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Abstract

The AKLT state is the ground state of an isotropic quantum Heisenberg spin-1 model.
It exhibits an excitation gap and an exponentially decaying correlation function, with
fractionalized excitations at its boundaries. So far, the one-dimensional AKLT model has
only been experimentally realized with trapped-ions as well as photonic systems. In this
work, we successfully prepared the AKLT state on a noisy intermediate-scale quantum
(NISQ) era quantum device. In particular, we developed a non-deterministic algorithm
on the IBM quantum processor, where the non-unitary operator necessary for the AKLT
state preparation is embedded in a unitary operator with an additional ancilla qubit for
each pair of auxiliary spin-1/2’s. Such a unitary operator is effectively represented by
a parametrized circuit composed of single-qubit and nearest-neighbor CX gates. Com-
pared with the conventional operator decomposition method from Qiskit, our approach
results in a much shallower circuit depth with only nearest-neighbor gates, while main-
taining a fidelity in excess of 99.99% with the original operator. By simultaneously post-
selecting each ancilla qubit such that it belongs to the subspace of spin-up |↑〉, an AKLT
state can be systematically obtained by evolving from an initial trivial product state of
singlets plus ancilla qubits in spin-up on a quantum computer, and it is subsequently
recorded by performing measurements on all the other physical qubits. We show how
the accuracy of our implementation can be further improved on the IBM quantum pro-
cessor with readout error mitigation.
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1 Introduction

The current age has witnessed tremendous progress in the quantum simulation of novel many-
body phenomena [1–6]. In particular, there has been intense recent focus on using noisy
intermediate-scale quantum (NISQ)-era [7] quantum computers to assist in large-scale tasks
with the goal of eventual quantum supremacy [8, 9]. Among them, programmable digital
quantum computers have so far been successfully used for the implementation and study of
discrete time crystals (DTC) [10, 11], quantum chemistry problems with Hartree-Fock meth-
ods [12], fractional quantum Hall states [13, 14], spin chain dynamics [15, 16], interacting
topological lattice models [17,18], many-body localization [19], lattice gauge theory [20] and
quantum spin liquid states [21]. These examples in general involve (but are not limited to)
three categories of usage of quantum computers for condensed matter physics: time evolution,
ground state search and state preparation. Such efforts are made with the goal of overcoming
major drawbacks in current numerical approaches. These include the exponential “curse” of
exact diagonalization (ED) [22], the sign problem in Fermionic quantum Monte Carlo simula-
tions [23], and the rapid growth of entanglement in tensor network states [24,25].

At the current juncture, there are still limitations and challenges in using NISQ-era quan-
tum computers for large scale simulations. Some major issues include large circuit depth, low
gate fidelity, and thermal noise from the execution of the quantum circuit [26]. In response,
many classical algorithms and approaches based on matrix product state (MPS) have been
recently proposed for state preparation [27–29]. However, some of these methods cannot
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be directly implemented on qubit-based devices due to the restrictions on the MPS physical
dimensions [27]. Another challenge, which would be present even for a perfect quantum
computer, is that state preparation with projective opreations to generate it [13, 30, 31] is a
fundamentally non-unitary process which requires the implementation of non-unitary opera-
tors. Progress has lately been made through imaginary time evolution approaches combined
with variational algorithms [32,33], or through constructing a deterministic measurement op-
erator [34,35]. However, these techniques may not always be practical for NISQ-era quantum
processors such as the IBM Q system due to short qubit coherence times. In general, vari-
ous requisite operators cannot be directly decomposed into the fundamental unitary gates on
NISQ-era quantum computers, posing difficulties for existing schemes for state preparation.

In this work, we propose an algorithm and demonstrate the preparation of a particular
type of quantum many-body state, the so-called Affleck, Kennedy, Lieb, and Tasaki (AKLT)
state [36, 37], on NISQ-era quantum computers. As a type of Valence-Bond-Solid (VBS)
state [37], it is the exact ground state of the spin-1 AKLT model, which is the paradigm of
a strongly correlated symmetry protected topological (SPT) phase with a Haldane gap [38]
and fractional excitations at its boundaries [36, 39, 40]. SPT phases of matter received much
attention recently on quantum computers [17, 41–46], and the two-dimensional generaliza-
tion of the AKLT model on a trivalent lattice is proposed to be a universal resource [47, 48]
for measurement-based quantum computation [49–51]. So far, the 1D AKLT state has been
experimentally realized and characterized on photonic implementations [52] using cluster
states [53] and in trapped ions [54]. Recently, we notice that there have been much efforts
to construct the VBS state, including in particular the AKLT state in 1D with measurement
assisted preparation [55], and in 2D with a post-selection algorithm [56]. With the usage of
tensor network states, both 1D and 2D AKLT states can be prepared adiabatically [57]. For our
work, instead of performing the variational searching of the AKLT state as the ground state of
the spin-1 AKLT model [58], we show that the AKLT state can be obtained by evolving from a
trivial initial product state composing of a chain of singlets. On a NISQ-era quantum computer
(e.g., IBMQ), the main challenge is the non-unitarity of the state preparation, and our new ap-
proach is based on augmenting the non-unitary subspace with additional ancilla qubits, such
that an effectively non-unitary operator can be realized through measurement-based post-
selection. This allows us to implement non-unitary operators with unitary gates, achieving
the simultaneous non-unitary projection on every site of an initial product state made up of a
chain of singlets. For an efficient quantum circuit realization of this unitary operator, another
matrix product state (MPS)-based algorithm on a classical computer is used to transform the
operator into a parametrized circuit via variational optimization [17, 59–62]. Most recently,
MPS-based algorithms have been applied for the investigations of translational-invariant sys-
tems [63, 64]. Compared with other recent AKLT state preparation methods [55–57], our
approach only requires nearest-neighbor CX gates, and the full circuit that prepares the AKLT
state is much shallower than that from Qiskit’s default isometry decomposition method [65].
Also, the evolution from the initial state has only one step, and it does not require any mid-
circuit measurements [66] or special encoding of the states in the spin-1 triplet manifold [55]
on IBM Q.

This paper is organized as follows. First, in Sec. 2, we introduce the AKLT model and its
ground state, i.e. the AKLT state. Sec. 3 discusses the details of the approach used in this
work to prepare the AKLT state, which includes transforming the projection operator into a
unitary one, a variational parametrized circuit for the three-qubit operator, and post-selection
of the results. Sec. 4 presents the characterization of AKLT states for L = 2,3, 4 and 5 on
IBMQ devices, and discusses various factors which could affect the fidelity of the prepared
state. Finally, we highlight the conclusion of this work in Sec. 5.
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2 The AKLT state

Below, we briefly introduce the AKLT state [36, 37]. Consider a 1D spin chain with 2L spin-
1/2s, grouped into pairs of adjacent spins as illustrated in Fig. 1(a). In general, each pair of
adjacent spin-1/2s either forms a spin-0 singlet state (| ↑↓〉 − | ↓↑〉)/

p
2, or one of the three

symmetric states

|+〉= | ↑↑〉 ,

|O〉= 1/
p

2 (|↑↓〉+ |↓↑〉) ,

|−〉= |↓↓〉 ,

(1)

which spans the spin-1 subspace. To construct the AKLT state, we first project onto the spin-
1 subspace of each pair of adjacent spin-1/2s [circled in Fig. 1(a)], such that we obtain an
effective chain of L spin-1s.

Before any constraints are applied, each pair of adjacent spin-1s can have a total spin of
S = 0,1 or 2. The AKLT state is the unique state satisfying the constraint that every pair of
adjacent spin-1s (i.e. the four consecutive spin-1/2s in two adjacent circles) is allowed to have
a total spin of S = 0 or 1, but not 2. In terms of the constituent spin-1/2s, this is equivalent
to the constraint that each spin-1/2 forms a (spin-0) singlet with another spin-1/2 from an
adjacent spin-1 pair, as illustrated in Fig. 1(a). This would be the picture that our AKLT state
algorithm is based on - we shall first prepare the spin singlets, and next project spin-1/2 pairs
connected to adjacent singlets onto their total S = 1 subspace.

The above spin chain picture can be recast as an MPS representation of the AKLT state |ψ〉,
for both periodic and open boundary conditions (PBCs and OBCs):

|ψ〉PBC =
∑

σ

Tr [Aσ1Aσ2 · · ·AσL ] |σ1σ2 · · ·σL〉 , (2)

|ψ〉OBC =
∑

σ

�

bl
A

T
Aσ1Aσ2 · · ·AσL br

A

�

|σ1σ2 · · ·σL〉 , (3)

where σi ∈ {+, O,−} labels the i-th spin-1 basis state, with corresponding MPS matrices
Aσgiven by

A+ = +

√

√2
3
τ+ , A0 = −

√

√1
3
τz , A− = −

√

√2
3
τ− , (4)

τz and τ± = τx ± iτy spanning the set of Pauli matrices [67,68]. Since (τ±)2 = 0, this matrix
representation keeps track of the AKLT constraint that two adjacent spin-1s do not add up to
total spin S = 2. Under PBCs, there has to be an equal number of |+〉 and |−〉 in |σ1σ2 · · ·σL〉,
as enforced by the trace operator Tr. Under OBCs, which is the more convenient scenario for
implementation on the quantum processor [see Fig. 4], we will have to fix the end spins – in
the above, we have chosen these boundary vectors to be bl

A =
�

1 0
�T

, and br
A =
�

0 1
�T

, up
to a normalization factor. This means that both boundary spins are fixed as spin up, which is
the same as the MPS representation described in Ref. [69]. As is shown below in Fig. 2, this
choice is of convenience for our implementation, as all qubits are initialized as spin up on the
IBM Q system. For this choice, there is necessarily one more |+〉 compared to the number of
|−〉. The explicit forms of |ψ〉PBC and |ψ〉OBC are given in Appendix C for L = 2 and L = 3.

Although we shall directly prepare the AKLT state through an MPS (Eqs. 2 and 3) quantum
circuit, we note in passing that the AKLT state can also be obtained as the unique zero ground
state [36,37] of the following projection operator:

P̂S=2 =
L−1
∑

i=1

�

Si · Si+1 +
1
3
(Si · Si+1)

2 +
2
3

�

, (5)
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Figure 1: Structure of the AKLT state. (a) The AKLT state with open boundary
conditions (OBCs) with L = 5: solid lines connect two spin-1/2 qubits, forming
singlet states. Each pair of spin-1/2s (circled) from two consecutive singlets are
projected via P̂ onto their total spin S = 1 sector, via Eq. (6). (b) With the help
of ancilla qubits (brown spheres), the non-unitary projectors P̂ can be embedded in
unitary operators Û acting on three qubits (red dashed square): the two spin-1/2s
(blue spheres) plus the ancilla qubit. The solid black line connecting two physical
qubits forms a singlet. The actual physical embedding into IBM quantum processor
qubits is shown Sect. 3.4.

which projects onto the total spin S = 2 sector in all pairs of adjacent spin-1s. It can be
derived [36] by considering the total spin operator (Si +Si+1)2 with eigenvalues proportional
to S(S + 1), where Si and Si+1 are the spin-1 operators of adjacent spin-1s.

3 Preparing the AKLT state on a quantum computer

3.1 Implementing local projections within unitary operators

The preparation of the AKLT state on a quantum circuit crucially requires non-unitary operators
for projecting onto the spin-1 subspace of each adjacent spin-1/2 pair [Fig. 1(a)]. Inspired by
the techniques introduced in Refs. [29, 70, 71], we develop an approach for preparing the
AKLT state by embedding the projection operator on each spin-1/2 pair into a 3-qubit unitary
operator that admits an additional ancilla qubit. By subsequently projecting the ancilla qubit
onto a chosen state |↑〉 by post-selection [see Fig. 1(b)], we can realize the non-unitary S = 1
projection on the two spin-1/2s. This approach allows us to prepare the AKLT state according
to the MPS formalism given in [67,72].
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Explicitly, as shown in Fig. 1 (a), a local spin-1 in the bulk, which forms one “site” of an AKLT
chain in OBCs, is built from a pair of adjacent spin-1/2 through the projection operator

P̂ = (|+〉 〈+|) + (|O〉 〈O|) + (|−〉 〈−|) =







1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1






, (6)

expressed in the spin-1/2 basis {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}, with |+〉= |↑↑〉, |O〉= 1/
p

2(|↑↓〉+ |↓↑〉)
and |−〉= |↓↓〉 defined as before. Note that the spin-1/2s are the physical degrees of freedom
on a quantum processor, even though they are often referred to as virtual spins in the AKLT
literature.

This spin-1 projector of Eq. (6) is non-unitary as P̂P̂† ̸= I , which is not possible to be
directly implemented on a quantum computer such as IBM Q. To realize it in a quantum circuit,
we embed it in a 3-qubit unitary operator Û which takes the form

Û =
�

P̂ Q̂
Q̂ P̂

�

, (7)

in the product basis of the ancilla qubit and the two spin-1/2 qubits. Here, we stipulate

Q̂=







0 0 0 0
0 1/2 −1/2 0
0 −1/2 1/2 0
0 0 0 0






, (8)

such that Û is unitary, i.e. Û†Û = I . As both P̂ and Q̂ are symmetric, it is easy to verify that
P̂2 + Q̂2 = I4×4, and Q̂P̂ + P̂Q̂= 04×4.

For this three-site subsystem consisting of two original spin chain qubits and an ancilla
qubit, we examine input states of the form

|ψ〉= |↑〉 ⊗ |φ〉=
�

1
0

�

⊗ |φ〉 , (9)

where |↑〉 represents an ancilla qubit in the spin-up state, and |φ〉 represents the two adjacent
qubits which are paired as a singlet. Applying Eq. (7) to the above three-qubit state, we have

Û |ψ〉=
�

P̂ |φ〉
Q̂ |φ〉

�

= |↑〉 ⊗ P̂ |φ〉+ |↓〉 ⊗ Q̂ |φ〉 . (10)

Therefore, it is clear that after projecting the output ancilla qubit onto |↑〉, say via post-
selection, the target state |φ〉 is indeed acted on by the nonunitary projector P̂ , i.e.,

〈↑| Û (|↑〉 ⊗ |φ〉) = P̂ |φ〉 . (11)

The above technique contains only one single-step evolution that does not require any
mid-circuit measurement for the preparation of the AKLT state [66], which provides a new
approach towards embedding a non-unitary projection operator P̂ into a unitary operator Û
for further decomposition into basis gates on a quantum computer, which will be discussed
shortly. We also remark that our approach can be used to prepare the AKLT state under both
OBCs to PBCs, although the PBC case requires a quantum device geometry such that a closed
loop of qubits exists, and are accompanied by appropriately located branches functioning as
ancilla qubits [see Fig. 4]1
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Figure 2: Illustrative quantum circuit for the preparation of a 2L = 6-qubit AKLT
state with OBC. The roles of the 9 qubits q0 to q8 are given in Fig. 1(b), with L ancilla
qubits q0, q3, q6 and the remaining 2L qubits representing the spin-1/2 chain. Qubits
q1 and q8 are boundary qubits while qubits q2, q4 and q5, q7 pair up as singlets. The
state preparation consists of two steps, as separated by the red dashed line: First, the
initial state consisting of L−1= 2 singlet pairs is initialized as shown to the left of the
red line, where each combination of CX , X and Hadamard gate (H) gates creates a
singlet. Next, to the right of the red line, the 3-qubit unitary operation Û from Eq. (7)
is effected, where every third qubit q3k is an ancilla. To recover the non-unitary spin-
1 projection P̂ from Eq. (6), post-selection “〈0|” operations are performed on the
ancilla qubits, as described by Eq. (10). The OBC AKLT state shown in Fig. 1(a)
is obtained through measurements and post-selections on the physical qubits. With
the circuit geometry given in Fig. 1(b), the CX gates between q2, q4 and q5, q7 act
between nearest neighbor qubits when embedded in a quantum processor (also see
Fig. 4).

3.2 Quantum circuit implementation

We break up the preparation of the MPS-based AKLT state into two steps, as sketched in Fig. 2.
We first prepare the paired singlet states [two solid dots connected with a solid line in Fig. 1(a)]
as initial states through the combination of X gates, a Hadamard gate and a CX gate (see
notations in Qiskit [65]), which corresponds to the operations to the left of the red dashed

1But see Ref. [18,73,74] for possibly implementing long-ranged couplings.
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line in Fig. 2. An X gate is essentially a Pauli-X operator, and a Hadamard gate H maps
|↑〉 [|↓〉] to (|↑〉+ |↓〉)/

p
2
�

(|↑〉 − |↓〉)/
p

2
�

:

X =

�

0 1
1 0

�

, H =
1
p

2

�

1 1
1 −1

�

, (12)

while a CX gate is a two-qubit controlled-X gate which performs a Pauli-X operation on the
target qubit whenever the control is in state |↓〉.

CX =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






, (13)

which is expressed in the same basis as in Eq. (6). Next, we perform the S = 1 projections P̂
on spins-1/2 pairs from adjacent singlets, which is undertaken by the unitary operation Û of
Eq. (7). The ancilla qubits associated with the first, second, third etc pairs are labeled “q0” ,
“q3” and “q6” etc. in Figs. 1(b) and 2.

Fig. 2 shows the circuit structure for a small illustrative system with L = 3; we point out
that the aforementioned procedure can be extended to arbitrarily large system sizes, as one
can apply the unitary operator Û simultaneously to all corresponding sites, i.e.

|ψ〉AKLT =

�

L−1
⊗

k=0

〈↑|3k

�

�

Û (0,1, 2)⊗ Û (3,4, 5)⊗ · · · |ψ〉0
�

=

�

L−1
⊗

k=0

〈↑|3k

�





L−1
∏

j=0

Û (3 j, 3 j + 1, 3 j + 2) |ψ〉0





=
L−1
∏

j=0

P̂ j |φ〉0 ,

(14)

where |ψ〉0 =
∏L−1

k=0 |↑〉3k ⊗ |φ〉0 is the product state of all the ancilla qubits in spin up

(
∏L−1

k=0 |↑〉3k), and singlet pairs (|φ〉0) generated from the first step. For each j, P̂ j is the same
projection operator as P̂ in Eq. (6). 〈↑|3k (k = 0, 1,2, · · · , L−1) represents the projection, i.e.,
postselection of the ancilla qubits onto spin up. We use the notation Û (3 j, 3 j + 1, 3 j + 2) to
indicate that the unitary operator Û acts on qubits 3 j, 3 j + 1 and 3 j + 2. The last line from
the above Eq. (14) is basically a product version of Eq. (11). From there, by simply following
the same way as how the AKLT state is constructed by the projection operator in the MPS for-
malism in Refs. [67,69], one could obtain the exact expression of the AKLT state for both OBC
and PBC in Eq. (3) and (2), respectively.

3.3 Variational circuit recompilation for the three-qubit unitary operator

In general, unitary operators on a quantum circuit are transpiled in terms of the basis gates
and the device geometry of the physical quantum processor. On the IBM Q device, two-qubit
gates such as CX gates and SWAP gates, incur non-negligible error, and a practical challenge
is to reduce the number of such two-qubit gates as far as possible. Explicitly, the IBM Q device
which we use have CX gate error rate from 0.6% to 5% (see Fig. 4), and accordingly, any
circuit containing more than a few tens CX gates is not ideal for robust simulation on such a
quantum device.

In our work of realizing the AKLT state, a crucial step is implementing the three-qubit
operation in Eq. (7) on a quantum circuit. A straightforward approach has so far been the
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isometry decomposition (see Appendix A), but that involves a large number of two-qubit CX
gates as well as single-qubit gates [75]. For Û , the transpile function2 from Qiskit requires
at least 24 CX gates.

Moreover, of these CX gates, 8 are not nearest-neighbor, and this will further require SWAP
gates after being transpiled to the quantum hardware if these three qubits are aligned as a
linear chain.

On today’s quantum computers, we are aware that the Variational Quantum Algorithms
(VQAs) are effective methods for the current NISQ-era device [76, 77] with reduced number
of gates. In VQAs, parameterized circuits are first obtained on a classical computer by an op-
timization algorithm, and then these circuits with optimized parameters are executed on the
quantum computer. As such, we consider a variational approach known as the circuit recom-
pilation [17, 18, 60, 61, 78], which has been shown to give promising approximations to the
original unitary whilst having much shallower circuit depths, and with fewer CX and single-
qubit gates compared to the default isometry decomposition. This will result in significantly
lower aggregate gate error on current NISQ-era quantum processors.

To conduct the circuit recompilation, we consider the Ansatz shown in Fig. 3, where the
original 3-qubit unitary operator Û is substituted with a variational circuit V̂ consisting of
an initial layer of single-qubit U3 rotations (pink block), followed by nl layers, each consist-
ing of two U3 gates and a CX gate (purple blocks). The CX gate acts between the “middle”
qubit and either of the other two qubits, depending on whether the layer index is odd or
even. This recompiled circuit consists of 9+6nl variational parameters, with each 3D rotation
gate U3(φ,θ ,λ) parametrized by three rotational parameters φ,θ and λ that are optimized
through a limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm with box constraints
(L-BFGSB) [17, 79, 80]. To avoid being trapped in the local minima, we use a basin-hopping
method [81–84], where small perturbations are added to each optimization round followed
by local minimization for each step, and the search is from nl = 5 layers to nl = 9 layers. The
loss function is constructed as follows: for both target unitary operator Û and the Ansatz V̂
operator, each is first reshaped to a rank-2M (M = 3L) tensor where each index has a dimen-
sion of two. By contracting these two tensors V̂ and Û as a scalar, and after normalizing and
negating it, we have

f
�

Û , V̂
�

= 1−
1

2M

∑

j1,··· , jM

∑

i1,··· ,iM

Û j1,··· , jM
i1,··· ,iM

V̂ i1,··· ,iM
j1,··· , jM

, (15)

where Û j1,··· , jM
i1,··· ,iM

and V̂ i1,··· ,iM
j1,··· , jM

are the rank-2M tensors reshaped from their corresponding oper-

ator. We then obtain the loss function f
�

Û , V̂
�

for the optimization [85]. See Appendix B for
details of the optimization process.

Since the loss function from Eq. (15) itself is constructed in a way that is independent of
any initial state, the validity of the recompiled circuit can be simply characterized by computing
the circuit fidelity (F(V̂ |β〉 , Û |β〉)) between a random state |β〉 acted by the original target
operator (which is Û here), and the same state acted by the recompiled operator V̂:

F(V̂ |β〉 , Û |β〉) = 〈β | V̂†Û |β〉 . (16)

In our work, we achieved very high circuit fidelity F > 99.99% of the recompiled V̂ gates
typically with just nl = 8 variational layers. Also, compared with other recent proposals of im-
plementing the non-unitary operator using imaginary time evolution [33, 86], our approach
consists of only one step of unitary evolution from a trival singlet product state plus ancilla

2The function transpile transforms a given input quantum circuit into an equivalent circuit which matches
the geometry of a specific device, e.g. ibmq_montreal from IBM Q. It can also optimize the circuit for execution on
the NISQ-era quantum computer.
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Figure 3: Variational circuit recompilation of the three-qubit unitary operator
Û . The unitary operator Û in Fig. 2 is replaced by a Ansatz circuit V̂ consisting
of an initial layer of three single-qubit U3 gates (pink) followed by nl layers, each
containing one CX gate and two U3 gates (purple). Shown here are nl = 2 layers.
The optimized parameters for every U3(φ,θ ,λ) gate are obtained by training a tensor
network on a classical computer [17,60,61].

qubits in spin-up, followed by a measurement-based post-selection. The corresponding varia-
tional circuit renders a sufficiently shallow circuit such that the outcomes are robust against
the quantum gate infidelity on IBM Q. More details are given below Fig. 9 of the Appendix.
The dataset contains the recompiled V̂ for this work has also been uploaded [87]. Here, we
remark that the required efforts to realize the AKLT state for a larger system size seem to be
high for the NISQ-era device, and therefore a better fidelity of the preparation of the state
shall be expected when more qubits with high gate fidelity are available in the future.

3.4 Implementation layout on IBM quantum processors

To prepare the AKLT state on actual quantum processors, we need to embed the quantum
circuits from Figs. 2 and 3 onto suitable device layouts. To maximize efficiency and minimize
gate errors, it is highly preferable that the logical structure of the qubit couplings [Fig. 2(b)]
conforms as closely as possible to the actual physical couplings within the quantum processor
(if not, more distant couplings can still be effected by “stacking” CX gates [18,88], but doing
so introduces greater gate errors). In particular, since we require one ancilla qubit for every
two qubits in the logical spin-1/2 chain, we should ideally have an uninterrupted chain of 2L
qubits such that every even (or odd) qubit is connected to an additional ancilla qubit.

In Fig. 4, we show how we embedded AKLT states of different sizes L = 2 [Fig. 4(a)], L = 3
[Fig. 4(b)], L = 4 [Fig. 4(c)] and L = 5 [Fig. 4(d)] on the IBM quantum processor (Throughout
this work, we use “ibmq_montreal”). These configurations are also selected because they are
susceptible to the lowest amounts of gate errors, as according to calibration data. The physical
(ancilla) qubits are highlighted using red (green) squares, and the grey arrows indicates the
direction of ascending qubit labels (from q0 to q3L−1).
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Avg 2.860e-2 Avg 1.771e-2

min 6.819e-3min 8.100e-3 max 9.770e-2 max 5.686e-2

Figure 4: Layouts of the utilized qubits on our IBM quantum processor (a) -
(d) shows the selected qubits in the ibmq_montreal quantum computer prepara-
tion of sized L = 2,3, 4 and 5 AKLT states, respectively. The spin-1/2 chain (an-
cilla) qubits are highlighted by red (green) solid squares. The grey arrow points
the direction of each qubit chain from the beginning. For different system sizes
L = 2,3, 4 and 5, the qubits chosen on ibmq_montreal are: (a) [11, 14,13, 15,12,10],
(b) [11, 14,13, 10,12, 15,17, 18,21], (c) [24, 23,21, 17,18,15, 10,12, 13,16, 14,11]
and (d) [24,23, 21,17, 18,15, 10,12, 13,16, 14,11, 5,8, 9], with gray arrows indicat-
ing the directions of ascending qubit labels. The error for single-qubit Pauli-X gates
and CX gates are also shown.

3.5 State measurement and post-selection

After the state preparation, we need to compellingly measure the putatively prepared state to
check whether the AKLT state was indeed realized. The IBM quantum computer only allows for
measurements that outputs whether a qubit is spin up or down - by repeating a large number
of “shots” or “runs”, the expectation value of 〈τz〉= 〈q|τz|q〉 of a qubit q can be measured.3

Following the quantum circuit being executed on the IBM quantum processor over a large
number of shots, we perform post-selection not just to project out the ancilla qubit for ef-
fectively non-unitary evolution, but also to mitigate the effect of noise on the data so as to
enhance the signal-to-noise ratio. To implement P̂ from Sec. 3.1 via post-selection, the in-
stances where the ancilla qubits are all measured to be spin up (‘|↑〉’) are recorded, and those
with at least one spin down (‘|↓〉’) are discarded. Of those instances that are post-selected thus
far, we can perform another round of post-selection to eliminate spurious instances compro-
mised by noise. We only keep instances whose bit strings conserve the total spin up numbers
i.e. with the same number of ‘|↑〉’ in the context of IBM Q data of counts. This is because
the projection operator, sometimes also called the symmetrization operator [68] from Eq. (6),
does not change the total spin number, and therefore the state itself after the application of
the unitary operator should have the same number of spin up (‘|↑〉’) with the initial product

3Although not necessary for our purpose, the spin-1/2 expectation in any other direction can be measured by
rotating the qubit prior to measurement.
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state of singlets. After that, the probability amplitude for each qubit of the AKLT state in the
spin-1/2 basis can be calculated and compared with the exact values from the MPS, which is
discussed in the following section (see also Appendix C).

4 Measurement results

In this section, we present and evaluate the performance of our algorithm for preparing the
OBC AKLT state on a quantum processor. We first introduce the Hellinger fidelity for quantify-
ing how closely the prepared AKLT state agrees with the exact simulated AKLT state in Sec. 4.1.
Next, we present measurement results of the AKLT state with different sizes in Sec. 4.2, and
briefly discuss some broader implications.

4.1 State fidelity

To evaluate the validity of our state-preparation algorithm of Fig. 3, we use the Hellinger
fidelity [89]. This quantity can directly estimate the similarity between two probability distri-
butions, which is suitable for the sampling statistics nature of IBM Q data, as it is ananalog
to quantum fidelity for classical probability distributions [90].4 Most recently, this quantity
has been used to characterize the performance of Dicke state preparation on the IBM Q sys-
tem [90], as well as to investigate the quantum circuit reproducibility [91]. Here, we remark
that although the Hellinger fidelity does not take into account the coherent information be-
tween different basis in the Hilbert space, it circumvents the large number of tomography
circuits, which is suitable for NISQ-era devices such as IBM Q. In analogy to classical proba-
bilities, for any two states represented in the spin-1/2 basis as

|R〉=
∑

i

ri |σi〉 , |S〉=
∑

i

si |σi〉 , (17)

the Hellinger fidelity is defined as

F(|R〉 , |S〉) =

�

∑

i

Æ

|ri|2|si|2
�2

. (18)

If |R〉 and |S〉 were identical, all the coefficients
p

|ri|2|si|2 = |ri|2 would sum to unity; other-
wise, the departure of F from unity signifies the lack of perfect agreement between |R〉 and |S〉.
Here, we take |R〉 and |S〉 as the AKLT state prepared on the quantum processor and the exact
AKLT state simulated using the local noiseless Qiskit aer_simulator backends on the Qiskit
Terra circuits respectively. In other words, |ri|2 is the probability distribution obtained from
measuring the physical quantum circuit and |si|2 represent the exact AKLT state probability
distribution.

4.2 Verification of the AKLT state

In Fig. 5, we present very good agreement between the OBC AKLT states prepared on the IBM
quantum computer (with and without error mitigation) with the results from the noiseless
local simulator. Here, the signatures of the AKLT state characterization are the probability
amplitudes of each basis component for L = 2 and L = 3, which are obtained via post-selection

4In this case, we also do not need to further construct additional quantum tomography circuits after preparing
the AKLT state, which will add on error for the results.
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Figure 5: Characterization of AKLT state preparation with open boundary con-
ditions. (a) Comparison of the probability amplitudes of the L = 2 AKLT state com-
ponents in the spin-1/2 basis. (b) and (c) comparison of the probability amplitudes
of the L = 3 AKLT state components in the spin-1/2 basis. In panels (a), (b) and
(c), from darker to lighter color, the bar indicates the ideal local noiseless simula-
tion results from aer_simulator, the unmitigated and mitigated results from the
real devices. For all panels, the mitigated and unmitigated results are obtained from
ibmq_montreal, and error bars are calculated based on 91 repeated executions. A
maximum of 32000 shots is used for each execution, and therefore the effective shots
for each circuit is 91× 32000= 2912000.

of the raw measurement output from the IBM quantum computer.5 We observe qualitative
agreement with the results from the noiseless aer_simulator for L = 2 and 3 in Fig. 5(a) -
(c). As for L = 5, which is only presented in Fig. 6, the numerical readout error mitigation is
extremely costly, i.e. one needs 215 circuits to construct the calibration matrix, which is beyond
the maximal number of circuits each IBM Q device could host per submission. Therefore,
the readout error mitigation is performed using the mthree package [92] without explicitly
constructing a calibration matrix (see details of error mitigation in Appendix D). We execute
all the circuits, including those for readout error mitigations at the same time, so as to reduce
the effect of stochastic noise on the device as much as possible. Therefore, for each circuit for
L, the result is calculated and averaged over 91 repeated executions of the same circuit on
ibmq_montreal. This is the maximum allowable number for which each circuit for L can be
repeated on this device. The error bars represent the standard error.

As mentioned above, the number of CX gates which grows linearly with the system size
L in the recompiled quantum circuit mainly contributes to the error in the simulation on the
IBM Q device, and Fig. 5 illustrates such effect clearly. According to the case with L = 2 in
Fig. 5(a), we find that our results are very close to the exact values for all component basis
states. However, for L = 3 in Fig. 5(b) and (c), only the value for the basis 〈↑↑↓↓↑↑〉 is close to
the exact one, while most of the others exhibit some visible deviations from the exact values.
Overall, the averaged Hellinger fidelity F(|ψ〉L , |Φ〉) starts to drop dramatically after L = 3
where |Φ〉 is the state obtained from the noiseless Qiskit aer_simulator. For both L = 2 and
L = 3 cases, compared with the unmitigated results, the error mitigation does not show an
obvious improvement. Since our error mitigation method only focuses on the readout error,

5The local simulation results obtained from aer_simulator is quite close to those exact values calculated
from the MPS representation (see Appendix C.1), up to a relative error of magnitude 10−3.

13

https://scipost.org
https://scipost.org/SciPostPhys.15.4.170


SciPost Phys. 15, 170 (2023)

2 3 4 5

L

0.4

0.6

0.8

1.0

F
(|ψ
〉 L
,|Φ
〉)

Transpile

Unmitigated

Mitigated

Figure 6: Averaged Hellinger fidelity F(|ψ〉L , |Φ〉) as a function of system size L.
From darker to lighter color, the line represents the mitigated results using variational
parametrized circuits (solid line with triangles), the unmitigated results using vari-
ational parameterized circuits (dashed line with circles), and those results obtained
using the default transpile function from Qiskit (dot-dashed line with squares).
All results were obtained from ibmq_montreal averaged over 91 repeats of execu-
tions. |Φ〉 is the state obtained from the noiseless Qiskit aer_simulator. Notably,
the recompiled variational circuit Ansatz, whether with or without error mitigation,
significantly preserves the fidelity as L increases.

the effect of the error mitigation is much more significant for larger systems where more qubit
measurements are required.

To check how fast the fidelity decreases when the system size increases, or whether a
high fidelity can be sustained, we study the averaged Hellinger fidelity F(|ψ〉L , |Φ〉) versus L
in Fig. 6. As also apparent in Fig. 5, we observed that for larger systems, the state fidelity
decreases quickly for the default transpiled AKLT state, indicating a poor state preparation.
This is because the total number of CX gates increases linearly with respect to the system size
L, and therefore CX gate errors quickly become the most dominant source of gate fidelity errors
in the quantum processor. In that case, our approach for the readout-error mitigation will be
less effective when L increases. Moreover, compared to the fidelity for different L using the
default transpile function from Qiskit, the advantage of our variational approach is more
obvious for larger systems, although the fidelities for smaller systems with L = 2 are almost
the same. Our findings indicate that the variational parametrized (recompiled) circuit with
fewer CX gates is capable of maintaining a higher state fidelity and more accurate probability
amplitudes for larger system sizes (see also Appendix A). Furthermore, according to the result
under the readout error mitigation in Fig. 6, although the improvement in the fidelity value
is modest, the effect of error mitigation is more significant for larger system sizes. This is
because a larger system size requires more measurements during the state’s preparation. As a
result, once the gate fidelity on quantum processors improves in the near future, our algorithm
will achieve significantly higher fidelities state preparation even at larger L. Here, we remark
again that to further characterize the coherent information of the AKLT state beyond the scope
of the Hellinger fidelity, we calculated the entanglement spectrum in Appendix. E using the
expansion the density matrix in terms of Pauli strings [45].
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Our algorithm can also be naturally extended to perform the preparation of the AKLT state
with PBCs, although, for the current stage, this is restricted by the geometry of IBM Q devices,
as a specific qubit ring is needed such that both edge spins are connected. In Appendix C.2, we
show the results for a local classical noiseless simulation of the preparation of the AKLT state
with PBC without noise, which shows good agreement with the values computed from the
MPS representation.6 Also, as our circuit is notably shallower than the one generated using
the default transpile function from Qiskit, it has the capacity for further operations on the
obtained AKLT state, e.g. performing quench dynamics of the state, or using the state for the
calculation of observables interested by post selecting all the ancilla qubits to be in |↑〉.

5 Conclusion

In conclusion, we presented an efficient algorithm to prepare the AKLT state on an IBM quan-
tum computer. By using an additional ancilla qubit, we are able to embed the non-unitary
projection operator into a unitary operator acting on three qubits. Through the variational
recompilation of the operator, such a three-qubit operation is then entirely transformed into
a parametrized circuit with a reduced circuit depth. This approach is non-deterministic, and
therefore we show that the state can be obtained by evolving a trivial initial product state of
singlets plus ancilla qubits in spin-up using this parametrized circuit, and then by post-selection
and spin number conservation. The simulations on the noisy IBM quantum processor show
that the state fidelity is higher for those with smaller system sizes, and due to the aggregate CX
gate error when the system size is larger, the lower fidelity indicates the poorer state prepara-
tion. Accordingly, the effect of readout-error mitigation on the state fidelity is more obvious in
cases of larger system sizes. In terms of the variational recompilation of the quantum circuit,
our approach provides an efficient way to both prepare the AKLT state with fewer CX and
single qubit gates on NISQ-era quantum processors, and for subsequent operations using the
state preparation. Also, the evolution from the initial state only has one step, and it does not
require any mid-circuit measurement.

In the future, this work will inspire similar algorithms for higher-dimensional AKLT states
[36, 37, 47, 48, 93, 94], or other types of VBS states which are of great interest to the con-
densed matter physics community. More specifically, to extend our current approach to higher-
dimensional AKLT states, it is vital to come up with a suitable encoding of the triplet states in
the spin-1 manifold such that its MPS representation could be explicitly implemented. More
careful studies should also be performed to increase the state fidelity for larger system sizes
with suitable error mitigation techniques and adequate numerical resources. With appropri-
ate redefinitions of the basis states, the exponentially large Hilbert space of even modestly
sized quantum processors can be used to demonstrate the physics in large multi-dimensional
lattices [95–98], as already demonstrated in Ref. [18]. Another possible direction is to come
up with quantum algorithms for the computation of the relevant quantities from the AKLT
state which is already prepared on a quantum computer. This is of great importance to the
application of quantum computers on many-body physics, but is still at its infancy in current
literature.

We also note that non-unitary operators also describe the time evolution of effectively non-
Hermitian systems. As such, with some modifications, our algorithm can be adapted to sim-
ulate non-Hermitian many-body phenomena as well as entanglement dynamics on the quan-
tum computer [99–111]. As a concrete case in point, the phase transition associated with PT
symmetry breaking is generally induced by gain or loss, which can be realized by coupling

6We remark here that the geometry of ibmq_washington is able to host a six-site PBC AKLT state, but we do not
study that in this work.
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system qubits to an ancilla qubit analogously to our approach [112–114]. Moreover, in terms
of realizing loss as dissipation, one can simulate quantum systems with dissipative bound-
aries [115–117]. In addition, under appropriate generalizations, non-unitary dynamics can be
directly embedded in a quantum circuit, which would facilitate the simulation of dissipative
quantum dynamics on a quantum computer [118–123].
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A Transformation to an unitary operator

To realize the non-unitary projection P̂ in Eq. (6) from the main text, we consider embedding
it into a three-qubit operation U via the following Ansatz [29]

Û =
�

P̂ Â
p

Î − P̂†P̂ B̂ ,

�

, (A.1)

with identity matrix Î . Thus, Û can be solved by the following Û ′ Ansatz

Û ′ =
�

P̂ Î
p

Î − P̂†P̂ Î

�

= ÛR̂ . (A.2)

Here, R̂′ is computed by the QR decomposition of Û ′, which accordingly gives the solution of
Û in Eq. (7). The target state from the operation Û is obtained by the post-selection given in
Eq. (10) of the main text.

As mentioned in the main text, the three-qubit operation in Eq. (7) can also be realized
with the isometry decomposition in Fig. 7 which requires 24 CX gates. However, the circuit
based on our variational approach described in Fig. 3 requires much fewer gates: 8 CX gates
for a total of 8 layers. The corresponding comparison of the result is shown in Fig. 8. Here,
the basis states are those component basis of the corresponding AKLT state (L = 2 and L = 4)
represented in the spin-1/2 basis similar to those shown in Fig. 5.7 For smaller system such
as L = 2, the probability amplitude for both approaches are almost equally close to the exact
values [Fig. 8(a)]. However, the effective number of shots for our approach is almost two
times more than the default transpile approach [Fig. 8(c)]. Once the system size goes
larger (L = 4), for certain basis states, especially for those with larger probability amplitude
values, our approach shows that they are closer to the exact values than the default transpile

7For the purpose of presentation, we did not show them explicitly here.
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approach [Fig. 8(b)], and more effective number of shots [Fig. 8(d)] as well. As a result,
it renders better state fidelity, as already discussed in the main text. All simulations were
executed on ibm_montreal. Our approach also indicates that since the circuit is shallower and
there are more effective number of shots, it is capable of further operations once the AKLT
state is prepared.

B Variational circuit optimization

In Fig. 9, we illustrate the performance of the variational circuit parameterization by showing
both the averaged circuit fidelity F and the maximum fidelity Fmax with respect to differ-
ent number of layers nl , as well as different number of iterations of the optimizations. The
averaged F and the error bars are computed over 20 rounds of repeats of the complete op-
timization. It is found that an iteration number of 600 can already render a parameterized
circuit fidelity closer to 1, as shown in Fig. 9. With layer nl = 8, the optimization could result
in an averaged circuit fidelity F close to 1 with fixed number of iterations and basin hoppings
[Fig. 9(a)]. For nl = 5,6, 7, they fail to achieve a fidelity larger than the case of nl = 8 within
all 20 rounds of repeat. When nl = 9, though F is not better than the case of nl = 8 due to the
other parameters chosen such as increasing the number of basin hopping during the circuit
optimization to avoid being trapped in the local minimal, the largest Fmax for nl = 9 still gives
a fidelity larger than 99.99% [Fig. 9(b)]. Therefore, throughout this work, we choose nl = 8 as
the least number of CX and single-qubit gates to minimize the gate fidelity error. Comparing
our outcomes with the numerical decomposition of Û using the default transpile function
from Qiskit, our approach results in fewer CX gates for each unitary operator, and the number
of the CX gates scales linearly with the size of the AKLT state. Therefore, our finding shows
that we are able to realize the same unitary operator on a quantum circuit with much shallower
circuit depth.

C Explicit exact forms of the AKLT state for L = 2 and L = 3

To characterize the validity of our prepared AKLT state, we check whether the state components
in the spin-1/2 basis are the same as those from the exact MPS representations, and how close
their corresponding probability amplitudes obtained from the real IBM Q device are to the
exact value. We remark that since the Aσ matrices from Eq. (4) only normalize the whole state
in the thermodynamic limit [67,68], we calculate the probability amplitude distribution from
the normalized coefficients, and compare them with the results from IBM Q after performing

Figure 7: Numerical decomposition of the three-qubit operation in Eq. (7). The
decomposition requires 24 CX-gates which are more than the circuit under 8 layers
from the variational approach in Fig. 3. The circuit diagram is generated using Qiskit.

17

https://scipost.org
https://scipost.org/SciPostPhys.15.4.170


SciPost Phys. 15, 170 (2023)

0 1 2 3

Basis state

0.20

0.25

0.30

P
ro

b
ab

ili
ty

(a)

0 20 40

Basis state

0.00

0.05

0.10

P
ro

b
ab

ili
ty

(b)

0 1 2 3

Basis state

1000

2000

3000

N
u

m
b

er
of

sh
ot

s (c)

0 20 40

Basis state

0

200

400

N
u

m
b

er
of

sh
ot

s (d)

Figure 8: Probability amplitude for (a) L = 2 and (b) L = 4 AKLT basis states. From
lighter to darker color, the curve for each panel represents the results obtained using
the default transpile approach (dot-dashed line), the noiseless aer_simulator
(dashed line), and the variational parameterized circuit (solid line); The effective
number of shots for (c) L = 2 and (d) L = 4 AKLT basis states. From lighter to
darker color, the curve for each panel represents the results obtained using the default
transpile approach (dot-dashed line), and the variational parameterized circuit
(solid line). For all panels, the x axis stands for basis states (we omit the expression
for each basis state for purpose of simple presentation), and the total shots for each
execution is 32000, which is the maximum number of shots for ibm_montreal. The
basis states are those component basis of the AKLT state represented in the spin-1/2
basis.

the post-selection. In the following context, for simplicity, we calculate the exact values for
both OBC and PBC at L = 2 as an example.

C.1 Open boundary conditions

For simplicity, we first show a L = 2 AKLT state with OBC with details. The non-trivial basis
states calculated from the exact MPS expression are:

|ψ〉OBC
L=2 = α1 |O〉 |+〉+α2 |+〉 |O〉 , (C.1)

and

α1 = bl
A

T
AOA+br

A = −
p

2
3

,

α2 = bl
A

T
A+AO br

A =
p

2
3

,

(C.2)

where bl
A

T
=
�

1 0
�T

, br
A =
�

0 1
�T

, and AO = −
q

1
3τ

z , A+ = +
q

2
3τ
+ which are the same ex-

pressions from Eq. (4) and (3). As the state in Eq. (C.1) is unnormalized, we first expand each
in the spin-1/2 basis by substituting |+〉= |↑↑〉, and |O〉= 1/

p
2 (|↑↓〉+ |↓↑〉) into Eq. (C.1):

|ψ〉OBC
L=2 =

α1p
2
(|↑↓〉+ |↓↑〉) |↑↑〉+

α2p
2
|↑↑〉 (|↑↓〉+ |↓↑〉)

=
α1p

2
|↑↓↑↑〉+

α1p
2
|↓↑↑↑〉+

α2p
2
|↑↑↑↓〉+

α2p
2
|↑↑↓↑〉 . (C.3)
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Figure 9: Effect of number of variational Ansatz labels nl on the validity of circuit
recompilation: (a) Averaged circuit recompilation fidelity F̄ as a function of the num-
ber of recompiled circuit layers nl . For all the curves, the darker blue color represents
the larger number of iterations: 600 (circle), 700 (square) and 800 (triangle). The
error bar of each data is obtained by calculating the standard error from 20 rounds
of optimizations. (b) Maximum circuit recompilation fidelity Fmax as a function of
the number of recompiled circuit layers nl . For all the curves, the darker red color
represents the larger number of iterations: 600 (circle), 700 (square) and 800 (tri-
angle). For all panels, the number of basin hopping is fixed at 20. The dashed line
indicates the value of fidelity equal to 1.

As stated above, this state is not normalized. We introduce a normalization factor

N =
Ç

2
�

α1/
p

2
�2
+ 2
�

α2/
p

2
�2

which exactly corresponds to the post-selection procedure
in Sec. 3.1 of the main text, and compute the normalized coefficient for the wavefunction as

α̃1 =
1
N
α1p

2
= −

1
2

, (C.4)

α̃2 =
1
N
α2p

2
=

1
2

,

and the state itself becomes

|ψ̃〉OBC
L=2 = α̃1 |↑↓↑↑〉+ α̃1 |↓↑↑↑〉+ α̃2 |↑↑↑↓〉+ α̃2 |↑↑↓↑〉 . (C.5)

Therefore, the normalized probability amplitude for each component basis is then

P [|↑↓↑↑〉] =
1
4

, P [|↓↑↑↑〉] =
1
4

, (C.6)

P [|↑↑↑↓〉] =
1
4

, P [|↑↑↓↑〉] =
1
4

.

For L = 3, by following the same procedure as decribed above, we can obtain

|ψ〉OBC
L=3 = α1 |+〉 |−〉 |+〉+α2 (|+〉 |O〉 |O〉 − |O〉 |+〉 |O〉+ |O〉 |O〉 |+〉) , (C.7)

where α1 = −2
p

6/9 and α2 =
p

6/9. After inserting the expression of |O〉 and the normal-
ization, the state itself becomes

|ψ̃〉OBC
L=3 = α̃1 |↑↑↓↓↑↑〉+ α̃2 (|↑↑↑↓↑↓〉+ |↑↑↓↑↑↓〉+ |↑↑↑↓↓↑〉+ |↑↑↓↑↓↑〉)

− α̃2 (|↑↓↑↑↑↓〉+ |↓↑↑↑↑↓〉+ |↑↓↑↑↑↓〉+ |↓↑↑↑↓↑〉)
+ α̃2 (|↑↓↑↓↑↑〉+ |↓↑↑↓↑↑〉+ |↑↓↓↑↑↑〉+ |↓↑↓↑↑↑〉) , (C.8)
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and therefore the normalized probability amplitude for each component basis is

P [|↑↑↓↓↑↑〉] =
4
7

,

P [|↑↑↑↓↑↓〉] =
1

28
, P [|↑↑↓↑↑↓〉] =

1
28

, P [|↑↑↑↓↓↑〉] =
1
28

, P [|↑↑↓↑↓↑〉] =
1
28

,

P [|↑↓↑↑↑↓〉] =
1

28
, P [|↓↑↑↑↑↓〉] =

1
28

, P [|↑↓↑↑↑↓〉] =
1
28

, P [|↓↑↑↑↓↑〉] =
1
28

,

P [|↑↓↑↓↑↑〉] =
1

28
, P [|↓↑↑↓↑↑〉] =

1
28

, P [|↑↓↓↑↑↑〉] =
1
28

, P [|↓↑↓↑↑↑〉] =
1
28

.

(C.9)

C.2 Periodic boundary conditions

For an AKLT state with PBC, instead of two seperate spins at the boundaries, the MPS has a
trace for each matrix product in Eq. (2). The non-trivial basis states for a L = 2 AKLT state
are:

|ψ〉PBC
L=2 = α1 |+〉 |−〉+α2 |O〉 |O〉+α3 |−〉 |+〉 , (C.10)

and

α1 = Tr
�

A+A−
�

= −
2
3

, (C.11)

α2 = Tr
�

AOAO
�

=
2
3

,

α3 = Tr
�

A−A+
�

= −
2
3

.

Again, we substitute |+〉= |↑↑〉, and |O〉= 1/
p

2 (|↑↓〉+ |↓↑〉) into Eq. (C.10):

|ψ〉PBC
L=2 = α1 |↑↑↓↓〉+

α2

2
(|↑↓↑↓〉+ |↓↑↑↓〉+ |↑↓↓↑〉+ |↓↑↓↑〉) +α3 |↓↓↑↑〉 . (C.12)

With the normalization factor N =
q

α2
1 + 4(α2/2)2 +α2

3 = 2/
p

3 corresponding to the post-
selection process, we obtain the normalized coefficients for the wavefunction as

α̃1 =
α1

N =
1
p

3
,

α̃2 =
α2

2N =
1

2
p

3
,

α̃3 =
α3

N =
1
p

3
,

(C.13)

and the state itself becomes

|ψ̃〉PBC
L=2 = α̃1 |↑↑↓↓〉+ α̃2 (|↑↓↑↓〉+ |↓↑↑↓〉+ |↑↓↓↑〉+ |↓↑↓↑〉) + α̃3 |↓↓↑↑〉 . (C.14)

Therefore, the normalized probability amplitude for each component basis is then

P [|↑↑↓↓〉] = P [|↓↓↑↑〉] =
1
3

,

P [|↑↓↑↓〉] = P [|↓↑↑↓〉] = P [|↑↓↓↑〉] = P [|↓↑↓↑〉] =
1
12

.
(C.15)

Similarily, for L = 3, the state computed from the exact MPS representation is

|ψ〉PBC
L=3 = −α |+〉 |O〉 |−〉+α |+〉 |−〉 |O〉+α |O〉 |+〉 |−〉

−α |O〉 |−〉 |+〉 −α |−〉 |+〉 |O〉+α |−〉 |O〉 |+〉 , (C.16)
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where α= 2
3
p

3
. The normalized state is

|ψ̃〉PBC
L=3 = −α̃ (|↑↑↑↓↓↓〉+ |↑↑↓↑↓↓〉) + α̃ (|↑↑↓↓↑↓〉+ |↑↑↓↓↓↑〉) + α̃ (|↑↓↑↑↓↓〉+ |↓↑↑↑↓↑〉)

− α̃ (|↑↓↓↓↑↑〉+ |↓↑↓↓↑↑〉)− α̃ (|↓↓↑↑↑↓〉+ |↓↓↑↑↓↑〉) + α̃ (|↓↓↑↓↑↑〉+ |↓↓↓↑↑↑〉) .
(C.17)

And then we get the probability amplitude for each basis state in the spin-1/2 basis as

P [|↓↓↑↑↓↑〉] = P [|↑↓↓↓↑↑〉] = P [|↓↑↑↑↓↓〉] = P [|↑↑↓↑↓↓〉]
=P [|↑↑↓↓↓↑〉] = P [|↓↓↑↑↑↓〉] = P [|↓↓↑↓↑↑〉] = P [|↓↓↓↑↑↑〉]

=P [|↓↑↓↓↑↑〉] = P [|↑↓↑↑↓↓〉] = P [|↑↑↑↓↓↓〉] = P [|↑↑↓↓↑↓〉] =
1
12

. (C.18)

We show the results for the L = 2 and L = 3 AKLT states with PBC in Fig. 10. In order
to host a minimal number of single-qubit as well as CX gates, the implementation for PBC
requires a special circuit geometry where the both edge spins are connected, as shown in
Fig. 10(a). We plot the results for PBC AKLT state probability distribution for L = 2 [Fig. 10(b)]
and L = 3 [Fig. 10(c)] using the noiseless aer_simulator from Qiskit, which shows good
agreement with the exact results calculated from MPS, as derived above.

Figure 10: AKLT state preparation with periodic boundary condition (PBC): (a) Setup
for AKLT state with PBC. Each solid black dot indicates a physical qubit site, and the
solid black line represents the initial singlet bond. Two ancilla qubits are represented
by smaller hollow circles, connected to the corresponding physical qubit via a dashed
grey line. The larger circles represent the spin-1 site. The unitary operators are ap-
plied on the three-qubit sites (red-lined squares); (b) Probability amplitude for L = 2
and 3 AKLT state with PBC. Lighter blue bar represents the exact values calculated
from MPS representation in Sec. C.2, and the darker blue bar represents the results
obtained from the noiseless aer_simulator in Qiskit.
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D Readout error mitigation and device specifications

A major error which can be mitigated in our experiment on IBM Q is the readout error, where
there exists a possibility of measuring |↑〉 but renders a |↓〉, and vice versa. Recent progress have
seen tremendous efforts in the mitigation of the measurement error [86, 125–130]. For the
Qiskit [65] environment itself, one could first run a number of calibration circuits with different
initial conditions, and then estimate the true measurement counts based on the calibration
matrix formed from the outcomes from those calibration circuits [131, 132]. In this paper,
we utilize a recent readout error mitigation approach [92] which requires only a handful of
circuits without the construction of the full calibration matrix.

In order to be suitable for the job submission framework of the IBM Q platform, and to
make full use of the calibration approach, we combine the circuits (‘physical circuits’) for the
preparation of the AKLT state with the calibration circuits together into one single job and
submit to the IBM Q platform on the cloud. This is to enforce that the ‘physical circuits’ and
the calibration circuits are executed almost at the same time, which will make the calibration
more accurate. Also, in order to have the same quantum register layout for both ‘physical
circuits’ and the calibration circuit, we first select and transpile the ‘physical circuit’ onto the
corresponding real device with respect to the best fitness function using the device error data
which were calibrated by IBM Q for high-difelity quantum nondemolition (QND) measure-
ments [17], and then use this particular layout for the calibration circuit so that the qubits
used for both categories of circuits are exactly the same. We then submit both categories of
circuits together to the real device on IBM Q for execution.

We show the device error obtained from IBM Q ibmq_montreal in Fig. 11.

ibmq_montreal

Avg 2.860e-2

min 8.100e-3 max 9.770e-2

Avg 1.771e-2

min 6.819e-3 max 5.686e-2

Figure 11: Calibration data of ibmq_montreal on 2022-09-22 22:56: (a) Mapview
of the calibration data on IBM Q ibmq_montreal device; (b) Range of single-qubit
Pauli-X gate error (left panel) and CX gate error (right panel) with their averaged
values. The averaged relaxation time T1 and decoherence time T2 for the qubits are
122.93µs and 92.16µs, respectively.
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(a) (b)

Figure 12: (a) Measurement of the half-chain (the first two physical qubits) reduced
density matrix of the AKLT state in L = 2. (b) The entanglement spectrum (eigen-
values of the reduced density matrix) obtained from the data in panel (a).

E Entanglement spectrum

In this section, we present our results of the entanglement spectrum by measuring a reduced
density matrix. Here, we consider the AKLT state with L = 2,8 and select the subsystem as the
first two physical qubits. For a reduced density matrix ρ, we can expand it in terms of Pauli
strings [45], and our two-site case is given by

ρ =
1
22

∑

α1,α2=I ,X ,Y,Z

cα1,α2
σα1,1σα2,2 , (E.1)

where the coefficients can be simply computed as follows

cα1···αn
= Tr
�

σα1,1σα2,2ρ
�

. (E.2)

For our simulations on the quantum computer, we only perform the measurement along
Tr
�

σZ ,1σZ ,2ρ
�

. In order to measure other coefficients, we apply rotations on qubits. For
example, to measure Tr

�

σZ ,1σZ ,2ρ
�

, we rotate the two selected qubits from σZ ,1 and σZ ,2 to
σX ,1 and σX ,2.

We display the results of the simulations in Fig. 12 (a), where both the noiseless and
the noisy simulation exhibit good agreement with the exact result. Then, after obtaining the
reduced density matrix, we can numerically diagonalize ρ to compute its entanglement spec-
trum, and the results are shown in Fig. 12 (b). Here, the noiseless simulation fits the exact
result well, and since the process of numerical diagonalization is extremely sensitive to the
magnitude of the matrix elements, there exists a slight disagreement between the noisy simu-
lation and the exact result.
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