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Abstract

Searches for anomalies are a significant motivation for the LHC and help define key
analysis steps, including triggers. We discuss specific examples how LHC anomalies can
be defined through probability density estimates, evaluated in a physics space or in an
appropriate neural network latent space, and discuss the model-dependence in choosing
an appropriate data parameterisation. We illustrate this for classical k-means clustering,
a Dirichlet variational autoencoder, and invertible neural networks. For two especially
challenging scenarios of jets from a dark sector we evaluate the strengths and limitations
of each method.
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1 Introduction

Searches for new physics at the LHC are traditionally defined by testing theory hypotheses and
comparing them to Standard Model predictions using likelihood methods. Weaknesses of this
approach are that search results are hard to generalize, and that we still live in fear of having
missed a discovery by not asking the right questions. Modern machine learning (ML) offers a
conceptual way out of this dilemma through anomaly searches. Looking at LHC physics these
concepts can be developed most easily for QCD jets, analysis objects available in huge numbers
with much less physics complexity than full events. Nevertheless, they are complex enough
such that possible new physics signatures can hide in a non-trivial way.

Considering the task of finding anomalies in these jets, unsupervised ML methods are fa-
vored. In contrast to supervised methods, unsupervised methods do not rely on labeled data.
This allows for sensitivity to a broad range of potential signal models and the application di-
rectly on data. Autoencoders(AEs) are a simple unsupervised ML-tool relying on a bottleneck
in a mapping of a data representation onto itself, and constructing a typical object. They have
been shown to identify anomalous jets in a QCD jet sample, indicating that anomaly searches
at the LHC are a promising new analysis direction for the upcoming LHC runs [1, 2]. Au-
toencoders do not induce a structure in latent space, so we have to rely on the reconstruction
error as the anomaly score. This corresponds to a definition of anomalies as an unspecific kind
of outliers. The conceptual weakness of autoencoders becomes obvious when we invert the
searches, for instance searching for anomalous QCD jets in a top-jet sample [3]. This failure
in symmetric searches leads us to the more fundamental question how we define anomalous
jets or events at the LHC and what kind of anomaly measure captures them [4].

Moving beyond purely reconstruction-based autoencoders, variational autoencoders [5]
(VAEs) add structure to the latent bottleneck space. In the encoding step, a high-dimensional
data representation is typically mapped to a low-dimensional latent distribution, from which
the decoder learns to generate new high-dimensional objects. The latent bottleneck space
then contains structured information which might not be apparent in the high-dimensional
input representation. Again, VAEs have been shown to work for anomaly searches with LHC
jets [6, 7], and we can replace the reconstruction loss by an anomaly score defined in latent
space. At this point, an interesting and relevant question becomes the choice of latent space
and specific anomaly score, for instance in a Dirichlet latent space [8, 9] which encourages
mode separation [4].

ML-methods for anomaly detection at the LHC have generally received a lot of attention
in the context of anomalous jets [10–17], anomalous events pointing to physics beyond the
Standard Model [18–35], or enhancing established search strategies [36–42]. They include
a first ATLAS analysis [43], experimental validation of some of the methods [44, 45], quan-
tum machine learning [46], applications to heavy-ion collisions [47], the DarkMachines chal-
lenge [48], and the LHC Olympics 2020 community challenge [49,50].

In spite of this wealth of possible practical applications, the fundamental question still
needs to be studied, namely what defines an anomaly search at the LHC? For large and stochas-
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tic datasets, the concept of outliers is difficult to define unambiguously, because any LHC jet
or event configuration will occur with a finite probability, especially after we include detector
imperfections [51–55]. In this situation, a simple, working definition of anomalous data is
an event which lies in a low-density phase space region. Such a phase space region can be
defined based on any set of kinematic observables, notably including a latent space variable
constructed by a neural network. While such a general definition cannot be understood di-
rectly using quantum field theory, it can be linked to first-principles through the corresponding
simulations. An alternative definition based on overdensities can be applied for localised sig-
nals. These signals are typically localised in some global observable like the invariant mass of
the events. The background density then needs to be inferred e.g. through sideband methods.
Weakly supervised methods such as the classification without labels (CWoLa) method [56]
can be applied in these settings to learn a likelihood ratio classifier for an anomalous signal in
various forms [38,42,51].

For anomaly searches at the LHC we probe and encode the phase space probability of
the known background through a set of jets or events. This training of the anomaly-search
network can use simulations of a pure background dataset, or it can use actual data under
the assumption that a small signal contamination will be ignored by the respective network
training and architecture. Once the background density is encoded in the network, the goal
of the anomaly detection methods discussed in this work is to derive an anomaly score for
each data point, based on the learned background density. This way, our anomaly detection
methods are fundamentally linked to density estimation, which in turn depends strongly how
we define the observables in the analysis. They are also closely linked to standard LHC search
strategies, where we test and rule out background hypotheses without reference to a specific
signal hypothesis. Challenges to this density-based anomaly detection using machine learning
are the high dimensionality of the feature vectors describing LHC events, or the fact that the
probability densities in the latent and phase spaces are not invariant under reparameterizations
or reweighting of the input data and the choice of network architectures. In this paper we
will study three different ways of defining an anomaly score for LHC jets based on density
estimation, to illustrate the challenges and advantages of different approaches and network
architectures.

As reference datasets we introduce two dark-matter-inspired jet signatures in Sec. 2. The
underlying new physics model is Hidden Valleys, made of a strongly interacting, light dark
sector [57–59]. Our physics task is similar to Ref. [17], where the technical focus is on a fixed
signal type and set of observables. When we produce particles from this dark sector, they can
decay within the dark sector and form a dark shower, but this dark shower will eventually
switch to SM fragmentation and turn into a semi-visible jet [60–65] or a pure, modified QCD
jet [1]. In both cases we can use ML-based subjet tools to tag the signal jets, provided we know
and control the signal hypothesis. The problem is that the model parameter space is too large
to rely on standard hypothesis testing; there are also reasons to doubt that the dark sector
showering modelled in Pythia [66] is accurate due to differences between the strong sector
in the SM and in the dark sector. So our strategy will be to search for such dark jets using
anomaly detection on jets. We note that both our signals are particularly hard to distinguish
from QCD jets, unlike fat jets arising from Standard Model decays.

Facing the task of extracting our two dark jets signals from QCD jets in an unsupervised,
data-driven setup we will discuss and benchmark three different methods. Our first approach
is based on classic k-means clustering combined with density estimation, and does not require
modern deep learning. In Sec. 3 we introduce a general setup suitable for stochastic datasets
and show how the anomaly score can be optimized for generic classes of anomalies. When
it comes to the best-performing latent spaces, we found that Dirichlet VAEs (DVAEs) outper-
form for example standard VAEs or latent Gaussian mixture models for hadronically decaying,
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boosted top jets as anomaly [4]. In Sec. 4 we show how our two signal jet samples benefit
from a better choice in preprocessing, and how the jet representations as jet images and energy
flow polynomials (EFPs) [67] compare in terms of anomaly searches. Our third method uses
normalizing flow networks [68,69], specifically invertible neural networks (INNs) [70,71], to
bijectively map phase space to latent space. To limit the dimensionality of this mapping we
use EFPs as the phase space representation. INNs are the cleanest way to directly estimate
the density of the jets in phase space (or, physics space). They learn an invertible transfor-
mation from the phase space of a jet to a multi-dimensional Gaussian along with a Jacobian
that ensures the density is properly accounted for in the transformation. This gives us both
a structured Gaussian latent space for the jets, and a method to estimate the density of the
jets in the physics space. We want to study the use of densities as anomaly scores. Comparing
these three fundamentally different concepts on the two dark jets samples we find very sim-
ilar performance and a sizeable dependence on the preprocessing of the respective datasets,
specifically the reweighting of the inputs.

2 Dark jets

Fat jets from boosted, hadronically decaying particles are among the most complex objects
entering LHC analyses. Produced from a single relativistic particle and undergoing decay,
showering, and hadronization, they contain between 20 and 100 relevant constituents per jet,
in which we need to identify the crucial decay and showering patterns. In the Standard Model,
established fat jet signatures arise from boosted top quarks, boosted weak bosons, and boosted
Higgs bosons. In addition, many interesting new physics scenarios can lead to fat jets. One
class of such models are Hidden Valley models [57–59].

The variety of Hidden Valley models and their parameters is extensive, for our purpose
their leading feature is a strongly coupled SU(3)d dark sector with fermions coupling to the
SM through some portal. Jets in these models can be produced from new physics states with
couplings to the SM and dark sectors, so the showering involves radiation into the dark sector.
The resulting jets are referred to as semi-visible jets. However, not all jets from Hidden Val-
ley models result in a significant showering of stable dark hadrons, so we refer to them more
generally as dark jets. Because LHC experiments cannot search for the full range of possible
anomalous jets using theory-based hypothesis methods, such searches are a clear candidate
for an unsupervised machine-learning treatment, similar to strategies proposed for SUEP sig-
nals [72]. Before we proceed with the different anomaly-search strategies, we briefly describe
the two signal datasets we use for our analysis, including possible data representations and
data preprocessing.

2.1 Datasets

To cover the range of challenges and solutions in density-based anomaly searches, we define
two signal benchmarks with different underlying physics features:

1. Aachen dataset

pp→ Z ′→ q̄dqd , with mZ ′ = 2 TeV , and mqd
= 500 MeV . (1)

The Z ′ mediator to the dark sector is described by a weakly interacting U(1)′ gauge
group, and the dark quarks are charged under a strongly coupled dark sector and this
U(1)′. Like QCD, the dark sector contains dark pions, mπd

= 4 GeV, and dark rho mesons,
mρd

= 5 GeV. The Z ′ −ρ0
d mixing leads to the decay of the ρ0

d to SM-quarks. The other
dark mesons are stable and escape the detector. The fraction of constituents escaping
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Figure 1: Averaged preprocessed jet images for the QCD background and for the two
dark-jet samples.

the detector is rinv = 0.75. This scenario is a typical semi-visible jet, as explored in detail
in [3,65].

2. Heidelberg dataset

pp→ q̄dqd , with mqd
= 50 GeV . (2)

The dark quarks are charged under SU(3)c and the dark SU(3)d , so after pair-production
the dark quarks will radiate into the SM and dark sectors. Eventually, the dark states
decay back to SM particles plus a dark boson bv with mass 5 GeV. This dark boson
hadronizes to scalar and pseudo-scalar dark meson states with masses assumed to be
10 GeV. For our choice of model parameters, the dark mesons decay back to the SM, i.e.
rinv ≃ 0 for the Heidelberg dataset [1].

The Aachen dataset is simulated using Madgraph5 [73] for the hard process and the Hidden
Valley model [74, 75] in Pythia8.2 [66] for showering and hadronization. The Heidelberg
dataset is simulated using just the Hidden Valley model in Pythia8.2. The light QCD back-
ground jets are simulated using MadGraph5 to obtain di-jet events and Pythia8.2 for shower-
ing and hadronization. For a fast detector simulation we rely on Delphes3 [76]. A background
which we do not consider here arises from detector malfunctions such as dead cells, how-
ever this is not modelled by Delphes so we are unable to implement it here. Nevertheless this
does not alter the core results of the analysis. The jets are reconstructed using the anti-kT
algorithm [77] with R= 0.8 in FastJet [78] and fulfill

pT, j = 150 ... 300 GeV , and |η j|< 2 . (3)

Although these parameters and cuts do not guarantee that all decay products of the Heidelberg
dark quarks end up in the same jet, in many cases they will. These two signal benchmarks allow
us to probe different aspects of dark jets, the Aachen dataset providing a typical example of
semi-visible jets and the Heidelberg dataset providing a typical example of decay-like or two-
prong-like new physics jets.

To represent the jets we use the standard jet images or calorimeter images, replacing
the usual high-level observables by the direct detector output and applying basic preprocess-
ing [79–83]. The size of the images is 40×40 pixels. The key preprocessing steps are centering
and normalizing the pixels jet by jet, to sum to one. In Fig. 1 we illustrate the different patterns
using averaged jet images after centering them and rotating the main axis to 12 o’clock. In
this representation, the semi-visible nature of the Aachen dataset can hardly be distinguished
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Figure 2: High-level observables calculated from the four-vectors of the constituents
(solid) and the calorimeter pixels (dotted) comparing the QCD jets with the Aachen
and Heidelberg dark jets.

from the QCD background, while the Heidelberg dataset shows its two-prong structure with a
typical distance between the prongs induced by the window in the transverse momentum.

To illustrate the physics behind the QCD and signal jets, we can use standard subjet ob-
servables. First, we count the number of jet constituents (nPF) and compute its radiation
distribution or girth (wPF) [84], which can be reconstructed from particle-flow output or from
jet images. In addition, the two-point energy correlator C0.2 is known to separate for instance
quark and gluon jets [85],

nPF =
∑

i

1 , wPF =

∑

i pT,iRi,jet
∑

i pT,i
, C0.2 =

∑

i j pT,i pT, j(Ri j)0.2

�∑

i pT,i

�2 . (4)

We show these observables in Fig. 2, both calculated from the jet constituents and from the
pixelized jet image. While the number of soft constituents is similar for all three samples, with
slightly smaller numbers for the semi-visible jets, the Heidelberg dark jets show clear signs of
massive decays and separated prongs. Obviously, the same pattern is visible in the jet mass,
which in this case reflects our choice of mqd

= 50 GeV. Because preprocessing of the jet images
includes normalizing the pixel entries, we can extract the jet mass only from the constituents.
The shoulder towards smaller jet masses corresponds to jets where we lose hard constituents.

Finally, we can track the number of prongs through the IR-safe N-subjettiness ratios [86],
which should agree between constituent-based and image-based definitions. Only the Heidel-
berg dataset shows a significant deviation from the democratic limit, τi/τ j ≃ 1, in the ratio
τ2/τ1 ≃ 0.4, indicating a 2-prong structure in a fraction of its dark jets. The slight difference
between the constituent-based and image-based high-level observables is easily explained by
the finite resolution of the jet images and the lack of IR-safety for the number of constituents.
The jet mass and the N-subjettiness show the smallest effects, as one would expect by construc-
tion. We also emphasize that a sensitivity to soft and collinear splittings is only problematic
when we compare high-level observables to perturbative QCD predictions, but not when we
train supervised or unsupervised classification networks on simulations or data.
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2.2 Energy flow polynomials

Energy flow polynomials (EFPs) [67] provide a powerful systematic description of the phase
space patterns of jets, described by the constituents’ transverse momenta and their geometric
separation,

zi =
pT,i

pT,J
, Ri j =

q

(∆yi j)2 + (∆φi j)2 . (5)

We use prime EFPs, which are not a product of EFPs with lower rank, and remove the constant
EFP. For a maximum of order three in the angular distance Ri j this leaves us with the eight
EFPs

EFP1=
∑

i1,i2

zi1zi2 Ri1 i2 , EFP5=
∑

i1,i2,i3

zi1zi2zi3 Ri1 i2Ri1 i2Ri1 i3 ,

EFP2=
∑

i1,i2

zi1zi2 Ri1 i2Ri1 i2 ≈ 2
m2

J

p2
T,J

, EFP6=
∑

i1,i2,i3

zi1zi2zi3 Ri1 i2Ri2 i3Ri1 i3 ,

EFP3=
∑

i1,i2

zi1zi2 Ri1 i2Ri1 i2Ri1 i2 , EFP7=
∑

i1,i2,i3,i4

zi1zi2zi3zi4 Ri1 i2Ri1 i3Ri1 i4 ,

EFP4=
∑

i1,i2,i3

zi1zi2zi3 Ri1 i2Ri1 i3 , EFP8=
∑

i1,i2,i3,i4

zi1zi2zi3zi4 Ri1 i2Ri2 i3Ri3 i4 . (6)

Depending on the application, we can reweight the relative importance of the momentum
fraction and the angular separation by replacing

zi → zκi , and Ri j → Rβi j , (7)

with appropriate values for κ and β . In Fig. 3 we show the first six EFPs for the signal and
background datasets. As for the high-level observable, we see a clear difference between the
QCD and Aachen datasets on the one hand and the Heidelberg dataset on the other. This
difference is linked to the two-prong structure and the finite jet mass of this signal sample. We
can understand the signal pattern in the Heidelberg sample for EFP2, where from the threshold
for the jet kinematics in Eq.(3) we can estimate

mJ

pT,J
≲

50 GeV
150 GeV

⇒ EFP2≲
2
9

. (8)

The fact that the same pattern appears in almost all EFPs indicates that the EFPs are strongly
correlated.

2.3 Preprocessing

For our analysis we can apply various preprocessing steps to the jet images, some of them
already outlined in Ref. [79], and some of them with the specific goal of enhancing the sensi-
tivity of a given anomaly detection method. In general, we also expect such preprocessings to
affect the sensitivity to specific physics signals [17,87].1

The first choice, crucial for any neural network, is how we define the pT -information per
jet constituent. A naive jet image representation typically uses the sum of the constituent pT
as the pixel value. Both Standard Model and anomalous features in jets occur at very different
pT -scales; hard decays lead to features at pT ≫ 1 GeV, while jets with a modified parton

1We note also that the preprocessing could be replaced by learning representations that are invariant to sym-
metry transformations and augmentations of the data using self-supervised contrastive learning, as in JetCLR [88].
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Figure 3: Leading EFPs for QCD jets and for the Aachen and Heidelberg dark jets,
computed from the jet constituents.

showering are sensitive to GeV-scale constituents, similar to quark-gluon tagging. This means
the standard choice biases a classification or anomaly detection technique towards features at
high pT [3, 87]. This explains why autoencoders tag jets with higher complexity more easily
if complexity or structure is usually assumed to affect the harder features of the jet. However,
the two signal datasets in this paper fall into two different categories, the Heidelberg sample
being more and the Aachen sample being less complex than the QCD background.

For our preprocessing we start by defining a dimensionless input and normalize each image
such that the total intensity summed over all pixels is one. For typical loss functions, compress-
ing a wide range of (input) values leads to an improved numerical performance. To study and
exploit a potential bias, we consider different choices to the pixel intensity in the jet image,

pT → pn
T , with n ∈ (0, 1] . (9)

Established working points include square root reweighting (n = 1/2) or n = 1/4 [3]. Aside
from the obvious choice of the pixel transverse momentum, the alternative reweightings stretch
the resolution at low transverse momenta and move the peak of the pixel distribution to higher
reweighted intensity values. This allows the network to extract more information from the
large number of soft pixels, while keeping most of the information on hard, decay related
pixels. The reweightings also change the density of the jets in physics space, and given that
we define anomalous jets as those in the low density regions, they physically alter what jets
are anomalous. For an optimal network training it might eventually be beneficial to provide
the network with two reweighted inputs, one focusing on soft pixels and one focusing on hard
pixels [87].

Second, we need to deal with the sparsity of the jet images. We use a Gaussian filter to
decrease the sparsity, convoluting the image with a Gaussian smearing kernel with the width
σ = 0.5 ... 3.0 pixels. This filter also correlates neighbouring pixels. In Fig. 4 we illustrate the
effect of the pT -reweighting and the Gaussian filter on a single QCD jet image. The smearing
is equivalent to using a correspondingly defined kernel MSE loss [3] and provides a better
measure of similarity for jet images than employing the standard mean squared error (MSE)
distance measure. If the intensity in a bright pixel is shifted to a neighbouring pixel, the
resulting image is closer to the original image than an image where the intensity is moved
further away. Note that neither the reweighting of the pixel intensity nor the application of
the Gaussian kernel destroys information. The reweighting is done with a bijective mapping.
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Figure 4: Illustration of two different pT reweightings (top and bottom) and the
Gaussian filter with a varying width σ, applied to a single QCD jet image.

The Gaussian kernel applied is fixed and contains no randomness. It is therefore invertible
except for edge effects where intensity can be smeared out of the image. However, we expect
these effects to be negligible, as the image range in ∆η and ∆Φ is sufficiently large compared
to the jet radius.

For networks working on EFPs we can apply similar preprocessing steps, either reweighting
the momentum fractions zi individually or reweighting the EFPs as a whole. To exploit some
of the analytic properties of the INN we choose the latter option, including a reweighting
EFPi → logEFPi . The Gaussian filter is not relevant for the EFP representation. To estimate
the correlations between the different EFPs we turn to Fig. 5. Indeed, the EFPs we use as
network input are strongly correlated in a non-linear way. Because of these correlations, for
instance the QCD jets and the Heidelberg dark jets have a similar overall structure in the 8-
dimensional EFP space, but populate different parts of the sub-manifolds due to the one-prong
vs two-prong difference.

Given these strong correlations, we can either train the network to extract the relevant
information after extracting the correlations, or we can provide the network with a decorre-
lated input constructed from the first eight EFPs. To stabilize the training and to save training
time we choose the second option and use principle component analysis (PCA). For this we
first subtract the mean of the distribution from each data point. We then change to the eigen-
value base of the covariance matrix, removing all linear correlations between the individual
components. Finally, we scale the individual components so that their standard deviation is
one. The resulting distribution is as close to a normal distribution as is possible using a linear
transformation.

3 K-means

Anomaly searches are not limited to deep learning. One can also employ a variety of classical
ML methods, in particular for density estimation. However, density estimation for multidimen-
sional data, like jet images, is notoriously difficult. Standard approaches like kernel methods
or density estimation based on histograms scale badly with the data dimensions d and the
number of training points n.

9

https://scipost.org
https://scipost.org/SciPostPhys.15.4.168


SciPost Phys. 15, 168 (2023)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
EFP1

0.00

0.05

0.10

0.15

0.20

0.25

0.30
E

F
P

2

0.00 0.05 0.10 0.15 0.20 0.25 0.30
EFP1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
F

P
8

0.00 0.05 0.10 0.15 0.20 0.25 0.30
EFP4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
F

P
8

0.00 0.05 0.10 0.15 0.20 0.25 0.30
EFP1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
F

P
2

0.00 0.05 0.10 0.15 0.20 0.25 0.30
EFP1

0.00

0.05

0.10

0.15

0.20

0.25

0.30
E

F
P

8

0.00 0.05 0.10 0.15 0.20 0.25 0.30
EFP4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
F

P
8

Figure 5: Sample correlations among some of the EFPs for QCD jets (upper) and the
Heidelberg dark jets (lower).

For anomaly detection, it is not crucial to know the actual density. Any anomaly score
which is (strongly) correlated with the density can potentially be useful. We use the well
known k-means clustering algorithm to define such anomaly scores. Loyd’s k-means algo-
rithm [89] scales linearly with the number of data points and dimensions for each iteration.
Since it usually converges quickly [90] (in our application ∼ 300 iterations are sufficient for
convergence), we can apply it to large datasets with high-dimensional data. K-means provides
a given number k of clusters with centroids

µ⃗i =
1
Ni

∑

j

r⃗i, j , (10)

where the vectors r⃗i, j represent the data instances j assigned to cluster i, and Ni is the number
of data instances in cluster i. The clusters divide the data into a patchwork of Voronoi cells. We
use the Lloyd’s k-means algorithm with 10 different initializations of the centroids following
the “k-means++” prescription [91] and pick the one with the lowest inertia, as implemented
in the scikit-learn python library [92].

K-means is neither a density estimation nor an anomaly detection algorithm. However,
assigning an effective size to each cluster i around its centroid, e.g.

ρi =
1
Ni

∑

j

|r⃗i, j − µ⃗i| (11)

(with j iterating over the vectors assigned to cluster i), the clusters map out the large-scale
data distribution, and we can construct several useful anomaly scores. In this context, using
many clusters seems to be beneficial to approximate the underlying distribution as precisely
and detailed as possible. On the other hand, the number of data points in each cluster has to
be large enough to assign a statistically meaningful size. We employ k-means with k = 100
clusters. Using 100000 training images, the smallest cluster contains 78 jet images, and all
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Figure 6: The logarithmic density as a function of MinD (left) and KNC5 (right) for
a data set drawn from a five-dimensional normal distribution with unit covariance.
All 100000 training points are shown.

others more than 100 jet images. All our models are trained using 40×40 jet images that are
convoluted with a Gaussian smearing kernel with σ = 3 pixels.

In addition to the datasets described in Sec. 2, we also test the anomaly-detection methods
discussed in this section on the standard benchmark set for top tagging [93]. It consists of QCD
and top jets with pT = 550 ... 650 GeV, in contrast to the low pT = 150 ... 300 GeV QCD jets
used for our dark jets. The jet constituents are processed into images in the same way as
described in Sec. 2. Following the discussion in Refs. [3,4], we take QCD jets as a background
and top jets as the anomalous signal (direct top tagging) as well as top jets as a background
and QCD jets as the signal (reverse top tagging). These additional tagging examples help to
illustrate the differences between different anomaly scores based on k-means.

3.1 K-nearest centroids

A simple anomaly score for a jet image, which does not take into account the cluster sizes, is
the minimal distance to one of the k-means cluster centroids. We refer to this anomaly score
as MinD. A similar approach was discussed in Ref. [55], where instead of k-means clustering
a k-medoids algorithm was used to obtain the representatives of the background dataset. The
MinD score assumes that regular datapoints are close to the k-means centroids, whereas out-
liers are not. However, MinD has several obvious drawbacks. K-means itself is susceptible to
outliers far from the main distribution, since it may assign a cluster to a single outlier or a
small group of outliers. Obviously, the number of clusters is a crucial parameter in this con-
text. Moreover, points on the boundary between two clusters have a higher anomaly score
than points close to a cluster center, even if both clusters are part of smooth distributions. For
our dataset, we expect such a smooth distribution rather than a collection of well separated
clusters.

Both problems can be mitigated by using a score based on k nearest neighbors. In the
standard method the distance of a point to its k nearest neighbors is used to estimate the
probability density at this point or to determine its affiliation with a class of points. Here, we
do not consider the distance to the k nearest data instances but to the k nearest cluster centers
(KNC). We define the anomaly score KNC5 as the average distance of a data point to the k = 5
nearest centroids obtained through k-means clustering.
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Fig. 6 shows MinD and KNC5 for 100 k-means clusters on a data set with 100000 training
points drawn from a five-dimensional normal distribution with unit covariance. We observe
a strong correlation between MinD and the logarithm of the density. As expected, KNC5 im-
proves the correlation significantly. Although this simple example might not be representative
for more complex data distributions, we expect that KNC5 provides a better correlation of the
anomaly score and the density than MinD for most smooth distributions.

3.2 Gaussian mixture model

As a benchmark for our k-means method we use a Gaussian mixture model (GMM), a standard
density estimation technique where the density is approximated by a sum of several multidi-
mensional Gaussians. The GMM uses an iterative expectation maximization algorithm to fit
the Gaussians to the data distribution. On the one hand, the GMM provides another simple
benchmark. On the other hand, a GMM is an obvious generalization of k-means based algo-
rithms since a GMM provides a mean for each of the mixture components. These means are
equivalent to the k-means centroids if one uses an expectation maximization with a covariance
matrix proportional to the unit matrix and a common variance, which approaches zero [94].
In this limit, each data point is assigned to one of the mixture components as it is assigned to
one cluster in k-means.

We use the scikit-learn python library [92] to fit a GMM to our jet images smeared with our
standard Gaussian kernel withσ = 3. Usually all entries of the covariance matrix in a GMM are
fit parameters. However, the 1600 dimensions of the jet images, with a 1600×1600 covariance
matrix, are prohibitive for the full fit. Instead, we use spherically symmetric Gaussians with
a variance αi + β for each mixture i, where αi is a fit parameter and β is a regularization
parameter. We decrease β until the smallest fitted variance reaches 103 × β . This way, we
ensure that β does not dominate the variance, as it would be the case if we used the default
scikit-learn parameter β = 10−6.

For smooth distributions one would expect the
p
αi to be of the same order of magnitude as

the typical length scale of the dataset, e.g. the ρi of the k-means clusters (see Tab. 1). However,
the GMM finds

p
αi which are roughly two orders of magnitude smaller. This mismatch is

due to the fact that the effective dimension of our data is much smaller than 1600, implying
the data lives in a lower-dimensional subspace. Fitting a spherical Gaussian to the data that
has almost zero variance in many of its dimensions will result in a strongly underestimated
standard deviation. Hence, the actual likelihood estimation is very poor. Nevertheless, using
the negative log-likelihood of the GMM to define the GMMLL anomaly score might still be
valuable. The insight regarding the effective dimension of the data distribution motivates a
new density-based anomaly score using k-means clustering, introduced next.

3.3 Likelihood-inspired anomaly scores

Building a regularly shaped histogram to estimate the density of our 1600-dimensional data
space is of course impossible due to the curse of dimensionality. Instead, we propose to use
the k-means clusters as generalized bins which are automatically adapted to the underlying
distribution, in analogy to the Gaussians centered around their means in the GMM.

To be specific, we approximate each cluster as a multidimensional sphere with radius ρi
around its centroid µ⃗i . In the spirit of density estimation, we associate a likelihood to find a
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data instance r⃗ associated to cluster i according to

Li(r⃗) =Ni











1 , for |r⃗ − µ⃗i|< ρi ,
�

ρi

|r⃗|

�d−1

exp

�

−
(|r⃗ − µ⃗i| −ρi)2

2σ2
i

�

, for |r⃗ − µ⃗i|> ρi ,

with σ2
i =

1
Ni

∑

j

(|r⃗i, j − µ⃗i| −ρi)
2 , (12)

with j iterating over vectors assigned to cluster i. Here, Ni is a normalization factor and d an
effective dimension to be discussed below. Inside the cluster we assume a constant density.
However, the clusters are not taken as spheres with sharp boundaries, but we add Gaussian
tails such that outliers have different scores depending on the distance to the cluster border.
The tails also ensure that the likelihoods of points in the gap between two close, but not
overlapping clusters can add up. The factor in front of the Gaussian is chosen such that the
marginal one-dimensional likelihood Li(|r⃗i, j − µ⃗i|) resembles the observed distribution of the
data instances. The factor is proportional to the inverse of the volume factor connecting Li(r⃗)
and Li(|r⃗i, j − µ⃗i|) in a space with dimension d.

For density estimation based on histograms, the normalization is defined as Ni = Ni/Vi ,
where Vi denotes the volume of the bin. In our multidimensional problem it is non-trivial to
estimate the volume Vi . One option is Vi ∝ ρ1600

i . As a consequence, two clusters with only
slightly different radii ρi ̸= ρ j would have extremely different densities inside the clusters.
However, in Sec. 3.2, we have already discussed that the effective dimensions of the subspace
where the data lives is much smaller.

For a sensible normalization, one has to approximately determine the effective number
of dimensions. Making the simplifying assumption that the underlying density n of data
points in and around a cluster is uniform, a sphere of radius R in d dimensions contains
N(R) = nπd/2Rd/Γ (d/2 + 1) data points. This equation can be solved for the dimensional-
ity of the dataset di(R) = ln(Ni(R)/Ni(cR))/ ln(c) at a scale R, where Ni(R) is the number of
training points in the sphere of radius R around the cluster centroid, and c is a scaling factor

Figure 7: Effective dimensionality d(R) for five different high-pT QCD clusters. The
vertical lines are located at R = ρi for each cluster. The intersection point is the
estimate for the effective dimension of the cluster.
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which we set to c = 1.1. The relevant length scale for each cluster is assumed to be ρi , such
that the effective dimensionality of a cluster is defined as di(ρi). Fig. 7 shows di(R) for five
clusters of the high-pT QCD images of the top-tagging dataset together with the corresponding
ρi values. The effective dimension is estimated in a region with sufficient statistics, where the
curve is rather smooth. This means we have chosen c sufficiently large for sufficient statistics,
but also small enough to access the shape of di(R). We notice that as R approaches the size
of the actual distribution as a whole, its dimensionality decreases to zero, since any distri-
bution looks point-like from a large distance. As shown in Tab. 1, the median values for the
effective dimensionality of the k-means clusters range between 5 and 8, depending on the data
preprocessing. The same value d =med (di(ρi)) is then used to calculate Li(r⃗) for all clusters.

Our anomaly tagging algorithm can be summarized as:

1. Perform k-means clustering on a dataset, using k = 100.

2. Compute ρi , σi , and di = d(ρi) for each cluster i from the distribution of points
inside cluster i.

3. Find d =med (di) as a representative effective dimension for all clusters.

4. Compute the normalization factor Ni by requiring
∫

Rd Li(r⃗)dd r⃗ = Ni , i.e. the
likelihood is integrated in d dimensions.

5. For each data point r⃗ compute Li(r⃗) for each cluster as defined in Eq.(12).

6. Compute the anomaly score − log(L(r⃗)) with L(r⃗) =
∑k

i=0 Li(r⃗).

The corresponding anomaly score is called MLLED (k-Means based Log-Likelihood estimation
in Effective Dimensions).

For the QCD jets in our background datasets, we find cluster radii ri which vary by up
to one order of magnitude, i.e. we find a variation of likelihoods by a factor of roughly 105

using the estimated effective dimensions. A point in one of the smallest clusters has a density
roughly 105 larger than a point in a cluster which is 10 times larger. Hence, a data point
has to be a few sigmas away from the small cluster to have the same small likelihood as a
data point in the large cluster. The higher the dimensionality of the clusters the more we put
weight on assigning high anomaly scores or low likelihoods to the points in the low-density
clusters, as compared to the points that are outliers of the small and highly populated clusters.
If the dimensionality is too high, the dependence of the score on the cluster size will dominate
over the dependence on the distance to the cluster border. Hence, out-of-cluster anomalies
that might lie only a few sigmas away from the border cannot be distinguished anymore from

Table 1: Properties of the set of 100 clusters found by k-means for the different
datasets used as background for anomaly tagging.

minρi medρi maxρi max
σi

ρi
med di(ρi)

high pT QCD 0.0031 0.011 0.026 0.32 5.2
high pT top 0.0127 0.015 0.026 0.27 5.4
low pT QCD 0.0040 0.012 0.022 0.28 5.8

low pT QCD with 4
p

pT 0.0088 0.012 0.018 0.25 7.8
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probably non-anomalous points inside smaller clusters. Accordingly, the tagging performance
for such anomalies is strongly diminished. As we will see, this is the case for tagging dark jets
from the Aachen dataset or QCD jets in a top-jet background. On the other hand, some types
of anomalies reside in the low but non-zero background density region of the data space. In
these cases the correct hierarchy of clusters and thus a significant dependence on the cluster
size and population is required. Such examples may include the tagging of top jets in a QCD
background (reverse top tagging).

According to the previous discussion, different normalization factors in Eq.(12) may lead
to anomaly scores being more or less sensitive to different types of anomalies. Hence, we also
consider an anomaly score based on the unrealistic assumption d = 1. This is no longer an
estimate for the density, but might still perform well as an anomaly score to tag out-of-cluster
outliers with good precision while preserving a certain hierarchy for the in-cluster densities.
We refer to this anomaly score as MLL1D.

For k-means the radius of a cluster ρi is anti-correlated with the number of data points Ni
in the cluster. Taking only ρi or Ni into account for the normalization may thus suffice for a
qualitatively correct ordering of their densities. Using d = 1 but Ni = Ni instead of the choice
defined above defines the MLLN anomaly score.

3.4 Performance

After defining the different k-means anomaly scores, we discuss their performance on our
benchmark datasets. Top jets have a prominent 3-prong structure and do not require special
preprocessing in order to highlight the features relevant for top-tagging in a QCD background.
On the other hand, QCD jets and dark jets are dominated by the intensity in the central pixels.
In these cases it is promising to apply preprocessing to highlight the dim features, for instance
using a p1/4

T reweighting. It is evident from Tab. 1 that such a preprocessing also increases the
number of effective dimensions of the clusters, as the number of relevant pixels increases.

The ROC curves for direct and reverse top tagging are shown in Fig. 8, and for tagging
dark-jet anomalies in Fig. 9. We see that MinD, KNC5, MLLED and MGG all have similar
performances, except for the reverse top tagging case. Ignoring the cluster size completely in
assigning a density, MLLN has a low performance on the top-signal dataset, but it performs

Figure 8: ROC curves for tagging high-pT top jets in a QCD background (left) and
high-pT QCD jets in a top background (right). The various anomaly scores are dis-
cussed in the text.
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Figure 9: ROC curves for tagging Aachen (top row) and Heidelberg (bottom row)
dark jets in a QCD background. The pixel intensities in the images are given by the
pT within a pixel (left) or p1/4

T (right). The various anomaly scores are discussed in
the text.

best on the Aachen dataset and for reverse top tagging. The reason for this, as discussed at
the end of Sec.. 3.3, is that MLLED and MLLN are sensitive to different kinds of anomalies.
MLL1D is a compromise between MLLED and MLLN. It does not show the best, but a reliable
performance on all five tasks. This renders MLL1D the most model-agnostic anomaly detection
algorithm in this section.

In line with what we find for the anomaly detection methods presented in the following
chapters, we observe a strong improvement in the dark jet tagging performance after pre-
processing the jet images. The Gaussian filter combined with the 4th root reweighting are
essential for the applicability of the MSE distance measure on which our clustering and den-
sity estimation algorithms rely. Using pT instead of p1/4

T implies neglecting the contribution
of the low-pT pixels in the distance measure between images, whereas performing no filtering
will result in a distance being artificially large for images with a small spatial shift of intensity.
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4 Dirichlet-VAE

If the latent space of a variational autoencoder (VAE) is expected to encode physical infor-
mation on the structure of a jet, then the choice of latent space is important. A comparison
of Gaussian, Gaussian Mixture, and Dirichlet latent spaces for detecting anomalous top jets
in a QCD sample and vice versa shows that the Dirichlet VAE (DVAE) achieves the best per-
formance and provides an intuitive physical interpretation of how the jets are organised in
latent space [4]. The Dirichlet distribution is a family of continuous multivariate probability
distributions with the probability density

Dα (r) =
Γ
�∑

i αi

�

∏

i Γ (αi)

∏

i

rαi−1
i (i = 1 ... R) , (13)

where R is the number of latent space dimensions. It is a compact and potentially multi-
modal distribution, constrained such that

∑

i ri = 1, and is defined by R hyper-parameters
αi > 0. The hyper-parameters allow us to build hierarchies into the latent space, defined by
〈ri〉 = αi/
∑

i αi . With αi < 1 the distribution has R modes with peaks at each of the latent-
space points ri = 1. This enables the DVAE to separate the jets into different, potentially
hierarchical, modes based on their kinematics. The DVAE can be thought of as a more powerful
deep-learning edition of more traditional topic models, such as LDA, which have also been
applied to anomaly detection problems in high-energy physics [12,29].

In a forward-pass through the network we need to be able to sample from the Dirichlet
distribution and calculate the KL-divergence between two Dirichlet distributions. This is very
difficult with the exact form of the distribution. Therefore, we use a softmax approximation
to the Dirichlet distribution [8]

ri ∼ softmax N (z; µ̃, σ̃) , with µ̃i = logαi −
1
R

∑

j

logα j ,

and σ̃i =
1
αi

�

1−
2
R

�

+
1
R2

∑

j

1
α j

. (14)

The DVAE loss function is the sum of the reconstruction loss and the KL-divergence between
the prior and the latent distribution for each jet,

L= −〈log pθ (x |r)〉qφ(r|x) + βKLDKL

�

qφ(r|x),Dα(r)
�

, (15)

with a learnable encoder qφ(r|x) and decoder pθ (x |r), where φ and θ are the respective pa-
rameters. The reconstruction loss is computed as the KL-divergence between the input and re-
constructed jet images, and the KL-divergence between the prior and the latent-representation
of the jet becomes

DKL

�

qφ(r|x),Dα(r)
�

=
1
2

R
∑

i=1

�

σ2
i

σ̃2
i

+
(µ̃i −µi)2

σ̃2
i

− 1− log
σ2

i

σ̃2
i

�

. (16)

Here, µi and σi are the encoded means and variances in the softmax-Dirichlet approximation
for each jet.

The DVAE architecture used here is identical to the one in Ref. [4]. The encoder is a
neural network with 1600 inputs, a flattened 40 × 40 image, with 2R outputs with linear
activations, and a single hidden layer of 100 nodes with SeLU [95] activations. These out-
puts are the means and variances used to sample from the softmax-Dirichlet distribution and
to calculate the KL-divergence with the prior. The R-dimensional vector sampled from the
softmax-Dirichlet distribution is then passed to a decoder network which has a very simple
architecture; a 1600-dimensional output with no hidden layers and no biases. A softmax acti-
vation is applied to the output layer.
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4.1 Anomaly scores

The Dirichlet latent space allows the VAE to separate the jets in latent space, based on their
phase-space features. Because of the mixture model interpretation of the DVAE and simple
decoder architecture, we can also visualise the features that the network associates with each
mixture. From Ref. [4] we know that when the DVAE is trained on equal parts top and QCD
jets, the mixtures are associated with one-prong QCD-like and three-prong top-like jets. In
contrast, for datasets with predominantly QCD jets the learned features are one-prong and
two-prong jets.

We can choose between three anomaly scores for the DVAE [4]; the reconstruction error,
the KL-divergence, or a latent coordinate ri . The coordinate ri is only unambiguous for R= 2,
since r1 = 1− r0, while for R> 2 there is more than one option for the direction. In this work
we use R = 2 with α = (1.0,0.1), unless otherwise specified. We train the DVAE solely on
background jets and use the reconstruction loss as the anomaly metric, which we expect to be
correlated with the density of the jets in physics space. We use the Adam optimizer [96] with
a learning rate of 0.01 and decay rates β1,2 = (0.9,0.99). The model is trained for 300 epochs,
which is sufficient for the loss to converge. We also choose βKL = 0.1, so that the prior has a
large impact on the training. The exact details of the implementation and training are laid out
in Tab. 2, and match those described in Ref. [4].

4.2 Jet image performance

We find that the preprocessing of the jet images has a large effect on the anomaly detection
performance, with different preprocessing parameters being optimal for different signals. For
the Aachen dataset we find that pT -reweighting, pT → pn

T , with n≲ 0.1 and a Gaussian filter
with width σ ≃ 1.0 work best, resulting in an AUC ≃ 0.71 and a ε−1

b (εs = 0.2) ≃ 37. While
for the Heidelberg dataset we find that n ≃ 0.4 − 0.6 and σ ≃ 1.0 tends to work best, with
an AUC of ≃ 0.73 and a background suppression of ε−1

b (εs = 0.2) ≃ 27. It is certainly not
ideal that different anomalies are best detected with different preprocessings, although this is
a recurring theme of this paper and we argue in Sec. 2 that this can be understood. We also
note that these results do not require a fine-tuning of the preprocessing parameters, as they
are largely insensitive to order-one changes.

The ROC curves for the DVAE are summarized in Fig. 10. We see that the Gaussian filter
preprocessing has a large effect, especially for the Aachen dataset, where the AUC drops below
0.5 in some cases without the Gaussian filter. This is because the anomalous features in the
Aachen dataset are very sparse and at low pT , so the DVAE can and will ignore these unless
they are explicitly emphasized in the input. We also studied a higher-dimensional latent space,

Table 2: Network and training parameters for the DVAE.

Parameter Value

training data set size 100k
number of epochs 300
batch size 2048
initial learning rate 10−2

βKL 0.1
α (1.0,0.1)
optimizer Adam
β1,2 (0.9, 0.99)
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Figure 10: ROC curves for DVAE anomaly detection using jet images on the Aachen
and Heidelberg datasets. The reweighting power n is defined in Eq.(9).

R = 3, with α = (1.0,0.25, 0.1), and found no difference in the performance. In [4] it was
found that for the top tagging the mixture weights or latent coordinates ri can provide good
performance in anomaly detection even when the anomalous jets are less complex than the
background. Here we find a similar behaviour, but the performance is not as good as for the
reconstruction error.

4.3 EFP performance

The DVAE aims to extract physical information from the images, but it is of course possible
to use EFPs as input rather than images. This way it might be easier for the algorithm to
characterize the background and better identify anomalies.

As discussed in Sec. 2.3 we consider two preprocessings for EFPs: (i) standard scaling
where we set the mean to zero and the standard deviation to unity, not removing the strong
correlation between EFPs, and (ii) using PCA components, still with zero mean, but an identity
covariance matrix between features. These are performed with the StandardScaler and PCA
routines in scikit-learn [92]. We have also learned from the previous section that reweighting
physical inputs heavily influences the anomaly detection performance. Here we investigate
what happens when we train our DVAE on the first eight EFPs and we preprocess them using
zi → zκi and Ri j → Rβi j , see Eq.(7), in analogy to the pixel reweighting used before. We explore
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Figure 11: ROC curves for DVAE anomaly detection using EFPs on the Aachen and
Heidelberg datasets (κ= 1).

a range of values for β and κ, as well as having either two or three mixtures in the latent
space, i.e. R = 2 or R = 3. In agreement with the DVAE trained on images, we find that the
results with R = 2 and R = 3 are essentially the same. A summary of the DVAE performance
for κ = 1 and β = 0.25 ... 1 are shown in Fig. 11. First, we see that standard scaling without
decorrelating the EFPs essentially fails. Once we include the decorrelation step, we find that
for both the Aachen and Heidelberg datasets using EFPs with κ= 1 and β = 0.25 ... 0.5 gives
the best anomaly detection. This is in complete agreement with our observation from k-means
clustering and the image-based DVAE. Directly comparing the performance of the image-based
and EFP-based DVAEs we find that in our current setup the images work slightly better for the
Aachen dataset, while the EFPs are more efficient in extracting the hard substructure of the
Heidelberg dataset.

5 INN

A density estimation based on neural networks can be obtained using normalizing flows [68,
69], specifically their invertible neural network (INN) incarnation [70, 71]. INNs are neural
networks which learn bijective mappings between a physics and a latent space completely
symmetrically in both directions. They allow access to the Jacobian and both directions of the
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mapping, linking density estimation in the physics and latent spaces in a completely controlled
manner. We have used the flexible INN setup successfully for precision event generation [97,
98], unfolding detector effects [99], and QCD or astro-particle inference [100,101].

For this straightforward application we use simple, affine coupling blocks [68] combined
with random, but fixed, orthogonal transformations. In an affine coupling block, the input
dimensions are split into two halves, x1,2. The first half is passed through a subnet which
learns two functions s(x1) and t(x1). The second half is transformed by an element-wise
multiplication (⊙) and an element-wise addition,
�

z1
z2

�

=

�

x1

x2 ⊙ es(x1) + t(x1)

�

⇔
�

x1
x2

�

=

�

z1

(z2 − t(z1))⊙ e−s(z1)

�

. (17)

The Jacobian of this mapping is

J =

�

11 0
∂x1

z2 diag es(x1)

�

⇒ log |J |=
∑

s(x1) . (18)

We use soft clamping to avoid instabilities in the training [70], replacing s(x1)→ 2 tanh s(x1)
in Eqs.(17) and (18). The random transformations ensure that in each coupling block the
information is split differently. They are easily invertible, and their Jacobian is one.

If f is the mapping between physics space and the INN latent space, and q is the prior
distribution in latent space, then the learned distribution in physics space p can be written as
p(x) = q( f (x)) |J(x)|. The loss function should become minimal if the learned distribution in
physics space p matches the true distribution ptrue. Therefore, we would like to minimize the
KL-divergence between p and ptrue,

DKL(p, ptrue) =

∫

d x ptrue(x) log
ptrue(x)

p(x)
. (19)

Since we know ptrue only from samples {x i}, this is difficult to achieve. Moreover, we can split
the KL-divergence into the self-entropy of ptrue, which does not depend on f , and the negative
log-likelihood. The loss function is this negative log-likelihood,

L= −
∫

d x ptrue(x) log p(x) = −
∫

d x ptrue(x)
�

log q( f (x)) + log |J(x)|
�

≈ −
1
N

N
∑

i=1

�

log q( f (x i)) + log|J(x i)|
�

, (20)

Table 3: Network and training parameters for the INN.

Parameter Value
training data set size 100k
number of epochs 300
batch size 512
initial learning rate 10−4

learning rate decay 0.98
initial noise width 0.5
noise decay 0.95
optimizer Adam
β1,2 (0.9,0.999)
scaling PCA
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Figure 12: Example distribution of background and signal jets in the INN latent space,
after training on background only.

which we can evaluate without having an explicit form of ptrue. This loss function automatically
ensures that the latent distribution follows the prior [70].

Learning a density from jet images faces the challenge that the active pixels are distributed
very sparsely, which means that most of the large number of physics space dimensions do
not carry any information. This inflates the number of dimensions in the image-pixel space,
while we know that the relevant number of dimensions describing the jets is much smaller.
For the bijective INN we are interested in limiting the number of physical and latent dimen-
sions, so we simplify our task by using the eight EFPs up to order d = 3 introduced in Sec. 2.
The 8-dimensional physics space is then mapped on an 8-dimensional Gaussian latent space.
Our architecture consists of 24 affine coupling blocks, each followed by a random orthogonal
transformation. Our subnets are each a fully connected network with one hidden layer of 512
nodes and ReLu activation. The output layer has no activation. The network parameters are
summarized in Tab. 3.

We train our network for 300 epochs using the Adam optimizer [96] and an initial learning
rate of 10−4. The learning rate is then reduced every epoch by 2%. To stabilize the training, we
apply a PCA as described in Sec. 2.3. Since the PCA is also an invertible transformation with
a computable Jacobian, we can still evaluate the density in the original EFP space. Also we
help the training by adding Gaussian noise to the training data, where we reduce the standard
deviation of the noise by 5% every epoch, so that it had no effect by the end of the training.
Further training details can be found in Tab. 3.

5.1 Anomaly scores

The INN allows us to estimate the density associated to where a particular jet lies in the space
of physical observables we use to characterize it. It does this by constructing a Gaussian latent
space for the jets along with a learned Jacobian to correctly account for the density in the
transformation. The idea behind using an INN to search for anomalous jets is that we can look
for jets located in low density regions of either physics space or the Gaussian latent space, with
the Jacobian connecting the two.

Using the density of a given jet in physics space as the anomaly score, based on informa-
tion from both the latent Gaussian space and the Jacobian is well motivated and has a clear
definition. It can also be interpreted as a standard observable, defined in physics space, but
numerically represented through a neural network benefiting from a specific latent space.
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Figure 13: Effect of the input scaling x → xn on the AUC and the inverse mistag rate
at 20% signal efficiency.

In the latent space, we expect the INN to ensure that the background forms a Gaussian
distribution, including the exponentially suppressed tails away from the mean, or typical jet
patterns. Thus we can use the distance to the center as anomaly score, which is monotonously
related to the likelihood for a multi-dimensional Gaussian. In Fig. 12 we show the latent space
distribution for the QCD training dataset and the Aachen and Heidelberg dark jets. While the
QCD distributions follow the Gaussian prior closely, as expected when training on QCD jets
only, both signal datasets differ from the prior in some of the latent directions. The drawback
of this method is that the training does not guarantee the signal to end up in the tales of the
latent distribution.

5.2 Performance

Applying the INN to EFPs with κ = β = 1.0 and using the negative log-likelihood in physics
space as an anomaly score leads to a strong bias to detect more complex jets as anomalous.
This is due to the fact that jet density is particularly high at low EFP values and jets with less
structure have lower EFP values. This bias can be compensated for by using a reweighting that
leads to more uniform distributions. We study an element-wise exponentiation g(x) = xn ap-
plied to the EFP before the PCA, so the distribution in the x ′-space is p′(g(x)) = p(x)·|Jg(x)|−1.
The Jacobian of this reweighting is again diagonal, and the negative log-likelihood of a single
sample transforms like

L→ L+
∑

log

�

�

�

�

d g
d x

�

�

�

�

= L+ (n− 1)
∑

log x +
∑

log n , (21)

where the sums go over the eight input dimensions. We drop the last term since it is inde-
pendent of x and will therefore have no effect on tagging. Then for n= 0 this transformation
corresponds to the reweighting g(x) = log(x). This technique for reweighting would be anal-
ogous to training the DVAE, or any autoencoder, on reweighted inputs, and then applying the
reweighting to the input and reconstructed images when evaluating the anomaly score.

Fig. 13 shows the effect of this reweighting for n ∈ [0, 1] on the AUC and the inverse mistag
rate at 20% signal efficiency. The point n= 1 means no reweighting at all. It can be seen that
a signal with less structure than the background like the Aachen data set needs low values
of n to be detected, as expected. Fig. 14 shows the ROC curves for density based tagging in
physics and in latent space. Only the density in physics space is affected by the reweighting.
For the plots we choose three representative values for n. Despite the INN not being retrained
on EFPs with different reweightings, the anomaly detection performance drastically improves
for different n. This implies that the INN is learning the low-density regions in physics space
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Figure 14: ROC curves for INN anomaly detection on the Aachen and Heidelberg
datasets, using density based tagging in physics and latent space. The density in
physics space is effected by reweighting while the density in latent space is not.

well, and that difficulties in detecting the anomalies are related to the choice of observables
rather than the network training. A remaining challenge for the INN-based anomaly search is
the choice of the reweighting, as the log-reweighting works best for the semi-visible Aachen
dataset, while the cubic-root-reweighting gives the best results for the Heidelberg dataset.

6 Outlook

Searches for anomalies, or hints for physics beyond the Standard Model, are a large part of
the LHC program and essentially all particle physics experiments. We have studied how this
analysis goal can be pursued with modern machine learning tools and concepts, specifically
unsupervised learning. New ways to disentangle potential signals from background can be
applied at the LHC in many ways, at the trigger and analysis stages, on jets or other specific
analysis objects and on whole events, with training on data and on simulation.

In this paper we have studied jets, which are an excellent path to understanding modern
anomaly search tools, because they are theoretically well understood, can be simulated in
large numbers, and come with huge established data samples. We do know that classic out-
of-distribution searches will not work in LHC physics, because in high-statistics jet or event
samples the backgrounds eventually populates all possible phase space configurations. This
suggests to consider anomaly searches in relation to probability density estimation. This task
is reflected in our choice of two benchmark signals, both inspired by a dark or invisible sector
interfering with QCD showering. The Aachen dataset features semi-visible jets, where part
of the shower products are not visible, while the Heidelberg dataset features massive decays
inside a fully visible jet.

We studied three different ways of searching for such dark jets in a QCD background sam-
ple, assuming that we can train in an unsupervised way on background only or with negligible
signal contamination:

· K-means is a classic ML algorithm, which we use to define a set of different anomaly
scores. It works on jet images and allows us to study density estimation in the cor-
responding high-dimensional spaces. For a well-motivated choice of hyperparameters
the performance is stable and competitive with more modern deep learning methods.
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Anomaly searches with k-means clustering benefit from a reweighting of the image pixels
as part of the preprocessing, as do all methods we have analysed.

· Dirichlet VAEs are a modern ML-algorithm which constructs a multi-modal latent space,
allowing us to define anomaly scores in the physics space or in the latent space. The re-
construction loss is used as the anomaly score, which is expected to be correlated with the
density of the jets in physics space. They work on jet images and on lower-dimensional
representations like energy flow polynomials (EFPs). We found that Dirichlet VAEs also
require preprocessing, and while it is possible to use a latent-space anomaly score, the
reconstruction loss performs better for our benchmark signals.

· Normalizing flows, specifically INNs, construct a bijective and traceable map between the
physics and latent spaces. This means they are ideally suited for density estimation but
they work best on lower-dimensional data representations, like decorrelated EFPs. INNs
have the advantage that we have full control over the link between the two spaces, and
we found the density estimate in physics space to provide the best-performing anomaly
score.

Our three very different algorithms have very different requirements, strengths, and
caveats. Once understood, they all show similar performance on both datasets. Preprocessing
is important for all of them, and has a very significant impact on the performances. This is
because we define the anomalies as those jets that lie in low density regions of physics space,
and the preprocessing alters this density, therefore it changes how the anomalies are defined.
We finally note that our Aachen and Heidelberg datasets are challenging datasets for anomaly
detection, compared for example to top-tagging, which has served as a benchmark for assess-
ing the performance ML methods. The datasets will be available as public benchmarks for
existing and improved anomaly detection algorithms.
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A Notes

The codes for the k-means clustering, the DVAE and the INN can be found at https://github.
com/IvanOleksiyuk/jet-k-means, https://github.com/bmdillon/jet-mixture-vae and https://
github.com/ThorstenBuss/jet-inn, respectively.
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