuum solutions. A simple counter-example is to take:

γ00 =
cos3 θ

r2
, γ0i = γi j = 0 (76)

(Note that this implies h00 = γ00/2 and hi j = δi jγ00/2). It is quite easy to see that the
resulting metric gµν is not ACMC — indeed, it is impossible to find a coordinate transformation
to bring the metric into an ACMC frame! This is then an example of a metric that does not

Rµν∝ ∂µΦ∂νΦ for the BD scalar Φ and so trivially ωI = W (2) = 0 since ξ · ∂Φ= 0.
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admit an ACMC expansion. However, this metric is in canonical harmonic gauge. So the
canonical harmonic gauge and the ACMC expansion are not equivalent: an ACMC coordinate
system can fail to exist whereas the canonical harmonic gauge will always exist. It is important
to supplement the canonical harmonic gauge with the condition (75) in order for it to be
equivalent with the ACMC expansion — e.g. for (76), we have Ai jk ∼ r, which violates (75).
The condition (75) somehow formalizes the idea of “not touching the structure at infinity” at
all orders in 1/r that was mentioned above in Section 3.4.1.

Finally, from the above discussion, the condition (75) is clearly necessary and sufficient for
the existence of an ACMC expansion. For stationary metrics, it seems this is an extra condition
that needs to be imposed on the metric and in particular cannot be derived from asymptotic
flatness. However, we note that, for non-stationary metrics, the condition (75) actually be-
comes equivalent to the condition of asymptotic flatness, since the spatial derivatives in (74)
will also pick up contributions from the u-dependence of the STF tensors. This is a further
indication of the naturalness of the condition (75). A final indication for the naturalness of
this condition is given by demanding that the metric is smooth at infinity, discussed below.

3.4.3 Smoothness of the metric: Simple examples

The Geroch-Hansen formalism relies on the existence of a conformal factor Ω and local coordi-
nates around the point at infinity Λ such that the coefficients of the conformally compactified
metric h̃ab as well as Ω are smooth at Λ. For vacuum spacetimes, a choice of such coordinates
and Ω always exists [12–14,35,36]. However, for more general spacetimes, this existence can
be a subtle matter.14 To illustrate this, we consider a few simple (linearized) examples here.

Consider the linearized metric in canonical harmonic gauge (74) where only the tensors
AAℓ are non-zero, so that only γ00 ̸= 0 (and note that h00 = γ00/2 and hi j = δi jγ00/2).
Following the Geroch-Hansen procedure to linear order in h, we have:

ΦM =
1
4
γ00 =

1
4
∂AℓAAℓ , (77)

and it is easy to see that the induced three-dimensional metric hab is simply flat at the linearized
level. We can choose new coordinates x̂ i = x i/r2 and the conformal factor Ω = 1/r2 = r̂2

such that h̃i j = Ω2δi j and h̃î ĵ = δî ĵ — so the conformally compactified metric is again simply
flat, and the compactified point at infinity Λ is at the origin of the Cartesian x̂ i coordinates. In
particular, all of the mass multipoles will simply be given by:

MAℓ = [∂Âℓ
Φ̃M ]

STF
x̂ i=0 , (78)

where the derivatives are with respect to the coordinates x̂ i , and with Φ̃M=Ω
−1/2ΦM= rγ00/4.

In this setup, it is interesting to consider a few different choices for ΦM . For example,
consider:

ΦM = c0
1
r3
+ c2

P2(cosθ )
r3

, (79)

where Pn are the Legendre polynomials. The compactified scalar Φ̃M , expressed in the coordi-
nates x̂ i , is given by:

Φ̃M = c0( x̂
2 + ŷ2 + ẑ2)−

1
2

c2( x̂
2 + ŷ2 − 2ẑ2) . (80)

This is clearly smooth at Λ (i.e. x̂ i = 0). It results in a non-trivial mass quadrupole:

Mx x = My y = −c2 , Mzz = 2c2 . (81)

14Of course, for specific theories, it can be possible to prove similar smoothness conditions on the metric as for
vacuum spacetimes. For example, for stationary electrovacuum spacetimes, see [7].
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The coefficient c0 does not contribute to any multipoles.
On the other hand, we could instead take:

ΦM = c1
cosθ

r3
+ c3

P3(cosθ )
r3

, (82)

which gives:

Φ̃M = c1ẑ
Æ

x̂2 + ŷ2 + ẑ2 +
c3

2
ẑ

2ẑ2 − 3 x̂2 − 2 ŷ2

p

x̂2 + ŷ2 + ẑ2
. (83)

This is not a smooth function at Λ; indeed, if one were to calculate Mi j from (78), one would
find that ∂i∂ jΦ̃M is not continuous at Λ — so Mi j is not well-defined. In fact, this can be
generalized to any higher-order angular dependence as well: if we take ΦM ∼ Pℓ′(cosθ )/rℓ,
the resulting Φ̃M ∼ r̂−n (for n > 0), so that Φ̃M is not smooth at Λ (where r̂ = 0) and the
multipoles are not well defined.

3.4.4 Smoothness of the metric: General considerations

From the above example, it seems clear that if an ACMC coordinate system does not exist, the
Geroch-Hansen formalism will most likely also not be applicable. It will fail precisely because
it will be impossible to find a conformal factor Ω and coordinates x̂ i such that Ω and the
conformal metric h̃ab is smooth at Λ. In the language of the canonical harmonic gauge (74),
it seems that the fall-off (75) is a necessary condition in order for the metric to be smooth at
infinity. In the example (82) above with c3 ̸= 0, we had Ai jk ∼ log r, which is certainly not
smooth at r →∞.

However, the above example also shows us that the existence of an ACMC coordinate
system is not sufficient for the Geroch-Hansen multipoles to be well-defined. The example
(82) with c3 = 0 but c1 ̸= 0 certainly satisfies the ACMC condition, but nevertheless it is clear
that there is no choice of coordinates x̂ i and Ω that could make Φ̃M smooth at Λ.

It is conceivable that a metric allows for an ACMC expansion without the Geroch-Hansen
formalism being applicable (as the example (82) with c1 ̸= 0 shows). However, the converse
is not true: if the ACMC formalism is not applicable, then the above arguments suggest the
Geroch-Hansen formalism will fail as well, since the higher-order angular dependence in the
non-ACMC metric leads to an unavoidable non-smoothness of the (compactified) metric at
infinity. In this sense, then, the ACMC formalism can be more general than the Geroch-Hansen
one.

It would certainly be interesting to find an example of a solution to a theory which admits
an ACMC expansion but does not allow for the application of Geroch-Hansen; to the best of
my knowledge no such solution is currently known.
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A STF tensors

Symmetric and trace-free (STF) tensors and their properties are important in the multipole
story. Using ni = x i/r with r =

p

(x1)2 + (x2)2 + (x3)2, a first interesting property is:

∂Aℓ

�

1
r

�

= (−1)ℓ(2ℓ− 1)!!
[NAℓ]

STF

rℓ+1
. (A.1)

We used Aℓ = a1 · · · aℓ as a shorthand over ℓ indices, so that in particular ∂Aℓ = ∂a1
· · ·∂aℓ . The

shorthand NAℓ = na1
· · ·naℓ denotes a purely angular dependence involving (up to) the order

ℓ spherical harmonics. The superscript STF means to take the symmetric and trace-free part
only. For example, [nin j]STF = nin j − δi j/3. See [4] for the more general formulae. This
equation (A.1) is related to the general asymptotic expansion of a harmonic function V :

V =
∞
∑

ℓ=0

(2ℓ− 1)!!
ℓ!

MAℓNAℓ

rℓ+1
, (A.2)

where the multipole tensors MAℓ = [MAℓ]
STF are all symmetric and trace-free. Note that there

is a one-to-one correspondence between spherical harmonics of degree ℓ and STF tensors
[NAℓ]

STF, which we will not need here (see e.g. [4]).
The formula (A.1) has important consequences. For example, it implies that a spatial

derivative acting on a formula can never “increase” the angular dependence; schematically:

∂i

� NAℓ

rℓ+ℓ′

�

∼
NAℓ i

rℓ+ℓ′+1
+

Sℓ−1

rℓ+ℓ′+1
, (A.3)

where the∼ denotes that the equation is schematic and does not take into account the constant
of proportionality, and Sℓ−1 denotes angular dependence up to at most order ℓ− 1 spherical
harmonics (so NAℓ−1

, NAℓ−2
, · · · ). This fact (A.3) is very important, as it implies that derivatives

of the metric components in ACMC coordinates (20) will never “mix” the multipoles MAℓ , SAℓ
with the subleading angular parts Sℓ−1 in the leading angular dependence at every order ℓ (i.e.
NAℓ/rℓ+1).

Finally, the product of two non-constant parts of metric tensors in ACMC coordinates al-
ways give a “subleading angular” part. In other words:

�∞
∑

ℓ=1

MAℓNAℓ +Sℓ−1

rℓ+1

��∞
∑

ℓ=1

M ′AℓNAℓ +Sℓ−1

rℓ+1

�

=
∞
∑

ℓ=1

Sℓ−1

rℓ+1
. (A.4)

This is important in the considerations of Section 3.3.2.15

B Improvement twist vector for N = 2 supergravity

Here, I show that that the improvement twist vector (36) is indeed the correct improvement
twist vector for the Lagrangian (35).16 This means that, for (36) and (35), we have:

∂[µω
I
ν] = +εµνρσξ

ρTσλ ξ
λ . (B.1)

The total energy momentum tensor can be written as the sum of a gauge field contribution
and a scalar field contribution:

Tµν = T (F)µν + T (S)µν (B.2)

15See [19] where similar arguments were important in calculating multipoles.
16Note that I follow almost the same normalizations and conventions of (A.16) in [19], except that I flip the sign

of IΛΣ so that IΛΣ = δΛΣ is the vacuum flat space solution.
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(The piece T (F)µν is the piece that survives when the scalars are constants; T (S)µν is obtained when
all the gauge fields vanish).

The energy-momentum tensor of the scalar fields is:

T (S)µν = 4gI J∂µz I∂νz̄
J − 2gµνgI J∂ρz I∂ ρ z̄J . (B.3)

The scalar field respecting the symmetry ξ means that Lξz I = ξµ∂µz I = 0, and similarly for
z̄ I . In this case, we can calculate:

ξ[αT (S)β]γ ξ
γ = 4gI Jξ

[α∂ β]z I∂γz̄
Jξγ = 0 , (B.4)

where we note that the term in Tµν that is∝ gµν does not contribute and we used ξ ·∂ z̄ I = 0.
From (B.4), it follows that the scalars do not contribute to (B.1) — this is entirely analogous
to the case of a single, free scalar [11].

Turning to the gauge fields, we first define the dual field strength GΛ:

GΛµν ≡ −2
δL
δFΛµν

= IΛΣFΣµν − RΛΣ F̃Σµν . (B.5)

The equations of motion for the gauge fields are then simply:

∇µGµνΛ = 0 . (B.6)

Similarly to in pure Maxwell theory, the forms FΛ satisfy dFΛ = 0 due to the Bianchi identities.
The gauge field equations of motion are d ∗GΛ = 0. Defining the Hodge dual G̃Λ of GΛ in the
usual way, G̃Λ = ∗GΛ, it follows that we can always define a dual potential ÃΛ such that
G̃Λ = d ÃΛ.

The Lagrangian can be rewritten in the useful form:

L= R− 2gI J∂µz I∂ µz̄J −
1
4

FΛµνGµνΛ . (B.7)

From here, it is easy to see that we can write the energy-momentum tensor of the Maxwell
fields as:

T (F)µν =
1
2

�

FΛµρ G ρ
Λν −

1
4

gµνFΛρσG ρσ
Λ

�

. (B.8)

Note that T (F) = T (F)µµ = 0. Also, note that the expression FΛµρ G ρ
Λν is automatically sym-

metric in the indices (µν), which can be seen from using the definition of GΛ above and using
the Schouten identity on the term involving F̃ .

Having introduced GΛ in this way, it is clear that the calculation of the improvement twist
vectorωI is now analogous to the case of pure Maxwell theory. From (B.8), LξAΛ = LξÃΛ = 0,
and defining ρΛ = ξ ·AΛ and ρ̃Λ = ξ · ÃΛ, it is a straightforward calculation to show that (36)
indeed satisfies (B.1) for Tµν = T (F)µν .

B.1 Gauge potentials, field strengths, and symmetries

It is straightforward to show that a gauge field F = dA enjoys a Killing symmetry ξ, soLξF = 0,
if and only if it is possible to choose its gauge potential A to enjoy the same symmetry, so
LξA= 0.

If LξA = 0, and using Lξ = diξ+ iξd, we have iξF = −diξA. Then diξF = 0 and moreover
dF = 0 from the Bianchi identity, so that LξF = diξF + iξdF = 0.

To show the converse, say we have F such that LξF = 0, and a gauge potential A such
that F = dA. Then, using the Bianchi identity, we have diξF = 0 so that iξF = dρ for some
potential ρ. Allowing for a gauge transformation, A→ A′ = A+ dΛ, we have:

LξA′ = diξA+ iξF + diξdΛ= d(iξA+ρ + iξdΛ) . (B.9)
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From this, it is clear we can always find a gauge transformation parameterΛ such that LξA′=0.
This is perhaps easiest to see in a coordinate system where ξ = ∂x for some coordinate x , in
which we can write the equation:

iξA+ρ + iξdΛ= Ax +ρ + ∂xΛ= c , (B.10)

for some constant c; this equation can always be integrated for Λ so that LξA′ = 0 is satisfied.

B.2 Uniqueness of electrostatic potentials

Even though A is not gauge invariant — even after demanding LξA = 0 —, it is easy to
see that the electrostatic potential ρ = ξ · A is unique when preserving LξA = 0. Indeed,
consider a gauge transformation A → A′ = A + dα that preserves stationarity of the gauge
field, LξA = LξA′ = 0. Under this gauge transformation, ρ → ρ + ξ · dα = ρ + iξdα.
But from LξA′ = 0, it follow that 0 = Lξdα = diξdα, so that iξdα = c te. Moreover, this
constant c te must vanish at infinity (and thus everywhere).17 We conclude that ρ is invariant
under gauge transformations that preserve stationarity of the gauge field LξA= 0. Of course,
an entirely analogous reasoning applies to show that the dual potential ρ̃ is invariant under
gauge transformations that preserve stationarity of the dual gauge field, LξÃ= 0.
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