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Abstract

We consider area-preserving deformations of the plane, acting on electronic wave func-
tions through ‘quantomorphisms’ that change both the underlying metric and the confin-
ing potential. We show that adiabatic sequences of such transformations produce Berry
phases that can be written in closed form in terms of the many-body current and density,
even in the presence of interactions. For a large class of deformations that generalize
squeezing and shearing, the leading piece of the phase is a super-extensive Aharonov-
Bohm term (∝ N2 for N electrons) in the thermodynamic limit. Its gauge-invariant sub-
leading partner only measures the current, whose dominant contribution to the phase
stems from a jump at the edge in the limit of strong magnetic fields. This results in a
finite Berry curvature per unit area, reminiscent of the Hall viscosity. We show that the
latter is in fact included in our formalism, bypassing its standard derivation on a torus
and suggesting realistic experimental setups for its observation in quantum simulators.
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1 Introduction and motivation

One of the defining characteristics of topological phases of matter is their robustness under
smooth changes of the Hamiltonian. This notably includes geometric deformations of the sam-
ple supporting the system; after all, the low-energy field theory of any such phase is topologi-
cal, hence insensitive to bulk diffeomorphisms [1–3]. Crucially, topological invariance entails
the presence of chiral edge modes propagating along the boundary of the system—and these
generally do react to deformations in a non-trivial manner, one that actually determines the
low-energy physics [4–6]. It is therefore of interest to model the effects of geometric defor-
mations on topological phases of matter, including their boundary.

The present work provides just such an analysis in the paradigmatic case of the quantum
Hall (QH) effect [7,8]. In that context, the importance of diffeomorphisms has been recognized
since the early days, as the symplectic structure of position operators projected to the lowest
Landau level is essential both for magneto-rotons [9] and for the non-commutative approach
to QH physics [10]. The key actors for these lines of thought are area-preserving deforma-
tions spanning the Girvin-MacDonald-Platzmann algebra [9], i.e. a w1+∞ algebra [11–18]. In
particular, a staple of the seminal works [12–14] was the sketch of a relation between bulk
deformations and conformal transformations of gapless edge modes. We shall partly rely on
these insights to focus on area-preserving maps of physical interest, which we dub ‘edge de-
formations’ for reasons that will become clear below (see fig. 1).

An apparently unrelated class of deformations leads to the Hall viscosity [19, 20], also

Figure 1: An initially isotropic planar electron droplet deformed by a typical edge
deformation (applied using eq. (25) below). The shape of the edge changes in an
arbitrary manner while preserving the droplet’s area, even in the thermodynamic
limit.
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known as ‘odd viscosity’ [21] or ‘Lorentz shear modulus’ [22, 23], where a QH sample on a
torus reacts to adiabatic changes of the modular parameter. In that case, one reads off the
Berry curvature [24] associated with linear reparametrizations of the metric, finding an ex-
tensive result (proportional to the number N ≫ 1 of electrons) whose coefficient is quantized
and robust against disorder [25], similarly to the Hall conductance [26]. The resulting ge-
ometric response and relation to hydrodynamics has been studied in great detail in recent
years [27–37], but concrete observations seem elusive despite recent encouraging results in
graphene [38]. As we shall show here, the Hall viscosity can in fact be derived on a plane,
as a response to a simple subset of the aforementioned edge deformations. This bypasses the
complicated toroidal wave functions typically needed in standard computations of the Hall
viscosity, suggesting that the latter can be measured as a response to specific time-dependent
perturbations in tabletop quantum simulators [39–43].

Our approach is based on a one-body formalism and is then extended to many-body
droplets. Concretely, we consider area-preserving deformations of the metric and potential
in a Landau Hamiltonian (see eq. (37) below). This is done in a gauge-invariant and unitary
manner through so-called quantomorphisms that may be seen as local generalizations of mag-
netic translations [44, 45]. One can then choose a set of slow time-dependent deformations,
forcing the Hamiltonian to become time-dependent as well. Provided these deformations start
and end at the same configuration, and assuming the initial wave function was an energy
eigenstate, the final wave function coincides with the initial one up to an uninteresting dy-
namical phase and a crucial Berry phase [24, 46, 47]. The latter can in fact be written as a
fairly simple expectation value when parameter variations are unitary [48–50], as will be the
case here. Indeed, we show in this way that adiabatic quantomorphisms produce Berry phases
containing two separately gauge-invariant terms: the first is a contribution of the current that
appears universally whenever diffeomorphisms act on wave functions, and the second is an
Aharonov-Bohm (AB) phase weighted by the density [51]. Schematically,

Berry phase=

∫

d2x
�

current× velocity + density×AB phase
�

, (1)

where d2x = dx dy in Cartesian coordinate, and we refer to eq. (50) below for the detailed
expression. We stress that this can all be written in terms of explicit formulas, applying both
to one-body states and fully-fledged droplets of N ≫ 1 electrons, interacting or not.

While the computations that we carry out hold for any charged quantum state in the plane,
a regime of particular interest is that of weak potentials and strong magnetic fields. The one-
body energy spectrum then splits into familiar Landau levels, resulting in a many-body density
that is roughly constant and quantized in the bulk of a droplet, but zero outside. The many-
body current, on the other hand, is typically small in the bulk but jumps in a Gaussian fashion
near the edge (see fig. 10 below) [52,53]. This entails a distinction between the two pieces of
the Berry phase (1): the AB phase is sensitive to bulk deformations, while the current measures
both bulk and edge effects. We eventually illustrate this by restricting attention to a specific
class of planar diffeomorphisms, namely the aforementioned ‘edge deformations’ that contain,
in particular, all linear maps

�

x
y

�

7→
�

a b
c d

��

x
y

�

, with ad − bc = 1 . (2)

Acting on a Hall droplet with an adiabatic sequence of such transformations produces a Berry
phase (1) whose AB term is super-extensive (∝ N2 for N electrons). Discarding the latter
leaves out the gauge-invariant current contribution, which turns out to be extensive in the
limit of strong magnetic fields. The corresponding Berry curvature per unit area provides an
infinite-parameter analogue of the Hall viscosity, to which it reduces up to an overall factor 2
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�

�Ψ(gt)
�

gt

Deformations

Figure 2: A base space, consisting of all area-preserving planar deformations, sup-
ports a line bundle (so the fibers are complex planes). Given some deformation g, the
fiber above it is the ray of some quantum state |Ψ(g)〉. The bundle is endowed with
a Berry connection. Parallel transport of a quantum state along some closed loop gt
generally results in a net holonomy—a Berry phase. The latter measures an ‘area’
(highlighted in yellow) in the group of deformations. Adapted from [50, fig. 1].

in the case of linear maps (2) applied to integer QH states. For fractional QH states, the Berry
curvature that we find is again very similar to Hall viscosity, but differs from it by a factor 2ν
in terms of the filling fraction ν < 1. We eventually show that this mismatch is due to the fact
that the current term in (1) measures variations of both metric and potential, while the Hall
viscosity is defined as a response to metric variations alone. In this sense, there was no reason
for the Berry phase (1) to be related to viscosity at all; it just so happens that its extensive
piece is proportional to the Hall viscosity.1

As usual, statements on Berry phases can be phrased either in terms of finite holonomies
as in fig. 2, or in terms of local Berry curvatures and linear response.2 In the case at hand,
connections and curvatures are differential forms on an infinite-dimensional parameter space
consisting of all area-preserving diffeomorphisms, so they are somewhat unwieldy. We have
therefore chosen to present most of our results in terms of (conceptually simpler) finite phases,
omitting for now the detailed study of infinite-dimensional quantum geometry. The latter
will be crucial in practice, as the likeliest avenue to observe the effects of the phase (1) is to
study adiabatic linear response in quantum simulators, where the high degree of control over
microscopic details may help overcome issues of decoherence and disorder.

The remainder of this work is organized as follows. We begin with preliminary material in
sec. 2, showing first how unitary group actions give rise to parameter-dependent Hamiltonians,
then applying the idea to adiabatic diffeomorphisms of one-dimensional (1D) quantum wires.
Sec. 3 then introduces area-preserving diffeomorphisms and their unitary, gauge-invariant ac-
tion on charged wave functions through quantomorphisms [44, 45]. We present this concept
in detail and show that diffeomorphisms are represented in a projective manner, with a specific
central extension that we compute. Our key results are then derived in sec. 4. This includes
the formula (50) for Berry phases of 2D droplets subjected to adiabatic quantomorphisms,
its value (63) in the special case of edge deformations, and its application to QH states and

1The proportionality could have been guessed on geometric grounds: the parameter space for linear maps (2)
is a hyperbolic plane, which has a unique SL(2,R)-invariant Berry curvature up to normalization.

2Holonomies actually contain more information, as they also know about Berry phases along non-contractible
cycles—think e.g. of the two cycles of a flat torus. In the case of planar deformations of isotropic states, parameter
space is homotopic to a point so this subtlety plays no role.
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the Hall viscosity (79). Finally, the conclusion is devoted to a brief discussion of follow-ups,
while app. A provides a detailed review of the geometry of quantomorphisms in the case of
compact surfaces such as a torus, where subtleties occur that do not affect the plane. App. B
is a technical aside useful for sec. 4.

One last minor warning before we proceed: this work involves tools in differential geome-
try that are not reviewed in detail. We therefore refer to [54, chaps. 1–2] for useful background
on diffeomorphisms, vector fields and flows, and to [55, part I] or [56] for a pedagogical in-
troduction to Lie groups and symplectic geometry. Finally, various aspects of groups of dif-
feomorphisms, along with some symplectic geometry, are reviewed in [57, chaps. 5–6] in a
language that may be closer to the habits of physicists.

2 Adiabatic deformations of quantum wires

This section provides crucial background for later use. Specifically, we start by showing that
unitary Lie group actions give rise to geometric phases [24, 48] when some group elements
fail to commute with the Hamiltonian. This general fact is then applied to diffeomorphisms
of wave functions on a circle, with potential implications in quantum wires with persistent
currents [58–60]. The resulting phases mimic those produced by adiabatic conformal maps
[50], and will eventually appear on the edge of Hall droplets in sec. 4.4.

2.1 Berry phases from group actions

Here we sketch a general derivation of Berry phases associated with adiabatic group actions in
quantum mechanics, obtained upon seeing group elements as labels for parameter-dependent
Hamiltonians [50, sec. 2].

Parameter-dependence from group theory. We are interested in transformations that act
on a quantum system and span a continuous group. Accordingly, let G be a (connected) Lie
group acting on some Hilbert space H, with U[g] the unitary operator implementing the
transformation g ∈ G. We assume that the assignment g → U[g] furnishes a representation
of G, i.e. it is compatible with multiplication in G; for later convenience we choose a right
representation, so

U[ f ]U[g] = U[g f ] , (3)

for all f , g ∈ G. We stress that this is merely a matter of convention: it makes some formulas
look simpler, but it does not affect the physics.

Now let H be an ‘unperturbed’ Hamiltonian operator, and force the system to undergo a
transformation due to g ∈ G; imagine e.g. a spin in a rotating magnetic field, where g is a
rotation. Then the transformed Hamiltonian is

H[g] = U[g]H U[g]† . (4)

If some U[g]’s fail to commute with H, the operators H[g] are ‘deformed’ Hamiltonians, each
depending parametrically on a point g ∈ G. Their energy spectrum coincides with that of H:
|Ψ〉 ∈ H is an eigenstate of H if and only if U[g]|Ψ〉 is an eigenstate of H[g] with the same
eigenvalue. Importantly, eigenstates depend on g even though their energy does not, which
is ultimately why Berry phases appear in this context. Examples include the usual action of
3D rotations on a qubit [24, 61], or that of Lorentz boosts on relativistic states [62–64], or
conformal maps in conformal field theory [50]. Starting in sec. 3, G will consist of area-
preserving deformations acting on fermionic wave functions.
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Berry phases. Parameter-dependence entails the presence of geometric phases [24]. In the
case at hand, let gt be some path in G where t ∈ [0, T] is a time variable, giving rise to a time-
dependent Hamiltonian U[gt]H U[gt]†. The problem is to solve the ensuing Schrödinger
equation. If the path gt is traced very slowly,3 and provided the initial state vector is an
eigenstate of U[g0]H U[g0]† with isolated and non-degenerate energy,4 the solution of the
Schrödinger equation is itself a time-dependent energy eigenstate. In formulas, if |Ψ〉 is a
(time-independent) normalized eigenstate of H with energy E and the initial condition is
U[g0]|Ψ〉, then the adiabatic theorem [46,65] ensures that the state vector at time t is

|ψ(t)〉 ∼ exp

�

−i
E t
ħh
−
∫ t

0

dτ 〈Ψ|U[gτ]†∂τU[gτ]|Ψ〉
�

U[gt]|Ψ〉 , (5)

up to corrections that vanish as the rate of change of gt goes to zero. It follows that any closed
path gt in G, with period T say, leads to a final state vector |ψ(T )〉 ∼ eiθ |ψ(0)〉 that coincides
with the initial one up to a phase θ . The latter is the sum of a dynamical phase −ET/ħh and a
Berry phase [24,48,50]

BΨ[gt] = i

∮

dt 〈Ψ|U[gt]
†∂t U[gt]|Ψ〉= −

∮

dt 〈Ψ|u
�

(∂t gt)g
−1
t

�

|Ψ〉 , (6)

where the second equality follows from eq. (3) and u[v] is the Hermitian operator obtained
by differentiating U[g] at the identity, for any Lie algebra element v:

u[v]≡ −i∂ε
�

�

0 U[e
εv] , for any v ∈ g . (7)

The phase (6) is thus a functional of the curve gt and depends parametrically on the refer-
ence state |Ψ〉. Famous examples of this kind include the Berry phases of a spin in a rotating
magnetic field [24, 61] and Thomas precession [62–64], respectively stemming from unitary
rotations and Poincaré transformations.

Note that transformations gt that belong to the stabilizer of |Ψ〉 in the sense that
U[gt]|Ψ〉 ∝ |Ψ〉 give rise to vanishing phases (modulo 2π). As a result, the actual param-
eter space responsible for the phases (6) is not quite the group manifold G, but its quotient
by the stabilizer of H. For example, many of the cases treated below will involve isotropic
Hamiltonians whose eigenstates have definite angular momentum; these are invariant under
rotations, so their parameter space will be a quotient G/U(1). This subtlety is not crucial in
practice, as one can just compute Berry phases and notice, after the fact, that they vanish for
certain families of deformations (namely those in the stabilizer).

Central extensions. To conclude this general group-theoretic presentation, let us provide a
generalization of eq. (6) that will be of the utmost importance later. Suppose indeed that the
unitary operators U[g] furnish a projective representation of G, i.e. that eq. (3) is corrected by
a phase factor:

U[ f ]U[g] = eiC(g, f ) U[g f ] . (8)

Here C(g, f ) is some non-zero real function, known as a central extension, that satisfies the
following identity in order to preserve the associativity of composition:5

C(g, f ) +C(h, g f ) = C(h, g) +C(hg, f ) . (9)

3‘Slowly’ normally means that the operator norm of ħh∂t(U[gt]H U[gt]†) is much smaller than the square of the
energy gap separating |Ψ〉 from other eigenstates, but this is too strong since the adiabatic theorem even holds for
gapless ground states [65]. Indeed, this is the situation we’ll encounter in sec. 4.

4Non-degeneracy eventually implies that the Berry connection is Abelian; degenerate, non-Abelian cases are
not treated here. In sec. 4, the degeneracy of Landau levels will be lifted by a weak confining potential.

5Eq. (9) says that C is a two-cocycle in the sense of group cohomology; see e.g. [57, sec. 2.1] for details.
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Then the second equality in the phase (6) no longer holds, since it relied on the condition that
U be an exact representation (with C = 0 in (8)). Instead, when U is projective, the cocycle
C adds an extra term to the Berry phase: assuming without loss of generality that the neutral
element e ∈ G acts trivially (i.e. U(e) = I) so that C(e, g) = 0, one finds

BΨ[gt] = −
∮

dt 〈Ψ|u
�

(∂t gt)g
−1
t

�

|Ψ〉 −
∮

dt ∂τ
�

�

tC(gτ, g−1
t ) . (10)

Such an extension will affect area-preserving maps and their Berry phases in secs. 3–4, essen-
tially due to non-commuting magnetic translations.

2.2 Berry phases from circle deformations

Having reviewed how unitary group actions yield geometric phases, we now turn to the phases
produced by adiabatic deformations of a 1D quantum system on a circle. This is a key toy
model for future reference: first because the unitary action of quantomorphisms in sec. 3.3
is inspired by the 1D setup, and second because deformations of the edge of Hall droplets
effectively produce 1D phases in sec. 4.3. Note that our discussion of diffeomorphisms of the
circle is kept to a minimum; we refer e.g. to [57, sec. 6.1] for a smoother introduction. See
also [50] for a derivation of Berry phases nearly identical to the ones studied here, albeit in
the context of 1D conformal field theory.

Unitary circle diffeomorphisms. Consider a particle confined to a 1D ring, i.e. a unit circle
S1. Let its quantum state be described by a 2π-periodic wave function Ψ(ϕ) in the Hilbert
space L2(S1). We wish to deform this wave function via diffeomorphisms of the circle, i.e.
invertible smooth maps g : S1 → S1 whose inverse g−1 is also smooth. Since we are ulti-
mately interested in continuous paths of diffeomorphisms connected to the identity, we focus
on orientation-preserving maps; these span a group denoted Diff S1, with a ‘multiplication’
given by the composition of functions. The simplest way to describe such maps is to lift
them to R, yielding smooth functions g : R → R : ϕ 7→ g(ϕ) that satisfy g ′(ϕ) > 0 and
g(ϕ + 2π) = g(ϕ) + 2π for all ϕ.6 For instance, rotations lift to g(ϕ) = ϕ + θ ; more general
diffeomorphisms can be seen as ‘wiggly’ versions of rotations (see fig. 3). Other examples of
circle diffeomorphisms are given in eq. (21) below.

How should circle deformations act on wave functions? A straightforward answer is pro-
vided by the fact that wave functions are half-densities—their norm squared is a measure.
Thus a natural action of Diff S1 on L2(S1) is

�

U[g]Ψ
�

(ϕ)≡
Æ

g ′(ϕ)Ψ(g(ϕ)) , (11)

for any g ∈ Diff S1, where the square root on the right-hand side ensures unitarity.7 One
readily verifies that this is indeed a right representation in the sense of eq. (3). Intuitively, it
mimics the fact that deformations of wave functions are induced by those of a sample, and that
the local height of a wave function follows the local density of points; see fig. 4 for a cartoon.
One can also deduce from (11) the expression of Lie algebra operators (7) that implement
infinitesimal diffeomorphisms, i.e. vector fields. Indeed, writing g(ϕ) = ϕ + ε v(ϕ) with a
2π-periodic function v(ϕ) and expanding (11) up to first order in ε yields

u[v]Ψ
(7)
≡ −i lim

ε→0

1
ε (U[g]Ψ −Ψ) = −i

�

v(ϕ)∂ϕ +
1
2 v′(ϕ)
�

Ψ(ϕ) . (12)

6The lift is not unique since g(ϕ) and g(ϕ)+2πn describe the same diffeomorphism for any integer n, but this
ambiguity is harmless since it does not affect space-time derivatives of time-dependent deformations.

7Thus deformations are not mere changes of variables Ψ→ Ψ ◦ g, which would not be unitary!
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Figure 3: Several generic diffeomorphisms of the circle, all chosen to fix the origin so
that g(0) = 0 and g(2π) = 2π. Loosely speaking, any such function can be seen as
an identity map g(ϕ) = ϕ with extra ‘wiggles’ (The sharp version of this statement
is that any orientation-preserving diffeomorphism of the circle is homotopic to the
identity, i.e. that the group Diff S1 is connected).

This will be useful to apply the Berry phase formula (6) to time-dependent diffeomorphisms.
Note that the operator (12) can be recast in terms of standard position and momentum: using
p = −(iħh/R)∂ϕ on a circle of radius R, one has (ħh/R)u[v] = v(ϕ)p− i(ħh/2R)v′(ϕ), where the
second term is a ‘correction’ ensuring that u[v] is Hermitian. One can thus think of u[v] as a
position-dependent translation, as should indeed be the case for diffeomorphisms.

As explained in sec. 2.1, group elements acting on a reference Hamiltonian H produce
deformed Hamiltonians U[g]H U[g]† that depend parametrically on g. To develop some in-
tuition on the operators (11), it helps to ask how they actually modify a typical one-body
Hamiltonian with some 2π-periodic potential V ,

H =
p2

2M
+ V (ϕ) . (13)

Using the definition (11) and working again on a circle of radius R, one finds

U[g]H U[g]† = 1
2M

p
� 1

g ′(ϕ)2
�

p+ V
�

g(ϕ)
�

+
ħh2

4MR2 g ′(ϕ)2

�

g ′′′

g ′
−

5
2

� g ′′

g ′

�
2�

. (14)

Here the deformed kinetic term involves a non-Euclidean metric g ′(ϕ)2dϕ2, as was to be ex-
pected; the ordering makes it manifest that the Hamiltonian is Hermitian. As for the potential
term, it is deformed from ϕ to g(ϕ), but also receives an ‘anomalous’ potential contribution
reminiscent of the Schwarzian derivative [66, sec. 4].

By the way, note that the deformation-dependent Hamiltonians (14) suffice for the deriva-
tion of Berry phases, without requiring any digression on unitarity. An experimenter could
indeed start from the operators (14) and make gt slowly time-dependent, which would even-
tually lead to Berry phases in the usual way. It just so happens that the g-dependence of wave
functions is given, in the present case, by unitary operators (11).

Berry phases. Unitary diffeomorphisms (11) give rise to Hamiltonians (14) labelled para-
metrically by a point g in the Diff S1 group manifold. Following sec. 2.1, one may then study
Berry phases resulting from adiabatic, cyclic parameter variations. Let therefore gt be some
closed path in Diff S1, and pick some normalized eigenstate Ψ (with non-degenerate, isolated
energy) of the undeformed Hamiltonian H. Adiabatic time evolution takes the form (5) with
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Figure 4: A circle (black, dashed points) supports a wave function with initially uni-
form density (blue-yellow density plot). The circle is acted upon by two deforma-
tions: the first is a local contraction towards ϕ = 0 (i.e. a dilation away from ϕ = π);
the second is a rotation ϕ 7→ ϕ + θ . The effect on the wave function is manifest:
the initial contraction affects its density through the square root in (11), while the
rotation rigidly rotates its argument according to the change of argument in (11).
Note that the plot shows the procedure one would actually carry out in a lab: if g1,
g2 are the two transformations acting on the wave function according to eq. (11),
then the transformations of the circle that are actually shown are the inverses g−1

1
and g−1

2 . This minor subtlety is due to our choice to use right group representations
(3), and would not occur if all g ’s in eq. (11) were replaced by g−1’s.

a Berry phase (6) that now reads8

BΨ[gt] = i

∮

dt

∫ 2π

0

dϕ
q

g ′t(ϕ)Ψ
∗(gt(ϕ))∂t

�q

g ′t(ϕ)Ψ
�

gt(ϕ)
�

�

, (15)

owing to the definition (11). This can be made explicit by evaluating the time derivative,
integrating by parts and changing the integration variable from ϕ to gt(ϕ):

BΨ[gt] = −
M
ħh

∮

dt dϕ j(ϕ) ġt

�

g−1
t (ϕ)
�

, (16)

where the dot denotes a partial time derivative, M is the mass of the particle and j(ϕ) is the
probability current of Ψ,

j ≡
ħh

2Mi

�

Ψ∗∂ϕΨ −Ψ∂ϕΨ∗
�

. (17)

We stress that eq. (16) is an explicit functional of the path of deformations gt(ϕ), and oth-
erwise only depends on the state Ψ through its probability current j(ϕ). This is a general
phenomenon: as we confirm in sec. 4, Berry phases produced by adiabatic diffeomorphisms
measure currents of quantum states. Also note that eq. (16) was derived in a one-body context,
but it is equally valid in thermodynamically large systems provided the probability current j(ϕ)
is replaced by the many-body current density J(ϕ). One may therefore expect the phases (16),
or the corresponding linear response, to be observable in 1D quantum wires with persistent
currents [58–60].

Our argument so far was a brute-force computation based on eq. (15), but there exists
an equivalent derivation in terms of Lie-algebraic data, owing to the expression on the far
right-hand side of eq. (6). Indeed, the group Diff S1 consists of deformations of a circle, so its
algebra consists of infinitesimal diffeomorphisms ϕ 7→ ϕ+ v(ϕ), i.e. vector fields v(ϕ)∂ϕ. The
Lie algebra element (∂t gt)g−1

t in (6) is thus a time-dependent vector field

vt(ϕ)≡
∂
∂ τ gτ
�

g−1
t (ϕ)
��

�

τ=t = ġt

�

g−1
t (ϕ)
�

, (18)

8Throughout this work, holonomies and time integrals over periodic paths are written as
∮

. By contrast, spatial
integrals, be they on a circle or on a plane, are denoted by the symbol

∫

.
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whose flow is the one-parameter family of diffeomorphisms gt . In hydrodynamics, vt would
be the actual velocity vector field of the fluid flow gt (see e.g. [67]). Abstractly, one can also
think of (18) as the logarithmic time derivative of the path of deformations gt(ϕ). One can
then plug (18) in the Lie algebra operator (12) and use the Berry phase

BΨ[gt] = −
M
ħh

∮

dt dϕ j(ϕ) vt(ϕ) , (19)

to reproduce eq. (16). This reformulation is no surprise, but it will be worth keeping in mind
once we turn to 2D diffeomorphisms.

2.3 Examples of adiabatic deformations

Let us exhibit time-dependent diffeomorphisms whose Berry phase (16) takes a manageable
form. Consider first the simplest case, namely time-dependent rigid rotations gt(ϕ) = ϕ + θt
such that θT = θ0 + 2πn for some integer n. Then eq. (16) yields

BΨ[gt] = −2πn M
ħh

∫

dϕ j(ϕ) , (20)

so the Berry phase measures the average current. In particular, if Ψ = 1p
2π

eisϕ is a plane
wave with integer angular momentum s, then the current j(ϕ) = ħhs/(2πM) is a quantized
constant and the Berry phase vanishes modulo 2π. This was anticipated below eq. (7): the
parameter space of isotropic Hamiltonians is not quite the whole group of diffeomorphisms,
but its quotient Diff S1/S1.

Let us now turn to less elementary diffeomorphisms that will turn out to be crucial for the
Hall viscosity in sec. 4.4. Namely, given any positive integer k, consider a map ϕ 7→ g(ϕ)
defined by

eikg(ϕ) =
α eikϕ + β
β∗eikϕ +α∗

, with α,β ∈ C such that |α|2 − |β |2 = 1 . (21)

At fixed k, such maps span a group locally isomorphic to SL(2,R). A one-parameter family of
deformations of this kind is depicted in fig. 5; they stretch the circle by ‘pinching it’ at k equally
distributed points. What happens when these perturbations become time-dependent and act
on a rotation-invariant Hamiltonian? In that case the reference state Ψ is a plane wave and
the ensuing Berry phase takes the form (16) with constant j(ϕ) = ħhs/(2πM) in terms of an
integer angular momentum s. Making α,β time-dependent in (21) and using eq. (16) then
yields

BΨ[gt] = −
2s
k

∮

dt Im(α∗α̇− β∗β̇) . (22)

This is explicit, but not especially illuminating. A more striking result is obtained thanks to
SL(2,R) coordinates (λ,θ ,χ) defined via α≡ ei(χ+θ ) coshλ and β ≡ ei(χ−θ ) sinhλ, so that eq.
(22) becomes

BΨ[gt] = −
2s
k

∮

dt θ̇t cosh(2λt) , (23)

where the contribution of χt drops out since it merely corresponds to adiabatic rotations of an
isotropic system. Note that (23) is nothing but a hyperbolic area written in ‘polar coordinates’
(λ,θ ). Indeed, writing (23) as a surface integral B =

∫

F , the corresponding Berry curvature

F = −4s
k

sinh(2λ)dλ∧ dθ , (24)
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Figure 5: A sequence of diffeomorphisms (21) with k = 3 and
(α,β) = (coshλ, sinhλ), where λ ranges from 0 (innermost circle) to 0.6 (outermost
circle). The innermost circle consists of 50 uniformly distributed points; successive
deformations spoil uniformity, with manifest density maxima at ϕ = 0 mod 2π/3
and minima at ϕ = π/3 mod 2π/3. (Inner points are smaller than outer ones for
readability.) The same kind of deformation, albeit with k = 1, was used to produce
the contraction in fig. 4.

is proportional to the area form on a hyperbolic plane. This is no coincidence: it lies at the
root of both Thomas precession [50,63,64] and the Hall viscosity [19,20], so we return to it
in much greater detail in sec. 4.4, where (24) is recast in terms of coordinates τ1,τ2 on an
upper half-plane with area form dτ1 ∧ dτ2/τ

2
2.

3 Quantum area-preserving deformations

Having introduced unitary diffeomorphisms in 1D, we now turn to their area-preserving peers
in 2D. This is a key preliminary for Berry phases such as (6), which require detailed knowl-
edge of the operators U[g]. Accordingly, this section begins with basic facts on area-preserving
diffeomorphisms and their infinitesimal cousins, namely divergence-free (‘symplectic’) vector
fields [56]. We then turn to quantum mechanics and introduce gauge-invariant unitary defor-
mations of wave functions, which are found to coincide with the ‘quantomorphisms’ normally
encountered in geometric quantization [44,45]. Along the way, we show that the resulting rep-
resentation is projective in the sense of eq. (8). Numerous examples are provided throughout,
notably including ‘edge deformations’.

3.1 Area-preserving deformations

Area-preserving diffeomorphisms arise naturally in analytical mechanics and symplectic ge-
ometry [56, 68], where they are seen as symmetries of phase space. Here we list their basic
properties and provide a few examples for future reference, including the key notion of ‘edge
deformations’ inspired by [14]. The presentation is purely classical for now: all quantum
aspects are relegated to sec. 3.3.

Consider a planeR2 supporting a uniform magnetic field B; in Cartesian coordinates (x , y),
one can write B = B dx ∧ dy as an area form.9 By definition, a diffeomorphism of the plane
is an invertible smooth map g : R2 → R2 : x 7→ g (x) whose inverse g−1 is also smooth. We
say that g is area-preserving if it leaves the area form invariant (g ∗B = B), i.e. if it has unit

9Bold fonts are used for all objects that carry spatial indices: x is a position ‘vector’, g is a ‘vector’-valued map,
A is a one-form, B is a two-form, v is a vector field, etc.

11

https://scipost.org
https://scipost.org/SciPostPhys.15.4.159


SciPost Phys. 15, 159 (2023)

Figure 6: The action of an edge deformation (25) on a disk, with g(ϕ) of the form
(21) with k = 3, α = cosh(1/2) and β = sinh(1/2). The 1D diffeomorphism
ϕ 7→ g(ϕ) increases the angular density of points near ϕ = 0 mod 2π/3, and de-
creases it near ϕ = π/3 mod 2π/3 (recall fig. 5). This local change of angular
density is compensated by a modification of radial density: regions where angles
contract become radially dilated, and vice-versa.

Jacobian. The set of all such maps is a group under composition, denoted SDiffR2 for ‘special’
diffeomorphisms, analogously to the special linear groups SL(n).

Let us exhibit some classes of diffeomorphisms that will appear below. A first example,
somewhat trivial but still important, is given by translations x 7→ x+a; these form an (Abelian)
subgroup R2 of SDiffR2. Secondly, linear maps (2) have unit Jacobian by definition, and
thus span an SL(2,R) subgroup of area-preserving maps; this includes an SO(2) subgroup of
rotations around the origin. Finally, to introduce an even larger subset of deformations that
will later be crucial, consider standard polar coordinates (r,ϕ) defined by x + i y = r eiϕ and
ask what area-preserving diffeomorphisms g : (r,ϕ) 7→ g (r,ϕ) commute with all dilations
(r,ϕ) 7→ (λr,ϕ). The answer is provided by all maps of the form

g (r,ϕ) =
�

r
p

g ′(ϕ)
, g(ϕ)
�

, (25)

where g(ϕ) is any (orientation-preserving) circle diffeomorphism in the sense of sec. 2.2. One
readily verifies that (25) preserves the magnetic field B= B rdr ∧dϕ: intuitively, any angular
‘compression’ is compensated by an angle-dependent radial ‘dilation’ (and vice-versa), as in fig.
6. In fact, one can even make a stronger statement: all deformations (25) leave the symmetric
gauge potential A= B

2 r2dϕ invariant since r2dϕ = r2

g ′(ϕ)dg(ϕ).
We shall refer to maps of the form (25) as edge deformations because they deform the edge

of any isotropic quantum Hall droplet in a non-trivial but finite way regardless of its size (see
fig. 1 above). Indeed, (25) sends any circle r = cst on a deformed curve r = cst/

p

g ′(ϕ),
where g ′(ϕ) is independent of r. Note that edge deformations span a subgroup of SDiffR2,
isomorphic to the group Diff S1 of circle deformations introduced in sec. 2.2. In fact, their
algebra consists of vector fields on a circle, and is thus very similar to the Virasoro algebra
of edge modes studied in [14]. Finally, note that the linear maps (2) form a subset of the
group of edge deformations, since (2) can be written as (25) in polar coordinates, with a 1D
deformation g(ϕ) given by eq. (21) with k = 2 and

(α,β) =
�1

2(a− i b+ ic + d), 1
2(a+ i b+ ic − d)

�

. (26)

We will exploit this coincidence at the end of sec. 4.4.
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3.2 Divergence-free vector fields and incompressible flows

We have seen in eq. (6) that Berry phases produced by unitary transformations can be written
in terms of Lie-algebraic data as opposed to finite transformations. In the case of 1D deforma-
tions, we exhibited this with eq. (19), involving the 1D vector field (18) and its flow gt . It is
therefore essential to become acquainted with the 2D version of these objects, i.e. with the Lie
algebra of the group SDiffR2. This will often be useful below, not least because it allows us to
introduce stream functions that link the subject to hydrodynamics [69, sec. 4.2] and play an
important role in the quantum theory (sec. 3.3).

Divergence-free vector fields. The group SDiffR2 consists of deformations of a plane, so its
Lie algebra consists of infinitesimal diffeomorphisms x 7→ x+ v(x), i.e. vector fields v . In order
to preserve area, these vector fields need to be divergence-free: in terms of Lie derivatives of
the magnetic field, one has LvB = B∇i v

i = 0. For example, infinitesimal edge deformations
(25) are generated by vector fields of the form

v = v(ϕ)∂ϕ −
r
2

v′(ϕ)∂r (edge deformations), (27)

where v(ϕ) is any 2π-periodic function; it is immediate to verify that (27) is indeed diver-
gence-free. Note that the bracket of two divergence-free vector fields is itself divergence-free,
so such vector fields spans a Lie algebra, denoted SVectR2 in analogy with the notation SDiffR2

for the group of area-preserving deformations. This is actually a w1+∞ algebra [12] whose
Witt subalgebra is that of infinitesimal edge deformations (27).

As usual for Lie groups, the map that sends Lie algebra elements on group elements is the
exponential. The latter is really a flow in the case of diffeomorphism groups: given a vector
field vt , say even time-dependent, consider the time-dependent diffeomorphisms gt given by
the 2D version of the logarithmic derivative (18),

vt = ġt ◦ g−1
t . (28)

This family of diffeomorphisms is, by definition, the flow of vt ; in the special case where vt
is time-independent, gt is called the exponential of v . The analogy with hydrodynamics is
obvious: one can think of vt as the velocity vector field of an incompressible fluid, and gt is
the resulting flow so that gt(x) is the position at time t of a fluid parcel initially at x. Notions
of flow will also be important for Berry phases, owing to the appearance of the combination
(28) in eq. (10).
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Figure 7: The flow of a divergence-free vector field whose stream function is com-
pactly supported in the bulk of a disk (whose edge is represented by a dashed circle).
The density plot shows the stream function, whose level curves are streamlines of
the flow. It is clear that such compactly supported functions yield deformations that
only affect the bulk without touching the edge. Conversely, one may consider stream
functions that only vary in a neighbourhood of the edge, without affecting the bulk.

Stream functions. On the plane, any divergence-free vector field is determined by a stream
function10 F such that ιvB= dF , which in Cartesian coordinates boils down to

v i = 1
Bϵ

i j∂ j F , (29)

where ϵi j is antisymmetric and ϵx y ≡ +1. Returning to the examples of sec. 3.1, one would
find that the stream functions generating translations x 7→ x+a and linear transformations (2)
are respectively linear and quadratic in Cartesian coordinates (x , y), while the stream function
giving rise to the edge vector field (27) is

F(x) = −
1
2

Br2v(ϕ) (edge deformations) (30)

(One can always add an arbitrary additive constant to a stream function without affecting its
vector field; we choose this constant such that F(0) = 0 in (30)).

Stream functions highlight the abundance of area-preserving maps, and also provide pow-
erful methods to construct specific deformations with desired properties. For example, any
compactly supported stream function F produces a vector field v that vanishes outside of the
support; the corresponding flow is then obtained by integrating eq. (28), and consists of dif-
feomorphisms that only affect the support of F (see fig. 7).

As the terminology suggests, stream functions arise naturally in incompressible hydrody-
namics (see e.g. [69, sec. 4.2]). But they are also crucial in symplectic geometry, since any
area form in 2D is also a symplectic form: the magnetic field B = B dx ∧ dy says for instance
that the coordinates x and y are canonically conjugate, similarly to ‘position’ and ‘momentum’
in 1D mechanics. Stream functions in that context are more commonly called ‘Hamiltonian
functions’ [56], because the corresponding flow (28) coincides with Hamilton’s equations of
motion with the stream function seen as a Hamiltonian. However, we will steer clear of this

10This does not hold on any surface! For example, on a torus, translations obviously preserve area but admit no
single-valued stream function. The general statement is that all divergence-free vector fields on Σ admit a stream
function if and only if the first cohomology group H1(Σ) vanishes.
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terminology to avoid confusion with the actual Hamiltonian of a quantum system. The sym-
plectic perspective is nevertheless useful thanks to its connection with geometric quantiza-
tion [44, 45, 70, 71], to which we now turn in order to define unitary deformations of wave
functions.

3.3 Unitary deformations are quantomorphisms

Here we carry out the 2D version of the 1D construction presented around eqs. (11)–(14).
Accordingly, consider a non-relativistic particle with electric charge q in the plane R2, whose
space of states is the usual one-body Hilbert space L2(R2). We wish to act on that particle’s
wave functions with unitary area-preserving deformations. How to proceed?

The simplest way forward is to recall the 1D definition (11), realize that its square root
term involves the Jacobian of the deformation, and adapt the prescription to area-preserving
maps (whose Jacobian is trivial):

�

U[g ]Ψ
�

(x)
?
≡ Ψ
�

g (x)
�

. (31)

This defines a unitary map for any g ∈ SDiffR2 and it satisfies U[ f ] ◦ U[g ] = U[g ◦ f ], so it
suffices for neutral states or in the absence of magnetic fields. But it suffers from serious prob-
lems in the case of charged states: area-preserving maps generally change the vector potential
A (i.e. g ∗A ̸= A) even if they preserve the magnetic field B = dA. This implies, on a practical
level, that eq. (31) modifies the gauge in which the vector potential is written, preventing the
computation of Berry phases which rely on the possibility of comparing phases of wave func-
tions. From a more conceptual standpoint, eq. (31) is plainly ill-defined, in that it presupposes
a gauge choice: changing gauges according to Ψ̃(x)≡ eiqα(x)/ħhΨ(x) turns (31) into a different
representation U[g ]Ψ̃ = eiq(α−α◦g )/ħh Ψ̃ ◦ g . We now show how both of these issues can be
fixed; the solution involves quantomorphisms [44, 45], whose formulation in terms of fiber
bundles is reviewed in greater detail in app. A.

Compensating gauge transformations. We have just pointed out that the operator (31)
changes the gauge in which the potential A is written. To correct this, one can compensate the
change of gauge by a pure gauge transformation, i.e. define

�

U[g ]Ψ
�

(x)
?
≡ eiqα(x)/ħhΨ
�

g (x)
�

, (32)

with a function α(x) such that dα= A−g ∗A. Since the one-form A−g ∗A is closed, and because
R2 is simply connected, α exists globally11 and can be written as an integral

α(x) =

∫ x

x0

(A− g ∗A) . (33)

Here the integration contour is any curve going from some ‘origin’ x0 to x; its choice is irrel-
evant since A − g ∗A is closed. The reference point x0 is arbitrary and may even depend on
g , but changing it eventually yields the same operator up to a global phase, so the choice of
x0 is ultimately unimportant as well. In the following, we pick for simplicity the same origin
x0 = 0 for all deformations. With this choice, for instance, eq. (32) applied to any translation
g (x) = x+ a yields

�

U[g ]Ψ
�

(x)≡ eiqB(xay−yax )/2ħhΨ(x+ a) (translations), (34)

when A = B(x dy − y dx)/2 is written in symmetric gauge. This is nothing but a standard
(finite) magnetic translation.

11Similarly to footnote 10, this fails on surfaces with non-trivial first cohomology, e.g. the torus.
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At this stage we have fixed the main issue: the operators (32) no longer modify the gauge.
Furthermore, the definition (32) is nearly intrinsic: it takes the same form in all gauge choices,
up to a global phase. This last point can be further improved by choosing, for each map g , a
smooth path γg linking x0 to g (x0) (for instance a straight line). One can then add a global
phase to (32) and define

�

U[g ]Ψ
�

(x)≡ e
−iq
∫

γg
A/ħh

eiq
∫ x

x0
(A−g ∗A)/ħh

Ψ
�

g (x)
�

, (35)

which is our final prescription for the unitary action of area-preserving deformations on wave
functions with charge q. Most of the conclusions below ultimately stem from this elementary
definition. In the context of geometric quantization, operators (35) are known as prequantum
bundle automorphisms or quantomorphisms [44, 45]. We will adopt the latter terminology,
and refer again to app. A for a number of technical details, including the construction of
quantomorphisms on surfaces more general than the plane where integrals such as (33) may
be globally ill-defined. In particular, we show there that (35) is essentially the unique well-
defined unitary action of deformations on quantum wave functions.

Recall from sec. 2.2 that 1D diffeomorphisms provide geometry-dependent Hamiltonians
(14), involving a deformed metric and potential. In a similar way, the intuitive meaning of
quantomorphisms (35) becomes clearer upon acting with some U[g ] on the Hamiltonian

H =
1

2M
(p− qA)2 + V (x) , (36)

for an electron of mass M in some potential V . A brute force computation then yields

U[g ]H U[g ]† = 1
2M

�

p j − qA j(x)
�

G jk(x)
�

pk − qAk(x)
�

+ V
�

g (x)
�

, (37)

where G jk(x) is the (inverse) metric induced by the deformation g :

Gi j(x)≡
∂ gk

∂ x i

∂ gk

∂ x j
⇒ G i j(x) =

�

∂ (g−1)i

∂ yk

∂ (g−1) j

∂ yk

�

y=g (x)
. (38)

The operator (37) is thus the deformed Hamiltonian produced by g ∈ SDiffR2, again involving
a modified metric (δi j → G i j) and a deformed potential (V → V ◦ g ). Note that the vector
potential is unchanged in (37), as guaranteed by the compensating gauge transformation in
(32)–(35). We stress, in particular, that the transformation (38) in the case of linear maps
(2) reduces to the metric redefinitions considered in [19, eq. (10)] and [20, eq. (3.2)]: the
corresponding linear response will eventually coincide with the Hall viscosity.

Aharonov-Bohm extension. A natural question at this point is whether the assignment (35)
furnishes a representation of the group SDiffR2, since this is a necessary condition for the
arguments of sec. 2.1 to hold. To answer this, compose two operators of the form (35) and
find that they satisfy eq. (8) with a non-zero central extension

ħh
q
C(g , f ) =

∫

γg◦ f

A−
∫

g (γ f )
A−
∫

γg

A . (39)

One may view this as an AB phase, since it is the holonomy of A along the (curved) triangle
γg◦ f − g (γ f )− γg , i.e. the flux of the magnetic field through the surface enclosed by that tri-
angle: see fig. 8. In particular, it is manifestly gauge-invariant. Its presence states that the
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x0

g
�

f (x0)
�

g (x0)

γg◦ f

−g (γ f )

−γg

Figure 8: The central extension (39) measures the area of a triangle built out of the
paths γg◦ f , −g (γ f ) and −γg , i.e. the flux of the magnetic field through that triangle.
This is a special case of a standard geometric construction in group cohomology (see
e.g. [72, prop. 4.2] or [73] and references therein). In particular, the cocycle iden-
tity (9) that ensures associativity is automatically satisfied, since it amounts to the
statement that the area of a curved quadrilateral can be decomposed in two different
ways as the sum of the areas of two triangles.

operators (35) furnish a projective representation of the group of area-preserving maps, im-
plying that their Berry phases have inhomogeneous term as in eq. (10); this will be important
in sec. 4.2. Note that the cocycle (39) is non-trivial, i.e. it cannot be absorbed by a redefini-
tion of the operators U[g ]. One can prove this by noting that (39) reduces to the (obviously
non-trivial) Heisenberg central extension of R2 in the case of magnetic translations (34), as
we now confirm by investigating infinitesimal transformations.

Infinitesimal quantomorphisms. We will soon need to implement infinitesimal diffeomor-
phisms (i.e. divergence-free vector fields) in quantum mechanics. Accordingly, define Hermi-
tian operators u[v] ≡ −i∂ε

�

�

0 U[e
εv] as in eqs. (7) and (12), where v is any divergence-free

vector field. A direct computation starting from the main definition (35) then yields the dif-
ferential operator [74,75]

u[v] = −i∇v −
q
ħh

Fv , with Fv (x)≡
∫ x

x0

ιvB . (40)

Here the covariant derivative∇v = v j(∂ j−i q
ħhA j) is a local combination of mechanical momenta

p − qA, generating parallel transport of charged wave functions. As for Fv , it is a stream
function that originates from the compensating gauge transformation introduced in eq. (32).
Note that Fv is now fixed uniquely by the condition Fv (x0) = 0, so changing the reference point
x0 shifts the stream function Fv by an additive constant. This reflects the unavoidable global
phase ambiguity in the definition (35) of U[g ], which in turns allows the representation to be
projective.

Let us illustrate eq. (40) with the generators of deformations listed around eq. (30), taking
x0 = 0 for simplicity. As a first example, translations are generated by constant vector fields
v = ∂i , with linear stream functions F∂i

(x) = Bϵi j x
j . The corresponding Hermitian operator

(40),
ħhu[∂ j] = p j − qA j(x)− qBϵ jk xk (translations), (41)

is nothing but the gauge-invariant generator of magnetic translations, and could also have
been obtained by differentiating eq. (34) with respect to the components of the translation
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vector a. Note that this implies the usual Heisenberg commutator of magnetic translations,
�

ħhu[∂x],ħhu[∂y]
�

= −iħhqB, confirming that the cocycle (39) is non-trivial. This is actually a
special case of the commutator of arbitrary operators (40),

�

u[v],u[w ]
�

= iu
�

[v , w ]
�

− iq
ħh B(v , w )
�

�

x0
, (42)

which exhibits a ‘Lichnerowicz’ central charge due to the magnetic field (see e.g. [76]).
A less elementary example that will be essential below is provided by edge deformations

(25) whose vector fields (27) and stream functions (30) are uniquely labelled by a 1D vector
field v(ϕ)∂ϕ. Written in an arbitrary gauge, the corresponding Hermitian operators (40) are

u[v] = −iv(ϕ)∂ϕ + i
r
2

v′(ϕ)∂r −
q
ħh
〈A, v〉+

qB
2ħh

r2v(ϕ) (edge deformations), (43)

where 〈A, v〉 ≡ ιvA ≡ v iAi is the pairing of the one-form A with the vector field v , and the
stream function (30) is apparent on the right-hand side. This simplifies neatly in symmetric
gauge: when A= 1

2 Br2dϕ, the term 〈A, v〉 cancels the stream function and eq. (43) becomes

u[v] = −iv(ϕ)∂ϕ + i
r
2

v′(ϕ)∂r

�

edge deformations
in symmetric gauge

�

. (44)

At the level of the group SDiffR2, the simplification means that the action (35) of edge defor-
mations in symmetric gauge reduces to the naive ansatz (31). This will greatly simplify the
identification of the Hall viscosity in our setup.

4 Adiabatic deformations of planar droplets

This section presents our main result: explicit Berry phases due to adiabatic area-preserving
deformations acting unitarily on a many-body droplet of electrons in the plane. As a pre-
liminary, we first display such phases for electrically neutral states. Adding a magnetic field
produces the extension (39), and the associated one-body phases can be derived following eq.
(10). They turn out to consist of two terms, both separately gauge-invariant (see eq. (49)):
the first involves the current density, and the second is an Aharonov-Bohm (AB) phase sensi-
tive to the wave function’s probability density. Their many-body generalization thus involves
the current and density of the full droplet (see eq. (50)).

We eventually apply this to edge deformations (25) and observe that the AB phase is super-
extensive in the thermodynamic limit (∝ N2 for N ≫ 1 electrons). By contrast, the contri-
bution of the current is extensive at very strong magnetic fields, i.e. for genuine quantum Hall
(QH) droplets. The corresponding finite Berry curvature per unit area measures the jump of
the current at the edge and is reminiscent of the Hall viscosity, with which it coincides up to an
overall factor for both integer and fractional QH states. The Hall viscosity as such is recovered
by restricting attention to linear deformations of the plane that only affect the metric without
touching the potential.

4.1 Invitation: Berry phases of neutral states

To start, let us compute Berry phases due to deformations of neutral planar wave functions.
This preliminary will exhibit a key aspect of the charged case as well: geometric phases mea-
sure current. As in sec. 3, we only consider area-preserving maps, whose action on wave
functions is now given by eq. (31) since q = 0. This induces deformations of the metric and
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the one-body potential, as in eq. (37), albeit without vector potential A. The corresponding
infinitesimal operators are given by the q = 0 version of (40):

u[v] =
1
ħh

v j p j = −iv j∂ j , (45)

for any divergence-free vector field v . The commutators of these operators reproduce the Lie
bracket of vector fields, since eq. (42) holds with q = 0; there is no central extension.

Berry phases from deformations. Let Ψ be a normalized eigenfunction of some one-body
Hamiltonian (36) with q = 0, and assume its energy is isolated and non-degenerate; this is
typically the case if Ψ has sufficiently low energy and the one-body potential V (x) is bounded
from below, with few enough symmetries. Let gt be a closed curve of area-preserving maps,
and assume these deformations act adiabatically through eq. (31) on the system initially pre-
pared in the state Ψ. What is the ensuing Berry phase?

The answer is provided by the same derivation as in the 1D case of sec. 2.2, and can
similarly be obtained in two equivalent ways. The first is to use the middle formula of eq. (6),
write the scalar product as a planar integral, rely on the unitary action (31), and evaluate the
time derivative by brute force. The second relies on the Lie-algebraic expression on the far
right-hand side of eq. (6), using the infinitesimal operator (45) and replacing v by the time
derivative (28) of the transformations gt . Regardless of one’s approach, the result is

BΨ[gt] = −
M
ħh

∮

dt

∫

d2x



j , ġt ◦ g−1
t

�

= −
M
ħh

∮

dt

∫

d2x 〈 j , vt〉 , (46)

where j = ħh
2Mi (Ψ

∗dΨ − Ψ dΨ∗) is the probability current of Ψ, seen as a one-form so that
〈 j , v〉 ≡ ιv j = v i ji denotes the pairing of a one-form with a vector field, as in (43).

Similarly to the 1D case of sec. 2.2, we view the phase (46) as a functional of the path gt
that depends parametrically on the current j . In particular, states that carry no current have
vanishing Berry phases. The AB effect will change this conclusion for charged wave functions
in a magnetic field.

Many-body phases. The generalization of eq. (46) to fermionic or bosonic Fock spaces is
immediate. Indeed, suppose Ψ(x1,x2, ...,xN ) is the ground state wave function for N particles
governed by some many-body Hamiltonian, possibly including interactions. One can then act
on Ψ with an N -fold tensor product of time-dependent unitary deformations (35) and use the
adiabatic theorem [65,77] to obtain the resulting Berry phases just as we did in sec. 2.1. In the
case at hand, these phases are given by (46) up to the replacement of the one-body probability
current j by the many-body numerical current density J :

B[gt] = −
M
ħh

∮

dt d2x 〈J , ġ ◦ g−1〉 . (47)

One has e.g. J =
∑N

i=1 ji for free electrons, where the sum runs over occupied one-body states;
but we emphasize that the phase formula (47) holds even when the constituent particles in-
teract. In any case, the absence of current immediately implies B = 0.

4.2 Berry phases of charged states

Let us now ask how eqs. (46)–(47) generalize to charged droplets. As in sec. 4.1, we start by
deriving Berry phases for one-body wave functions; the many-body generalization will then
be straightforward. This time, however, we first exploit the intuition provided by eq. (46)
to avoid computations and ‘guess’ the form of deformational Berry phases for charged states.
This is then confirmed by a detailed proof based on the unitary action (35).
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Inferring Berry phases. The neutral result (46) exhibits the dependence of Berry phases on
current. A similar phenomenon may be anticipated for charged states, except that the current
in (46) must be replaced by its gauge-invariant version

j = ħh
2Mi

�

Ψ∗∇Ψ − (∇Ψ)∗Ψ
�

= ħh
2Mi

�

Ψ∗(d− iqA/ħh)Ψ −Ψ(d+ iqA/ħh)Ψ∗
�

. (48)

The integral (46) with a current given by (48) is thus gauge-invariant, but it cannot be the
complete Berry phase of a charged wave function acted upon by adiabatic deformations. In-
deed, the AB effect [51] yields phases that even affect states carrying no current (think for
instance of Gaussian wave functions subjected to time-dependent translations). One therefore
expects an additional AB contribution to the earlier phase (46), resulting in

BΨ[gt] = −
M
ħh

∮

dt d2x 〈 j , ġt ◦ g−1
t 〉+

q
ħh

∫

d2x |Ψ(x)|2
∮

g−1
t (x)

A , (49)

where the current j in (48) is gauge-invariant, as are the density |Ψ|2 and the holonomy of A
in the second term. This satisfies both the requirement that Berry phases measure current and
the existence of the AB effect. The presence of a holonomy along the inverse path g−1

t in (49)
is a technical detail that stems from the definition (35): had all g ’s on the right-hand side of
that formula been replaced by g−1’s, one would have obtained a left group action instead of a
right one, and the AB holonomy in (49) would have read

∮

gt (x)
A.

As before, the many-body generalization of (49) is straightforward since the action of
deformations on N -body wave functions is an N -fold tensor product of one-particle formulas
(35). The current j in (49) is thus replaced by its many-body analogue J and the probability
density |Ψ|2 is replaced by the many-body numerical density ρ(x), resulting in the many-body
Berry phase

B[gt] = −
M
ħh

∮

dt d2x 〈J , vt〉+
q
ħh

∫

d2xρ(x)

∮

g−1
t (x)

A . (50)

For free electrons, ρ(x) =
∑N

i=1 |Ψi(x)|2 is a sum over occupied one-body states, but we stress
again that eq. (50) holds even for interacting states. The key point is that (50) is only sensitive
to two universal properties of any charged droplet: its current and density.

Deriving Berry phases. Having guessed eq. (49), let us prove that it follows (in the sense of
sec. 2.1) from the action (35) of deformations on wave functions. The computation highlights
the geometric structure of quantomorphisms, but does not affect later applications; the hasty
reader may therefore skip it and go straight to sec. 4.3.

We have seen that eq. (35) furnishes a projective representation of area-preserving maps,
so the ensuing Berry phase is given by (10) and involves a term due to the extension (39):

BΨ[gt] =

∮

dt 〈Ψ|
�

i∇vt
+

q
ħh

Fvt

�

|Ψ〉 −
∮

dt ∂τC(gτ, g−1
t )
�

�

τ=t , (51)

where vt is the velocity vector field (28) and we used the expression (40) of the Lie algebra
operator u[vt]. The covariant derivative then gives rise to the gauge-invariant current (48),
which yields the first piece of the phase on the right-hand side of (49):

BΨ[gt] = −
M
ħh

∮

dt d2x 〈 j , vt〉+
q
ħh

∮

dt d2x |Ψ(x)|2 Fvt
(x)−
∮

dt ∂τC(gτ, g−1
t )
�

�

τ=t . (52)
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It only remains to evaluate the contribution of the stream function and that of the central
extension. We begin with the former and rely on its definition in (40) to write

∮

dt Fvt
(x) =

∮

dt

∫ x

x0

ιġt◦g−1
t

B=

∮

dt

∫ x

x0

ιġt◦g−1
t

�

(g−1
t )
∗B
�

, (53)

where the second equality was obtained thanks to the fact that gt ’s preserve area. Since the
integral from x0 to x is taken along any path connecting them, let γ(s) be such a path with
γ(0) = x0 and γ(1) = x, and unpack the integral on the far right-hand side of (53) as

∮

dt Fvt
(x) = −
∮ T

0

dt

∫ 1

0

ds Bg−1
t (γ(s))

� ∂

∂ t
g−1

t

�

γ(s)
�

,
∂

∂ s
g−1

t

�

γ(s)
�

�

. (54)

This is a surface integral of the magnetic field B, with two boundaries (see fig. 9): one is the
loop g−1

t (x), the other is g−1
t (x0). By Stokes’s theorem, eq. (54) can thus be recast as

∮

dt Fvt
(x) =

∮

g−1
t (x)

A−
∮

g−1
t (x0)

A , (55)

which is nearly what we need to match eq. (52) with the expected result (49): the only differ-
ence between the two now resides in the holonomy of A along g−1

t (x0) in the very last term
of eq. (55). This is where the cocycle (39) finally comes to the rescue: we saw in fig. 8 that it
measures the area of a (curved) triangle. In the case at hand, eq. (52) involves

ħh
q
C(gτ, g−1

t ) = •
•

•
x0

gτ(g−1
t (x0))

gτ(x0) = •
•

•

g−1
τ (x0)

g−1
t (x0)

x0 (56)

where the second equality was obtained by acting on the left triangle with the area-preserving
map g−1

τ . One can then differentiate C(gτ, g−1
t ) to find ∂τC(gτ, g−1

t ) = −
q
ħhAg−1

t (x0)(∂t g
−1
t (x0))

up to a total time derivative, since τ only appears in the argument of the vertex at g−1
τ (x0)

(see app. B for details). Integrating over t then cancels the holonomy along g−1
t (x0) in (55),

eventually reproducing the AB term in eq. (49).

4.3 Examples of adiabatic deformations

Eq. (50) is general and holds for any sequence of deformations, so we can apply it to specific
families of area-preserving maps (recall the examples of sec. 3.1). We first study translations
and rotations, then turn to edge deformations (25).

Translations and rotations. Consider a sequence of time-dependent translations x 7→ x+at
(with aT = a0). Their only effect on the Hamiltonian (37) is to shift the location of the
potential, since the kinetic term is translation-invariant. The same can be confirmed in terms
of Berry phases: the velocity vector field (28) of overall translations is a total derivative vt = ȧt ,
so the current integral in the Berry phase (50) vanishes and only the AB contribution remains.
The latter actually involves the same holonomy

∮

at
A at all positions (since translations do not

depend on x), and one eventually finds

B[gt] = −
q
ħh

N

∮

at

A (translations), (57)
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g−1
t (x)

x

g−1
t (γ(s))

g−1
t (x0)

x0

Figure 9: In (54), the magnetic field B= dA is integrated over a surface whose points
are g−1

t (γ(s)), where t ∈ [0, T], s ∈ [0,1] and γ(s) connects some origin x0 to the
point x. Each gt is a deformation and gT = g0; for definiteness, the cartoon on the
left assumes g0 = e the identity, but this is not required in the proof of eq. (50). The
time parameter t increases along the black curves, so the two black loops are the
images of g−1

t (x0) and g−1
t (x) for t ∈ [0, T]. The auxiliary parameter s increases

along red and green lines, which are thus paths of the form g−1
t (γ(s)) at fixed t. The

simplification of (54) in two holonomies (55) follows from the cancellation between
integrals over red and green curves when these curves overlap, which only leaves out
the two yellow surfaces with boundaries g−1

t (x0) and g−1
t (x).

where N =
∫

d2xρ(x) is the total number of particles in the droplet. This is manifestly just an
overall AB phase, as was to be expected (with a minus sign stemming from our choice of right
group actions in eqs. (3) and (35)). One can think of it as the response of a charged droplet
to adiabatic changes of the location of the potential well.

Another elementary example is provided by rotations around the origin: in that case, both
the current and the density generally contribute to the phase (50). Using polar coordinates
(r,ϕ), adiabatic rotations read ϕ 7→ ϕ + θt with θT = θ0 + 2πn for some integer n. The
AB holonomy of (50) thus reads

∮

A = −Br2πn and the velocity vector field (28) is purely
angular: ġt ◦ g−1

t = θ̇t ∂ϕ. Thus the current one-form

J = Jϕ(r,ϕ)dϕ + Jr(r,ϕ)dr , (58)

only contributes to the phase (50) through its angular component Jϕ, and the complete phase
(50) for adiabatic rotations reads

B[gt] = −2πn
M
ħh

∫

d2x
�

Jϕ(r,ϕ) +
ωc

2
r2ρ(r,ϕ)
�

(rotations), (59)

whereωc ≡ qB/M is the cyclotron frequency. This generalizes the 1D result (20) and similarly
measures the average current, save for an additional density contribution that now makes the
Berry phase super-extensive in the thermodynamic limit. Note that (59) vanishes modulo 2π
in the case of isotropic states. Indeed, for one-body wave functions, its integrand

Jϕ +
ωc

2
r2ρ =

ħh
2Mi

(Ψ∗∂ϕΨ −Ψ∂ϕΨ∗) , (60)

is just ħh/M times the angular momentum of Ψ. Since angular momentum is an integer, the
phase (59) is indeed an integer multiple of 2π. The same is true of isotropic states whose
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total angular momentum is the sum of angular momenta of their constituents. Following the
remark below eq. (7), this means that the parameter space for deformations of isotropic states
is (at most) a quotient space SDiffR2/S1.

Edge deformations. The maps (25) are ‘rotations with extra wiggles’, so their Berry phases
are expected to generalize eq. (59). Indeed, working once more in symmetric gauge
A= 1

2 Br2dϕ, the AB holonomy of eq. (50) is
∮

g−1
t (x)

A= −
Br2

2

∮

dt ġt

�

g−1
t (ϕ)
�

, (61)

where the gt(ϕ)’s are 1D diffeomorphisms that determine adiabatic edge deformations (25).
The appearance of a 1D Berry phase analogous to eq. (16) is thus manifest. As for the fluid
velocity (28) of edge deformations, it is a vector field of the form (27):

ġt ◦ g−1
t ≡ vt = ġ
�

g−1(ϕ)
�

∂ϕ −
r
2

�

ġ ◦ g−1
�′
(ϕ)∂r (edge deformations). (62)

It only remains to pair this with the current (58), yielding the Berry phase

B[gt] = −
M
ħh

∮

dt dϕ

∫ ∞

0

r dr
�

Jϕ(r,ϕ) +
r
2
∂ϕJr(r,ϕ) +

ωc

2
r2ρ(r,ϕ)
�

ġt

�

g−1
t (ϕ)
�

. (63)

Remarkably, this is just a phase (16) produced by 1D deformations gt(ϕ), now involving an
effective 1D current

Jeff(ϕ)≡
∫ ∞

0

r dr
�

Jϕ(r,ϕ) +
r
2
∂ϕJr(r,ϕ) +

ωc

2
r2ρ(r,ϕ)
�

. (64)

As in eq. (59), the contribution involving r2 × ρ in (64) is super-extensive in the thermody-
namic limit. Furthermore, a simplification occurs again in isotropic states, for which (64) is
ϕ-independent and reduces to ħh/M times angular momentum.

4.4 Deformations of Hall droplets and Hall viscosity

Eq. (50) holds for any charged many-body ground state in the plane, so we now apply it to QH
droplets with finite area consisting of N spin-polarized electrons. We begin by recalling basic
aspects of planar quantum mechanics in the limit of strong magnetic fields, then study the
Berry phases (50) due to edge deformations in the same regime. This leads to the observation
that the current contribution to the Berry phase is extensive in the thermodynamic limit. From
there we derive an analogue of the Hall viscosity thanks to the effective current (64), and
eventually show how Hall viscosity itself is recovered in our formalism.

Landau levels and QH droplets. Consider the Hamiltonian (36) with a strong magnetic field
B = dA and a weak confining potential V (x). For simplicity, we assume that V (x) is isotropic
and harmonic, so V (x) = κ r2/2 for some ‘stiffness’ κ≪ Mω2

c .12 Then the energy spectrum
can be organized in well-defined Landau levels, with non-degenerate energies thanks to the
presence of V (x). Indeed, in symmetric gauge A = 1

2 Br2dϕ, an orthonormal basis of energy
eigenstates with angular momentum ħh(m− n) in the nth level is given by wave functions that
involve generalized Laguerre polynomials La

n(x)≡
1
n! x−a(∂x − 1)n xn+a,

Ψn,m(x) =
1
p

2πℓ2

√

√ n!
m!

zm−n Lm−n
n (|z|2) e−|z|

2/2 . (65)

12We will eventually assume the stronger relation κ≪ Mω2
c/N for N ≫ 1 electrons: see eqs. (68)–(69).
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Figure 10: Left: Probability densities (blue) and current densities (yellow) of states
in the lowest Landau level, given by eqs. (65)–(66) with n = 0 and m = 1, 9,25, 49.
Right: Many-body density (blue) and many-body current (yellow) of isotropic
droplets, obtained by summing over the densities and currents of states (65) with
n= 0 and m ranging from 0 to N −1= 64. The density is constant for |z|≲

p
N and

drops to zero at the edge |z| ∼
p

N , while the current grows slowly following the gra-
dient of the potential in the bulk, then ‘jumps’ near the edge. Similar plots hold upon
including higher Landau levels, save for additional oscillations in both one-body and
many-body observables (see e.g. [79]).

Here ℓ2 ≡ ħh/
p

q2B2 + 4Mκ is the (squared) magnetic length corrected by harmonic effects
and z ≡ (x + i y)/

p
2ℓ2 is a dimensionless complex coordinate. At very strong magnetic fields,

the energy of each such state is ħhωcn + κℓ2
Bm up to an irrelevant additive constant, where

ℓB ≡
p

ħh/qB is the standard magnetic length. The corresponding (gauge-invariant) probability
current (48) is purely angular:

jn,m =
ħh
M

1
2πℓ2

|z|2m−2n

m!
n!
�

Lm−n
n (|z|2)
�2

e−|z|
2
�

m− n−
ℓ2

ℓ2
B

|z|2
�

dϕ . (66)

Both the density |Ψn,m(x)|2 and the current only depend on the radius |z|, and they are localized
around |z|=

p
m (see the left panel of fig. 10 for the lowest level, n= 0). Qualitatively similar

conclusions hold in weak anharmonic but isotropic traps [78].
Now let an isotropic QH droplet consist of N ≫ 1 occupied one-body states (65) with the

lowest possible energy. These states belong to some subset {0, 1, ...,ν − 1} of the available
Landau levels, where ν is some integer filling fraction. In the thermodynamic limit, each
level contains ∼ N/ν occupied states. Then the many-body density ρ(r) is nearly constant
and equal to ν/(2πℓ2) in the bulk, before falling sharply to zero near the edge located at
redge =
p

2ℓ2N/ν (see the right panel of fig. 10). The ground state thus forms a disk-shaped
droplet with roughly uniform density and area 2πℓ2N/ν. As for the purely angular current
J = Jϕ(r)dϕ, its bulk behaviour is determined by the Hall law Jϕ(r) =

ν
2πħh r∂ V/∂ r in terms

of the filling fraction ν, followed by a robust jump localized at the edge [52,53].

Adiabatic edge deformations. Knowing currents and densities, the Berry phases (50) fol-
low for any sequence of adiabatic deformations. For instance, bulk effects are exhibited by
deformations that only affect the interior of the droplet while fixing its boundary, as in fig.
7 above. Conversely, the jump of the current at the edge contributes to Berry phases pro-
duced by deformations gt that move the boundary without affecting the bulk. Let us now
focus on edge deformations (25), whose Berry phases are given in full generality by eq. (63).
As we saw around eq. (60), the resulting 1D current (64) is really just the total angular mo-
mentum (since the droplet is isotropic). The one-body phase (63) for a state (65) thus reads
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Bn,m[gt] = −(m− n)
∮ dt dϕ

2π ġt

�

g−1
t (ϕ)
�

, and its many-body generalization is

B[gt] = −L

∮

dt dϕ
2π

ġt

�

g−1
t (ϕ)
�

, with L ∼
N2

2ν
. (67)

Here L is the droplet’s total angular momentum when the occupied Landau levels are
n= 0,1, ...,ν− 1, each containing ∼ N/ν states in the thermodynamic limit. The Berry phase
is thus super-extensive, as observed below eq. (64). Note that this also holds for fractional QH
states; for example, the angular momentum of the Laughlin wave function [80] at filling ν is
L = N(N − 1)/(2ν), in accordance with (67).

A weakness of (67) is to completely miss the fact that the total Berry phase (50) contains
two pieces: a trivial AB phase, and an additional current term. It is instructive to compute
the current contribution separately, which we do now. Accordingly, consider the ‘truncated’
phase (46), with a gauge-invariant current (48). Applying this to a one-body state (65) yields
a phase (67) whose coefficient L is replaced by the integrated current

2πM
ħh

Jint ≡
2πM
ħh

∫ ∞

0

r dr jn,m(r)
(66)
=
�

1− ℓ
2

ℓ2
B

�

m−
�

1+ ℓ2

ℓ2
B

�

n− ℓ
2

ℓ2
B

. (68)

This still depends on m, so the corresponding sum over N ≫ 1 occupied states is super-
extensive. However, the m dependence is only due to the confining potential and disappears
in the limit of strong magnetic fields. Assuming indeed that κ ≪ Mω2

c/N , one may expand
ℓ2/ℓ2

B ∼ 1−2Mκ/q2B2 and find Jint = −
ħh

2πM (2n+1), which now only depends on the Landau
level n [53, eq. (18)]. The part of the many-body phase (67) due only to the current then
becomes extensive:

Bcurrent[gt]∼
ν−1
∑

n=0

(2n+ 1)
N/ν
∑

m=0

∮

dt dϕ
2π

ġt

�

g−1
t (ϕ)
�

∼ Nν

∮

dt dϕ
2π

ġt

�

g−1
t (ϕ)
�

. (69)

We stress that the final coefficient Nν appearing here is really an integral (64) of the (angular
component of the) many-body current:

Nν
2π
= −

M
ħh

∫ ∞

0

r dr Jϕ(r)
�

�

�

ν levels with N/ν≫ 1 states, infinite B
. (70)

Eq. (69) is thus an extensive Berry phase that is independent of the confining potential, and that
stems entirely from the many-body current at the edge. In fact, the same contribution would
have been obtained for any deformation of the droplet that acts non-trivially on its boundary,
regardless of the detailed form of edge deformations (25). The coefficient (70) is universal in
that sense; we now show that it is analogous to the Hall viscosity.

Hall viscosity revisited. The Berry phases (67) and (69) can obviously be applied to explicit
edge deformations, as done in sec. 2.3. In particular, the Berry curvature (24) holds for SL(2,R)
transformations (21), except that the one-body parameter s is now replaced by the angular
momentum m− n in (67), or by the coefficient −2n− 1 stemming from the strong magnetic
field limit of eq. (68). The Berry curvature for a single state (65) thus reads

Fn,m =
4
k sinh(2λ)dλ∧ dθ ×

¨

n−m , for full phase (67),

2n+ 1 , for pure current phase (69).
(71)

For k = 2, this is the curvature associated with linear deformations (2) whose Jacobian matrix
is constant in Cartesian coordinates. It is then customary [19, 20] to rewrite (71) in terms
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of a complex parameter τ = τ1 + iτ2 (with τ2 > 0). The latter can be read off from the
transformation of the Euclidean metric under linear maps (2), namely [19, eq. (10)]

(a dx + b dy)2 + (c dx + d dy)2 ≡
1
τ2

�

dx2 + 2τ1 dx dy + |τ|2 dy2
�

, (72)

which yields τ = (ab + cd + i)/(a2 + c2). The correspondence (26) between (a, b, c, d) and
the complex parameters (α,β) = (ei(χ+θ ) coshλ, ei(χ−θ ) sinhλ) then gives

τ=
− sin(2θ ) sinh(2λ) + i

cosh(2λ) + cos(2θ ) sinh(2λ)
, (73)

finally allowing us to rewrite the one-body Berry curvature (71) with k = 2 as

Fn,m = −
1
2

dτ1 ∧ dτ2

τ2
2

×

¨

n−m , for full phase (67),

2n+ 1 , for pure current phase (69).
(74)

Note that the ‘pure current’ result with its coefficient 2n+ 1= 2(n+ 1/2) reproduces [20, eq.
(3.21)] up to an overall factor 2. It is thus very close, but not quite identical, to the Berry
curvature normally associated with the Hall viscosity of a state in the nth Landau level.

This mild discrepancy is not a mere matter of conventions. To see its origin, suppose we
had limited the discussion to linear deformations (2) from the outset. We would then have
found that their unitary action (35) on wave functions reduces to eq. (31) in symmetric gauge,
since the latter is preserved by edge deformations (25). The corresponding Lie algebra oper-
ators (44) can be expressed as quadratic combinations of ladder operators a† = z̄/2− ∂ and
b = z̄/2+∂ , which respectively raise the Landau level and decrease angular momentum within
a level. Indeed, in terms of the coordinates (λ,θ ,χ) defined above eq. (23) and expanding
the group element (21) at k = 2 up to first order in λ and χ + θ , one has

u[v] =− iλe−iχ+iθ a2 + iλeiχ−iθ (a†)2 − (χ + θ )(a†a+ aa†)

− iλeiχ−iθ b2 + iλe−iχ+iθ (b†)2 + (χ + θ )(b† b+ bb†) ,
(75)

for infinitesimal linear deformations. The factorization between a and b pieces is manifest,
respectively corresponding to deformations of the metric and the (slowly varying) confining
potential in the Hamiltonian (36). The resulting Berry phase (49) consists of two parts, respec-
tively involving expectation values of 1

2(a
†a+ aa†) and 1

2(b
† b+ bb†). In fact, these two parts

can be read off from the first line in the curvature (74) upon writing n−m=(n+1/2)− (m+1/2):

Fn,m, full = −(n+ 1/2)1
2

dτ1 ∧ dτ2

τ2
2

︸ ︷︷ ︸

Fa

+(m+ 1/2)1
2

dτ1 ∧ dτ2

τ2
2

︸ ︷︷ ︸

Fb

. (76)

Here the term involving n + 1/2 coincides precisely with [20, eq. (3.21)]; there is no factor
2 mismatch, and it originates indeed from metric deformations produced by the a factors in
(75), as in [20, eqs. (3.4)–(3.9)]. Standard formulas for the Hall viscosity then follow in the
case of a droplet with ν filled levels: the sum over occupied states is the same as in (69) and
yields an extensive total Berry curvature Fa = −

1
4 Nνdτ1 ∧ dτ2/τ

2
2. In the regime of linear

response where τ is close to i, the coefficient of the area form dτ1 ∧ dτ2/τ
2
2 is interpreted as

an odd viscosity ηH times the droplet’s area 2πℓ2
BN/ν, with the standard value

ηH =
ħh
4

Nν×
ν

2πℓ2
BN
=
ħh
4
ν2

2πℓ2
B

(integer ν), (77)
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for integer QH states [19, 20]. We stress that this was obtained without ever referring to a
torus. In particular, the complex number (73) may label any point on the hyperbolic upper
half-plane, and should not be interpreted as a modular parameter [81].

At this point, it is natural to wonder if the separation between a and b pieces in (70) has
anything to do with the distinct contributions of current and density in the complete Berry
phase (50). Indeed, we saw in eq. (74) that the Berry curvature due only to the current
coincides with Fa in (76) up to an overall factor 2. This stems from the integrated current
(68): at strong magnetic fields, the coefficient n−m in the full curvature (74) splits as

n−m= (2n+ 1)
︸ ︷︷ ︸

current

− (m+ n+ 1)
︸ ︷︷ ︸

AB phase

, (78)

which is crucially not the same splitting as in (76). In particular, the fact that the AB phase itself
depends on the level n ultimatly gives rise to a current contribution whose Berry curvature is
twice the curvature of the Hall viscosity for integer QH states. One should not be concerned
about this discrepancy: there is no inherent reason for the current portion of the Berry phase
(50) to be related to viscosity. The fact that the corresponding Berry curvatures match up
to normalization is simply a result of the unique invariant area form on a hyperbolic plane
(recall footnote 1). Moreover, it is important to note that the distinction between a and b
contributions in the operator (75) is specific to linear deformations (2), and does not align
with the separation of (50) into current and AB contributions. Identifying the part of the
Berry phase (50) arising solely from metric deformations would pose a significant challenge,
extending beyond the scope of the quantomorphisms studied here.

Fractional QH states. It is tempting to speculate that this factor 2 is a robust property of QH
droplets. Indeed, we have just shown that it holds for integer QH states at strong magnetic
fields, allowing us to view the Hall viscosity (77) as a quantized integral

ηH = − lim
ν levels,

N→∞, B→∞

ν

2πℓ2
BN
×
πM

2

∫ ∞

0

r dr Jϕ(r) (integer ν), (79)

that measures the net jump of the current’s ‘stream function’ across the edge of a droplet. A
similar integral can be devised for fractional QH states, up to a key change in normalization
that spoils the aforementioned factor 2. Let us exhibit this in the case of a Laughlin wave
function for N electrons at filling ν: then the full Berry phase for edge deformations is given
by (67) with a total angular momentum L = N(N − 1)/(2ν). The latter may be seen as an
integral of current and density through the ‘effective current’ (64), namely

N(N − 1)
2ν

=
M
ħh

∫

d2x Jϕ(r) +
1

ℓ2
B

∫

d2x r2ρ(r) , (80)

where nothing depends on ϕ since the Laughlin wave function is isotropic. Here the current
integral is the coefficient of the ‘pure current’ Berry phase meant to mimic the Hall viscosity,
and its value can be obtained by plugging in eq. (80) the sum rule [82, eq. (B.2)]

∫

d2x r2ρ(r) = ℓ2
BN

N − 1+ 2ν
ν

, (81)

for the density of an isotropic Coulomb gas. Much more generally, the current integral is
readily found in second quantization for any isotropic QH droplet:
∫ ∞

0

r dr Jϕ(r) =
∞
∑

m=0

〈a†
mam〉
∫ ∞

0

r dr j0,m(r)
(68)∼ −

ħh
2πM

∞
∑

m=0

〈a†
mam〉= −

ħhN
2πM

, (82)
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where a†
m is the Fock space creation operator for the mth isotropic orbital in the lowest Landau

level, and 〈...〉 denotes expectation values in the droplet’s ground state. One thus concludes
that the ‘pure current’ Berry curvature associated with linear quantomorphisms of any isotropic
QH droplet is

Fcurrent = −
N
2

dτ1 ∧ dτ2

τ2
2

, (83)

where we use the same hyperbolic coordinates as in eq. (74). This crucially differs from the
Berry curvature associated with metric deformations of Laughlin states on a torus, calculated
in [23,27] thanks to the plasma analogy and given by

Fmetric = −
N
4ν

dτ1 ∧ dτ2

τ2
2

, with viscosity ηH =
ħh
4

1

2πℓ2
B

(integer 1/ν). (84)

Relating this value of viscosity to an integral of the current requires that the right-hand side
of (79) be divided by ν; eq. (79) is thus not valid for fractional QH states, as announced. Put
differently, the coefficient of the pure current curvature (83) divided by twice the droplet’s
area predicts a Hall viscosity ħhν/(8πℓ2

B), which differs from (84) by a factor ν.13 A similar
mismatch occurs, for instance, in the Moore-Read state at filling ν= 1/2, where [27] predicts
a Hall viscosity ηH =

3
2ħh/(8πℓ

2
B) while our universal current Berry curvature (83) predicts

a response coefficient 1
2ħh/(8πℓ

2
B). As previously mentioned, this mismatch is not contradic-

tory; instead, it is a distinguishing characteristic. Hall viscosity is a specific response to pure
metric deformations, whereas our current Berry curvature (83) encompasses both metric and
potential perturbations, and fundamentally does not have any direct connection to viscosity.

5 Conclusion and outlook

This work was devoted to the Berry phases produced by adiabatic deformations of many-body
quantum systems. Specifically, we implemented deformations through unitary operators in the
Hilbert space, allowing us to interpret the resulting changes of the Hamiltonian (4) as actual
deformations of the metric and potential (recall eqs. (14) and (37)).

In all cases, the response involves the current of the state being acted upon. We applied this
to 1D quantum wires with potentially observable consequences, reproducing in an elementary
way the Berry phases (16) studied in [50] in conformal field theory. But a much more promi-
nent application of our approach was that of 2D planar droplets in a strong magnetic field.
The formalism developed for that situation in sec. 3 was based on unitary area-preserving
maps generalizing magnetic translations, known as ‘quantomorphisms’ in geometric quanti-
zation [44, 45]. In particular, we introduced the ‘edge deformations’ (25) that generalize
linear maps (2) and deform the boundary of thermodynamically large isotropic droplets. We
then turned to our main result, namely an analytical derivation of explicit Berry phases (50)
produced by adiabatic quantomorphisms. As emphasized there, such phases consist of two
separately gauge-invariant terms—a current piece and an Aharonov-Bohm (AB) piece. This
is true for any many-body ground state, regardless of the presence of interactions, and thus
applies to both integer and fractional quantum Hall (QH) states.

While our formulas hold for all area-preserving deformations, we focused repeatedly on
edge deformations, eventually showing that their Berry phases include, besides trivial AB
phases, a contribution reminiscent of the Hall viscosity [19, 20]. The latter actually emerges
as a subleading contribution to the phase, measuring the response to linear deformations pro-
duced by mechanical momenta that change the metric, as opposed to magnetic translations

13Amusingly, the incorrect value ħhν/(8πℓ2
B) is the one that was initially stated in [22], before the correction to

ηH = ħh/(8πℓ2
B) in [23]. It is unclear if this is just a coincidence or if there is a deeper reason for the matching.
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that do not (recall the splitting (75)). For integer QH states in the limit of extremely strong
magnetic fields, the same viscosity was obtained, up to a factor 2, from a bulk integral (79)
of a boundary current. We also considered fractional QH states, for which the factor 2 had
to replaced by other coefficients with otherwise identical conclusions. As explained in the
manuscript, such mismatches should not be seen as paradoxes compared with earlier works
on the Hall viscosity, since the splitting between current terms and AB terms in the Berry phase
(50) generally has nothing to do with the splitting of quantomorphisms in metric and potential
deformations. What is remarkable instead is that the Berry phase (50) contains an extensive
gauge-invariant piece that just happens to be proportional to the Hall viscosity.

These results open the door to a number of follow-up questions. First, a detailed study of
linear response is in order, both for non-interacting QH states and for their fractional peers,
to clarify the relation between the integral viscosity formula (79) and the more standard link
between viscosity and stresses [83, §2]. One could also imagine going beyond the leading
order of adiabatic linear response by evaluating the (functional) quantum metric associated
with adiabatic planar deformations [84]. Indeed, it is the metric of parameter space, rather
than the Berry curvature, that eventually justifies the use of hyperbolic geometry in the context
of the Hall viscosity [20].

A thornier issue is that the deformations defined here acted both on the metric and on the
potential (see eq. (37)), calling for a modification that would allow metric and potential to
transform independently. For example, densities and currents of QH droplets in arbitrary (dis-
ordered) potentials were studied in [85,86], providing formulas that can presumably be used
to deduce Berry phases due to potential deformations alone. Combining this with compen-
sating quantomorphisms would likely yield deformations of the metric alone, as was achieved
independently in [27, 36] for fractional QH states viewed as conformal blocks. The link be-
tween these approaches seems tenuous and requires clarification, not to mention their relation
with earlier works on infinitesimal deformations in the lowest Landau level [12–16]. We in-
tend to investigate this in the near future; see also [78].

Finally, it goes without saying that our predictions call for experiments. Even in the sim-
plest 1D quantum wires treated here as toy models, observing the phases (16) or the corre-
sponding adiabatic response would be fascinating. This may require a reformulation of our
formalism in terms of lattice models, along the lines of what was done e.g. in conformal field
theories with a Floquet drive [87,88]. Even more importantly, implementing 2D planar defor-
mations in QH simulators could provide the striking measure of the Hall viscosity that is still
lacking at the moment, despite recent breakthroughs in graphene [38]. This could again be
done either on a lattice or in the continuum [42, 43]. Our formalism thus paves the way for
a number of new geometric observations in mesoscopic systems, with conceptual implications
for topological phases in general.
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A Quantomorphisms on closed surfaces

This appendix accompanies sec. 3.3 and provides a self-contained review of the action of (cer-
tain) area-preserving diffeomorphisms on closed, oriented surfaces such as spheres or tori. In
the context of geometric quantization (see [44,45,70,71]), the action that we consider coin-
cides with automorphisms of prequantum line bundles, also known as prequantum operators
or quantomorphisms [89]. A summary of the main points is as follows:

• The Hilbert space of a charged particle coupled to a background U(1) gauge field A is a
space of sections for a Hermitian line bundle L on some base manifoldΣ, with compatible
connection∇. This geometric data (L,∇) is fully captured by (and can be reconstructed
from) the knowledge of all holonomies of A.

• Not all area-preserving diffeomorphisms can be lifted to unitary quantomorphisms acting
on the Hilbert space: only holonomy-preserving ones can. The corresponding transforma-
tion of wave functions is unique up to a global phase, and can be constructed explicitly
using parallel transport. When the base space Σ is the plane, this action reduces to eq.
(35) since all area-preserving maps also preserve holonomies. This is not so on generic
surfaces (e.g. the torus), in which case eq. (35) only holds locally.

• The Lie algebra of the group of holonomy-preserving diffeomorphisms consists of all
Hamiltonian vector fields, that is, vector fields v for which the one-form ιvB is exact,
where B = dA is the curvature of the connection. The unitary action of any such vector
field v is given by the Hermitian operator (40):

u[v] = −i∇v − Fv , with ιvB= dFv , (A.1)

where ∇v is the covariant derivative along v and Fv is a stream function (a ‘Hamilto-
nian’) for v in the sense of sec. 3.2.

The plan of the appendix is as follows. We begin by recalling the fiber bundle approach to
quantum mechanics, where charged wave functions on Σ are viewed as sections of a complex
line bundle equipped with a connection. We then ask how diffeomorphisms of Σ can be imple-
mented unitarily, and show that only Hamiltonian area-preserving maps are allowed, leading
to the quantomorphisms defined locally in eq. (35). Finally, we turn to infinitesimal quanto-
morphisms and recover the earlier expression (40), now derived thanks to bundle geometry.
We adopt units such that q/ħh= 1 for simplicity.

We stress that the material of this appendix is not original, and is for the most part a simple
translation of the lecture notes [89] from the language of principal U(1) bundles to that of the
associated line bundles. We hope to have made it accessible to physicists: the only required
background is some familiarity with line bundles, as reviewed e.g. in [61, chaps. 9–10]. We
also refer to [90] for a pedagogical introduction to geometric quantization that overlaps with
our presentation here.

A.1 Line bundles, connections and holonomies

Let us briefly review the geometric treatment of quantum mechanics, in which wave functions
are sections of a Hermitian line bundle [44,91,92]. Background electromagnetic fields are then
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incorporated thanks to a connection, generally with some non-zero curvature (= magnetic
field). This approach is very general, but we focus on the case relevant for the quantum Hall
effect, namely a charged particle moving on some 2D surface Σ. The latter is assumed to be
connected, closed (i.e. compact and without boundary), and oriented. We endow it with an
area form ω, i.e. a nowhere-vanishing two-form; this is typically the Riemannian area form
ω = pg dx ∧ dy associated with a Riemannian metric g, but the metric will play no role in
the following.

Line bundles and sections. How to describe wave functions on Σ? The starting point is to
think of Σ as the base space of a complex line bundle π : L→ Σ. Wave functions are sections
of this bundle, i.e. maps Ψ : Σ → L : x 7→ Ψ(x) such that π(Ψ(x)) = x for any point x in Σ.
To make sense of the fact that wave functions must be square-integrable, we assume that L is
endowed with a Hermitian structure. Scalar products of sections thus read

〈Φ|Ψ〉=
∫

Σ

h(Φ,Ψ)ω , (A.2)

where h is a Hermitian metric, i.e. a collection of Hermitian inner products hx

�

Φ(x),Ψ(x)
�

on
each fiber at x ∈ Σ.

The line bundle of sec. 3.3 was a trivial direct product L = Σ × C with Σ = R2.
Sections were thus functions x 7→ Ψ(x) and the Hermitian structure (A.2) was given by
hx

�

Φ(x),Ψ(x)
�

= Φ∗(x)Ψ(x). In general, however, the line bundle is non-trivial and cannot
be written globally as a product manifold. Relatedly, sections cannot be written as mere func-
tions on Σ. One therefore has to choose some covering of Σ by a (finite) collection of open
sets Ua labelled by some index a = 1, 2, .... These sets can always be taken small enough that
their preimage π−1(Ua) ∼= Ua ×C be a trivial bundle π : π−1(Ua)→ Ua; we then refer to the
open covering {Ua} as trivializing. This can be used to locally write any section as a function.
Indeed, choose for each Ua a section σa : Ua → L that vanishes nowhere on Ua; we refer to
this as a choice of frame on the line bundle. Given a frame, write any global section as (no
implicit summation over a!)

Ψ(x) =ψa(x)σa(x) , ∀x ∈ Ua , (A.3)

withψa some complex function on Ua. The frame is said to be unitary if hx

�

σa(x),σa(x)
�

= 1
for all x ∈ Ua. Note that the choice of frame is not unique: for any unitary frame {σa}, one
can use local gauge transformations on the Ua ’s to define a new unitary frame

σ̃a(x)≡ e−iαa(x)σa(x) . (A.4)

The corresponding local wave function ψa transforms into ψ̃a(x) = eiαa(x)ψ(x). Also note
that, given a unitary frame, wave functions on non-empty overlaps Ua ∩ Ub are related by
similar gauge transformations: one has ψa(x) = eiαab(x)ψb(x).

Background field as a connection. We now wish to couple our quantum system on Σ to
some background U(1) gauge field. This is achieved by endowing the line bundle L→ Σ with
a connection∇ that defines a covariant derivative of sections, i.e. a notion of parallel transport
along Σ. The latter is readily written in a familiar form upon using some local trivialization
{Ua} and some unitary frame {σa}: one can then specify the connection on each Ua by a local
one-form Aa such that

∇v σa ≡ −i〈Aa, v〉σa , (A.5)

for any vector field v on Ua, with 〈Aa, v〉 ≡ ιvAa = v jAa, j as in eq. (43). Thus the covariant
derivative of an arbitrary section Ψ, written locally as (A.3), reads

∇vΨ =
�

v j∂ jψa − i〈Aa, v〉ψa

�

σa . (A.6)
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The term in parentheses on the right-hand side is the familiar form of a covariant derivative,
expressed in terms of components v j and involving the local gauge field Aa.

As usual, we require the connection to be unitary, i.e. that the connection one-forms Aa
be real for any unitary frame. (In fact, if Aa is real in a unitary frame, then it is real in any
other unitary frame.) Parallel transport along any curve in Σ is thus an isometry: it preserves
the Hermitian product (A.2). In particular, parallel transport along a closed, oriented loop γ
in Σ only affects a wave function by an overall phase, namely the holonomy of the connection
around γ. From the perspective of sec. 4, this holonomy is nothing but an Aharonov-Bohm
phase. It turns out that the full geometric data of the line bundle L with connection ∇ is
encoded in such holonomies: two Hermitian bundles with connection are isomorphic if and
only if all their holonomies coincide (see e.g. [93]).

Note that changing the local frame changes connection one-forms: the local gauge transfor-
mations (A.4) affect the gauge fields Aa defined in (A.5) by changing them into Ãa = Aa+dαa.
On overlaps where ψa(x) = eiαab(x)ψb(x), one similarly finds Aa = Ab + dαab.

Magnetic field as a curvature. Suppose one is given a Hermitian line bundle with some
unitary connection ∇. Then the corresponding curvature two-form B is defined by the com-
mutator of covariant derivatives,

∇v∇w −∇w∇v −∇[v ,w ] = −iB(v , w ) . (A.7)

In terms of a local trivialization with some local frame, this yields the usual magnetic field
B = dAa on Ua. We shall assume that B is uniform: given the area form ω on Σ, we let
B= Bω so that

∫

Σ
B= B × area(Σ), and assume B > 0 for definiteness.

There is little more to be said about uniform magnetic fields whenΣ is the plane, as was the
case in the main text. However, subtleties occur on closed manifolds, where the two-form B is
not exact (as it would otherwise violate Stokes’s theorem) and is subject to Dirac’s quantization
condition

1
2π

∫

Σ

B ∈ Z . (A.8)

This integer is the Chern number of the line bundle. As usual, the bundle is non-trivial if the
Chern number is non-zero.

A.2 Lifting diffeomorphisms to line bundles

Having recalled the bundle picture of quantum mechanics, we now use it to study deformations
of the base manifold. Namely, given a diffeomorphism g : Σ→ Σ, we wish to define a corre-
sponding unitary operator acting on the Hilbert space of square-integrable sections Ψ : Σ→ L.
The most naive solution is to send Ψ on its pullback g ∗Ψ = Ψ ◦ g , possibly adding a prefactor
as in eq. (11) to account for the fact that a wave function is a half-density.14 But this does not
quite make sense: (g ∗Ψ)(x) lies in the fiber Lg (x) instead of Lx, so g ∗Ψ is no longer a section
of the bundle π : L→ Σ and fails to be a bona fide wave function. On the other hand, g ∗Ψ is a
section of the pullback bundle π′ : g ∗L→ Σ, so we need a way to identify these two bundles.
This is achieved thanks to a bundle isomorphism, i.e. a diffeomorphism G : L→ g ∗L such that
the following diagram commutes:

L g ∗L

Σ Σ

π

G

π′

id

14We will eventually see in eq. (A.12) that g needs to preserve area, so no square root appears in practice.
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and whose restriction to each fiber is a linear map. Morally, the isomorphism is just a collection
of (invertible) linear maps Gx : Lx → Lg (x), depending smoothly on x ∈ Σ. Provided such a
map exists, we may assume without loss of generality that each Gx is unitary. (If Gx is not
norm-preserving, it can be rescaled fiberwise Gx → λxGx with some smooth rescaling factor
λ : Σ→ R+.) Alternatively, one can interpret G as a bundle map covering g , in the sense that
the following diagram commutes:

L L

Σ Σ

π

G

π

g

The bundle map G thus sends g ∗Ψ back to L, yielding the following unitary action of g on
sections of L:

U[g ]Ψ ≡ G−1 ◦Ψ ◦ g . (A.9)

This is the elementary starting point that will eventually yield quantomorphisms.
In practice, the prescription (A.9) is subject to a number of conditions. First, it requires

a bundle isomorphism between L and g ∗L. The latter exists if and only if g ∗L and L have
the same first Chern class c1[L] = c1[g ∗L] ∈ H2(Σ,Z), which here boils down to g being
orientation-preserving.15 A second, much stronger requirement is that G must not affect the
coupling of wave functions to the background gauge field. This is to say that the operator
(A.9) needs to leave the connection invariant:

U[g ]†∇v U[g ] =∇g∗v , (A.10)

where v is any vector field on Σ and g∗v is its pushforward by g . Thus the image of the
connection ∇ under the bundle isomorphism G : L → g ∗L must be the pullback connection
g ∗∇. Equivalently, the bundle map G : L → L covering g must preserve the connection
∇. Unitary bundle isomorphisms that satisfy these criteria are known as prequantum bundle
automorphisms or quantomorphisms [44,45]. As emphasized in sec. 3.3, magnetic translations
of electronic wave functions provide a well known example of such maps in physics.

The key constraint (A.10) limits sharply the set of deformations of Σ that admit a well-
defined unitary action on charged wave functions. Indeed, (L,∇) and (g ∗L, g ∗∇) need to be
isomorphic as Hermitian line bundles with connection, so all their holonomies must coincide.
As a result, a diffeomorphism g : Σ→ Σ admits a unitary, connection-preserving lift G : L→ L
if and only if it is holonomy-preserving: for any cycle γ in Σ,

hol(γ) = hol(g ◦ γ) . (A.11)

Note that holonomy-preserving maps necessarily preserve area: if the cycle γ is the boundary
of some domain S, then hol(γ) = B × area(S) and eq. (A.11) entails the local condition

g ∗B= B . (A.12)

But there is also a global aspect, since eq. (A.11) even holds for loops that are not boundaries.
This plays no role on simply connected surfaces such as R2 or S2, but it does affect other
cases. On the torus, for instance, all translations preserve area but only a finite subgroup
satisfies (A.11) [94,95]. We return to this example around eqs. (A.16)–(A.17) below.

15For compact oriented Σ, H1(Σ) is torsion-free and the real first Chern class [B] ∈ H2(Σ,R) classifies line
bundles. Then g ∗B and B are cohomologous iff

∫

Σ
g ∗B=
∫

Σ
B, i.e. if g preserves orientation.
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A.3 Quantomorphisms from parallel transport

We have just seen that a diffeomorphism can be made to act on the Hilbert space of a charged
particle provided it preserves all holonomies. But while the existence of the corresponding
unitary action (A.9) is guaranteed, its explicit form in terms of transformed wave functions
is lacking. It turns out that this is easily fixed using parallel transport. The key point is that
the connection-preserving lift G is fully characterized (up to a global phase) by the fact that
it is unitary and commutes with parallel transport in the sense of eq. (A.10). Indeed, pick a
reference point x0 ∈ Σ and choose a unitary map Gx0

between Lx0
and Lg (x0); then extend

this map smoothly (and uniquely) to all fibers Lx using parallel transport, as follows: given
x ∈ Σ, pick any curve γ from x0 to x and let Tγ and T′γ = Tg (γ) denote parallel transport
above γ in L and g ∗L, respectively. Since G commutes with parallel transport, one must have
Gx = T′γ ◦ Gx0

◦ T−1
γ . The latter does not depend on the choice of γ (thanks to the condition

(A.11)) and it depends smoothly on x, yielding the bundle isomorphism needed for eq. (A.9).
This is the intrinsic, general formulation of the argument for planar quantomorphisms

presented in sec. 3.3. Similarly to that simpler case, the resulting operators (A.9) depend on
one’s choice of Gx0

, leading to an unavoidable global phase ambiguity. This was to be expected,
since the connection-preserving unitary lift G of a map g is only unique up to a global phase.
(Indeed, if G1 and G2 are two lifts of the same g , then G−1

1 ◦G2 is a gauge transformation that
leaves the connection invariant, i.e. a global phase.)

Example 1: the plane. Let us illustrate this construction of quantomorphisms with two
examples. First, on the plane R2 with B = B dx ∧ dy , any area-preserving deformation also
preserves all holonomies. In order to fix the map Gx0

in a gauge invariant way, one can use
parallel transport along a curve γg from x0 to g (x0). Given a global frame σ corresponding to
a global gauge choice A, the lift of g is then

Gxσ(x) = e
i
∫

γg
A
ei
∫ x

x0
(g ∗A−A)

σ(g (x)) , (A.13)

where x0 ∈ R2 is an arbitrary reference point, and the actual integration path from x0 to x is
irrelevant since g ∗A−A is closed. Changing the reference point x0 and/or the curve γg yields
the same lift up to a constant phase. The corresponding unitary action on wave functions
reproduces eq. (35):

(U[g ]ψ) (x) = e
−i
∫

γg
A
ei
∫ x

x0
(A−g ∗A)

ψ(g (x)) . (A.14)

As in sec. 3.3, the constant phase e
−i
∫

γg
A

may be dropped in principle, but ensures in practice
that the operator (A.14) is independent of the gauge used to define it.

Example 2: the torus. Our second example is the group of translations on the torus
T2 = R2/Z2 with an area formω= dx∧dy and magnetic field B= Bω. The latter is quantized
according to B = 2πC , where the integer C is the Chern number of the line bundle. As the
bundle is non-trivial in general, several coordinate charts are typically needed to describe its
sections. Alternatively, one can use a single chart [95], say U = {0< x < 1, 0< y < 1}, at the
cost of working with quasiperiodic wave functions such as

ψ(x + 1, y) = eiαeiB yψ(x , y) , ψ(x , y + 1) = eiβψ(x , y) , (A.15)

written here in Landau gauge A = B x dy (tantamount to a choice of unitary frame σ on U).
The phases α and β are physical observables: they can be measured by holonomies around
suitable non-contractible cycles of the torus. Changing α or β changes the connection, so
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holonomy-preserving diffeomorphisms must preserve area while also leaving α,β invariant.
As a result, only a finite subgroup of translations is holonomy-preserving: it is generated by

t1(x , y) = (x + 1/C , y) , t2(x , y) = (x , y + 1/C) . (A.16)

The corresponding lifts Ti : L → L covering ti : T2 → T2 act on the local frame σ as
T1σ(x , y) = e2πi yσ(x +1/C , y) and T2σ(x , y) = σ(x , y +1/C), so their unitary action (A.9)
is

(U1ψ) (x , y) = e−2πi yψ(x + 1/C , y) , (U2ψ) (x , y) =ψ(x , y + 1/C) , (A.17)

up to a global phase. In particular, one has U1 U2 = e2πi/C U2 U1, which is yet another instance
of non-commuting magnetic translations.

A.4 Hamiltonian vector fields and infinitesimal quantomorphisms

We conclude this appendix by turning to infinitesimal quantomorphisms. In particular, one
may wonder what divergence-free vector fields are such that their flow gt , given by eq. (28),
preserves all holonomies. The answer turns out to be very simple: the generators of holonomy-
preserving diffeomorphisms are Hamiltonian vector fields, i.e. vector fields v such that ιvB be
exact as opposed to merely closed. Those are the vector fields that admit a stream function.16

To prove this, demand that the flow gt = exp(tv) be holonomy-preserving for all t. This
is the case provided the holonomy along gt(γ) does not depend on t, for any loop γ in Σ.
But gt(γ)− γ is the boundary of the worldsheet traced by gs(γ) as s varies from 0 to t, so the
condition boils down to the absence of magnetic flux through this worldsheet. Infinitesimally,
this means
∮

γ
ιvB = 0 for any cycle γ, which is to say that ιvB = dF is exact in terms of some

stream function F .
Now pick a Hamiltonian vector field v with some stream function Fv . What is the cor-

responding Hermitian operator (7) obtained by considering infinitesimal quantomorphisms?
We already wrote the planar result in eq. (40) above, but it is worth revisiting it here from the
bundle perspective. Accordingly, consider time-dependent deformations gt such that g0 = e
is the identity map on Σ, while g1 ≡ g is some holonomy-preserving diffeomorphism. (This
is really an isotopy from the identity to g .) Then lift each gt to a bundle map via parallel
transport. To do this, start by fixing some point x ∈ Σ and some time t, and define a parallel
transport map Tx,t : Lx→ Lgt (x), which is a linear (and in fact unitary) isomorphism between
Lx and Lgt (x). Then build a unitary bundle map

Tt : L→ L : X→ Tt(X)≡ Tπ(X),t(X) , (A.18)

so that the following diagram commutes:

L L

M M

π

Tt

π

gt

The only issue at this stage is that parallel transport is not connection-preserving: the bundle
map (A.18) does not satisfy the constraint (A.10), since acting with Tt changes the connection
to ∇t =∇− iβt with a real-one form βt that satisfies dβt

dt = g ∗t ιvt
B. This can be compensated

by a gauge transformation, i.e. a bundle automorphism covering the identity, if and only if βt
is exact. Thus we recover the fact that vt has to be a Hamiltonian vector field, meaning that

16When the first De Rham cohomology H1(Σ,R) vanishes, all closed forms are exact, so all divergence-free vector
fields are Hamiltonian. This happens on the plane and the sphere. But higher genus surfaces admit divergence-free
vector fields that are not Hamiltonian, such as ∂x and ∂y on the torus. Recall footnotes 10–11.
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there exists a smooth function Ft : Σ→ R such that ιvt
B = dFt . Provided this holds, one can

build a connection-preserving lift

Gt ≡ Tt ◦ eiθt , with
dθt

dt
= g ∗t Ft , (A.19)

where eiθt stands for fiberwise multiplication by eiθt (x). The flow of the Lie algebra operator
(7) follows as an immediate corollary. Indeed, for an autonomous vector field v with stream
function Fv , the compensating gauge transformation is θt(x) = t Fv (x) since the Hamiltonian
Fv is conserved along the flow t → gt(x). This finally yields the so-called Kostant-Souriau
prequantum operator [44,75]

u[v] = −i∇v − Fv , (A.20)

where the two terms on the right-hand side respectively generate parallel transport (∇v) and
a gauge correction (Fv). The same interpretation led to planar quantomorphisms (35), and it
was confirmed in (40) for Lie algebra operators.

B Cocycle contribution to the Berry phase

This short technical appendix completes the proof of the Berry phase (49) in section 4.2. Our
goal is to evaluate the contribution of the cocycle (39) in the Berry phase (10). Using (39)
and the fact that gt preserves area for all t, we write the cocycle needed for eq. (10) as

ħh
q
C(gτ, g−1

t ) =

∫

γgτ◦g−1
t

g−1∗
t A−
∫

γgτ

g−1∗
t A−
∫

γg−1
t

g ∗τg−1∗
t A . (B.1)

Let us assume for simplicity that the path γg is the straight line from x0 to g (x0). Then the
time derivative of the first term in (B.1) is

∂τ
�

�

τ=t

∫

γgτ◦g−1
t

g−1∗
t A= (ιvt

g−1∗
t A)(x0) = −Ag−1

t (x0)(∂t g
−1
t (x0)) , (B.2)

where vt is the logarithmic derivative (28). This is in fact the result quoted below eq. (56) of
the main text, so we now need to prove that the remaining derivatives of (B.1) cancel out. To
do this, consider first the second term in (B.1), whose time derivative is

−∂τ
�

�

τ=t

∫

γgτ

g−1∗
t A=

∫

γgt

d
dt

g−1∗
t A=

∫

γgt

g−1∗
t Lwt

A , (B.3)

up to an irrelevant total time derivative, where wt ≡ −g ∗t vt is the velocity (28) of the inverse
flow g−1

t . Since the form g−1∗
t Lwt

A = −Lvt
g−1∗

t A is closed, the actual integration path does
not matter and one can rewrite (B.3) as

−∂τ
�

�

τ=t

∫

γgτ

g−1∗
t A= −
∫ gt (x0)

x0

Lvt
g−1∗

t A . (B.4)

Finally, the time derivative of the last term in (B.1) is

−∂τ
�

�

t

∫

γg−1
t

g ∗τg−1∗
t A= −
∫

γg−1
t

g ∗t Lvt
g−1∗

t A= −
∫

gt (γg−1
t
)
Lvt

g−1∗
t A=

∫ gt (x0)

x0

Lvt
g−1∗

t A ,

(B.5)
which exactly cancels the second term (B.4), confirming that ħhq∂τC(gτ, g−1

t ) coincides with
(B.2) up to an irrelevant total time derivative that was neglexted in (B.3).
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